1
|
Abdelaal SM, Abdel Rahman MM, Mahmoud LM, Rashed LA, Abd El-Galil TI, Mahmoud MM. Combined swimming with melatonin protects against behavioural deficit in cerebral ischemia-reperfusion injury induced rats associated with modulation of Mst1- MAPK -ERK signalling pathway. Arch Physiol Biochem 2025; 131:119-134. [PMID: 39152720 DOI: 10.1080/13813455.2024.2392186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The inconvenience of social and behavioural deficits after cerebral ischaemia reperfusion (I/R) injury is still not well documented. AIM We aimed to study the protective effect of preconditioning swimming exercise combined with melatonin against cerebral I/R induced injury. METHODOLOGY Sixty rats were allocated into 6 groups; groups I and II served as control. Groups 3,4,5,6 subjected to bilateral carotid ligation for 30 minutes (min.) followed by reperfusion. Group 3 left untreated while groups 4 and 6; underwent swimming exercise 30 min/day, five days a week for three weeks before the surgery. Groups 5 and 6 treated with melatonin 30 minutes before the operation, then, all rats in groups 4, 5,6 were subjected to I/R. After that, groups 5 and 6 treated with 2nd dose of melatonin 30 minutes after reperfusion. RESULTS Combined strategy exhibited the most neuroprotective effect through prevention of cerebral I/R induced inflammation, oxidative stress and apoptosis with subsequent improvement in socio behaviour deficits and enhanced Glial cell proliferative capacity. CONCLUSION The protective contribution of combined strategy is associated with modulation in Macrophage-stimulating 1/mitogen-activated protein kinase/extracellular signal-regulated kinase (MST1/MAPK/ERK) pathway which may explain, at least in part, its protective potential.
Collapse
Affiliation(s)
| | | | | | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
2
|
Bilek F, Ercan Z, Deniz G, Ozgul S, Demir CF. High-intensity intermittent exercise increases serum levels of chitinase 3-like protein-1 and matrix metalloproteinase-9 in persons with multiple sclerosis. J Neuroimmunol 2024; 395:578434. [PMID: 39178495 DOI: 10.1016/j.jneuroim.2024.578434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
The study aimed to evaluate the effect of high-intensity intermittent exercise (HIIE) on serum levels of MMP-9 and CHI3L1 in multiple sclerosis. Study group received HIIE twice a week for 12 weeks, while control group received no treatment. In intra-group comparison, study group showed a significant increase in MMP-9 and CHI3L1 levels, while control group showed no significant difference. In intergroup comparison, a significant difference was found only in CHI3L1 levels after treatment. The increase in MMP-9 and CH3L-1 concentrations in study group suggests that these biomarkers may play a role in regulating specific skeletal muscle adaptations due to HIIE.
Collapse
Affiliation(s)
- Furkan Bilek
- Muğla Sıtkı Koçman University, Fethiye Faculty of Health Sciences, Department of Gerontology, Muğla, Türkiye.
| | - Zubeyde Ercan
- Fırat University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Elazığ, Türkiye.
| | - Gulnihal Deniz
- Erzurum Technical University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Erzurum, Türkiye.
| | - Sinem Ozgul
- Fırat University Hospital, Physiotherapy and Rehabilitation Clinic, Elazığ, Türkiye
| | - Caner Feyzi Demir
- Fırat University, School of Medicine, Department of Neurology, Elazığ, Türkiye.
| |
Collapse
|
3
|
Meng X, Yang H, Chen F, Li B, Wu Y, Wang R. Exercise preconditioning mitigates brain injury after cerebral ischemia-reperfusion injury in rats by restraining TIMP1. Immun Inflamm Dis 2024; 12:e70008. [PMID: 39364701 PMCID: PMC11450454 DOI: 10.1002/iid3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Cerebral ischemic disease is a common cerebrovascular disease, especially ischemic stroke. Exercise has protective functions on brain tissues following cerebral ischemia-reperfusion injury (CIRI), but its preventive effects and mechanisms in CIRI remain unclear. We aimed to investigate the effects and mechanisms of exercise preconditioning on CIRI. METHODS The middle cerebral artery occlusion (MCAO) operation was prepared to establish CIRI rats. All rats were randomized into the MCAO, exercise (exercise preconditioning plus MCAO operation), vector (exercise preconditioning, MCAO operation plus intraventricular injection of empty vector), and tissue inhibitor of metalloprotease 1 overexpression (OE-TIMP1, exercise preconditioning, MCAO operation plus intraventricular injection of OE-TIMP1) groups. RESULTS The results indicated that exercise preconditioning suppressed approximately 66.67% of neurological deficit scores and 73.79% of TIMP1 mRNA expression in MCAO rats, which were partially offset by OE-TIMP1. The protective effects of exercise against neuron death status and cerebral infarction size in MCAO rats were reversed by OE-TIMP1. It also confirmed that exercise weakened apoptosis and oxidative stress damage, with notable increases of B-cell lymphoma-2, superoxide dismutase, and glutathione peroxidase production, and evident decreases of BCL2-associated X, caspase 3, and malondialdehyde in MCAO rats, while these effects were partially reversed by OE-TIMP1. Additionally, the inhibitory effects of exercise on the protein levels of TIMP1, hypoxia-inducible factor-alpha, vascular endothelial growth factor receptor 2, vascular endothelial growth factor, and neurogenic locus notch homolog protein 1 in MCAO rats were partially reversed by OE-TIMP1. CONCLUSION Altogether, exercise preconditioning had protective effects on CIRI by restraining TIMP1, which provided new therapeutic strategies for preventing CIRI.
Collapse
Affiliation(s)
- Xiangbo Meng
- Department of Rehabilitation MedicineThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou310000Zhejiang ProvinceChina
| | - Hui Yang
- Department of NeurologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Feifeng Chen
- Department of Rehabilitation MedicineHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Baohua Li
- Department of NeurologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Yan Wu
- Department of Rehabilitation MedicineHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Rong Wang
- Department of RadiologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| |
Collapse
|
4
|
Romaus-Sanjurjo D, Castañón-Apilánez M, López-Arias E, Custodia A, Martin-Martín C, Ouro A, López-Cancio E, Sobrino T. Neuroprotection Afforded by an Enriched Mediterranean-like Diet Is Modified by Exercise in a Rat Male Model of Cerebral Ischemia. Antioxidants (Basel) 2024; 13:138. [PMID: 38397735 PMCID: PMC10885962 DOI: 10.3390/antiox13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke is an important cause of mortality and disability worldwide. Given that current treatments do not allow a remarkably better outcome in patients after stroke, it is mandatory to seek new approaches to preventing stroke and/or complementing the current treatments or ameliorating the ischemic insult. Multiple preclinical and clinical studies highlighted the potential beneficial roles of exercise and a Mediterranean diet following a stroke. Here, we investigated the effects of a pre-stroke Mediterranean-like diet supplemented with hydroxytyrosol and with/without physical exercise on male rats undergoing transient middle cerebral artery occlusion (tMCAO). We also assessed a potential synergistic effect with physical exercise. Our findings indicated that the diet reduced infarct and edema volumes, modulated acute immune response by altering cytokine and chemokine levels, decreased oxidative stress, and improved acute functional recovery post-ischemic injury. Interestingly, while physical exercise alone improved certain outcomes compared to control animals, it did not enhance, and in some aspects even impaired, the positive effects of the Mediterranean-like diet in the short term. Overall, these data provide the first preclinical evidence that a preemptive enriched Mediterranean diet modulates cytokines/chemokines levels downwards which eventually has an important role during the acute phase following ischemic damage, likely mediating neuroprotection.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Castañón-Apilánez
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Esteban López-Arias
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Martin-Martín
- Translational Immmunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena López-Cancio
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Mathias K, Machado RS, Stork S, Dos Santos D, Joaquim L, Generoso J, Danielski LG, Barichello T, Prophiro JS, Petronilho F. Blood-brain barrier permeability in the ischemic stroke: An update. Microvasc Res 2024; 151:104621. [PMID: 37918521 DOI: 10.1016/j.mvr.2023.104621] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Stroke is the second leading cause of death globally and the major cause of long-term disability. Among the types of strokes, ischemic stroke, which occurs due to obstruction of blood vessels responsible for cerebral irrigation, is considered the most prevalent, accounting for approximately 86 % of all stroke cases. This interruption of blood supply leads to a critical pathophysiological mechanism, including oxidative stress and neuroinflammation which are responsible for structural alterations of the blood-brain barrier (BBB). The increased BBB permeability associated with cerebral ischemia-reperfusion may contribute to a worse outcome after stroke. Thus, this narrative review aims to update the pathophysiological mechanisms involved in the increase in BBB permeability and to list the possible therapeutic strategies.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Josiane Somariva Prophiro
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
6
|
Rahman Z, Ghuge S, Dandekar MP. Partial blood replacement ameliorates middle cerebral artery occlusion generated neurological aberrations by intervening TLR4 and NLRP3 cascades in rats. Metab Brain Dis 2023; 38:2339-2354. [PMID: 37402080 DOI: 10.1007/s11011-023-01259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Acute ischemic stroke is a catastrophic medical condition that causes severe disability and mortality if the sufferer escapes treatment within a stipulated timeframe. While timely intervention with clot-bursting agents like tissue-plasminogen activators abrogates some post-stroke neurologic deficits, no neuroprotective therapy is yet promisingly addresses the post-recanalization neuroinflammation in post-stroke survivors. Herein, we investigated the effect of partial blood replacement therapy (BRT), obtained from healthy and treadmill-trained donor rats, on neurological deficits, and peripheral and central inflammatory cascades using the ischemia-reperfusion animal paradigm. The cerebral ischemia-reperfusion was induced in rats by occlusion of the middle cerebral artery (MCAO) for 90 min, followed by reperfusion. Rats underwent MCAO surgery displayed remarkable sensorimotor and motor deficits in rotarod, foot fault, adhesive removal, and paw whisker tests till 5 days post-surgery. These behavior abnormalities were ameliorated in the BRT-recipient MCAO rats. BRT also reduced the infarct volume and neuronal death in the ipsilateral hemisphere revealed by TTC and cresyl violet staining compared to the MCAO group. Rats received BRT infusion exhibited the reduced expression of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule-1 (Iba-1), and MyD88 on day 5 post-MCAO in immunohistochemistry and immunofluorescent assays. Moreover, elevated levels of toll-like receptor 4 (TLR4) and mRNA expression of IL-1β, TNF-α, matrix metalloproteinase-9 and NLRP3, and decreased levels of zonula occludens-1 in MCAO rats, were reversed following BRT. These findings suggest that the partial BRT may rescind MCAO-induced neurological dysfunctions and cerebral injury by intervening in the TLR4 and NLRP3 pathways in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Shubham Ghuge
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
7
|
Sibley D, Chen M, West MA, Matthew AG, Santa Mina D, Randall I. Potential mechanisms of multimodal prehabilitation effects on surgical complications: a narrative review. Appl Physiol Nutr Metab 2023; 48:639-656. [PMID: 37224570 DOI: 10.1139/apnm-2022-0272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Continuous advances in prehabilitation research over the past several decades have clarified its role in improving preoperative risk factors, yet the evidence demonstrating reduced surgical complications remains uncertain. Describing the potential mechanisms underlying prehabilitation and surgical complications represents an important opportunity to establish biological plausibility, develop targeted therapies, generate hypotheses for future research, and contribute to the rationale for implementation into the standard of care. In this narrative review, we discuss and synthesize the current evidence base for the biological plausibility of multimodal prehabilitation to reduce surgical complications. The goal of this review is to improve prehabilitation interventions and measurement by outlining biologically plausible mechanisms of benefit and generating hypotheses for future research. This is accomplished by synthesizing the available evidence for the mechanistic benefit of exercise, nutrition, and psychological interventions for reducing the incidence and severity of surgical complications reported by the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP). This review was conducted and reported in accordance with a quality assessment scale for narrative reviews. Findings indicate that prehabilitation has biological plausibility to reduce all complications outlined by NSQIP. Mechanisms for prehabilitation to reduce surgical complications include anti-inflammation, enhanced innate immunity, and attenuation of sympathovagal imbalance. Mechanisms vary depending on the intervention protocol and baseline characteristics of the sample. This review highlights the need for more research in this space while proposing potential mechanisms to be included in future investigations.
