1
|
Cases-Cunillera S, Quatraccioni A, Rossini L, Ruffolo G, Ono T, Baulac S, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Sankar R, Galanopoulou AS. WONOEP appraisal: The role of glial cells in focal malformations associated with early onset epilepsies. Epilepsia 2024. [PMID: 39401070 DOI: 10.1111/epi.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.
Collapse
Affiliation(s)
- Silvia Cases-Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Paris, France
| | - Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Tomonori Ono
- Epilepsy Center, National Hospital Organization Nagasaki Medical Center, Ōmura, Japan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stéphane Auvin
- Pediatric Neurology Department, AP-HP, Robert Debré University Hospital, CRMR épilepsies Rares, EpiCARE member, Paris, France
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
- Institut Universitaire de France, Paris, France
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Raman Sankar
- Department of Pediatrics and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominique P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Hinojosa J, Becerra V, Candela-Cantó S, Alamar M, Culebras D, Valencia C, Valera C, Rumiá J, Muchart J, Aparicio J. Extra-temporal pediatric low-grade gliomas and epilepsy. Childs Nerv Syst 2024; 40:3309-3327. [PMID: 39191974 DOI: 10.1007/s00381-024-06573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Low-grade gliomas, especially glioneuronal tumors, are a common cause of epilepsy in children. Seizures associated with low-grade pediatric tumors are medically refractory and present a significant burden to patients. Often, morbidity and patients´ quality of life are determined rather by the control of seizures than the oncological process itself and the resolution of epilepsy represents an important part in the treatment of LGGs. The pathogenesis of tumor-related seizures in focal LGG tumors is multifactorial, and mechanisms differ probably among patients and tumor types. Pediatric low-grade tumors associated with epilepsy include a series of neoplasms that have a pure astrocytic or glioneuronal lineage. They are usually benign tumors with a neocortical localization typically in the temporal lobes, but also in other supratentorial locations. Gangliogliomas and dysembryoplastic neuroepithelial tumors (DNET) are the most common entities together with astrocytic gliomas (pilocytic astrocytomas and pleomorphic xanthoastrocytoma) and angiocentric gliomas, and dual pathology is found in up to 40% of glioneuronal tumors. The treatment of low-grade gliomas and associated epilepsy is based mainly on resection and the extent of surgery is the main predictor of postoperative seizure control in patients with a LGG. Long-term epilepsy-associated tumors (LEATs) tend to be well-circumscribed, and therefore, the chances for a complete resection and epilepsy control with a safe approach are very high. New treatments have emerged as alternatives to open microsurgical approaches, including laser thermal ablation or the use of BRAF inhibitors. Future advances in identifying seizure-related biomarkers and molecular tumor pathways will facilitate targeted treatment strategies that will have a deep impact both in oncologic and epilepsy outcomes.
Collapse
Affiliation(s)
- José Hinojosa
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
| | - Victoria Becerra
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Santiago Candela-Cantó
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Mariana Alamar
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Diego Culebras
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valencia
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valera
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Rumiá
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic Barcelona, C. de Villarroel, 170 08036, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Muchart
- Department of Neuroradiology, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Javier Aparicio
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| |
Collapse
|
3
|
Cases-Cunillera S, Friker LL, Müller P, Becker AJ, Gielen GH. From bedside to bench: New insights in epilepsy-associated tumors based on recent classification updates and animal models on brain tumor networks. Mol Oncol 2024. [PMID: 38899375 DOI: 10.1002/1878-0261.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Low-grade neuroepithelial tumors (LGNTs), particularly those with glioneuronal histology, are highly associated with pharmacoresistant epilepsy. Increasing research focused on these neoplastic lesions did not translate into drug discovery; and anticonvulsant or antitumor therapies are not available yet. During the last years, animal modeling has improved, thereby leading to the possibility of generating brain tumors in mice mimicking crucial genetic, molecular and immunohistological features. Among them, intraventricular in utero electroporation (IUE) has been proven to be a valuable tool for the generation of animal models for LGNTs allowing endogenous tumor growth within the mouse brain parenchyma. Epileptogenicity is mostly determined by the slow-growing patterns of these tumors, thus mirroring intrinsic interactions between tumor cells and surrounding neurons is crucial to investigate the mechanisms underlying convulsive activity. In this review, we provide an updated classification of the human LGNT and summarize the most recent data from human and animal models, with a focus on the crosstalk between brain tumors and neuronal function.
Collapse
Affiliation(s)
- Silvia Cases-Cunillera
- INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France
- Section for Translational Epilepsy Research, Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Lea L Friker
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Philipp Müller
- Section for Translational Epilepsy Research, Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, Lai Z, Chen R, Chen B, Wang Z, Zhang W, Chu L. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther 2024; 30:e14717. [PMID: 38641945 PMCID: PMC11031674 DOI: 10.1111/cns.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.
Collapse
Affiliation(s)
- Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Rusong Li
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Danqing Fu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Biqin Zhang
- Cancer Center, Department of HematologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Ailin Cui
- Cancer Center, Department of Ultrasound MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Yutian Shao
- Zhejiang BioAsia Life Science InstitutePinghuChina
| | - Zeyu Lai
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Rongrong Chen
- School of Clinical MedicineHangzhou Normal UniversityHangzhouChina
| | - Bingyu Chen
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Wei Zhang
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Lisheng Chu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
5
|
Rudà R, Bruno F, Pellerino A. Epilepsy in gliomas: recent insights into risk factors and molecular pathways. Curr Opin Neurol 2023; 36:557-563. [PMID: 37865836 DOI: 10.1097/wco.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular pathways governing the development of seizures in glioma patients. RECENT FINDINGS The intrinsic epileptogenicity of the neuronal component of glioneuronal and neuronal tumors is the most relevant factor for seizure development. The two major molecular alterations behind epileptogenicity are the rat sarcoma virus (RAS)/mitogen-activated protein kinase / extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-kinase / protein kinase B / mammalian target of rapamycin (P13K/AKT/mTOR) pathways. The BRAFv600E mutation has been shown in experimental models to contribute to epileptogenicity, and its inhibition is effective in controlling both seizures and tumor growth. Regarding circumscribed astrocytic gliomas, either BRAFv600E mutation or mTOR hyperactivation represent targets of treatment. The mechanisms of epileptogenicity of diffuse lower-grade gliomas are different: in addition to enhanced glutamatergic mechanisms, the isocitrate dehydrogenase (IDH) 1/2 mutations and their product D2-hydroxyglutarate (D2HG), which is structurally similar to glutamate, exerts excitatory effects on neurons also dependent on the presence of astrocytes. In preclinical models IDH1/2 inhibitors seem to impact both tumor growth and seizures. Conversely, the molecular factors behind the epileptogenicity of glioblastoma are unknown. SUMMARY This review summarizes the current state of molecular knowledge on epileptogenicity in gliomas and highlights the relationships between epileptogenicity and tumor growth.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| | | | | |
Collapse
|
6
|
Mehrotra A, Singh S, Kanjilal S, Pal L, Paliwal VK, Sardhara J, Behari S. Seizure-outcome after surgery of low-grade epilepsy associated neuro-epithelial tumors. J Neurosurg Sci 2023; 67:591-597. [PMID: 33320468 DOI: 10.23736/s0390-5616.20.05144-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Most patients with glioneuronal tumors present with seizures. Although several studies have shown that greater extent of resection improves overall patient survival, few studies have focused on postoperative seizure outcome after resection of these tumors. The aim of this study was to characterize seizure control rates in patients undergoing glioneuronal tumor resection and evaluate the association between poor seizure outcome and tumor recurrence or progression. METHODS The study population included patients who had undergone resection of glioneuronal tumors between 2014 and 2019 at our institution. Seizure outcome was assessed using Engel grading. Preoperative seizure characteristics, tumor characteristics, surgical factors, and postoperative seizure outcomes were reviewed. RESULTS Twenty-six patients (N.=16, temporal lobe; N.=6, frontal lobe; N.=4, parietal lobe) with mean seizures duration of 56.9-months, were assessed. Histopathologically, N.=15 dysembryoplastic neurepithelial tumor, N.=7 ganglioglioma and N.=4 Diffuse lepto-meningeal neuroepithelial tumor. There were 2 cases of complex DNET and one case of DLMNT had associated cortical dysplasia. At mean follow-up of 49.7 months, N.=20 Engel 1, N.=4 Engel 2 and N.=2 had Engel 3 outcome. N.=20 underwent gross total excision (N.=18 Engel 1 and N.=2 Engel 2) and N.=6 sub-total excision. Among the 4 patients who needed re-surgery, two were in Engel 2 and another two were in Engel 3. CONCLUSIONS Good seizure-outcome is likely associated with extent of resection. Younger age of patient, less than one-year of seizure duration and absence of generalization of seizure are good prognostic indicators. The best seizure-control can be achieved by early surgical intervention.
