1
|
McKenna MC. A tribute to John Edmond: His leadership role in founding the International Conference on Brain Energy Metabolism (ICBEM) meetings and key contributions to substrate metabolism in brain cells. J Neurochem 2024; 168:450-454. [PMID: 37697696 DOI: 10.1111/jnc.15951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
This is a tribute to John Edmond, professor emeritus of biological chemistry in the David Geffen School of Medicine at UCLA, a renowned neurochemist who had a leadership role in founding the ICBEM meeting series in 1993. John was known for his very warm and engaging personality and his innovative approaches to studying the developing brain and auditory system. He was a brilliant scientist and a fun and delightful person. Without John Edmond's enthusiasm and contributions, we would not have the biennial ICBEM meetings which as noted by Dienel et al. "have had a high impact on conceptual and experimental advances" … "in the energetics and metabolism underlying neural functions"… and "on promoting collaborative interactions among neuroscientists." Sadly, John Edmond passed away on February 18, 2022, following a cerebral hemorrhage. He will be greatly missed by his colleagues and friends.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Nelson L, Johns JD, Gu S, Hoa M. Utilizing Single Cell RNA-Sequencing to Implicate Cell Types and Therapeutic Targets for SSNHL in the Adult Cochlea. Otol Neurotol 2021; 42:e1410-e1421. [PMID: 34510123 PMCID: PMC8595752 DOI: 10.1097/mao.0000000000003356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify genes implicated in sudden sensorineural hearing loss (SSNHL) and localize their expression in the cochlea to further explore potential pathogenic mechanisms and therapeutic targets. STUDY DESIGN Systematic literature review and bioinformatics analysis. DATA SOURCES The following sources were searched from inception through July 2, 2020: PubMed-NCBI, MEDLINE, Embase, CINAHL, Cochrane Library, ClinicalTrials.gov, OpenGrey, GreyNet, GreyLiterature Report, and European Union Clinical Trials Registry. PubMed-NCBI and MEDLINE were additionally searched for human temporal bone histopathologic studies related to SSNHL. METHODS Literature review of candidate SSNHL genes was conducted according to PRISMA guidelines. Existing temporal bone studies from SSNHL patients were analyzed to identify the most commonly affected inner ear structures. Previously published single-cell and single-nucleus RNA-Seq datasets of the adult mouse stria vascularis, as well as postnatal day 7 and 15 mouse cochlear hair cells and supporting cells, were utilized for localization of the SSNHL-related genes curated through literature review. CONCLUSIONS We report 92 unique single nucleotide polymorphisms (SNPs) in 76 different genes that have been investigated in relation to SSNHL in the literature. We demonstrate that a subset of these genes are expressed by cell types in the adult mouse stria vascularis and organ of Corti, consistent with findings from temporal bone studies in human subjects with SSNHL. We highlight several potential genetic targets relevant to current and possible future SSNHL treatments.
Collapse
Affiliation(s)
- Lacey Nelson
- Georgetown University School of Medicine, Washington, D.C
| | - J. Dixon Johns
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Michael Hoa
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| |
Collapse
|
3
|
Yu S, Lee E, Tsogbadrakh B, Son GI, Kim M. Prenatal hyperbaric normoxia treatment improves healthspan and regulates chitin metabolic genes in Drosophila melanogaster. Aging (Albany NY) 2017; 8:2538-2550. [PMID: 27777382 PMCID: PMC5115905 DOI: 10.18632/aging.101084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022]
Abstract
Aging is a universal, irreversible process accompanied by physiological declines that culminate in death. Rapid progress in gerontology research has revealed that aging can be slowed through mild stress-induced hormesis. We previously reported that hyperbaric normoxia (HN, 2 atm absolute pressure with 10% O2) induces a cytoprotective response in vitro by regulating fibronectin. In the present study, we investigated the hormetic effects of prenatal HN exposure on Drosophila healthspan related to molecular defense mechanisms. HN exposure had no disruptive effect on developmental rate or adult body weight. However, lifespan was clearly enhanced, as was resistance to oxidative and heat stress. In addition, levels of reactive oxygen species were significantly decreased and motor performance was increased. HN stress has been shown to trigger molecular changes in the heat shock response and ROS scavenging system, including hsp70, catalase, glutathione synthase, and MnSOD. Furthermore, to determine the hormetic mechanism underlying these phenotypic and molecular changes, we performed a genome-wide profiling in HN-exposed and control flies. Genes encoding chitin metabolism were highly up-regulated, which could possibly serve to scavenge free radicals. These results identify prenatal HN exposure as a potential hormetic factor that may improve longevity and healthspan by enhancing defense mechanisms in Drosophila.