Collapse
Affiliation(s)
- Daniel Sibley
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Maggie Chen
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Malcolm A West
- Faculty of Medicine, Cancer Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, Perioperative and Critical Care, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew G Matthew
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel Santa Mina
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ian Randall
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Cerebral Ischemia/Reperfusion Injury and Pharmacologic Preconditioning as a Means to Reduce Stroke-induced Inflammation and Damage. Neurochem Res 2022; 47:3598-3614. [DOI: 10.1007/s11064-022-03789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
9
|
Wu S, Yin Y, Du L. Blood-Brain Barrier Dysfunction in the Pathogenesis of Major Depressive Disorder. Cell Mol Neurobiol 2022; 42:2571-2591. [PMID: 34637015 PMCID: PMC11421634 DOI: 10.1007/s10571-021-01153-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Major depression represents a complex and prevalent psychological disease that is characterized by persistent depressed mood, impaired cognitive function and complicated pathophysiological and neuroendocrine alterations. Despite the multifactorial etiology of depression, one of the most recent factors to be identified as playing a critical role in the development of depression is blood-brain barrier (BBB) disruption. The occurrence of BBB integrity disruption contributes to the disturbance of brain homeostasis and leads to complications of neurological diseases, such as stroke, chronic neurodegenerative disorders, neuroinflammatory disorders. Recently, BBB associated tight junction disruption has been shown to implicate in the pathophysiology of depression and contribute to increased susceptibility to depression. However, the underlying mechanisms and importance of BBB damage in depression remains largely unknown. This review highlights how BBB disruption regulates the depression process and the possible molecular mechanisms involved in development of depression-induced BBB dysfunction. Moreover, insight on promising therapeutic targets for treatment of depression with associated BBB dysfunctions are also discussed.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
10
|
Alkahtani R. Molecular mechanisms underlying some major common risk factors of stroke. Heliyon 2022; 8:e10218. [PMID: 36060992 PMCID: PMC9433609 DOI: 10.1016/j.heliyon.2022.e10218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemic and hemorrhagic strokes are the most common known cerebrovascular disease which can be induced by modifiable and non-modifiable risk factors. Age and race are the most common non-modifiable risk factors of stroke. However, hypertension, diabetes, obesity, dyslipidemia, physical inactivity, and cardiovascular disorders are major modifiable risk factors. Understanding the molecular mechanism mediating each of these risk factors is expected to contribute significantly to reducing the risk of stroke, preventing neural damage, enhancing rehabilitation, and designing suitable treatments. Abnormalities in the structure of the blood-brain barrier and blood vessels, thrombosis, vasoconstriction, atherosclerosis, reduced cerebral blood flow, neural oxidative stress, inflammation, and apoptosis, impaired synaptic transmission, excitotoxicity, altered expression/activities of many channels and signaling proteins are the most knows mechanisms responsible for stroke induction. However, the molecular role of risk factors in each of these mechanisms is not well understood and requires a lot of search and reading. This review was designed to provide the reader with a single source of information that discusses the current update of the prevalence, pathophysiology, and all possible molecular mechanisms underlying some major risk factors of stroke namely, hypertension, diabetes mellitus, dyslipidemia, and lipid fraction, and physical inactivity. This provides a full resource for understanding the molecular effect of each of these risk factors in stroke.
Collapse
Affiliation(s)
- Reem Alkahtani
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz, University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Zhang H, Xie Q, Hu J. Neuroprotective Effect of Physical Activity in Ischemic Stroke: Focus on the Neurovascular Unit. Front Cell Neurosci 2022; 16:860573. [PMID: 35317197 PMCID: PMC8934401 DOI: 10.3389/fncel.2022.860573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is one of the major diseases associated with death or disability among patients. To date, there is a lack of effective treatments, with the exception of thrombolytic therapy that can be administered during the acute phase of ischemic stroke. Cerebral ischemia can cause a variety of pathological changes, including microvascular basal membrane matrix, endothelial cell activation, and astrocyte adhesion, which may affect signal transduction between the microvessels and neurons. Therefore, researchers put forward the concept of neurovascular unit, including neurons, axons, astrocytes, microvasculature (including endothelial cells, basal membrane matrix, and pericyte), and oligodendrocytes. Numerous studies have demonstrated that exercise can produce protective effects in cerebral ischemia, and that exercise may protect the integrity of the blood-brain barrier, promote neovascularization, reduce neuronal apoptosis, and eventually lead to an improvement in neurological function after cerebral ischemia. In this review, we summarized the potential mechanisms on the effect of exercise on cerebral ischemia, by mainly focusing on the neurovascular unit, with the aim of providing a novel therapeutic strategy for future treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui Zhang
- School of Physical Education, Nanchang University, Nanchang, China
| | - Qi Xie
- Inpatient Department, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Juan Hu
- Yu Quan dao Health Center, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Juan Hu,
| |
Collapse
|
12
|
Hafez S, Eid Z, Alabasi S, Darwiche Y, Channaoui S, Hess DC. Mechanisms of Preconditioning Exercise-Induced Neurovascular Protection in Stroke. J Stroke 2021; 23:312-326. [PMID: 34649377 PMCID: PMC8521252 DOI: 10.5853/jos.2020.03006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability. Tissue plasminogen activator is the only U.S. Food and Drug Administration approved thrombolytic therapy for ischemic stroke patients till date. However, its use is limited due to increased risk of bleeding and narrow therapeutic window. Most of the preclinically tested pharmacological agents failed to be translated to the clinic. This drives the need for alternative therapeutic approaches that not only provide enhanced neuroprotection, but also reduce the risk of stroke. Physical exercise is a sort of preconditioning that provides the body with brief ischemic episodes that can protect the body from subsequent severe ischemic attacks like stroke. Physical exercise is known to improve cardiovascular health. However, its role in providing neuroprotection in stroke is not clear. Clinical observational studies showed a correlation between regular physical exercise and reduced risk and severity of ischemic stroke and better outcomes after stroke. However, the underlying mechanisms through which prestroke exercise can reduce the stroke injury and improve the outcomes are not completely understood. The purpose of this review is to: demonstrate the impact of exercise on stroke outcomes and show the potential role of exercise in stroke prevention and recovery; uncover the underlying mechanisms through which exercise reduces the neurovascular injury and improves stroke outcomes aiming to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sherif Hafez
- Department of Pharmaceutical Sciences, College of Pharmacy Mercer University, Atlanta, GA, USA.,Neurology Department, Augusta University, Augusta, GA, USA
| | - Zeina Eid
- College of Pharmacy Larkin University, Miami, FL, USA
| | - Sara Alabasi
- College of Pharmacy Larkin University, Miami, FL, USA
| | | | | | - David C Hess
- Neurology Department, Augusta University, Augusta, GA, USA
| |
Collapse
|
13
|
Evans NR, Tarkin JM, Walsh J, Chowdhury MM, Patterson AJ, Graves MJ, Rudd JHF, Warburton EA. Carotid Atheroinflammation Is Associated With Cerebral Small Vessel Disease Severity. Front Neurol 2021; 12:690935. [PMID: 34531813 PMCID: PMC8438317 DOI: 10.3389/fneur.2021.690935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Atherosclerosis is a systemic inflammatory disease, with common inflammatory processes implicated in both atheroma vulnerability and blood-brain barrier disruption. This prospective multimodal imaging study aimed to measure directly the association between systemic atheroma inflammation (“atheroinflammation”) and downstream chronic cerebral small vessel disease severity. Methods: Twenty-six individuals with ischemic stroke with ipsilateral carotid artery stenosis of >50% underwent 18fluoride-fluorodeoxyglucose-positron emission tomography within 2 weeks of stroke. Small vessel disease severity and white matter hyperintensity volume were assessed using 3-tesla magnetic resonance imaging also within 2 weeks of stroke. Results: Fluorodeoxyglucose uptake was independently associated with more severe small vessel disease (odds ratio 6.18, 95% confidence interval 2.1–18.2, P < 0.01 for the non-culprit carotid artery) and larger white matter hyperintensity volumes (coefficient = 14.33 mL, P < 0.01 for the non-culprit carotid artery). Conclusion: These proof-of-concept results have important implications for our understanding of the neurovascular interface and potential therapeutic exploitation in the management of systemic atherosclerosis, particularly non-stenotic disease previously considered asymptomatic, in order to reduce the burden of chronic cerebrovascular disease.