Collapse
Affiliation(s)
- Anant Mehrotra
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India -
| | - Suyash Singh
- Department of Neurosurgery All India Institute of Medical Sciences, Raebarely, India
| | - Soumen Kanjilal
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Lily Pal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vimal K Paliwal
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jayesh Sardhara
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sanjay Behari
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
7
|
Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, Gaeta A, Morano A, Anink J, Mühlebner A, Vezzani A, Aronica E, Palma E. GABA A receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep 2022; 12:17956. [PMID: 36289354 PMCID: PMC9605959 DOI: 10.1038/s41598-022-22806-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Gangliogliomas (GGs) are low-grade brain tumours that cause intractable focal epilepsy in children and adults. In GG, as in epileptogenic focal malformations (i.e., tuberous sclerosis complex, TSC), there is evidence of sustained neuroinflammation with involvement of the pro-inflammatory cytokine IL-1β. On the other hand, anti-inflammatory mediators are less studied but bear relevance for understanding seizure mechanisms. Therefore, we investigated the effect of the key anti-inflammatory cytokine IL-10 on GABAergic neurotransmission in GG. We assessed the IL-10 dependent signaling by transcriptomic analysis, immunohistochemistry and performed voltage-clamp recordings on Xenopus oocytes microtransplanted with cell membranes from brain specimens, to overcome the limited availability of acute GG slices. We report that IL-10-related mRNAs were up-regulated in GG and slightly in TSC. Moreover, we found IL-10 receptors are expressed by neurons and astroglia. Furthermore, GABA currents were potentiated significantly by IL-10 in GG. This effect was time and dose-dependent and inhibited by blockade of IL-10 signaling. Notably, in the same tissue, IL-1β reduced GABA current amplitude and prevented the IL-10 effect. These results suggest that in epileptogenic tissue, pro-inflammatory mechanisms of hyperexcitability prevail over key anti-inflammatory pathways enhancing GABAergic inhibition. Hence, boosting the effects of specific anti-inflammatory molecules could resolve inflammation and reduce intractable seizures.
Collapse
Affiliation(s)
- Gabriele Ruffolo
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| | - Veronica Alfano
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| | - Alessia Romagnolo
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - Till Zimmer
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - James D. Mills
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.83440.3b0000000121901201Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK ,grid.452379.e0000 0004 0386 7187Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Pierangelo Cifelli
- grid.158820.60000 0004 1757 2611Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandro Gaeta
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Alessandra Morano
- grid.7841.aDepartment of Human Neuroscience, University of Rome Sapienza, Rome, Italy
| | - Jasper Anink
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.7692.a0000000090126352Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annamaria Vezzani
- grid.4527.40000000106678902Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eleonora Aronica
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.419298.f0000 0004 0631 9143Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Eleonora Palma
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| |
Collapse
|
8
|
Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors. Biomedicines 2022; 10:biomedicines10102475. [PMID: 36289737 PMCID: PMC9599244 DOI: 10.3390/biomedicines10102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are one of the most common symptoms of brain tumors. The incidence of seizures differs among brain tumor type, grade, location and size, but paediatric-type diffuse low-grade gliomas/glioneuronal tumors are often highly epileptogenic. The extracellular matrix (ECM) is known to play a role in epileptogenesis and tumorigenesis because it is involved in the (re)modelling of neuronal connections and cell-cell signaling. In this review, we discuss the epileptogenicity of brain tumors with a focus on tumor type, location, genetics and the role of the extracellular matrix. In addition to functional problems, epileptogenic tumors can lead to increased morbidity and mortality, stigmatization and life-long care. The health advantages can be major if the epileptogenic properties of brain tumors are better understood. Surgical resection is the most common treatment of epilepsy-associated tumors, but post-surgery seizure-freedom is not always achieved. Therefore, we also discuss potential novel therapies aiming to restore ECM function.
Collapse
|
9
|
Marku M, Rasmussen BK, Belmonte F, Andersen EAW, Johansen C, Bidstrup PE. Postoperative epilepsy and survival in glioma patients: a nationwide population-based cohort study from 2009 to 2018. J Neurooncol 2022; 157:71-80. [PMID: 35089480 DOI: 10.1007/s11060-022-03948-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Postoperative epilepsy is common in glioma patients and has been suggested to indicate disease progression, yet knowledge of its role as a prognostic factor is limited. This study investigates the association between postoperative epilepsy and survival amongst patients with gliomas. METHODS We included 3763 patients with histopathologically diagnosed grade II, III, and IV gliomas from 2009 to 2018 according to the Danish Neuro-Oncology Registry. Information on epilepsy diagnosis was redeemed from the Danish National Patient Registry, the National Prescription Registry and the Danish Neuro-Oncology Registry. We used Cox proportional hazards models with 95% confidence intervals (CIs) to examine hazard ratios (HRs) for the association between postoperative epilepsy and risk of death. We examined the role of the timing of epilepsy in three different samples: Firstly, in all glioma patients with postoperative epilepsy; secondly, in patients with postoperative de novo epilepsy; thirdly, exclusively in a homogeneous sub-group of grade IV patients with postoperative de novo epilepsy. RESULTS Glioma patients with postoperative epilepsy had an increased risk of death, regardless of prior epilepsy status (HR = 4.03; CI 2.69-6.03). A similar increase in the risk of death was also seen in patients with postoperative de novo epilepsy (HR = 2.08; CI 1.26-3.44) and in the sub-group of grade IV patients with postoperative de novo epilepsy (HR = 1.83; CI 1.05-3.21). CONCLUSIONS Postoperative epilepsy may negatively impact survival after glioma diagnosis, regardless of preoperative epilepsy status. Postoperative epilepsy may be an expression of a more invasive growth pattern of the gliomas following primary tumor treatment.
Collapse
Affiliation(s)
- Mirketa Marku
- Department of Neurology, North Zealand Hospital, University of Copenhagen, Hilleroed, Denmark. .,Psychological Aspects of Cancer, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Birthe Krogh Rasmussen
- Department of Neurology, North Zealand Hospital, University of Copenhagen, Hilleroed, Denmark
| | - Federica Belmonte
- Statistics and Data Analysis Unit, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | | | - Christoffer Johansen
- Psychological Aspects of Cancer, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Cancer Survivorship and Treatment Late Effects (CASTLE), 9601, Department of Oncology, Centre for Cancer and Organ Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Envold Bidstrup
- Psychological Aspects of Cancer, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Zimmer TS, David B, Broekaart DWM, Schidlowski M, Ruffolo G, Korotkov A, van der Wel NN, van Rijen PC, Mühlebner A, van Hecke W, Baayen JC, Idema S, François L, van Eyll J, Dedeurwaerdere S, Kessels HW, Surges R, Rüber T, Gorter JA, Mills JD, van Vliet EA, Aronica E. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Acta Neuropathol 2021; 142:729-759. [PMID: 34292399 PMCID: PMC8423709 DOI: 10.1007/s00401-021-02348-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Martin Schidlowski
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gabriele Ruffolo
- Laboratory affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Department Cell Biology and Histology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Electron Microscopy Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter C van Rijen
- Department of Neurosurgery, Brain Centre, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Liesbeth François
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l'Alleud, Belgium
| | - Jonathan van Eyll
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l'Alleud, Belgium
| | | | - Helmut W Kessels
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| |
Collapse
|
11
|
Forest F, Dal Col P, Laville D, Court A, Rillardon M, Ramirez C, Rivoirard R, Stephan JL, Vassal F, Péoc'h M. Cyclin D1 expression in ganglioglioma, pleomorphic xanthoastrocytoma and pilocytic astrocytoma. Exp Mol Pathol 2021; 121:104652. [PMID: 34022185 DOI: 10.1016/j.yexmp.2021.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
Ganglioglioma, pleomorphic xanthoastrocytoma (PXA) and pilocytic astrocytoma are rare brain neoplasms with frequent activation of mitogen-activated protein (MAP) kinase pathway. A downstream marker of MAP-kinase pathway activation is cyclin D1. However, the expression of cyclin D1 has not been studied in the differential diagnosis between these brain tumors. The aim of this work is to compare the expression of cyclin D1 in ganglioglioma, PXA, pilocytic astrocytoma. We also compared cyclin D1 expression in giant cell glioblastoma and in IDH wild type glioblastoma. Our work shows that roughly half of gangliogliomas have ganglion cells stained by cyclin D1 while two third of PXA have pleormophic cells stained by cyclin D1 and 15% of giant cell glioblastoma have pleomorphic cells stained by cyclin D1 (p < 0.001). Cyclin D1 never stains normal neurons either in the adjacent cortex of circumscribed tumor, or in entrapped neurons in IDH wild type glioblastomas. The expression of cyclin D1 is correlated to the presence of BRAF V600E mutation in ganglioglioma and PXA (p = 0.002). To conclude, cyclin D1 positivity might be used to confirm the neoplastic nature of ganglion cells. Cyclin D1 is expressed in most cases of BRAF V600E mutated gangliogliomas but also in cases without BRAF mutations suggesting an activation of MAP-kinase pathway through another way. Cyclin D1 immunohistochemistry has currently no or little role in the differential diagnosis of pilocytic astrocytoma. Its role in the differential diagnosis between PXA and giant cell glioblastoma needs to be further investigated on external series.