Collapse
Affiliation(s)
- Suyeun Yu
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 136-701, Republic of Korea
| | - Eunil Lee
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 136-701, Republic of Korea
| | - Bodokhsuren Tsogbadrakh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 151-742, Republic of Korea
| | - Gwang-Ic Son
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 136-701, Republic of Korea
| | - Mari Kim
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 136-701, Republic of Korea
| |
Collapse
|
4
|
Muscarinic Acetylcholine Receptors and M-Currents Underlie Efferent-Mediated Slow Excitation in Calyx-Bearing Vestibular Afferents. J Neurosci 2017; 37:1873-1887. [PMID: 28093476 DOI: 10.1523/jneurosci.2322-16.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/21/2022] Open
Abstract
Stimulation of vestibular efferent neurons excites calyx and dimorphic (CD) afferents. This excitation consists of fast and slow components that differ >100-fold in activation kinetics and response duration. In the turtle, efferent-mediated fast excitation arises in CD afferents when the predominant efferent neurotransmitter acetylcholine (ACh) activates calyceal nicotinic ACh receptors (nAChRs); however, it is unclear whether the accompanying efferent-mediated slow excitation is also attributed to cholinergic mechanisms. To identify synaptic processes underlying efferent-mediated slow excitation, we recorded from CD afferents innervating the turtle posterior crista during electrical stimulation of efferent neurons, in combination with pharmacological probes and mechanical stimulation. Efferent-mediated slow excitation was unaffected by nAChR compounds that block efferent-mediated fast excitation, but were mimicked by muscarine and antagonized by atropine, indicating that it requires ACh and muscarinic ACh receptor (mAChR) activation. Efferent-mediated slow excitation or muscarine application enhanced the sensitivity of CD afferents to mechanical stimulation, suggesting that mAChR activation increases afferent input impedance by closing calyceal potassium channels. These observations were consistent with suppression of a muscarinic-sensitive K+-current, or M-current. Immunohistochemistry for putative M-current candidates suggested that turtle CD afferents express KCNQ3, KCNQ4, and ERG1-3 potassium channel subunits. KCNQ channels were favored as application of the selective antagonist XE991 mimicked and occluded efferent-mediated slow excitation in CD afferents. These data highlight an efferent-mediated mechanism for enhancing afferent sensitivity. They further suggest that the clinical effectiveness of mAChR antagonists in treating balance disorders may also target synaptic mechanisms in the vestibular periphery, and that KCNQ channel modulators might offer similar therapeutic value.SIGNIFICANCE STATEMENT Targeting the efferent vestibular system (EVS) pharmacologically might prove useful in ameliorating some forms of vestibular dysfunction by modifying ongoing primary vestibular input. EVS activation engages several kinetically distinct synaptic processes that profoundly alter the discharge rate and sensitivity of first-order vestibular neurons. Efferent-mediated slow excitation of vestibular afferents is of considerable interest given its ability to elevate afferent activity over an extended time course. We demonstrate for the first time that efferent-mediated slow excitation of vestibular afferents is mediated by muscarinic acetylcholine receptor (mAChR) activation and the subsequent closure of KCNQ potassium channels. The clinical effectiveness of some anti-mAChR drugs in treating motion sickness suggest that we may, in fact, already be targeting the peripheral EVS.