Collapse
Affiliation(s)
- Nicholas R Evans
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Walsh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Andrew J Patterson
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
15
|
Naringenin attenuates experimental autoimmune encephalomyelitis by protecting the intact of blood-brain barrier and controlling inflammatory cell migration. J Nutr Biochem 2020; 89:108560. [PMID: 33249188 DOI: 10.1016/j.jnutbio.2020.108560] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Targeting pathogenic immune cell trafficking poses an attractive opportunity to attenuate autoimmune disorders such as multiple sclerosis (MS). MS and its animal model, experimental autoimmune encephalomyelitis (EAE), are characterized by the immune cells-mediated demyelination and neurodegeneration of the central nervous system (CNS). Our previous study has proven that dietary naringenin ameliorates EAE clinical symptoms via reducing the CNS cell infiltration. The present study examined the beneficial effects of naringenin on maintaining the blood-brain barrier in EAE mice via dietary naringenin intervention. The results showed that naringenin-treated EAE mice had an intact blood-CNS barrier by increasing tight junction-associated factors and decreasing Evans Blue dye in the CNS. Naringenin decreased the accumulation and maturation of conventional dendritic cells (cDCs), CCL19, and CCR7 in the CNS. Also, naringenin blocked the chemotaxis and antigen-presenting function of cDCs that resulted in reducing T-cell secreting cytokines (IFN-γ, IL-17, and IL-6) in the spleen. Importantly, naringenin blocked pathogenic T cells infiltrated into the CNS and attenuates passive EAE. Therefore, by blocking chemokine-mediated migration of DCs and pathogenic T cells into the CNS, naringenin attenuates EAE pathogenesis and might be a potential candidate for the treatment of autoimmune diseases, such as MS and other chronic T-cell mediated autoimmune diseases.
Collapse
|
16
|
Hu L, Zhu S, Peng X, Li K, Peng W, Zhong Y, Kang C, Cao X, Liu Z, Zhao B. High Salt Elicits Brain Inflammation and Cognitive Dysfunction, Accompanied by Alternations in the Gut Microbiota and Decreased SCFA Production. J Alzheimers Dis 2020; 77:629-640. [PMID: 32741809 DOI: 10.3233/jad-200035] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Excessive salt intake is considered as an important risk factor for cognitive impairment, which might be the consequence of imbalanced intestinal homeostasis. Objective: To investigate the effects of dietary salt on the gut microbiota and cognitive performance and the underlying mechanisms. Methods: Adult female C57BL/6 mice were maintained on either normal chow (control group, CON) or sodium-rich chow containing 8% NaCl (high-salt diet, HSD) for 8 weeks. Spatial learning and memory ability, short-chain fatty acids (SCFAs) concentrations, gut bacterial flora composition, blood-brain barrier permeability, and proinflammatory cytokine levels and apoptosis in the brain were evaluated. Results: The mice fed a HSD for 8 weeks displayed impaired learning and memory abilities. HSD significantly reduced the proportions of Bacteroidetes (S24-7 and Alloprevotella) and Proteobacteria and increased that of Firmicutes (Lachnospiraceae and Ruminococcaceae). SCFA concentrations decreased in the absolute concentrations of acetate, propionate, and butyrate in the fecal samples from the HSD-fed mice. The HSD induced both BBB dysfunction and microglial activation in the mouse brain, and increased the IL-1β, IL-6, and TNF-α expression levels in the cortex. More importantly, the degree of apoptosis was higher in the cortex and hippocampus region of mice fed the HSD, and this effect was accompanied by significantly higher expression of cleaved caspase-3, caspase-3, and caspase-1. Conclusion: The HSD directly causes cognitive dysfunction in mice by eliciting an inflammatory environment and triggering apoptosis in the brain, and these effects are accompanied by gut dysbiosis, particularly reduced SCFA production.
Collapse
Affiliation(s)
- Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shaoping Zhu
- Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaoping Peng
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kanglan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wanjuan Peng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhong
- Analysis Center of Guangdong Medical University, Zhanjiang, China
| | - Chenyao Kang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xingxing Cao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhou Liu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
17
|
Soltani N, Soltani Z, Khaksari M, Ebrahimi G, Hajmohammmadi M, Iranpour M. The Changes of Brain Edema and Neurological Outcome, and the Probable Mechanisms in Diffuse Traumatic Brain Injury Induced in Rats with the History of Exercise. Cell Mol Neurobiol 2020; 40:555-567. [PMID: 31836968 PMCID: PMC11448905 DOI: 10.1007/s10571-019-00753-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Since no definitive treatment has been suggested for diffuse traumatic brain injury (TBI), and also as the effect of exercise has been proven to be beneficial in neurodegenerative diseases, the effect of endurance exercise on the complications of TBI along with its possible neuroprotective mechanism was investigated in this study. Our objective was to find out whether previous endurance exercise influences brain edema and neurological outcome in TBI. We also assessed the probable mechanism of endurance exercise effect in TBI. Rats were randomly assigned into four groups of sham, TBI, exercise + sham and exercise + TBI. Endurance exercise was carried out before TBI. Brain edema was assessed by calculating the percentage of brain water content 24 h after the surgery. Neurological outcome was evaluated by obtaining veterinary coma scale (VCS) at - 1, 1, 4 and 24 h after the surgery. Interleukin-1β (IL-1β), total antioxidant capacity (TAC), malondialdehyde (MDA), protein carbonyl and histopathological changes were evaluated 24 h after the surgery. Previous exercise prevented the increase in brain water content, MDA level, histopathological edema and apoptosis following TBI. The reduction in VCS in exercise + TBI group was lower than that of TBI group. In addition, a decrease in the level of serum IL-1β and the content of brain protein carbonyl was reported in exercise + TBI group in comparison with the TBI group. We suggest that the previous endurance exercise prevents brain edema and improves neurological outcome following diffuse TBI, probably by reducing apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Nasrin Soltani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojdeh Hajmohammmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Physical Training Moderates Blood-Brain-Barrier Disruption and Improves Cognitive Dysfunction Related to Transient Brain Ischemia in Rats. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Leichtle SW, Sarma AK, Strein M, Yajnik V, Rivet D, Sima A, Brophy GM. High-Dose Intravenous Ascorbic Acid: Ready for Prime Time in Traumatic Brain Injury? Neurocrit Care 2020; 32:333-339. [PMID: 31440996 DOI: 10.1007/s12028-019-00829-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading public health problems in the USA and worldwide. It is the number one cause of death and disability in children and adults between ages 1-44. Despite efforts to prevent TBIs, the incidence continues to rise. Secondary brain injury occurs in the first hours and days after the initial impact and is the most effective target for intervention. Inflammatory processes and oxidative stress play an important role in the pathomechanism of TBI and are exacerbated by impaired endogenous defense mechanisms, including depletion of antioxidants. As a reducing agent, free radical scavenger, and co-factor in numerous biosynthetic reactions, ascorbic acid (AA, vitamin C) is an essential nutrient that rapidly becomes depleted in states of critical illness. The administration of high-dose intravenous (IV) AA has demonstrated benefits in numerous preclinical models in the areas of trauma, critical care, wound healing, and hematology. A safe and inexpensive treatment, high-dose IV AA administration gained recent attention in studies demonstrating an associated mortality reduction in septic shock patients. High-quality data on the effects of high-dose IV AA on TBI are lacking. Historic data in a small number of patients demonstrate acute and profound AA deficiency in patients with central nervous system pathology, particularly TBI, and a strong correlation between low AA concentrations and poor outcomes. While replenishing deficient AA stores in TBI patients should improve the brain's ability to tolerate oxidative stress, high-dose IV AA may prove an effective strategy to prevent or mitigate secondary brain injury due to its ability to impede lipid peroxidation, scavenge reactive oxygen species, suppress inflammatory mediators, stabilize the endothelium, and reduce brain edema. The existing preclinical data and limited clinical data suggest that high-dose IV AA may be effective in lowering oxidative stress and decreasing cerebral edema. Whether this translates into improved clinical outcomes will depend on identifying the ideal target patient population and possible treatment combinations, factors that need to be evaluated in future clinical studies. With its excellent safety profile and low cost, high-dose IV AA is ready to be evaluated in the early treatment of TBI patients to mitigate secondary brain injury and improve outcomes.
Collapse
Affiliation(s)
- Stefan W Leichtle
- Division of Acute Care Surgical Services, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, USA.
| | - Anand K Sarma
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Micheal Strein
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University School of Pharmacy, Richmond, USA
| | - Vishal Yajnik
- Division of Critical Care, Department of Anesthesiology, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Dennis Rivet
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Adam Sima
- Department of Biostatistics, Virginia Commonwealth University, Richmond, USA
| | - Gretchen M Brophy
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University School of Pharmacy, Richmond, USA
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, USA
| |
Collapse
|
20
|
Abstract
Stroke is a leading cause of mortality and morbidity all around the world. Identification of stroke risk factors and protective lifestyles is necessary for optimizing personalized treatment and reducing mortality. Sedentary lifestyle is a well-known modifiable risk factor in primary and secondary stroke prevention. Also, in recent years, exercise has been described as a neuroprotective and neuroreparative factor. Here we summarized the existing available evidence of the relationship between physical activity and stroke.
Collapse
Affiliation(s)
- Carmen García-Cabo
- Stroke Unit, Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Elena López-Cancio
- Stroke Unit, Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
21
|
Luca M, Luca A. Oxidative Stress-Related Endothelial Damage in Vascular Depression and Vascular Cognitive Impairment: Beneficial Effects of Aerobic Physical Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8067045. [PMID: 31929857 PMCID: PMC6939429 DOI: 10.1155/2019/8067045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023]
Abstract
Oxidative stress- (OS-) related endothelial damage is involved in the occurrence and progression of several disorders, such as vascular depression and dementia. It has been reported that moderate, aerobic, physical exercise could reduce OS and inflammation, thus limiting the cardiovascular risk factors while improving endothelial homeostasis, mood, and cognition. In this review, we will discuss about the role of OS and OS-related endothelial damage in vascular depression and vascular cognitive impairment. Then, we will comment on the effects of physical exercise on both disorders.