Collapse
Affiliation(s)
- Fabien Forest
- University Hospital of Saint Etienne, North Hospital, Department of Pathology, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France; University Hospital of Saint Etienne, North Hospital, Department of Molecular Biology of Tumors, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France; Corneal Graft Biology, Engineering and Imaging Laboratory, BiiGC, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France.
| | - Pierre Dal Col
- University Hospital of Saint Etienne, North Hospital, Department of Pathology, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France
| | - David Laville
- University Hospital of Saint Etienne, North Hospital, Department of Pathology, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France
| | - Alice Court
- University Hospital of Saint Etienne, North Hospital, Department of Pathology, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France
| | - Maxime Rillardon
- University Hospital of Saint Etienne, North Hospital, Department of Pathology, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France
| | - Carole Ramirez
- University Hospital of Saint Etienne, North Hospital, Department of Neurology, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France; Lucien Neuwith Cancer Institute, Department of Medical Oncology, Avenue Albert Raimond, 108 bis Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France
| | - Romain Rivoirard
- Lucien Neuwith Cancer Institute, Department of Medical Oncology, Avenue Albert Raimond, 108 bis Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France
| | - Jean-Louis Stephan
- University Hospital of Saint Etienne, North Hospital, Department of Pediatric Oncology, Avenue Albert Raimond. 42055, Saint Etienne CEDEX 2, France
| | - François Vassal
- University Hospital of Saint Etienne, North Hospital, Department of Neurosurgery, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France
| | - Michel Péoc'h
- University Hospital of Saint Etienne, North Hospital, Department of Pathology, Avenue Albert Raimond, 42055, Saint Etienne CEDEX 2, France; Corneal Graft Biology, Engineering and Imaging Laboratory, BiiGC, EA2521, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France
| |
Collapse
|
12
|
Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways. Sci Rep 2021; 11:2163. [PMID: 33495488 PMCID: PMC7835211 DOI: 10.1038/s41598-021-81794-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
Because the liver plays a major role in metabolic homeostasis and secretion of clotting factors and inflammatory innate immune proteins, there is interest in understanding the mechanisms of hepatic cell activation under hyperglycaemia and whether this can be attenuated pharmacologically. We have previously shown that hyperglycaemia stimulates major changes in chromatin organization and metabolism in hepatocytes, and that the histone deacetylase inhibitor valproic acid (VPA) is able to reverse some of these metabolic changes. In this study, we have used RNA-sequencing (RNA-seq) to investigate how VPA influences gene expression in hepatocytes. Interesting, we observed that VPA attenuates hyperglycaemia-induced activation of complement and coagulation cascade genes. We also observe that many of the gene activation events coincide with changes to histone acetylation at the promoter of these genes indicating that epigenetic regulation is involved in VPA action.
Collapse
|
13
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
14
|
Castro-Torres RD, Ureña-Guerrero ME, Morales-Chacón LM, Lorigados-Pedre L, Estupiñan-Díaz B, Rocha L, Orozco-Suárez S, Rivera-Cervantes MC, Alonso-Vanegas M, Beas-Zárate C. New Aspects of VEGF, GABA, and Glutamate Signaling in the Neocortex of Human Temporal Lobe Pharmacoresistant Epilepsy Revealed by RT-qPCR Arrays. J Mol Neurosci 2020; 70:916-929. [DOI: 10.1007/s12031-020-01519-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
15
|
van Vliet EA, Aronica E, Vezzani A, Ravizza T. Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol 2018; 44:91-111. [DOI: 10.1111/nan.12444] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- E. A. van Vliet
- Department of (Neuro)pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - E. Aronica
- Department of (Neuro)pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN); Cruquius The Netherlands
| | - A. Vezzani
- Department of Neuroscience; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; Milano Italy
| | - T. Ravizza
- Department of Neuroscience; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; Milano Italy
| |
Collapse
|
16
|
Stone TJ, Rowell R, Jayasekera BAP, Cunningham MO, Jacques TS. Review: Molecular characteristics of long-term epilepsy-associated tumours (LEATs) and mechanisms for tumour-related epilepsy (TRE). Neuropathol Appl Neurobiol 2018; 44:56-69. [DOI: 10.1111/nan.12459] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. J. Stone
- Developmental Biology and Cancer Programme; UCL Great Ormond Street Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| | - R. Rowell
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - B. A. P. Jayasekera
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - M. O. Cunningham
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - T. S. Jacques
- Developmental Biology and Cancer Programme; UCL Great Ormond Street Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| |
Collapse
|
17
|
Wang Y, Tang K, Zhao J, Liu L, Feng J. FOXO4 expression is associated with the occurrence and outcome of seizures: An RNA-sequencing analysis of low-grade gliomas. Seizure 2017; 52:41-45. [PMID: 28963932 DOI: 10.1016/j.seizure.2017.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Epileptic seizures account for most of the initial symptoms in patients with low-grade gliomas (LGGs). Nevertheless, the molecular mechanisms of tumor-associated seizures remain unclear. This study investigated the genetic changes associated with the occurrence and outcome of seizures in patients with LGGs. METHODS The clinical characteristics and gene profile data of 86 patients with LGGs were collected from the Chinese Glioma Genome Atlas database. Gene expression was analyzed based on whole-genome RNA sequencing. The genes with significantly different expressions between patients with and without seizures were identified. Additionally, the Engel Epilepsy Surgery Outcome Scale was applied to evaluate the seizure outcomes at 6 months after tumor resection. RESULTS In patients with LGGs, the expression of Forkhead Box O4 (FOXO4) was significantly different between the seizure and non-seizure groups, and high FOXO4 expression was found to be associated with a low risk of seizure occurrences (p=0.026). This result was validated by using the clinical information and RNA sequence data from The Cancer Genome Atlas database (p=0.005). FOXO4 was additionally identified as a predictor of seizure outcomes in patients with LGGs at 6 months after tumor resection (p=0.018). CONCLUSIONS The results of our genomic analysis suggest that low FOXO4 expression is a significant risk factor for epileptic seizures in patients with LGGs and is associated with the seizure outcome. FOXO4 may be a potential therapeutic target for tumor-associated epilepsy.
Collapse
Affiliation(s)
- Yongheng Wang
- Department of Neurosurgery, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province 066000, China
| | - Kai Tang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Jianhua Zhao
- Department of Neurosurgery, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province 066000, China
| | - Li Liu
- Department of Ophthalmology, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province 066000, China.
| | - Ji Feng
- Department of Neurosurgery, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province 066000, China.
| |
Collapse
|
18
|
Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep 2017; 7:8089. [PMID: 28808237 PMCID: PMC5556011 DOI: 10.1038/s41598-017-06145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that results from a mutation in the TSC1 or TSC2 genes leading to constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1). TSC is associated with autism, intellectual disability and severe epilepsy. Cortical tubers are believed to represent the neuropathological substrates of these disabling manifestations in TSC. In the presented study we used high-throughput RNA sequencing in combination with systems-based computational approaches to investigate the complexity of the TSC molecular network. Overall we detected 438 differentially expressed genes and 991 differentially expressed small non-coding RNAs in cortical tubers compared to autopsy control brain tissue. We observed increased expression of genes associated with inflammatory, innate and adaptive immune responses. In contrast, we observed a down-regulation of genes associated with neurogenesis and glutamate receptor signaling. MicroRNAs represented the largest class of over-expressed small non-coding RNA species in tubers. In particular, our analysis revealed that the miR-34 family (including miR-34a, miR-34b and miR-34c) was significantly over-expressed. Functional studies demonstrated the ability of miR-34b to modulate neurite outgrowth in mouse primary hippocampal neuronal cultures. This study provides new insights into the TSC transcriptomic network along with the identification of potential new treatment targets.
Collapse
|
19
|
Zhou XW, Wang X, Yang Y, Luo JW, Dong H, Liu YH, Mao Q. Biomarkers related with seizure risk in glioma patients: A systematic review. Clin Neurol Neurosurg 2016; 151:113-119. [PMID: 27821299 DOI: 10.1016/j.clineuro.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that genetic biomarkers play important roles in the development of glioma-associated seizures. Thus, we performed a systematic review to summarise biomarkers that are associated with seizures in glioma patients. An electronic literature search of public databases (PubMed, Embase and Medline) was performed using the keywords glioma, seizure and epilepsy. A totall of 26 eligible studies with 2224 cases were included in this systematic review of publications to 20 June, 2016. Genetic biomarkers such as isocitrate dehydrogenase 1 (IDH1) mutations, low expression of excitatory amino acid transporter 2 (EAAT2), high xCT expression, overexpression of adenosine kinase (ADK) and low expression of very large G-protein-coupled receptor-1 (VLGR1) are primarily involved in synaptic transmission, whereas BRAF mutations, epidermal growth factor receptor (EGFR) amplification, miR-196b expression and low ki-67 expression are associated with regulation of cell proliferation. However, there is limited evidence regarding the roles of RAD50 interactor 1 (RINT1) and olig2 in epileptogenesis among glioma patients. Glioma-related seizure was related to the dysfunction of tumor microenvironment. Our findings may provide new mechanistic insights into targeted therapy for glioma-related seizures and may result in the development of multi-target therapies.