Collapse
|
5
|
Targeting nitrative stress for attenuating cisplatin-induced downregulation of cochlear LIM domain only 4 and ototoxicity. Redox Biol 2016; 10:257-265. [PMID: 27821327 PMCID: PMC5099269 DOI: 10.1016/j.redox.2016.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 01/17/2023] Open
Abstract
Cisplatin-induced ototoxicity remains a primary dose-limiting adverse effect of this highly effective anticancer drug. The clinical utility of cisplatin could be enhanced if the signaling pathways that regulate the toxic side-effects are delineated. In previous studies, we reported cisplatin-induced nitration of cochlear proteins and provided the first evidence for nitration and downregulation of cochlear LIM domain only 4 (LMO4) in cisplatin ototoxicity. Here, we extend these findings to define the critical role of nitrative stress in cisplatin-induced downregulation of LMO4 and its consequent ototoxic effects in UBOC1 cell cultures derived from sensory epithelial cells of the inner ear and in CBA/J mice. Cisplatin treatment increased the levels of nitrotyrosine and active caspase 3 in UBOC1 cells, which was detected by immunocytochemical and flow cytometry analysis, respectively. The cisplatin-induced nitrative stress and apoptosis were attenuated by co-treatment with SRI110, a peroxynitrite decomposition catalyst (PNDC), which also attenuated the cisplatin-induced downregulation of LMO4 in a dose-dependent manner. Furthermore, transient overexpression of LMO4 in UBOC1 cells prevented cisplatin-induced cytotoxicity while repression of LMO4 exacerbated cisplatin-induced cell death, indicating a direct link between LMO4 protein levels and cisplatin ototoxicity. Finally, auditory brainstem responses (ABR) recorded from CBA/J mice indicated that co-treatment with SRI110 mitigated cisplatin-induced hearing loss. Together, these results suggest that cisplatin-induced nitrative stress leads to a decrease in the levels of LMO4, downregulation of LMO4 is a critical determinant in cisplatin-induced ototoxicity, and targeting peroxynitrite could be a promising strategy for mitigating cisplatin-induced hearing loss. Cisplatin-induced nitrative stress leads to a decrease in the levels of LMO4. Downregulation of LMO4 is a critical factor in cisplatin-induced ototoxicity. SRI110 appears to be a promising candidate for preventing cisplatin ototoxicity.
Collapse
|
6
|
Lopez IA, Acuna D, Edmond J. Modulatory Effects of Mild Carbon Monoxide Exposure in the Developing Mouse Cochlea. Neurochem Res 2016; 42:151-165. [PMID: 26993631 DOI: 10.1007/s11064-016-1882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
Carbon monoxide (CO) is well known as a highly toxic poison at high concentrations, yet in physiologic amounts it is an endogenous biological messenger in organs such as the internal ear and brain. In this study we tested the hypothesis that chronic very mild CO exposure at concentrations 25-ppm increases the expression of oxidative stress protecting enzymes within the cellular milieu of the developing inner ear (cochlea) of the normal CD-1 mouse. In addition we tested also the hypothesis that CO can decrease the pre-existing condition of oxidative stress in the mouse model for the human medical condition systemic lupus erythematosus by increasing two protective enzymes heme-oxygenase-1 (HO-1), and superoxide dismutase-2 (SOD-2). CD-1 and MRL/lpr mice were exposed to mild CO concentrations (25 ppm in air) from prenatal only and prenatal followed by early postnatal day 5 to postnatal day 20. The expression of cell markers specific for oxidative stress, and related neural/endothelial markers were investigated at the level of the gene products by immunohistochemistry, proteomics and mRNA expression (quantitative real time-PCR). We found that in the CD-1 and MRL/lpr mouse cochlea SOD-2 and HO-1 were upregulated. In this mouse model of autoimmune disease defense mechanism are attenuated, thus mild CO exposure is beneficial. Several genes (mRNA) and proteins detected by proteomics involved in cellular protection were upregulated in the CO exposed CD-1 mouse and the MRL/lpr mouse.
Collapse
Affiliation(s)
- Ivan A Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 35-64 Rehabilitation Center, 1000 Veteran Avenue, Los Angeles, CA, 90095, USA.
| | - Dora Acuna
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 35-64 Rehabilitation Center, 1000 Veteran Avenue, Los Angeles, CA, 90095, USA
| | - John Edmond
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 951737, 310 BSRB, 615 Charles E Young Drive South, Los Angeles, CA, 90095-1737, USA
| |
Collapse
|
7
|
Jordan PM, Fettis M, Holt JC. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse. J Comp Neurol 2015; 523:1258-80. [PMID: 25560461 DOI: 10.1002/cne.23738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 11/07/2022]
Abstract
In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed.