Collapse
Affiliation(s)
- Maria Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Italy
| |
Collapse
|
22
|
Guo P, Jin Z, Wu H, Li X, Ke J, Zhang Z, Zhao Q. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav 2019; 9:e01425. [PMID: 31566928 PMCID: PMC6790318 DOI: 10.1002/brb3.1425] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate whether irisin could protect against blood-brain barrier (BBB) dysfunction following focal cerebral ischemia/reperfusion in rats. METHODS AND MATERIALS Seventy-two adult male Sprague Dawley rats weighing 280-320 g were randomly divided into three groups: sham operation group (S), focal cerebral ischemia/reperfusion group (FC), and irisin group (IR). Focal cerebral ischemia was induced by improved thread occlusion of right middle cerebral artery (MCAO) for 2 hr followed by reperfusion for 24 hr in rats. After 24 hr of reperfusion, the neurological evaluation was performed by the method of Longa's score. The histopathological changes were observed by HE staining. The brain water content was determined by detecting the wet weight and dry weight. The BBB permeability was assessed by fluorescence spectrophotometer and fluorescence microscopy for Evans blue (EB) extravasation. The activity and expression of matrix metalloproteinase-9 (MMP-9) in different groups were detected by immunohistochemical staining, Western blot, and gel gelatin zymography. RESULTS After MCAO, the neurological deficit scores, the infarct volume, the brain water content, and the EB content were higher in the FC group than those in the S group (p < .05). While after irisin treatment, these indicators mentioned above were lower than those in the IR group (p < .05). Moreover, the protein expression of MMP-9 in the cortex increased significantly after MCAO, while irisin treatment could decrease the protein expression of MMP-9 in the cortex (p < .05). CONCLUSION Our data suggest that irisin can attenuate brain damage both morphologically and functionally and protect BBB from disruption after focal cerebral ischemia/reperfusion, which is highly associated with the inhibition of the expression and activity of MMP-9 in the brain tissue.
Collapse
Affiliation(s)
- Peipei Guo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Jin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huisheng Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
23
|
Sakakima H. Endogenous neuroprotective potential due to preconditioning exercise in stroke. Phys Ther Res 2019; 22:45-52. [PMID: 32015940 DOI: 10.1298/ptr.r0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023]
Abstract
Stroke is a leading cause of serious long-term physical disability due to insufficient neurorepair mechanisms. In general, physical activity is an important modifiable risk factor, particularly for stroke and cardiovascular diseases. Physical exercise has shown to be neuroprotective in both animal experiments and clinical settings. Exercise can be considered a mild stressor and follows the prototypical preconditioning stimulus. It has beneficial effects on brain health and cognitive function. Preconditioning exercise, which is prophylactic exercise prior to ischemia, can protect the brain from subsequent serious injury through promotion of angiogenesis, mediation of inflammatory responses, inhibition of glutamate over-activation, protection of the blood-brain barrier, and inhibition of apoptosis. Preconditioning exercise appears to induce brain ischemic tolerance and it has been shown to exert beneficial effects. It is clinically safe and feasible and represents an exciting new paradigm in endogenous neuroprotection for patients with acute stroke. In this review, we describe the neuroprotective potential of preconditioning exercise and clinical applications in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University
| |
Collapse
|
24
|
Fallah Mohammadi Z, Falah Mohammadi H, Patel DI. Comparing the effects of progressive and mild intensity treadmill running protocols on neuroprotection of parkinsonian rats. Life Sci 2019; 229:219-224. [DOI: 10.1016/j.lfs.2019.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 02/09/2023]
|
25
|
Lee JM, Baek SS, Kim TW, Park HS, Park SS, Park JM, Kim YJ, Lee HS, Shin MS. Preischemic treadmill exercise improves short-term memory by inhibiting hypoperfusion-induced disruption of blood-brain barrier after bilateral common carotid arteries occlusion. J Exerc Rehabil 2019; 15:370-376. [PMID: 31316928 PMCID: PMC6614759 DOI: 10.12965/jer.1938274.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/30/2019] [Indexed: 01/29/2023] Open
Abstract
Bilateral common carotid arteries occlusion (BCCAO) causes an abrupt reduction of cerebral blood flow, and this method has been used to investigate the effects of chronic cerebral hypoperfusion on vascular dementia and neuronal injuries. Chronic cerebral hypoperfusion leads to functional changes in the hippocampus and then results in a cognitive impairment. We investigated the effect of preischemic treadmill exercise on short-term memory and blood-brain barrier integration following cerebral hypoperfusion caused by BCCAO. The rats in the preischemic treadmill exercise and BCCAO group were made to run on a treadmill for 30 min once a day for 4 weeks. At 4 weeks after performing treadmill exercise, right carotid artery was ligated, and 1 week after, left common carotid artery was ligated. At 20 days after BCCAO, short-term memory was evaluated. Half of the rats were sacrificed 2 days after BCCAO and the other rats were sacrificed at 3 weeks after BCCAO. Immunohistochemistry and western blot were performed. Preischemic treadmill exercise alleviated impairment of short-term memory in the step-down avoidance task. Preischemic treadmill exercise reduced microvascular injury in the hippocampus. Preischemic treadmill exercise prevented the reduction of zonula occludens-1 in the hippocampus and inhibited the activation of matrix metalloproteinase-9. Therefore, pre-conditioning treadmill exercise might be used as a therapeutic strategy for the prevention of stroke in patients.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Sport & Health Science, College of Art & Culture, Sangmyung University, Seoul, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Science, College of Art & Culture, Sangmyung University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jong-Min Park
- College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Hyun-Seob Lee
- Department of Physical Education, Korea University, Seoul, Korea
| | - Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| |
Collapse
|
26
|
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast 2018; 4:17-52. [PMID: 30564545 PMCID: PMC6296262 DOI: 10.3233/bpl-180069] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 02/06/2023] Open
Abstract
Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.
Collapse
Affiliation(s)
- Laura M. Vecchio
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Ying Meng
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Kristiana Xhima
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Nir Lipsman
- Institute of Medical Sciences, University of Toronto, ON, Canada
- Physical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
| | - Clement Hamani
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
27
|
Das KK, Yendigeri SM, Patil BS, Bagoji IB, Reddy RC, Bagali S, Biradar MS, Saha S. Subchronic hypoxia pretreatment on brain pathophysiology in unilateral common carotid artery occluded albino rats. Indian J Pharmacol 2018; 50:185-191. [PMID: 30505054 PMCID: PMC6234715 DOI: 10.4103/ijp.ijp_312_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE: This study was aimed to assess the effect of unilateral common carotid artery occlusion on brain pathophysiology in rats pretreated with subchronic hypoxia. MATERIALS AND METHODS: Rats (200 ± 20 g) were randomized into three groups: Group 1 served as sham, Group 2 were normoxic (21% O2 and 79% N2), and Group 3 were hypoxia preconditioned (10% O2 and 90% N2) for 21 days before left common carotid artery occlusion (LCCAO). The LCCAO was done for 75 min followed by reperfusion for 12 h. Neurological scores were recorded. Serum malondialdehyde (MDA) and nitric oxide (NO) levels at pre- and 12 h post-LCCAO were measured. Brain histopathological assessments were also done. RESULTS: Higher neurological deficits scores in Group 2 as compared to Group 3 rats were noticed. Serum MDA and NO levels at 12 h post-LCCAO in Group 2 rats showed significant elevation as compared to preocclusion levels. Group 3 rats did not show such elevations. On histopathology of left and right cerebral hemispheres of Group 1 (sham) did not show any specific changes. In Group 2 rats, the right cerebral hemisphere (nonoccluded) showed no areas of ischemia-induced brain changes, but in the left side (occlusive), there were features of ischemic brain damage including cerebral edema. In the case of Group 3 rats, there were less ischemic damages in the left occluded side as compared to the left side of the Group 2 rats. CONCLUSION: This study clearly demonstrates that subchronic hypoxia pretreatment can reduce ischemic brain injury by unilateral common carotid artery occlusion in rats.
Collapse
Affiliation(s)
- Kusal K Das
- Department of Physiology, Laboratory of Vascular Physiology and Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Bijapur, Karnataka, India
| | - Saeed M Yendigeri
- Department of Pathology, Al Ameen Medical College, Bijapur, Karnataka, India
| | - Bheemshetty S Patil
- Department of Anatomy, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Bijapur, Karnataka, India
| | - Ishwar B Bagoji
- Department of Anatomy, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Bijapur, Karnataka, India
| | - R Chandramouli Reddy
- Department of Physiology, Laboratory of Vascular Physiology and Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Bijapur, Karnataka, India
| | - Shrilaxmi Bagali
- Department of Physiology, Laboratory of Vascular Physiology and Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Bijapur, Karnataka, India
| | - M S Biradar
- Department of Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Bijapur, Karnataka, India
| | - Sikha Saha
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
28
|
Otsuka S, Sakakima H, Terashi T, Takada S, Nakanishi K, Kikuchi K. Preconditioning exercise reduces brain damage and neuronal apoptosis through enhanced endogenous 14-3-3γ after focal brain ischemia in rats. Brain Struct Funct 2018; 224:727-738. [PMID: 30478609 DOI: 10.1007/s00429-018-1800-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/21/2018] [Indexed: 11/24/2022]
Abstract
14-3-3γ is an important early ischemia-inducible protective factor against ischemic cell death in cerebral cortical neurons. We investigated the anti-apoptosis mechanism of enhanced 14-3-3γ mediated by preconditioning exercise-induced brain ischemic tolerance after stroke. Rats were assigned to four groups: exercise and ischemia (Ex group), ischemia and no exercise (No-Ex group), exercise and no ischemia (Ex-only group), and no exercise and ischemia (control group). Rats were trained on a treadmill for 5 days a week for 3 weeks (running speed, 25 m/min; running duration, 30 min/day). After the exercise program, stroke was induced by left middle cerebral artery occlusion. The infarct volume, neurological deficits, and motor function, as well as expression levels of hypoxia-induced factor-1α (HIF-1α), 14-3-3γ, P2X7 receptors, p-β-catenin Ser37, Bax, and caspase 3 were evaluated by immunohistochemistry and western blotting. The expression of HIF-1α and 14-3-3γ significantly increased in neurons and astrocytes in the Ex-only group. HIF-1α was co-expressed with P2X7 receptor- and GFAP-positive astrocytes. After stroke, the Ex group had significantly reduced brain infarction. HIF-1α and 14-3-3γ significantly increased in the Ex group compared to the No-Ex group. In addition, p-β-catenin Ser37 significantly increased following elevated 14-3-3γ; in contrast, Bax and caspase 3 were significantly reduced in the Ex group. Our findings suggest that preconditioning exercise prior to ischemia induces neuron- and astrocyte-mediated brain ischemic tolerance through increased expression of HIF-1α and 14-3-3γ, which are intrinsic protective factors; the upregulated 14-3-3γ induced by preconditioning exercise reduces ischemic neuronal cell death through the 14-3-3γ/p-β-catenin Ser37/Bax/caspase 3 anti-apoptotic pathway.