Collapse
Affiliation(s)
- Xing-Wang Zhou
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Xiang Wang
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Jie-Wen Luo
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Hui Dong
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Yan-Hui Liu
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Zanello M, Pagès M, Roux A, Peeters S, Dezamis E, Puget S, Devaux B, Sainte-Rose C, Zerah M, Louvel G, Dumont SN, Meder JF, Grill J, Huberfeld G, Chrétien F, Parraga E, Sauvageon X, Varlet P, Pallud J. Epileptic seizures in anaplastic gangliogliomas. Br J Neurosurg 2016; 31:227-233. [PMID: 27550627 DOI: 10.1080/02688697.2016.1220506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM Prevalence and predictors of epileptic seizures are unknown in the malignant variant of ganglioglioma. METHODS In a retrospective exploratory dataset of 18 supratentorial anaplastic World Health Organization grade III gangliogliomas, we studied: (i) the prevalence and predictors of epileptic seizures at diagnosis; (ii) the evolution of seizures during tumor evolution; (iii) seizure control rates and predictors of epilepsy control after oncological treatments. RESULTS Epileptic seizures prevalence progresses throughout the natural course of anaplastic gangliogliomas: 44% at imaging discovery, 67% at histopathological diagnosis, 69% following oncological treatment, 86% at tumor progression, and 100% at the end-of-life phase. The medical control of seizures and their refractory status worsened during the tumor's natural course: 25% of uncontrolled seizures at histopathological diagnosis, 40% following oncological treatment, 45.5% at tumor progression, and 45.5% at the end-of-life phase. Predictors of seizures at diagnosis appeared related to the tumor location (i.e. temporal and/or cortical involvement). Prognostic parameters of seizure control after first-line oncological treatment were temporal tumor location, eosinophilic granular bodies, TP53 mutation, and extent of resection. Prognostic parameters of seizure control at tumor progression were a history of epileptic seizures at diagnosis, seizure control after first-line oncological treatment, eosinophilic granular bodies, and TP53 mutation. CONCLUSION Epileptic seizures are frequently observed in anaplastic gangliogliomas and both prevalence and medically refractory status worsen during the tumor's natural course. Both oncological and antiepileptic treatments should be employed to improve the control of epileptic seizures and the quality of life of patients harboring an anaplastic ganglioglioma.
Collapse
Affiliation(s)
- Marc Zanello
- a Department of Neurosurgery , Sainte-Anne Hospital , Paris , France.,b Paris Descartes University, Sorbonne Paris Cité , Paris , France
| | - Mélanie Pagès
- b Paris Descartes University, Sorbonne Paris Cité , Paris , France.,c Department of Neuropathology , Sainte-Anne Hospital , Paris , France
| | - Alexandre Roux
- a Department of Neurosurgery , Sainte-Anne Hospital , Paris , France.,b Paris Descartes University, Sorbonne Paris Cité , Paris , France
| | - Sophie Peeters
- a Department of Neurosurgery , Sainte-Anne Hospital , Paris , France.,b Paris Descartes University, Sorbonne Paris Cité , Paris , France
| | - Edouard Dezamis
- a Department of Neurosurgery , Sainte-Anne Hospital , Paris , France.,b Paris Descartes University, Sorbonne Paris Cité , Paris , France
| | - Stéphanie Puget
- b Paris Descartes University, Sorbonne Paris Cité , Paris , France.,d Department of Pediatric Neurosurgery , Necker Enfants Malades Hospital , Paris , France
| | - Bertrand Devaux
- a Department of Neurosurgery , Sainte-Anne Hospital , Paris , France.,b Paris Descartes University, Sorbonne Paris Cité , Paris , France
| | - Christian Sainte-Rose
- b Paris Descartes University, Sorbonne Paris Cité , Paris , France.,d Department of Pediatric Neurosurgery , Necker Enfants Malades Hospital , Paris , France
| | - Michel Zerah
- b Paris Descartes University, Sorbonne Paris Cité , Paris , France.,d Department of Pediatric Neurosurgery , Necker Enfants Malades Hospital , Paris , France
| | - Guillaume Louvel
- e Department of Neurooncology , Gustave Roussy , Villejuif , France
| | - Sarah N Dumont
- e Department of Neurooncology , Gustave Roussy , Villejuif , France
| | - Jean-François Meder
- b Paris Descartes University, Sorbonne Paris Cité , Paris , France.,f Department of Neuroradiology , Sainte-Anne Hospital , Paris , France
| | - Jacques Grill
- g Department of Pediatric Oncology , Gustave Roussy , Villejuif , France
| | - Gilles Huberfeld
- h Clinical Neurophysiology Department & Epileptology Unit , Pitié-Salpêtrière University Hospital, UPMC - APHP , Paris , France
| | - Fabrice Chrétien
- b Paris Descartes University, Sorbonne Paris Cité , Paris , France.,c Department of Neuropathology , Sainte-Anne Hospital , Paris , France
| | - Eduardo Parraga
- a Department of Neurosurgery , Sainte-Anne Hospital , Paris , France.,b Paris Descartes University, Sorbonne Paris Cité , Paris , France
| | - Xavier Sauvageon
- b Paris Descartes University, Sorbonne Paris Cité , Paris , France.,i Department of Neuro-Anaesthesia and Neuro-Intensive Care , Sainte-Anne Hospital , Paris , France
| | - Pascale Varlet
- b Paris Descartes University, Sorbonne Paris Cité , Paris , France.,c Department of Neuropathology , Sainte-Anne Hospital , Paris , France
| | - Johan Pallud
- a Department of Neurosurgery , Sainte-Anne Hospital , Paris , France.,b Paris Descartes University, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
21
|
Stress-induced bystander signaling as a possible factor contributing to neuronal excitability and seizure generation/epileptogenesis. Med Hypotheses 2016; 90:57-62. [DOI: 10.1016/j.mehy.2016.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/10/2016] [Indexed: 01/23/2023]
|
22
|
Abstract
This review reports the available evidence on the activation of the innate and adaptive branches of the immune system and the related inflammatory processes in epileptic disorders and the putative pathogenic role of inflammatory processes developing in the brain, as indicated by evidence from experimental and clinical research. Indeed, there is increasing knowledge supporting a role of specific inflammatory mediators and immune cells in the generation and recurrence of epileptic seizures, as well as in the associated neuropathology and comorbidities. Major challenges in this field remain: a better understanding of the key inflammatory pathogenic pathways activated in chronic epilepsy and during epileptogenesis, and how to counteract them efficiently without altering the homeostatic tissue repair function of inflammation. The relevance of this information for developing novel therapies will be highlighted.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche "Mario Negri," 20156 Milano, Italy
| | - Bethan Lang
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands Department of (Neuro)Pathology, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands SEIN-Stichting Epilepsie Instellingen Nederland, Heemstede 2103 SW, The Netherlands
| |
Collapse
|
23
|
Bolkvadze T, Rantala J, Puhakka N, Andrade P, Pitkänen A. Epileptogenesis after traumatic brain injury in Plau-deficient mice. Epilepsy Behav 2015; 51:19-27. [PMID: 26253597 DOI: 10.1016/j.yebeh.2015.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022]
Abstract
Several components of the urokinase-type plasminogen activator receptor (uPAR)-interactome, including uPAR and its ligand sushi-repeat protein 2, X-linked (SRPX2), are linked to susceptibility to epileptogenesis in animal models and/or humans. Recent evidence indicates that urokinase-type plasminogen activator (uPA), a uPAR ligand with focal proteinase activity in the extracellular matrix, contributes to recovery-enhancing brain plasticity after various epileptogenic insults such as traumatic brain injury (TBI) and status epilepticus. Here, we examined whether deficiency of the uPA-encoding gene Plau augments epileptogenesis after TBI. Traumatic brain injury was induced by controlled cortical impact in the somatosensory cortex of adult male wild-type and Plau-deficient mice. Development of epilepsy and seizure susceptibility were assessed with a 3-week continuous video-electroencephalography monitoring and a pentylenetetrazol test, respectively. Traumatic brain injury-induced cortical or hippocampal pathology did not differ between genotypes. The pentylenetetrazol test revealed increased seizure susceptibility after TBI (p<0.05) in injured mice. Epileptogenesis was not exacerbated, however, in Plau-deficient mice. Taken together, Plau deficiency did not worsen controlled cortical impact-induced brain pathology or epileptogenesis caused by TBI when assessed at chronic timepoints. These data expand previous observations on Plau deficiency in models of status epilepticus and suggest that inhibition of focal extracellular proteinase activity resulting from uPA-uPAR interactions does not modify epileptogenesis after TBI.
Collapse
Affiliation(s)
- Tamuna Bolkvadze
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Jukka Rantala
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Pedro Andrade
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
24
|
Sarnat HB, Flores-Sarnat L. Infantile tauopathies: Hemimegalencephaly; tuberous sclerosis complex; focal cortical dysplasia 2; ganglioglioma. Brain Dev 2015; 37:553-62. [PMID: 25451314 DOI: 10.1016/j.braindev.2014.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Tau is a normal microtubule-associated protein; mutations to phosphorylated or acetylated forms are neurotoxic. In many dementias of adult life tauopathies cause neuronal degeneration. Four developmental disorders of the fetal and infant brain are presented, each of which exhibits up-regulation of tau. Microtubules are cytoskeletal structures that provide the strands of mitotic spindles and specify cellular polarity, growth, lineage, differentiation, migration and axonal transport of molecules. Phosphorylated tau is abnormal in immature as in mature neurons. Several malformations are demonstrated in which upregulated tau may be important in pathogenesis. All produce highly epileptogenic cortical foci. The prototype infantile tauopathy is (1) hemimegalencephaly (HME); normal tau is degraded by a mutant AKT3 or AKT1 gene as the aetiology of focal somatic mosaicism in the periventricular neuroepithelium. HME may be isolated or associated with neurocutaneous syndromes, particularly epidermal naevus syndromes, also due to somatic mutations. Other tauopathies of early life include: (2) tuberous sclerosis complex; (3) focal cortical dysplasia type 2b (FCD2b); and (4) ganglioglioma, a tumor with dysplastic neurons and neoplastic glial cells. Pathological tau in these infantile cases alters cellular growth and architecture, synaptic function and tissue organization, but does not cause neuronal loss. All infantile tauopathies are defined neuropathologically as a tetrad of (1) dysmorphic and megalocytic neurons; (2) activation of the mTOR signaling pathway; (3) post-zygotic somatic mosaicism; and (4) upregulation of phosphorylated tau. HME and FCD2b may be the same disorder with different timing of the somatic mutation in the mitotic cycles of the neuroepithelium. HME and FCD2b may be the same disorder with different timing of the somatic mutation in the mitotic cycles of the neuroepithelium. Tauopathies must be considered in infantile neurological disease and no longer restricted to adult dementias. The mTOR inhibitor everolimus, already demonstrated to be effective in TSC, also may be a potential treatment in other infantile tauopathies.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Paediatrics, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Foundation, Calgary, Alberta, Canada; Department of Pathology (Neuropathology), University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Foundation, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Foundation, Calgary, Alberta, Canada.