Collapse
Affiliation(s)
- Shotaro Otsuka
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Harutoshi Sakakima
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Takuto Terashi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Seiya Takada
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuki Nakanishi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan.
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan.
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan.
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
29
|
Chupel MU, Minuzzi LG, Furtado G, Santos ML, Hogervorst E, Filaire E, Teixeira AM. Exercise and taurine in inflammation, cognition, and peripheral markers of blood-brain barrier integrity in older women. Appl Physiol Nutr Metab 2018; 43:733-741. [PMID: 29474803 DOI: 10.1139/apnm-2017-0775] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunosenescence contribute to increase the blood-brain barrier (BBB) permeability, leading cognitive impairment and neurodegeneration. Thus, we investigated the anti-inflammatory effect of exercise and taurine supplementation on peripheral markers of BBB, inflammation, and cognition of elderly women. Forty-eight elderly women (age, 83.58 ± 6.9 years) participated in the study, and were allocated into combined exercise training (CET: n = 13), taurine supplementation (TAU: n = 12), exercise training associated with taurine (CET+TAU: n = 11), or control (CG: n = 12) groups. Exercise was applied twice a week (multi-modal exercise). Taurine ingestion was 1.5 g., once a day. Participants were evaluated before and after 14-weeks of intervention. Plasma levels of interleukin (IL)-1β, IL-1ra, IL-6, IL-10, IL-17, tumor necrosis factor alpha (TNF-α), and serum concentration of S100β and neuron specific enolase (NSE) were determined. The mini mental state examination (MMSE) was also applied. Concentrations of S100β were maintained in all intervention groups, while a subtle increase in the CG was found. NSE levels increased only in TAU group (p < 0.05). CET reduced TNF-α, IL-6, and IL-1β/IL-1ra, IL-6/IL10, and TNF-α/IL-10 ratios (p < 0.05). TAU decreased the IL-1β/IL-1ra ratio (p < 0.05). MMSE score increased only in the CET+TAU group (p < 0.05). Multiple regression analysis showed that there was a trend for changes in IL-1β and the Charlson Comorbidity Index to be independently associated with changes in S100β. Exercise and taurine decreased inflammation, and maintained the BBB integrity in elderly women. Exercise emerged as an important tool to improve brain health even when started at advanced ages.
Collapse
Affiliation(s)
- Matheus Uba Chupel
- a Faculty of Sport Science and Physical Education, University of Coimbra, Estádio Universitário de Coimbra, Avenida Conímbriga, Pavilhão 3. 3040-248, Coimbra, Portugal
| | - Luciele Guerra Minuzzi
- a Faculty of Sport Science and Physical Education, University of Coimbra, Estádio Universitário de Coimbra, Avenida Conímbriga, Pavilhão 3. 3040-248, Coimbra, Portugal
| | - Guilherme Furtado
- a Faculty of Sport Science and Physical Education, University of Coimbra, Estádio Universitário de Coimbra, Avenida Conímbriga, Pavilhão 3. 3040-248, Coimbra, Portugal
| | - Mário Leonardo Santos
- a Faculty of Sport Science and Physical Education, University of Coimbra, Estádio Universitário de Coimbra, Avenida Conímbriga, Pavilhão 3. 3040-248, Coimbra, Portugal
| | - Eef Hogervorst
- b Applied Cognitive Research NCSEM Loughborough University, Loughborough, UK Epinal Way, Loughborough, LE11 3TU, Leicestershire, UK
| | - Edith Filaire
- c CIAMS, Université d'Orléans, Orléans, France.,d CIAMS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.,e UMR 1019, INRA, Equipe ECREIN UNH, Clermont-Ferrand, France. Allée 2 du Château, 45067, Orléans, France
| | - Ana Maria Teixeira
- a Faculty of Sport Science and Physical Education, University of Coimbra, Estádio Universitário de Coimbra, Avenida Conímbriga, Pavilhão 3. 3040-248, Coimbra, Portugal
| |
Collapse
|
30
|
Li J, Hu XS, Zhou FF, Li S, Lin YS, Qi WQ, Qi CF, Zhang X. Limb remote ischemic postconditioning protects integrity of the blood-brain barrier after stroke. Neural Regen Res 2018; 13:1585-1593. [PMID: 30127119 PMCID: PMC6126140 DOI: 10.4103/1673-5374.237122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Integrity of the blood-brain barrier structure is essential for maintaining the internal environment of the brain. Development of cerebral infarction and brain edema is strongly associated with blood-brain barrier leakage. Therefore, studies have suggested that protecting the blood-brain barrier may be an effective method for treating acute stroke. To examine this possibility, stroke model rats were established by middle cerebral artery occlusion and reperfusion. Remote ischemic postconditioning was immediately induced by three cycles of 10-minute ischemia/10-minute reperfusion of bilateral hind limbs at the beginning of middle cerebral artery occlusion reperfusion. Neurological function of rat models was evaluated using Zea Longa’s method. Permeability of the blood-brain barrier was assessed by Evans blue leakage. Infarct volume and brain edema were evaluated using 2,3,5-triphenyltetrazolium chloride staining. Expression of matrix metalloproteinase-9 and claudin-5 mRNA was determined by real-time quantitative reverse transcription-polymerase chain reaction. Expression of matrix metalloproteinase-9 and claudin-5 protein was measured by western blot assay. The number of matrix metalloproteinase-9- and claudin-5-positive cells was analyzed using immunohistochemistry. Our results showed that remote ischemic postconditioning alleviated disruption of the blood-brain barrier, reduced infarct volume and edema, decreased expression of matrix metalloproteinase-9 mRNA and protein and the number of positive cells, increased expression of claudin-5 mRNA and protein and the number of positive cells, and remarkably improved neurological function. These findings confirm that by suppressing expression of matrix metalloproteinase-9 and claudin-5 induced by acute ischemia/reperfusion, remote ischemic postconditioning reduces blood-brain barrier injury, mitigates ischemic injury, and exerts protective effects on the brain.
Collapse
Affiliation(s)
- Juan Li
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xiao-Song Hu
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Fang-Fang Zhou
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Shuai Li
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - You-Sheng Lin
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Wen-Qian Qi
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Cun-Fang Qi
- Department of Anatomy, Qinghai University, Xining, Qinghai Province, China
| | - Xiao Zhang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
31
|
Naderi S, Alimohammadi R, Hakimizadeh E, Roohbakhsh A, Shamsizadeh A, Allahtavakoli M. The effect of exercise preconditioning on stroke outcome in ovariectomized mice with permanent middle cerebral artery occlusion. Can J Physiol Pharmacol 2017; 96:287-294. [PMID: 28873322 DOI: 10.1139/cjpp-2017-0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exercise preconditioning has been shown to be effective in improving behavioral and neuropathological indices after cerebral ischemia. We evaluated the effect of exercise preconditioning, 17β-estradiol, and their combination on stroke outcome using an experimental model of stroke in ovariectomized (OVX) mice. OVX mice were randomly assigned to 4 groups as follows: control (stroke), exercise (exercise and stroke), estradiol (17β-estradiol and stroke), and exercise+estradiol (exercise and 17β-estradiol and stroke). Exercise preconditioning was performed on a treadmill 5 days/week, 40 min/day, at a speed of 18 m/min for 4 weeks. 17β-estradiol was gavaged (40 μg/kg per day) for 4 weeks. Stroke was induced by permanent middle cerebral artery occlusion (pMCAO), and neurological deficits were evaluated 1, 2, and 7 days after stroke. Then, the serum concentrations of matrix metalloproteinase-9 (MMP-9) and interleukin-10 (IL-10) and infarct volumes were assessed. Exercise preconditioning and 17β-estradiol induced a better outcome compared with the control ischemic mice, which was manifested by decrease in MMP-9, increase in IL-10, diminished infarct volume, and improved neurological deficits. Concomitant administration of 17β-estradiol and exercise also significantly improved these parameters. Exercise preconditioning or administration of 17β-estradiol alone or in combination before pMCAO induced significant neuroprotection in OVX mice.
Collapse
Affiliation(s)
- Soudabeh Naderi
- a Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raheleh Alimohammadi
- a Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- d Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- b Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,c Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- d Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- d Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
32
|
Shamsaei N, Erfani S, Fereidoni M, Shahbazi A. Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats. Basic Clin Neurosci 2017; 8:77-84. [PMID: 28446953 PMCID: PMC5395689 DOI: 10.15412/j.bcn.03080110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders following the cerebral ischemia and reperfusion in rats was investigated. Methods: Twenty-one adult male wistar rats (weighing 260–300 g) were randomly divided into three groups: sham operated, exercise plus ischemia, and ischemia group (7 rats per group). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Transient focal cerebral ischemia and reperfusion were induced by middle cerebral artery occlusion (MCAO) for 60 minutes, followed by reperfusion for 23 hours. After 24 hours ischemia, movement disorders were tested by a special neurological examination. Also, cerebral edema was assessed by determining the brain water content. Results: The results showed that pre-ischemic exercise significantly reduced brain edema (P<0.05). In addition, exercise preconditioning decreased the neurological movement disorders caused by brain ischemia and reperfusion (P<0.05). Conclusion: Preconditioning by exercise had neuroprotective effects against brain ischemia and reperfusion-induced edema and movement disorders. Thus, it could be considered as a useful strategy for prevention of ischemic injuries, especially in people at risk.