| | - Laura Flores-Sarnat
- Department of Paediatrics, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Foundation, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Foundation, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Prabowo AS, van Scheppingen J, Iyer AM, Anink JJ, Spliet WGM, van Rijen PC, Schouten-van Meeteren AYN, Aronica E. Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas. J Neuroinflammation 2015; 12:97. [PMID: 25986346 PMCID: PMC4446114 DOI: 10.1186/s12974-015-0315-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
PURPOSE miR21, miR146, and miR155 represent a trio of microRNAs which has been shown to play a key role in the regulation of immune and inflammatory responses. In the present study, we investigated the differential expression and clinical significance of these three miRNAs in glioneuronal tumors (gangliogliomas, GGs) which are characterized by prominent activation of the innate immune response. METHODS The expression levels of miR21, miR146, and miR155 were evaluated using Taqman PCR in 34 GGs, including 15 cases with sufficient amount of perilesional cortex. Their expression was correlated with the tumor features and the clinical history of epilepsy. In addition, in situ hybridization was used to evaluate their cellular distribution in both tumor and peritumoral cortex. RESULTS Increased expression of miR146a was observed in both tumor and peritumoral cortex compared to control samples. miR146a was detected in both neuronal and astroglial cells. Tumor and peritumoral miR146a expression was negatively correlated with frequency of seizures and the density of activated microglial cells. Neuronal and astroglial expression was observed for both miR21 and miR155 with increased expression of miR21 within the tumor and miR155 in the peritumoral region. Negative correlations were observed between the miRNA levels and the expression of putative targets within the astroglial component of the tumor. CONCLUSION We report a differential regulation of three miRNAs, known to be related to inflammation, in both tumor and peritumoral cortex of patients with GG. Moreover, our findings suggest a functional relationship between miR146a expression and epilepsy, either directly in epileptogenesis or as modulation of seizure activity.
Collapse
Affiliation(s)
- A S Prabowo
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - J van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A M Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - J J Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - W G M Spliet
- Department of Pathology, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - P C van Rijen
- Department of Neurosurgery, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - A Y N Schouten-van Meeteren
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands. .,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F, Vezzani A, Buckwalter MS, Huguenard JR, Friedman A, Kaufer D. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 2015; 78:115-25. [PMID: 25836421 DOI: 10.1016/j.nbd.2015.02.029] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/07/2015] [Accepted: 02/19/2015] [Indexed: 01/26/2023] Open
Abstract
Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE.
Collapse
Affiliation(s)
- Itai Weissberg
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lydia Wood
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Lyn Kamintsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Oscar Vazquez
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Dan Z Milikovsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Allyson Alexander
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hannah Oppenheim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Carolyn Ardizzone
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn 53105, Germany
| | - Federica Frigerio
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3140, USA; Canadian Institute for Advanced Research (CIFAR) Program in Child and Brain Development Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
27
|
Mills JD, Chen J, Kim WS, Waters PD, Prabowo AS, Aronica E, Halliday GM, Janitz M. Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter. Neurogenetics 2015; 16:201-13. [PMID: 25819921 DOI: 10.1007/s10048-015-0445-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/14/2015] [Indexed: 12/30/2022]
Abstract
Pervasive transcription of the genome produces a diverse array of functional non-coding RNAs (ncRNAs). One particular class of ncRNAs, long intervening non-coding RNAs (lincRNAs) are thought to play a role in regulating gene expression and may be a major contributor to organism and tissue complexity. The human brain with its heterogeneous cellular make-up is a rich source of lincRNAs; however, the functions of the majority of lincRNAs are unknown. Recently, by completing RNA sequencing (RNA-Seq) of the human frontal cortex, we identified linc00320 as being highly expressed in the white matter compared to grey matter in multiple system atrophy (MSA) brain. Here, we further investigate the expression patterns of linc00320 and conclude that it is involved in specific brain regions rather than having involvement in the MSA disease process. We also show that the full-length linc00320 is only expressed in human brain tissue and not in other primates, suggesting that it may be involved in improved functional connectivity for higher human brain cognition.
Collapse
Affiliation(s)
- James D Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Prabowo AS, Iyer AM, Veersema TJ, Anink JJ, Schouten-van Meeteren AYN, Spliet WGM, van Rijen PC, Ferrier CH, Thom M, Aronica E. Expression of neurodegenerative disease-related proteins and caspase-3 in glioneuronal tumours. Neuropathol Appl Neurobiol 2015; 41:e1-e15. [DOI: 10.1111/nan.12143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Affiliation(s)
- A. S. Prabowo
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - A. M. Iyer
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - T. J. Veersema
- Department of Neurosurgery; University Medical Center Utrecht; Utrecht The Netherlands
- Department of Neurology; University Medical Center Utrecht; Utrecht The Netherlands
| | - J. J. Anink
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - A. Y. N. Schouten-van Meeteren
- Department of Pediatric Oncology; Emma Children's Hospital; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - W. G. M. Spliet
- Rudolf Magnus Institute for Neuroscience and Pathology; University Medical Center Utrecht; Utrecht The Netherlands
| | - P. C. van Rijen
- Department of Neurosurgery; University Medical Center Utrecht; Utrecht The Netherlands
| | - C. H. Ferrier
- Department of Neurology; University Medical Center Utrecht; Utrecht The Netherlands
- Department of Clinical Neurophysiology; University Medical Center Utrecht; Utrecht The Netherlands
| | - M. Thom
- Neuropathology Department; University College London Institute of Neurology; London UK
| | - E. Aronica
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
- SEIN - Stichting Epilepsie Instellingen Nederland; Heemstede The Netherlands
| |
Collapse
|
29
|
Deficiency of very large G-protein-coupled receptor-1 is a risk factor of tumor-related epilepsy: a whole transcriptome sequencing analysis. J Neurooncol 2014; 121:609-16. [PMID: 25511798 DOI: 10.1007/s11060-014-1674-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/30/2014] [Indexed: 12/11/2022]
Abstract
The majority of patients with low-grade glioma (LGG) experience epileptic seizures as their initial symptom, while the underlying mechanisms of tumor-related seizures are still far from being fully understood. In addition to tumor type and location, genetic changes of LGGs are considered to be influential factors in causing epileptic seizures. Nevertheless, the molecular biomarkers associated with tumor-related epilepsy have rarely been identified. RNA sequence data from 80 patients with histologically confirmed LGG were collected from the Chinese glioma genome atlas database and significant differences in expression levels of 33 genes were found. One of the genes, Very large G-protein-coupled receptor-1 (VLGR1), had been previously associated with seizures. Therefore, we investigated the association between LGG-related epilepsy and VLGR1, which played a role in idiopathic epilepsy. The level of VLGR1 expression was compared between patients with epileptic seizures and those without using the reads per kilobase transcriptome per million method. To evaluate the prognostic role of VLGR1 gene expression, the progression-free survival was determined by the Kaplan-Meier method and a multivariate Cox model. We demonstrated that VLGR1 had a significantly lower expression level in patients with epileptic seizures compared to seizure-free patients (p = 0.003). Furthermore, VLGR1 was highly associated with the presence of seizures in a multivariate statistical model. However, VLGR1 could not serve as an independent prognostic factor to determine progression-free survival of LGG patients. Based on RNA sequence data analysis, our results suggest that low expression of VLGR1 is a significant risk factor of epileptic seizures in patients with LGG.
Collapse
|
30
|
Xu LX, Holland H, Kirsten H, Ahnert P, Krupp W, Bauer M, Schober R, Mueller W, Fritzsch D, Meixensberger J, Koschny R. Three gangliogliomas: results of GTG-banding, SKY, genome-wide high resolution SNP-array, gene expression and review of the literature. Neuropathology 2014; 35:148-57. [PMID: 25376146 DOI: 10.1111/neup.12176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
Abstract
According to the World Health Organization gangliogliomas are classified as well-differentiated and slowly growing neuroepithelial tumors, composed of neoplastic mature ganglion and glial cells. It is the most frequent tumor entity observed in patients with long-term epilepsy. Comprehensive cytogenetic and molecular cytogenetic data including high-resolution genomic profiling (single nucleotide polymorphism (SNP)-array) of gangliogliomas are scarce but necessary for a better oncological understanding of this tumor entity. For a detailed characterization at the single cell and cell population levels, we analyzed genomic alterations of three gangliogliomas using trypsin-Giemsa banding (GTG-banding) and by spectral karyotyping (SKY) in combination with SNP-array and gene expression array experiments. By GTG and SKY, we could confirm frequently detected chromosomal aberrations (losses within chromosomes 10, 13 and 22; gains within chromosomes 5, 7, 8 and 12), and identify so far unknown genetic aberrations like the unbalanced non-reciprocal translocation t(1;18)(q21;q21). Interestingly, we report on the second so far detected ganglioglioma with ring chromosome 1. Analyses of SNP-array data from two of the tumors and respective germline DNA (peripheral blood) identified few small gains and losses and a number of copy-neutral regions with loss of heterozygosity (LOH) in germline and in tumor tissue. In comparison to germline DNA, tumor tissues did not show substantial regions with significant loss or gain or with newly developed LOH. Gene expression analyses of tumor-specific genes revealed similarities in the profile of the analyzed samples regarding different relevant pathways. Taken together, we describe overlapping but also distinct and novel genetic aberrations of three gangliogliomas.