Collapse
Affiliation(s)
- Nabi Shamsaei
- Department of Physical Education, Faculty of Literature and Humanities, Ilam University, Ilam, Iran
| | - Soheila Erfani
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Fereidoni
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Lee JM, Park JM, Song MK, Oh YJ, Kim CJ, Kim YJ. The ameliorative effects of exercise on cognitive impairment and white matter injury from blood-brain barrier disruption induced by chronic cerebral hypoperfusion in adolescent rats. Neurosci Lett 2016; 638:83-89. [PMID: 27956237 DOI: 10.1016/j.neulet.2016.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/13/2016] [Accepted: 12/08/2016] [Indexed: 01/13/2023]
Abstract
Vascular dementia is the progressive change in blood vessels that leads to neuronal injuries in vulnerable areas induced by chronic cerebral hypoperfusion (CCH). CCH induces disruption of blood-brain barrier (BBB), and this BBB disruption can initiate the cognitive impairment and white matter injury. In the present study, we evaluated the effect of treadmill exercise on the cognitive impairment, white matter injury, and BBB disruption induced by CCH. Vascular dementia was induced by permanent bilateral common carotid arteries occlusion (BCCAO) in rats. The rats in the exercise group were made to run on a treadmill for 30min once a day for 14 weeks, starting 4 weeks after birth. Our results revealed that treadmill exercise group was alleviated the cognitive impairment and myelin degradation induced by CCH. The disruption of BBB after CCH indicates degradation of occludin, zonula occluden-1 (ZO-1), and up-regulation of matrix metalloproteinases (MMPs). Treadmill exercise may provide protective effects on BBB disruption from degradation of occludin, ZO-1, and overexpression of MMP-9 after CCH. These findings suggest that treadmill exercise ameliorates cognitive impairment and white matter injury from BBB disruption induced by CCH in rats. The present study will be valuable for means of prophylactic and therapeutic intervention for patients with CCH.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Jong-Min Park
- Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Min Kyung Song
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 South Korea
| | - Yoo Joung Oh
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 South Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Youn-Jung Kim
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 South Korea.
| |
Collapse
|
34
|
Zhu L, Ye T, Tang Q, Wang Y, Wu X, Li H, Jiang Y. Exercise Preconditioning Regulates the Toll-Like Receptor 4/Nuclear Factor-κB Signaling Pathway and Reduces Cerebral Ischemia/Reperfusion Inflammatory Injury: A Study in Rats. J Stroke Cerebrovasc Dis 2016; 25:2770-2779. [PMID: 27590301 DOI: 10.1016/j.jstrokecerebrovasdis.2016.07.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/07/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To explore the influence of exercise preconditioning (EP) on the activity of the toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling pathway in a rat model of cerebral ischemia/reperfusion (I/R) inflammatory injury. METHODS Ischemia was induced in rats using transient middle cerebral artery occlusion (tMCAO) after 3 weeks of EP. Fifty-four rats were divided into sham, MCAO, and EP+MCAO groups. Following the induction of cerebral I/R injury, rats were scored for neurological deficits. Various techniques were used to evaluate ischemic infarct volume and explore pathological changes in tissue morphology after cerebral I/R injury, wherein the levels of TLR4 and NF-κB were analyzed. In addition, enzyme-linked immunosorbent assays were used to detect the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in peripheral serum. RESULTS Twenty-four hours after cerebral I/R injury, the neurological deficit scores decreased and ischemic cortical damage alleviated in EP+MCAO group; the number of TLR4- and NF-κB-positive cells, the expression of TLR4 and NF-κB in the ischemic side, and the concentrations of TNF-α and IL-1β in the peripheral serum were lower in EP+MCAO group than those in the MCAO group (P <.05). CONCLUSIONS The present study indicates that EP can improve cerebral I/R-induced neurological deficits in rats, reduce infarct volume, mitigate pathological damage in the ischemic cortex, and exert neuroprotective effects. The mechanism underlying these effects might involve the regulation of the TLR4/NF-κB signaling pathway and the inhibition of central and peripheral inflammatory cascades during cerebral I/R injury.
Collapse
Affiliation(s)
- Luwen Zhu
- Rehabilitation Center, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tao Ye
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Rehabilitation Center, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Yan Wang
- Rehabilitation Center, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaojun Wu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunfei Jiang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
35
|
The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol 2016; 155:36-56. [PMID: 27530222 DOI: 10.1016/j.pneurobio.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/10/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large family of ubiquitous extracellular endopeptidases, which play important roles in a variety of physiological and pathological conditions, from the embryonic stages throughout adult life. Their extraordinary physiological "success" is due to concomitant broad substrate specificities and strict regulation of their expression, activation and inhibition levels. In recent years, MMPs have gained increasing attention as significant effectors in various aspects of central nervous system (CNS) physiology. Most importantly, they have been recognized as main players in a variety of brain disorders having different etiologies and evolution. A common aspect of these pathologies is the development of acute or chronic neuroinflammation. MMPs play an integral part in determining the result of neuroinflammation, in some cases turning its beneficial outcome into a harmful one. This review summarizes the most relevant studies concerning the physiology of MMPs, highlighting their involvement in both the developing and mature CNS, in long-lasting and acute brain diseases and, finally, in nervous system repair. Recently, a concerted effort has been made in identifying therapeutic strategies for major brain diseases by targeting MMP activities. However, from this revision of the literature appears clear that MMPs have multifaceted functional characteristics, which modulate physiological processes in multiple ways and with multiple consequences. Therefore, when choosing MMPs as possible targets, great care must be taken to evaluate the delicate balance between their activation and inhibition and to determine at which stage of the disease and at what level they become active in order maximize chances of success.
Collapse
|
36
|
Nishijima T, Torres-Aleman I, Soya H. Exercise and cerebrovascular plasticity. PROGRESS IN BRAIN RESEARCH 2016; 225:243-68. [PMID: 27130419 DOI: 10.1016/bs.pbr.2016.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging impairs cerebrovascular plasticity and subsequently leads cerebral hypoperfusion, which synergistically accelerates aging-associated cognitive dysfunction and neurodegenerative diseases associated with impaired neuronal plasticity. On the other hand, over two decades of researches have successfully demonstrated that exercise, or higher level of physical activity, is a powerful and nonpharmacological approach to improve brain function. Most of the studies have focused on the neuronal aspects and found that exercise triggers improvements in neuronal plasticity, such as neurogenesis; however, exercise can improve cerebrovascular plasticity as well. In this chapter, to understand these beneficial effects of exercise on the cerebral vasculature, we first discuss the issue of changes in cerebral blood flow and its regulation during acute bouts of exercise. Then, how regular exercise improves cerebrovascular plasticity will be discussed. In addition, to shed light on the importance of understanding interactions between the neuron and cerebral vasculature, we describe neuronal activity-driven uptake of circulating IGF-I into the brain.
Collapse
Affiliation(s)
- T Nishijima
- Tokyo Metropolitan University, Tokyo, Japan.
| | | | - H Soya
- University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
37
|
Tight junction disruption of blood–brain barrier in white matter lesions in chronic hypertensive rats. Neuroreport 2015; 26:1039-43. [DOI: 10.1097/wnr.0000000000000464] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Physical Exercise as a Diagnostic, Rehabilitation, and Preventive Tool: Influence on Neuroplasticity and Motor Recovery after Stroke. Neural Plast 2015; 2015:608581. [PMID: 26682073 PMCID: PMC4670869 DOI: 10.1155/2015/608581] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 01/19/2023] Open
Abstract
Stroke remains a leading cause of adult motor disabilities in the world and accounts for the greatest number of hospitalizations for neurological disease. Stroke treatments/therapies need to promote neuroplasticity to improve motor function. Physical exercise is considered as a major candidate for ultimately promoting neural plasticity and could be used for different purposes in human and animal experiments. First, acute exercise could be used as a diagnostic tool to understand new neural mechanisms underlying stroke physiopathology. Indeed, better knowledge of stroke mechanisms that affect movements is crucial for enhancing treatment/rehabilitation effectiveness. Secondly, it is well established that physical exercise training is advised as an effective rehabilitation tool. Indeed, it reduces inflammatory processes and apoptotic marker expression, promotes brain angiogenesis and expression of some growth factors, and improves the activation of affected muscles during exercise. Nevertheless, exercise training might also aggravate sensorimotor deficits and brain injury depending on the chosen exercise parameters. For the last few years, physical training has been combined with pharmacological treatments to accentuate and/or accelerate beneficial neural and motor effects. Finally, physical exercise might also be considered as a major nonpharmacological preventive strategy that provides neuroprotective effects reducing adverse effects of brain ischemia. Therefore, prestroke regular physical activity may also decrease the motor outcome severity of stroke.
Collapse
|
39
|
Zhang XS, Zhang X, Zhang QR, Wu Q, Li W, Jiang TW, Hang CH. Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats. Brain Res 2015; 1624:113-124. [PMID: 26210617 DOI: 10.1016/j.brainres.2015.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/25/2015] [Accepted: 07/03/2015] [Indexed: 11/30/2022]
Abstract
We have previously shown that astaxanthin (ATX) reduces the blood-brain barrier (BBB) disruption and neurovascular dysfunction following subarachnoid hemorrhage (SAH) insults. However, the underlying mechanisms remain unclear. It is known that the matrix metalloproteinases (MMPs), especially matrix metalloproteinase-9 (MMP-9) plays a crucial role in the pathogenesis of secondary brain injury after SAH. And ATX has the ability to regulate MMP-9 in other models. Herein, we investigated whether ATX could ameliorate MMP-9 activation and expression in a rat model of SAH. A total of 144 rats were randomly divided into the following groups: control group (n=36), SAH group (n=36), SAH+vehicle group (n=36), and SAH+ATX group (n=36). The SAH model was induced by injection of 0.3 ml autologous blood into the prechiasmatic cistern. ATX (20 μl of 0.1 mmol) or vehicle was administered intracerebroventricularly 30 min after SAH induction. Mortality, neurological function, brain edema and blood-brain barrier (BBB) permeability were measured at 24 and 72 h after SAH. Biochemical and zymographic methods were used to analyze MMP-9 expression and activity in brain samples. Immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining were also evaluated at 24h. Our data indicated that ATX could significantly reduce the expression and activity of MMP-9, leading to the amelioration of brain edema, BBB impairment, neurological deficits and TUNEL-positive cells at 24h but not 72 h after SAH. The ATX-mediated down-regulation of MMP-9 was correlated with the decreased levels of IL-1β, TNF-α, oxidative stress, activated microglia and infiltrating neutrophils. These results suggest that the neurovascular protection of ATX in SAH is partly associated with the inhibition of MMP-9 expression and activity.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Qing-Rong Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tian-Wei Jiang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
40
|
Decourcelle A, Moulin S, Sibon I, Murao K, Ronzière T, Godefroy O, Poli M, Cordonnier C, Sagnier S, Lassalle V, Okada Y, Mas JL, Bordet R, Leys D. Influence of previous physical activity on the outcome of patients treated by thrombolytic therapy for stroke. J Neurol 2015; 262:2513-9. [PMID: 26275566 DOI: 10.1007/s00415-015-7875-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/21/2023]
Abstract
Physical activity prevents stroke and is associated with less severe strokes. The neuroprotective effect in patients treated with intravenous (i.v.) recombinant tissue plasminogen activator (rt-PA), remains uncertain. We aimed at evaluating the relationship between previous physical activity and outcomes in stroke patients treated with i.v. rt-PA. OPHELIE-SPORT was a prospective observational multicenter study conducted in French and Japanese stroke patients treated with i.v. rt-PA. We evaluated the presence, weekly duration (<2, 2-5, >5 h) and intensity (light, moderate, heavy) of previous leisure-time physical activity according to standardized criteria. The primary end-point was an excellent outcome [modified Rankin Scale (mRS) 0-1 or similar to the pre-stroke mRS] after 3 months. Secondary end-points were good outcome (mRS 0-2 or similar to the pre-stroke mRS), and death. Of 519 patients, 74 (14.3 %) had regular physical activity before stroke. They were 14 years younger (p < 0.001), treated 25 min earlier (p = 0.004) and more likely to be men, free of pre-stroke handicap (mRS = 0), atrial fibrillation, arterial hypertension, and diabetes mellitus. National Institutes of Health Stroke Scale scores, at baseline (p = 0.183) and 24 h later (p = 0.203), did not differ between patients with and without physical activity. After adjustment on confounders, there was no association between previous leisure-time physical activity and outcome. Outcomes 3 months after treatment of cerebral ischaemia with i.v. rt-PA are not influenced by previous physical activity.