Collapse
Affiliation(s)
- Li-Xin Xu
- Department of Neurosurgery, University of Leipzig, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fan X, Wang YY, Zhang CB, You G, Li MY, Wang L, Jiang T. Expression of RINT1 predicts seizure occurrence and outcomes in patients with low-grade gliomas. J Cancer Res Clin Oncol 2014; 141:729-34. [DOI: 10.1007/s00432-014-1827-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
|
32
|
Schramm J. Epilepsy Surgery and the Evolution of Clinical and Translational Science. Neurosurgery 2014; 61 Suppl 1:54-65. [DOI: 10.1227/neu.0000000000000399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Johannes Schramm
- Professor emeritus, Medical Faculty, Bonn University, Bonn, Germany
| |
Collapse
|
33
|
Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11:251-68. [PMID: 24481729 PMCID: PMC3996119 DOI: 10.1007/s13311-013-0251-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Structural abnormalities of the brain are increasingly recognized in patients with neurodevelopmental delay and intractable focal epilepsies. The access to clinically well-characterized neurosurgical material has provided a unique opportunity to better define the neuropathological, neurochemical, and molecular features of epilepsy-associated focal developmental lesions. These studies help to further understand the epileptogenic mechanisms of these lesions. Neuropathological evaluation of surgical specimens from patients with epilepsy-associated developmental lesions reveals two major pathologies: focal cortical dysplasia and low-grade developmental tumors (glioneuronal tumors). In the last few years there have been major advances in the recognition of a wide spectrum of developmental lesions associated with a intractable epilepsy, including cortical tubers in patients with tuberous sclerosis complex and hemimegalencephaly. As an increasing number of entities are identified, the development of a unified and comprehensive classification represents a great challenge and requires continuous updates. The present article reviews current knowledge of molecular pathogenesis and the pathophysiological mechanisms of epileptogenesis in this group of developmental disorders. Both emerging neuropathological and basic science evidence will be analyzed, highlighting the involvement of different, but often converging, pathogenetic and epileptogenic mechanisms, which may create the basis for new therapeutic strategies in these disorders.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands,
| | | |
Collapse
|
34
|
Japp A, Gielen GH, Becker AJ. Recent aspects of classification and epidemiology of epilepsy-associated tumors. Epilepsia 2014; 54 Suppl 9:5-11. [PMID: 24328865 DOI: 10.1111/epi.12436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epileptic seizures are frequent manifestations of brain tumors. However, biopsy specimens of patients who undergo neurosurgical removal of circumscribed foci to control chronic recurrent pharmacoresistant seizures often reveal tumor entities that are rare in general brain tumor series. The spectrum of these "long-term epilepsy-associated neoplasms" comprises highly differentiated glial and glioneuronal tumors that show a benign biologic behavior and clinical course, and that rarely relapse. Several entities are well recognizable on the basis of histopathologic and immunohistochemical characteristics. An intriguing functional aspect of these tumors, sometimes collectively referred to as "epileptomas," is their prominent epileptogenicity, which may represent a clinical feature indicating rather than causing the generally benign biologic behavior of these tumors. A frequent feature of respective neoplasms is their coincidence with dysplastic lesions in the vicinity of the tumor itself. The recent advent of new molecular markers, including genomic alterations leading to activation of the protooncogene BRAF and impaired function of isocitrate dehydrogenase (IDH1), provides excellent new tools in the differential diagnosis of low grade brain tumors, and provides intriguing implications to further develop the pathogenetic concepts of these neoplasms. Despite this progress, a number of tumors from patients with chronic epilepsy show combinations of cytologic, histologic, and immunohistochemical characteristics that challenge the current neuropathologic classification schemes. Attempts are currently ongoing to develop further classification schemes.
Collapse
Affiliation(s)
- Anna Japp
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | | | | |
Collapse
|
35
|
Jovanov Milošević N, Judaš M, Aronica E, Kostovic I. Neural ECM in laminar organization and connectivity development in healthy and diseased human brain. PROGRESS IN BRAIN RESEARCH 2014; 214:159-78. [DOI: 10.1016/b978-0-444-63486-3.00007-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Kong B, Yang T, Chen L, Kuang YQ, Gu JW, Xia X, Cheng L, Zhang JH. Protein-protein interaction network analysis and gene set enrichment analysis in epilepsy patients with brain cancer. J Clin Neurosci 2013; 21:316-9. [PMID: 24239228 DOI: 10.1016/j.jocn.2013.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 06/09/2013] [Accepted: 06/15/2013] [Indexed: 11/18/2022]
Abstract
Many patients with brain cancer experience seizures or epilepsy and tumor-associated epilepsy (TAE) significantly decreases their quality of life. This study aimed to achieve a better understanding of the mechanisms of TAE. The differentially expressed genes (DEG) between epilepsy patients with or without brain tumor were firstly screened using the Linear Models for Microarray Data package using GSE4290 datasets from the USA National Center for Biotechnology Information Gene Expression Omnibus database. Then the protein-protein interaction (PPI) network, using data from the Human Protein Reference Database and the Biological General Repository for Interaction Datasets, was constructed. For further analysis, the PPI network structure and clusters in this PPI network were identified by ClusterOne. Meanwhile, gene set enrichment analysis was performed to illuminate the biological pathways and processes which generally affect patients with TAE. A total of 5113 DEG were identified and a PPI network, which contained 114 DEG and 21 normal genes, was established. Proteins, which mainly belonged to the mini chromosome maintenance and collagen families, were discovered to be enriched in the three identified clusters in the PPI network. Finally, several biological pathways (including cell cycle, DNA replication and transforming growth factor β1 signaling pathways) and processes (such as nucleocytoplasmic transport, nuclear transport and regulation of phosphorylation) were identified. Proteins in these three clusters may become new targets for TAE treatment. Our results provide some potential underlying biomarkers for understanding the pathogenesis of epilepsy in patients with brain tumor.
Collapse
Affiliation(s)
- Bin Kong
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China; Third Military Medical University, Chongqing, China
| | - Tao Yang
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China; Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Neurology, Chengdu Military General Hospital, Chengdu, Sichuan Province, China
| | - Yong-Qin Kuang
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China
| | - Jian-Wen Gu
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China.
| | - Xun Xia
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China
| | - Lin Cheng
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China
| | - Jun-Hai Zhang
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China
| |
Collapse
|
37
|
You G, Feng L, Yan W, Zhang W, Wang YZ, Li SW, Li SW, Li GL, Song YJ, Kang CS, You YP, Jiang T. BCL2A1 is a potential biomarker for postoperative seizure control in patients with low-grade gliomas. CNS Neurosci Ther 2013; 19:882-8. [PMID: 23841872 DOI: 10.1111/cns.12148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
AIMS To identify molecular genetic factors that influence preoperative seizure occurrence and postoperative seizure control in patients with low-grade gliomas (LGGs). METHODS Fifty-four WHO grade II astrocytomas were used for microarray analysis under strict inclusion criteria. The primary endpoint was seizure control at 12 months after surgery. Biological processes were investigated by gene ontology (GO) analysis. Quantitative RT-PCR and immunohistochemistry were used to validate key genes. RESULTS Differentially expressed genes correlated with seizure occurrence failed to significantly distinguish patients with and without a history of seizures. With respect to postoperative seizure control, a transcript profile of 92 genes was identified, which successfully separated patients with good and poor seizure prognosis. GO analysis revealed that the most striking overrepresentation of genes was found in a category of anti-apoptotic genes and their regulation. Increased expression was also observed for genes involved in immune and inflammatory responses. BCL2A1 was proven to be a novel marker associated with seizure prognosis. CONCLUSION Increased anti-apoptotic activity of tumor cells appears to contribute to seizure recurrence after surgery in patients with LGGs. These findings provide insights that may lead to the development of effective treatment strategies for prolonging the survival of patients with LGG in the future.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rudà R, Bello L, Duffau H, Soffietti R. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol 2013; 14 Suppl 4:iv55-64. [PMID: 23095831 DOI: 10.1093/neuonc/nos199] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Seizures represent a common symptom in low-grade gliomas; when uncontrolled, they significantly contribute to patient morbidity and negatively impact quality of life. Tumor location and histology influence the risk for epilepsy. The pathogenesis of tumor-related epilepsy is multifactorial and may differ among tumor histologies (glioneuronal tumors vs diffuse grade II gliomas). Gross total resection is the strongest predictor of seizure freedom in addition to clinical factors, such as preoperative seizure duration, type, and control with antiepileptic drugs (AEDs). Epilepsy surgery may improve seizure control. Radiotherapy and chemotherapy with alkylating agents (procarbazine + CCNU+ vincristine, temozolomide) are effective in reducing the frequency of seizures in patients with pharmacoresistant epilepsy. Newer AEDs (levetiracetam, topiramate, lacosamide) seem to be better tolerated than the old AEDs (phenobarbital, phenytoin, carbamazepine), but there is lack of evidence regarding their superiority in terms of efficacy.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, University of Turin and San Giovanni Battista Hospital, Turin, Italy.