Collapse
Affiliation(s)
- Amélie Decourcelle
- Department of Neurology, Stroke Centre, Lille University Hospital, Lille, France.,INSERM U 1171, University of Lille, Lille, France.,STROKAVENIR Network, 59000, Lille, France
| | - Solène Moulin
- Department of Neurology, Stroke Centre, Lille University Hospital, Lille, France.,INSERM U 1171, University of Lille, Lille, France.,STROKAVENIR Network, 59000, Lille, France
| | - Igor Sibon
- STROKAVENIR Network, 59000, Lille, France.,Department of Neurology, Stroke Center, University of Bordeaux, Bordeaux, France
| | - Kei Murao
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Thomas Ronzière
- STROKAVENIR Network, 59000, Lille, France.,Department of Neurology, Stroke Unit, University of Rennes, Rennes, France
| | - Olivier Godefroy
- STROKAVENIR Network, 59000, Lille, France.,Department of Neurology, Amiens University Hospital, Amiens, France
| | - Mathilde Poli
- STROKAVENIR Network, 59000, Lille, France.,Department of Neurology, Stroke Center, University of Bordeaux, Bordeaux, France
| | - Charlotte Cordonnier
- Department of Neurology, Stroke Centre, Lille University Hospital, Lille, France.,INSERM U 1171, University of Lille, Lille, France.,STROKAVENIR Network, 59000, Lille, France
| | - Sharmila Sagnier
- STROKAVENIR Network, 59000, Lille, France.,Department of Neurology, Stroke Center, University of Bordeaux, Bordeaux, France
| | - Veronica Lassalle
- STROKAVENIR Network, 59000, Lille, France.,Department of Neurology, Stroke Unit, University of Rennes, Rennes, France
| | - Yasushi Okada
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jean-Louis Mas
- STROKAVENIR Network, 59000, Lille, France.,Department of Neurology, Stroke Centre, Sainte-Anne Hospital, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR S783, Paris, France
| | - Régis Bordet
- INSERM U 1171, University of Lille, Lille, France.,STROKAVENIR Network, 59000, Lille, France.,Pharmacological Department, Lille University Hospital, Lille, France
| | - Didier Leys
- Department of Neurology, Stroke Centre, Lille University Hospital, Lille, France. .,INSERM U 1171, University of Lille, Lille, France. .,STROKAVENIR Network, 59000, Lille, France.
| |
Collapse
|
41
|
de Senna PN, Xavier LL, Bagatini PB, Saur L, Galland F, Zanotto C, Bernardi C, Nardin P, Gonçalves CA, Achaval M. Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res 2015; 1618:75-82. [PMID: 26032744 DOI: 10.1016/j.brainres.2015.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
Type 1 diabetes mellitus (T1DM) progressively affects cognitive domains, increases blood-brain barrier (BBB) permeability and promotes neurovascular impairment in specific brain areas. Physical exercise, on the other hand, has beneficial effects on brain functions, improving learning and memory. This study investigated the effects of treadmill training on cognitive and motor behavior, and on the expression of proteins related to BBB integrity, such as claudin-5 and aquaporin-4 (AQP4) in the hippocampus and striatum in diabetic rats. For this study, 60 Wistar rats were divided into four groups (n=15 per group): non-trained control (NTC), trained control (TC), non-trained diabetic (NTD), trained diabetic (TD). After diabetic induction of 30 days by streptozotocin injection, the exercise groups were submitted to 5 weeks of running training. After that, all groups were assessed in a novel object-recognition task (NOR) and the rotarod test. Additionally, claudin-5 and AQP4 levels were measured using biochemical assays. The results showed that exercise enhanced NOR task performance and rotarod ability in the TC and TD animals. Diabetes produced a decrease in claudin-5 expression in the hippocampus and striatum and reduced AQP4 in the hippocampus. Exercise preserved the claudin-5 content in the striatum of TD rats, but not in the hippocampus. The reduction of AQP4 levels produced by diabetes was not reversed by exercise. We conclude that exercise improves short-term memory retention, enhances motor performance in diabetic rats and affects important structural components of the striatal BBB. The results obtained could enhance the knowledge regarding the neurochemical benefits of exercise in diabetes.
Collapse
Affiliation(s)
- Priscylla Nunes de Senna
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Brambilla Bagatini
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiani Saur
- Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Zanotto
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caren Bernardi
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alberto Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I, Bagetta G. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 2015; 9:147. [PMID: 25972779 PMCID: PMC4413676 DOI: 10.3389/fnins.2015.00147] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | | | - Cristina Tassorelli
- C. Mondino National Neurological Institute Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - María I Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Iván Ballesteros
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Michelangelo Certo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | - María A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy ; Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University Consortium for Adaptive Disorders and Head Pain, University of Calabria Rende, Italy
| |
Collapse
|
43
|
Lovatel GA, Bertoldi K, Elsnerb VR, Piazza FV, Basso CG, Moysés FDS, Worm PV, Netto CA, Marcuzzo S, Siqueira IR. Long-term effects of pre and post-ischemic exercise following global cerebral ischemia on astrocyte and microglia functions in hippocampus from Wistar rats. Brain Res 2014; 1587:119-26. [PMID: 25192647 DOI: 10.1016/j.brainres.2014.08.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/23/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023]
Abstract
Persistent effects of pre- and postischemic exercise on glial cells activation after global cerebral ischemia remains poorly understood. Here, we investigated the effect of both pre and postischemic treadmill exercise protocols (20min/day during 2 weeks) on glial cells immunostaining in the hippocampus of Wistar rats submitted to global ischemia. A synergistic effect between ischemia and postischemic exercise on the astrocytic area was demonstrated. Postischemic exercise partially reversed the ischemia-induced increase on the area occupied by microglia, without any effect of pre-ischemic protocol. In conclusion, postischemic exercise distinctly modulates astrocyte and microglia immunostaining in the hippocampal dentate gyrus following global cerebral ischemia in Wistar rats.
Collapse
Affiliation(s)
- Gisele Agustini Lovatel
- Universidade Federal de Santa Catarina, Curso de Fisioterapia, Rua Pedro João Pereira, 150 Mato Alto, EP 88900-000 Araranguá, SC, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Karine Bertoldi
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsnerb
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Brazil
| | - Francele Valente Piazza
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Carla Giovana Basso
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Felipe Dos Santos Moysés
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Paulo Valdeci Worm
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Ionara Rodrigues Siqueira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Rua Sarmento Leite, 500, CEP 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
44
|
Moghaddasi M, Javanmard SH, Reisi P, Tajadini M, Taati M. The effect of regular exercise on antioxidant enzyme activities and lipid peroxidation levels in both hippocampi after occluding one carotid in rat. J Physiol Sci 2014; 64:325-32. [PMID: 24923383 PMCID: PMC10717253 DOI: 10.1007/s12576-014-0322-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 05/23/2014] [Indexed: 12/23/2022]
Abstract
Regular exercise has beneficial effects on cerebrovascular diseases; however, its biochemical mechanisms are not fully known. The purpose of this study was to determine antioxidant enzyme activities and lipid peroxidation of both hippocampi after applying exercise followed by occluding one common carotid. Wistar rats were divided into four groups of control, exercise, hypoperfusion and exercise-hypoperfusion (exe-hypo). In the exercise and exe-hypo groups, the rats were forced to run on a treadmill for 1 h a day for 2 months. The right common carotid of the animals in the (exe-hypo) group was occluded after the cessation of exercise. Surgery without occlusion of the carotid was applied on the control (without exercise) and exercise groups. All animals were sacrificed 1 and 24 h after surgery. The levels of malondialdehyde (MDA) and antioxidant enzyme activities in the hippocampi were measured. A significant interaction was observed between the exercise and hypoperfusion in both hippocampi (p<0.05). In comparison with the control group, there was significant elevation of catalase activity in the right and left hippocampus of the hypo group at 24 h (p<0.0001). Regarding the differences between the hemispheres, there was a significant increase in MDA and decrease in catalase activity in the left hippocampus in hypoperfusion group, but the exercise in the exe-hypo group succeeded in abolishing these alterations which were caused by hypoperfusion, This study shows that exercise pre-conditioning prevents some alterations in brain oxidant-antioxidant status which are induced by cerebral hypoperfusion. Further studies are needed in order to clarify the mechanism of exercise.