| | | | | | | |
Collapse
|
39
|
Bakir-Gungor B, Baykan B, Ugur İseri S, Tuncer FN, Sezerman OU. Identifying SNP targeted pathways in partial epilepsies with genome-wide association study data. Epilepsy Res 2013; 105:92-102. [PMID: 23498093 DOI: 10.1016/j.eplepsyres.2013.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/15/2013] [Accepted: 02/13/2013] [Indexed: 12/18/2022]
Abstract
PURPOSE In a recent genome-wide association study for partial epilepsies in the European population, a common genetic variation has been reported to affect partial epilepsy only modestly. However, in complex diseases such as partial epilepsy, multiple factors (e.g. single nucleotide polymorphisms, microRNAs, metabolic and epigenetic factors) may target different sets of genes in the same pathway, affecting its function and thus causing the disease development. In this regard, we hypothesize that the pathways are critical for elucidating the mechanisms underlying partial epilepsy. METHODS Previously we had developed a novel methodology with the aim of identifying the disease-related pathways. We had combined evidence of genetic association with current knowledge of (i) biochemical pathways, (ii) protein-protein interaction networks, and (iii) the functional information of selected single nucleotide polymorphisms. In our present study, we apply this methodology to a data set on partial epilepsy, including 3445 cases and 6935 controls of European ancestry. RESULTS We have identified 30 overrepresented pathways with corrected p-values smaller than 10(-12). These pathways include complement and coagulation cascades, cell cycle, focal adhesion, extra cellular matrix-receptor interaction, JAK-STAT signaling pathway, MAPK signaling pathway, proteasome, ribosome, calcium signaling and regulation of actin cytoskeleton pathways. Most of these pathways have growing scientific support in the literature as being associated with partial epilepsy. We also demonstrate that different factors affect distinct parts of the pathways, as shown here on complement and coagulation cascades pathway with a comparison of gene expression vs. genome-wide association study. CONCLUSIONS Traditional studies on genome-wide association have not revealed strong associations in epilepsies, since these single nucleotide polymorphisms are not shared by most of the patients. Our results suggest that it is more effective to incorporate the functional effect of a single nucleotide polymorphism on the gene product, protein-protein interaction networks and functional enrichment tools into genome-wide association studies. These can then be used to determine leading molecular pathways, which cannot be detected through traditional analyses. We hope that this type of analysis brings the research community one step closer to unraveling the complex genetic structure of epilepsies.
Collapse
Affiliation(s)
- B Bakir-Gungor
- Department of Genetics and Bioinformatics, Faculty of Arts and Sciences, Bahcesehir University, Ciragan Cad. Osmanpasa Mektebi Sok., No.: 4, 34353, Besiktas, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
40
|
Baronchelli S, Bentivegna A, Redaelli S, Riva G, Butta V, Paoletta L, Isimbaldi G, Miozzo M, Tabano S, Daga A, Marubbi D, Cattaneo M, Biunno I, Dalprà L. Delineating the cytogenomic and epigenomic landscapes of glioma stem cell lines. PLoS One 2013; 8:e57462. [PMID: 23468990 PMCID: PMC3585345 DOI: 10.1371/journal.pone.0057462] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/24/2013] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term "multiforme" describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together the driving force for tumor initiation and development. In order to decipher the common "signature" of the ancestral GSC population, we examined six already characterized GSC lines evaluating their cytogenomic and epigenomic profiles through a multilevel approach (conventional cytogenetic, FISH, aCGH, MeDIP-Chip and functional bioinformatic analysis). We found several canonical cytogenetic alterations associated with GBM and a common minimal deleted region (MDR) at 1p36.31, including CAMTA1 gene, a putative tumor suppressor gene, specific for the GSC population. Therefore, on one hand our data confirm a role of driver mutations for copy number alterations (CNAs) included in the GBM genomic-signature (gain of chromosome 7- EGFR gene, loss of chromosome 13- RB1 gene, loss of chromosome 10-PTEN gene); on the other, it is not obvious that the new identified CNAs are passenger mutations, as they may be necessary for tumor progression specific for the individual patient. Through our approach, we were able to demonstrate that not only individual genes into a pathway can be perturbed through multiple mechanisms and at different levels, but also that different combinations of perturbed genes can incapacitate functional modules within a cellular networks. Therefore, beyond the differences that can create apparent heterogeneity of alterations among GSC lines, there's a sort of selective force acting on them in order to converge towards the impairment of cell development and differentiation processes. This new overview could have a huge importance in therapy.
Collapse
Affiliation(s)
- Simona Baronchelli
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
- Science and Technology Park, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Serena Redaelli
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Gabriele Riva
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Valentina Butta
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Laura Paoletta
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | | | - Monica Miozzo
- Department of Pathophysiology and Organ Transplant, University of Milan, Milan, Italy
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Tabano
- Department of Pathophysiology and Organ Transplant, University of Milan, Milan, Italy
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Daga
- Department of Hematology-Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria San Martino- Istituto Scientifico Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Daniela Marubbi
- Department of Hematology-Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria San Martino- Istituto Scientifico Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Monica Cattaneo
- Science and Technology Park, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Ida Biunno
- Institute of Genetics and Biomedical Research-National Research Council, Milan, Italy
| | - Leda Dalprà
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
- Department of Surgical Pathology, S. Gerardo Hospital, Monza, Italy
- * E-mail:
| |
Collapse
|
41
|
Prabowo AS, Iyer AM, Anink JJ, Spliet WGM, van Rijen PC, Aronica E. Differential expression of major histocompatibility complex class I in developmental glioneuronal lesions. J Neuroinflammation 2013; 10:12. [PMID: 23347564 PMCID: PMC3565983 DOI: 10.1186/1742-2094-10-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/10/2013] [Indexed: 11/21/2022] Open
Abstract
Purpose The expression of the major histocompatibility complex class I (MHC-I) in the brain has received considerable interest not only because of its fundamental role in the immune system, but also for its non-immune functions in the context of activity-dependent brain development and plasticity. Methods In the present study we evaluated the expression and cellular pattern of MHC-I in focal glioneuronal lesions associated with intractable epilepsy. MHC-I expression was studied in epilepsy surgery cases with focal cortical dysplasia (FCD I, n = 6; FCD IIa, n = 6 and FCD IIb, n = 15), tuberous sclerosis complex (TSC, cortical tubers; n = 6) or ganglioglioma (GG; n = 15) using immunocytochemistry. Evaluation of T lymphocytes with granzyme-B+ granules and albumin immunoreactivity was also performed. Results All lesions were characterized by MHC-I expression in blood vessels. Expression in both endothelial and microglial cells as well as in neurons (dysmorphic/dysplastic neurons) was observed in FCD II, TSC and GG cases. We observed perivascular and parenchymal T lymphocytes (CD8+, T-cytotoxic) with granzyme-B+ granules in FCD IIb and TSC specimens. Albumin extravasation, with uptake in astrocytes, was observed in FCD IIb and GG cases. Conclusions Our findings indicate a prominent upregulation of MHC-I as part of the immune response occurring in epileptogenic glioneuronal lesions. In particular, the induction of MHC-I in neuronal cells appears to be a feature of type II FCD, TSC and GG and may represent an important accompanying event of the immune response, associated with blood–brain barrier dysfunction, in these developmental lesions.
Collapse
Affiliation(s)
- Avanita S Prabowo
- Department of Neuro Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Redaelli S, Bentivegna A, Foudah D, Miloso M, Redondo J, Riva G, Baronchelli S, Dalprà L, Tredici G. From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2012; 3:47. [PMID: 23168092 PMCID: PMC3580477 DOI: 10.1186/scrt138] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 11/02/2012] [Indexed: 01/01/2023] Open
Abstract
Introduction Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent cells that can differentiate into different cell lineages and have emerged as a promising tool for cell-targeted therapies and tissue engineering. Their use in a therapeutic context requires large-scale in vitro expansion, increasing the probability of genetic and epigenetic instabilities. Some evidence shows that an organized program of replicative senescence is triggered in human BM-MSCs (hBM-MSCs) on prolonged in vitro expansion that includes alterations in phenotype, differentiation potential, telomere length, proliferation rates, global gene-expression patterns, and DNA methylation profiles. Methods In this study, we monitored the chromosomal status, the biologic behavior, and the senescence state of hBM-MSCs derived from eight healthy donors at different passages during in vitro propagation. For a more complete picture, the telomere length was also monitored in five of eight donors, whereas the genomic profile was evaluated in three of eight donors by array-comparative genomic hybridization (array-CGH). Finally, an epigenomic profile was delineated and compared between early and late passages, by pooling DNA of hBM-MSCs from four donors. Results Our data indicate that long-term culture severely affects the characteristics of hBM-MSCs. All the observed changes (that is, enlarged morphology, decreased number of cell divisions, random loss of genomic regions, telomere shortening) might be regulated by epigenetic modifications. Gene Ontology analysis revealed that specific biologic processes of hBM-MSCs are affected by variations in DNA methylation from early to late passages. Conclusions Because we revealed a significant decrease in DNA methylation levels in hBM-MSCs during long-term culture, it is very important to unravel how these modifications can influence the biologic features of hBM-MSCs to keep track of this organized program and also to clarify the conflicting observations on hBM-MSC malignant transformation in the literature.
Collapse
|
43
|
Abstract
The lifetime risk of having epileptic seizures is profoundly increased in patients with cancer: about 20% of all patients with systemic cancer may develop brain metastases. These patients and those with primary brain tumours have a lifetime risk of epilepsy of 20-80%. Moreover, exposure to chemotherapy or radiotherapy to the brain, cancer-related metabolic disturbances, stroke, and infection can provoke seizures. The management of epilepsy in patients with cancer includes diagnosis and treatment of the underlying cerebral pathological changes, secondary prophylaxis with antiepileptic drugs, and limiting of the effect of epilepsy and its treatment on the efficacy and tolerability of anticancer treatments, cognitive function, and quality of life. Because of the concern of drug-drug interactions, the pharmacological approach to epilepsy requires a multidisciplinary approach, specifically in a setting of rapidly increasing choices of agents both to treat cancer and cancer-associated epilepsy.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
44
|
Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WGM, van Rijen PC, Gorter JA, Aronica E. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 2012; 7:e44789. [PMID: 23028621 PMCID: PMC3441440 DOI: 10.1371/journal.pone.0044789] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence supports the involvement of microRNAs (miRNA) in the regulation of inflammation in human neurological disorders. In the present study we investigated the role of miR-146a, a key regulator of the innate immune response, in the modulation of astrocyte-mediated inflammation. Using Taqman PCR and in situ hybridization, we studied the expression of miR-146a in epilepsy-associated glioneuronal lesions which are characterized by prominent activation of the innate immune response. In addition, cultured human astrocytes were used to study the regulation of miR-146a expression in response to proinflammatory cytokines. qPCR and western blot were used to evaluate the effects of overexpression or knockdown of miR-146a on IL-1β signaling. Downstream signaling in the IL-1β pathway, as well as the expression of IL-6 and COX-2 were evaluated by western blot and ELISA. Release several cytokines was evaluated using a human magnetic multiplex cytokine assay on a Luminex® 100™/200™ platform. Increased expression of miR-146a was observed in glioneuronal lesions by Taqman PCR. MiR-146a expression in human glial cell cultures was strongly induced by IL-1β and blocked by IL-1β receptor antagonist. Modulation of miR-146a expression by transfection of astrocytes with anti-miR146a or mimic, regulated the mRNA expression levels of downstream targets of miR-146a (IRAK-1, IRAK-2 and TRAF-6) and the expression of IRAK-1 protein. In addition, the expression of IL-6 and COX-2 upon IL-1β stimulation was suppressed by increased levels of miR-146a and increased by the reduction of miR-146a. Modulation of miR-146a expression affected also the release of several cytokines such as IL-6 and TNF-α. Our observations indicate that in response to inflammatory cues, miR-146a was induced as a negative-feedback regulator of the astrocyte-mediated inflammatory response. This supports an important role of miR-146a in human neurological disorders associated with chronic inflammation and suggests that this miR may represent a novel target for therapeutic strategies.
Collapse
Affiliation(s)
- Anand Iyer
- Department of Neuro-Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The term long-term epilepsy associated tumor (LEAT) encompasses lesions identified in patients investigated for long histories (often 2 years or more) of drug-resistant epilepsy. They are generally slowly growing, low grade, cortically based tumors, more often arising in younger age groups and in many cases exhibit neuronal in addition to glial differentiation. Gangliogliomas and dysembryoplastic neuroepithelial tumors predominate in this group. LEATs are further united by cyto-architectural changes that may be present in the adjacent cortex which have some similarities to developmental focal cortical dysplasias (FCD); these are now grouped as FCD type IIIb in the updated International League Against Epilepsy (ILAE) classification. In the majority of cases, surgical treatments are beneficial from both perspectives of managing the seizures and the tumor. However, in a minority, seizures may recur, tumors may show regrowth or recurrence, and rarely undergo anaplastic progression. Predicting and identifying tumors likely to behave less favorably are key objectives of the neuropathologist. With immunohistochemistry and modern molecular pathology, it is becoming increasingly possible to refine diagnostic groups. Despite this, some LEATs remain difficult to classify, particularly tumors with "non-specific" or diffuse growth patterns. Modification of LEAT classification is inevitable with the goal of unifying terminological criteria applied between centers for accurate clinico-pathological-molecular correlative data to emerge. Finally, establishing the epileptogenic components of LEAT, either within the lesion or perilesional cortex, will elucidate the cellular mechanisms of epileptogenesis, which in turn will guide optimal surgical management of these lesions.
Collapse
Affiliation(s)
- Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL, Institute of Neurology, Queen Square, London, UK.
| | | | | |
Collapse
|
46
|
Smits A, Duffau H. Seizures and the natural history of World Health Organization Grade II gliomas: a review. Neurosurgery 2012; 68:1326-33. [PMID: 21307795 DOI: 10.1227/neu.0b013e31820c3419] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The majority of adults with low-grade gliomas have seizures. Despite the frequency of seizures as initial symptoms and symptoms of later disease, seizures in relation to the natural course of low-grade gliomas have received little attention. METHODS In this review, we provide an update of the literature on the prognostic impact of preoperative seizures and discuss the tumor- and treatment-related factors affecting seizure control at later stages of the disease. RESULTS Seizures occur most frequently at disease presentation and predict a more favorable outcome. Initial seizures are correlated with tumor location and possibly indirectly to the molecular profile of the tumor. About 50% of all patients with seizures at presentation continue to have seizures before surgery. Maximal tumor resection, including resection of epileptic foci, is a valuable strategy for improving seizure control. In addition, radiotherapy and chemotherapy, as single therapies or in combination with surgery, have shown beneficial effects in terms of seizure reduction. Recurrent seizures after macroscopically complete tumor resection may be a marker for accelerated tumor growth. Recurrent seizures after an initial transient stabilization after radiotherapy and/or chemotherapy may be a marker for anaplastic tumor transformation. CONCLUSION Preoperative seizures likely reflect, apart from tumor location, intrinsic tumor properties as well. Change in seizure control in individual patients is frequently associated with altered tumor behavior. Including seizures and seizure control as clinical parameters is recommended in future trials of low-grade gliomas to further establish the prognostic value of these symptoms and to identify the factors affecting seizure control.
Collapse
Affiliation(s)
- Anja Smits
- Department of Neuroscience and Neurology, Uppsala University, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
47
|
Kato H, Matsuda K, Baba K, Shimosegawa E, Isohashi K, Imaizumi M, Hatazawa J. MR imaging-based correction for partial volume effect improves detectability of intractable epileptogenic foci on iodine 123 iomazenil brain SPECT images: an extended study with a larger sample size. AJNR Am J Neuroradiol 2012; 33:2088-94. [PMID: 22627794 DOI: 10.3174/ajnr.a3121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE It has been suggested, on the basis of a previous pilot study conducted in a small number of patients, that MR imaging-based PVE correction in I-123 iomazenil brain SPECT improves the detectability of cortical epileptogenic foci. In the present study, we performed an investigation by using a larger sample size to establish the effectiveness of the PVE correction and to conduct a detailed evaluation based on the histologic classification of lesions. MATERIALS AND METHODS Seventy-five patients (male/female, 37/38; age, 28 ± 12 years) with intractable epilepsy who had undergone surgical treatment were enrolled in this study. I-123 iomazenil SPECT and MR imaging examinations were performed before the operation in all patients. I-123 iomazenil SPECT images with and without MR imaging-based PVE correction were assessed visually and by semiquantitative analysis based on the AI(%) of the SPECT count in the resected lesions. RESULTS The sensitivity, specificity, and accuracy of foci detection by visual assessment were significantly higher after PVE correction compared with the values obtained before the correction. The results of the semiquantitative analysis revealed that the asymmetry of the SPECT counts was significantly increased after the PVE correction in the surgically resected lesions in cases of mesial temporal sclerosis, tumor, and malformations of cortical development. CONCLUSIONS The effectiveness of MR imaging-based PVE correction in I-123 iomazenil brain SPECT in improving the detection of cortical epileptogenic foci with abnormal histologic findings was established by our investigation conducted on a large sample size.
Collapse
Affiliation(s)
- H Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune responses in epilepsy. Glia 2012; 60:1258-68. [PMID: 22331574 DOI: 10.1002/glia.22312] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/27/2012] [Indexed: 12/25/2022]
Abstract
Astrocytes, the major glial cell type of the central nervous system (CNS), are known to play a major role in the regulation of the immune/inflammatory response in several human CNS diseases. In epilepsy-associated pathologies, the presence of astrogliosis has stimulated extensive research focused on the role of reactive astrocytes in the pathophysiological processes that underlie the development of epilepsy. In brain tissue from patients with epilepsy, astrocytes undergo significant changes in their physiological properties, including the activation of inflammatory pathways. Accumulating experimental evidence suggests that proinflammatory molecules can alter glio-neuronal communications contributing to the generation of seizures and seizure-related neuronal damage. In particular, both in vitro and in vivo data point to the role of astrocytes as both major source and target of epileptogenic inflammatory signaling. In this context, understanding the astroglial inflammatory response occurring in epileptic brain tissue may provide new strategies for targeting astrocyte-mediated epileptogenesis. This article reviews current evidence regarding the role of astrocytes in the regulation of the innate immune responses in epilepsy. Both clinical observations in drug-resistant human epilepsies and experimental findings in clinically relevant models will be discussed and elaborated, highlighting specific inflammatory pathways (such as interleukin-1β/toll-like receptor 4) that could be potential targets for antiepileptic, disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academisch Medisch Centrum, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
50
|
Lukasiuk K, Pitkänen A. Molecular basis of acquired epileptogenesis. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:3-12. [DOI: 10.1016/b978-0-444-52898-8.00001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|