Collapse
Affiliation(s)
- Mehrnoush Moghaddasi
- Razi Herbal Medicines Research Center, Department of Physiology, School of Medicine, Lorestan University of Medical Sciences, 381351698, Khorramabad, Iran,
| | | | | | | | | |
Collapse
|
45
|
Feng R, Zhang M, Wang X, Li WB, Ren SQ, Zhang F. Pre-ischemic exercise alleviates oxidative damage following ischemic stroke in rats. Exp Ther Med 2014; 8:1325-1329. [PMID: 25187848 PMCID: PMC4151673 DOI: 10.3892/etm.2014.1874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022] Open
Abstract
Physical exercise has been proved to be neuroprotective in clinical trials and animal experiments. However, the exact mechanism underlying this neuroprotective effect remains unclear. The aim of the present study was to explore whether pre-ischemic treadmill training could act as a form of ischemic preconditioning in a rat following ischemic stroke by reducing oxidative damage. Fifty-four rats were randomly divided into three groups (n=18 per group): Sham surgery, middle cerebral artery occlusion (MCAO) without exercise and MCAO with exercise. Subsequent to treadmill training, ischemic stroke was induced by occluding the MCA for 1.5 h, followed by reperfusion. Six rats in each group were evaluated for neurological deficits and then sacrificed by decapitation to calculate the infarct volume. The remaining rats in each group were sacrificed to detect the level of superoxide dismutase (SOD) activity (n=6) and malondialdehyde (MDA) concentration (n=6). The results indicated that pre-ischemic exercise training reduced brain infarct volume and neurological deficits, increased SOD activity and decreased the concentration of MDA following ischemic stroke. In conclusion, treadmill exercise training prior to MCAO/reperfusion increased the antioxidant ability and decreased the oxidative damage in the brain subsequent to ischemic stroke.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xiao Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Shi-Qing Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China ; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
46
|
Ricciardi AC, López-Cancio E, Pérez de la Ossa N, Sobrino T, Hernández-Pérez M, Gomis M, Munuera J, Muñoz L, Dorado L, Millán M, Dávalos A, Arenillas JF. Prestroke physical activity is associated with good functional outcome and arterial recanalization after stroke due to a large vessel occlusion. Cerebrovasc Dis 2014; 37:304-11. [PMID: 24851928 DOI: 10.1159/000360809] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although multiple studies and meta-analyses have consistently suggested that regular physical activity (PhA) is associated with a decreased stroke risk and recurrence, there is limited data on the possible preconditioning effect of prestroke PhA on stroke severity and prognosis. We aimed to study the association of prestroke PhA with different outcome variables in patients with acute ischemic stroke due to an anterior large vessel occlusion. METHODS The Prestroke Physical Activity and Functional Recovery in Patients with Ischemic Stroke and Arterial Occlusion trial is an observational and longitudinal study that included consecutive patients with acute ischemic stroke admitted to a single tertiary stroke center. Main inclusion criteria were: anterior circulation ischemic stroke within 12 h from symptom onset; presence of a confirmed anterior large vessel occlusion, and functional independence previous to stroke. Prestroke PhA was evaluated with the International Physical Activity Questionnaire and categorized into mild, moderate and high levels by means of metabolic equivalent (MET) minutes per week thresholds. The primary outcome measure was good functional outcome at 3 months (modified Rankin scale ≤2). Secondary outcomes were severity of stroke at admission, complete early recanalization, early dramatic neurological improvement and final infarct volume. RESULTS During the study period, 159 patients fulfilled the above criteria. The mean age was 68 years, 62% were men and the baseline NIHSS score was 17. Patients with high levels of prestroke PhA were younger, had more frequently distal occlusions and had lower levels of blood glucose and fibrinogen at admission. After multivariate analysis, a high level of prestroke PhA was associated with a good functional outcome at 3 months. Regarding secondary outcome variables and after adjustment for relevant factors, a high level of prestroke PhA was independently associated with milder stroke severity at admission, early dramatic improvement, early arterial recanalization after intravenous thrombolysis and lower final infarct volume. The beneficial association of prestroke PhA with stroke outcomes was already present with a cutoff point of 1,000 MET min/week, a level of PhA easily achieved by walking 1 h/day during 5 days or by doing a vigorous aerobic activity 1 h/day twice a week. CONCLUSIONS Prestroke PhA is independently associated with favorable stroke outcomes after a large vessel occlusion. Future research on the underlying mechanisms is needed to understand this neuroprotective effect of PhA.
Collapse
Affiliation(s)
- Ana Clara Ricciardi
- Stroke Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Q, Zhang L, Yang X, Wan Y, Jia J. The effects of exercise preconditioning on cerebral blood flow change and endothelin-1 expression after cerebral ischemia in rats. J Stroke Cerebrovasc Dis 2014; 23:1696-702. [PMID: 24774439 DOI: 10.1016/j.jstrokecerebrovasdis.2014.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/20/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
Stroke is an acute cerebrovascular disease with high incidence, morbidity, and mortality. Preischemic treadmill training has been shown to be effective in improving behavioral and neuropathologic indices after cerebral ischemia. However, the exact neuroprotective mechanism of preischemic treadmill training against ischemic injury has not been elucidated clearly. The present study investigated whether preischemic treadmill training could protect the brain from ischemic injury via regulating cerebral blood flow (CBF) and endothelin 1 (ET-1). We analyzed the CBF by laser speckle imaging and ET-1 expression by an enzyme-linked immunosorbent assay using an ischemic rat model with preischemic treadmill training. Generally speaking, ET-1 expression decreased and CBF increased significantly in the pretreadmill group. It is worth noting that ET-1 expression is increased at 24 hours of reperfusion in the pretreadmill group compared with the level of the time after middle cerebral artery occlusion. These changes were followed by significant changes in neurologic deficits and cerebral infarct volume. This study indicated that preconditioning exercise protected brain from ischemic injury through the improvement of CBF and regulation of ET-1 expression, which may be a novel component of the neuroprotective mechanism of preischemic treadmill training against brain injury.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojiao Yang
- The First Hospital of Xinxiang Medical University, Weihui, China
| | - Yonggan Wan
- The First Hospital of Xinxiang Medical University, Weihui, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; The Yonghe Branch of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Wang X, Zhang M, Feng R, Li WB, Ren SQ, Zhang J, Zhang F. Physical exercise training and neurovascular unit in ischemic stroke. Neuroscience 2014; 271:99-107. [PMID: 24780769 DOI: 10.1016/j.neuroscience.2014.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/16/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Physical exercise could exert a neuroprotective effect in both clinical studies and animal experiments. A series of related studies have indicated that physical exercise could reduce infarct volume, alleviate neurological deficits, decrease blood-brain barrier dysfunction, promote angiogenesis in cerebral vascular system and increase the survival rate after ischemic stroke. In this review, we summarized the protective effects of physical exercise on neurovascular unit (NVU), including neurons, astrocytes, pericytes and the extracellular matrix. Furthermore, it was demonstrated that exercise training could decrease the blood-brain barrier dysfunction and promote angiogenesis in cerebral vascular system. An awareness of the exercise intervention benefits pre- and post stroke may lead more stroke patients and people with high-risk factors to accept exercise therapy for the prevention and treatment of stroke.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - M Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - R Feng
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - W B Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - S Q Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - J Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - F Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
49
|
Zhang L, He Z, Zhang Q, Wu Y, Yang X, Niu W, Hu Y, Jia J. Exercise pretreatment promotes mitochondrial dynamic protein OPA1 expression after cerebral ischemia in rats. Int J Mol Sci 2014; 15:4453-63. [PMID: 24633199 PMCID: PMC3975407 DOI: 10.3390/ijms15034453] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 12/17/2022] Open
Abstract
Exercise training is a neuroprotective strategy in cerebral ischemic injury, but the underlying mechanisms are not yet clear. In the present study, we investigated the effects of treadmill exercise pretreatment on the expression of mitochondrial dynamic proteins. We examined the expression of OPA1/DLP1/MFF/Mfn1/Mfn2, which regulatesmitochondrial fusion and fission, and cytochrome C oxidase subunits (COX subunits), which regulatemitochondrial functions, after middle cerebral artery occlusion (MCAO) in rats. T2-weighted magnetic resonance imaging (MRI) was evaluated as indices of brain edema after ischemia as well. Treadmill training pretreatment increased the expression levels of OPA1 and COXII/III/IV and alleviated brain edema, indicating that exercise pretreatment provided neuroprotection in cerebral ischemic injury via the regulation of mitochondrial dynamics and functions.
Collapse
Affiliation(s)
- Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zhijie He
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Qi Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaojiao Yang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenxiu Niu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yongshan Hu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
50
|
He Z, Wang X, Wu Y, Jia J, Hu Y, Yang X, Li J, Fan M, Zhang L, Guo J, Leung MCP. Treadmill pre-training ameliorates brain edema in ischemic stroke via down-regulation of aquaporin-4: an MRI study in rats. PLoS One 2014; 9:e84602. [PMID: 24416250 PMCID: PMC3886991 DOI: 10.1371/journal.pone.0084602] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/15/2013] [Indexed: 01/23/2023] Open
Abstract
Objective Treadmill pre-training can ameliorate blood brain barrier (BBB) dysfunction in ischemia-reperfusion injury, however, its role in ischemic brain edema remains unclear. This study assessed the neuroprotective effects induced by treadmill pre-training, particularly on brain edema in transient middle cerebral artery occluded model. Methods Transient middle cerebral artery occlusion to induce stroke was performed on rats after 2 weeks of treadmill pre-training. Magnetic resonance imaging (MRI) was used to evaluate the dynamic impairment of cerebral edema after ischemia-reperfusion injury. In addition, measurements of wet and dry brain weight, Evans Blue assay and Garcia scores were performed to investigate the cerebral water content, BBB permeability and neurologic deficit, respectively. Moreover, during ischemia-reperfusion injury, the expression of Aquaporin 4 (AQP4) was detected using immunofluorescence and Western bloting analyses. Results Treadmill pre-training improved the relative apparent diffusion coefficient (rADC) loss in the ipsilateral cortex and striatum at 1 hour and 2.5 hours after cerebral ischemia. In the treadmill pre-training group, T2W1 values of the ipsilateral cortex and striatum increased less at 7.5 hours, 1 day, and 2 days after stroke while the brain water content decreased at 2 days after ischemia. Regarding the BBB permeability, the semi-quantitative amount of contrast agent leakage of treadmill pre-training group significantly decreased. Less Evans Blue exudation was also observed in treadmill pre-training group at 2 days after stroke. In addition, treadmill pre-training mitigated the Garcia score deficits at 2 days after stroke. Immunofluorescence staining and Western blotting results showed a significant decrease in the expression of AQP4 after treadmill ischemia following pre-training. Conclusions Treadmill pre-training may reduce cerebral edema and BBB dysfunction during cerebral ischemia/reperfusion injury via the down-regulation of AQP4.
Collapse
Affiliation(s)
- Zhijie He
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolou Wang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
- * E-mail: (JJ); (JG)
| | - Yongshan Hu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojiao Yang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinchun Guo
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (JJ); (JG)
| | - Mason C. P. Leung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| |
Collapse
|