Collapse
Affiliation(s)
- Paivi M Jordan
- Department of Otolaryngology, University of Rochester, Rochester, New York
| | | | | |
Collapse
|
8
|
Woo JI, Kil SH, Oh S, Lee YJ, Park R, Lim DJ, Moon SK. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3953-61. [PMID: 25780042 DOI: 10.4049/jimmunol.1402751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
Cochlear inflammatory diseases, such as tympanogenic labyrinthitis, are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aimed to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on IL-10 and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10Rs are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line was found to inhibit nontypeable Haemophilus influenzae (NTHi)-induced upregulation of monocyte chemotactic protein-1 (MCP-1; CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt Protoporphyrin IX and CO-releasing molecule-2. In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced rat SLF cell line-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 upregulation. Chromatin immunoprecipitation assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying a therapeutic potential for a CO-based approach for inflammation-associated cochlear diseases.
Collapse
Affiliation(s)
- Jeong-Im Woo
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sejo Oh
- Division of Clinical and Translational Research, House Research Institute, Los Angeles, CA 90057; and
| | - Yoo-Jin Lee
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Raekil Park
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, South Korea
| | - David J Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095;
| |
Collapse
|
9
|
Baker TG, Roy S, Brandon CS, Kramarenko IK, Francis SP, Taleb M, Marshall KM, Schwendener R, Lee FS, Cunningham LL. Heat shock protein-mediated protection against Cisplatin-induced hair cell death. J Assoc Res Otolaryngol 2014; 16:67-80. [PMID: 25261194 DOI: 10.1007/s10162-014-0491-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/16/2014] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a highly successful and widely used chemotherapy for the treatment of various solid malignancies in both adult and pediatric patients. Side effects of cisplatin treatment include nephrotoxicity and ototoxicity. Cisplatin ototoxicity results from damage to and death of cells in the inner ear, including sensory hair cells. We showed previously that heat shock inhibits cisplatin-induced hair cell death in whole-organ cultures of utricles from adult mice. Since heat shock protein 70 (HSP70) is the most upregulated HSP in response to heat shock, we investigated the role of HSP70 as a potential protectant against cisplatin-induced hair cell death. Our data using utricles from HSP70 (-/-) mice indicate that HSP70 is necessary for the protective effect of heat shock against cisplatin-induced hair cell death. In addition, constitutive expression of inducible HSP70 offered modest protection against cisplatin-induced hair cell death. We also examined a second heat-inducible protein, heme oxygenase-1 (HO-1, also called HSP32). HO-1 is an enzyme responsible for the catabolism of free heme. We previously showed that induction of HO-1 using cobalt protoporphyrin IX (CoPPIX) inhibits aminoglycoside-induced hair cell death. Here, we show that HO-1 also offers significant protection against cisplatin-induced hair cell death. HO-1 induction occurred primarily in resident macrophages, with no detectable expression in hair cells or supporting cells. Depletion of macrophages from utricles abolished the protective effect of HO-1 induction. Together, our data indicate that HSP induction protects against cisplatin-induced hair cell death, and they suggest that resident macrophages mediate the protective effect of HO-1 induction.
Collapse
Affiliation(s)
- Tiffany G Baker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC, 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Attenuation of noise-induced hearing loss using methylene blue. Cell Death Dis 2014; 5:e1200. [PMID: 24763057 PMCID: PMC4001318 DOI: 10.1038/cddis.2014.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 01/05/2023]
Abstract
The overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been known to contribute to the pathogenesis of noise-induced hearing loss. In this study, we discovered that in BALB/c mice pretreatment with methylene blue (MB) for 4 consecutive days significantly protected against cochlear injury by intense broad-band noise for 3 h. It decreased both compound threshold shift and permanent threshold shift and, further, reduced outer hair cell death in the cochlea. MB also reduced ROS and RNS formation after noise exposure. Furthermore, it protected against rotenone- and antimycin A-induced cell death and also reversed ATP generation in the in vitro UB-OC1 cell system. Likewise, MB effectively attenuated the noise-induced impairment of complex IV activity in the cochlea. In addition, it increased the neurotrophin-3 (NT-3) level, which could affect the synaptic connections between hair cells and spiral ganglion neurons in the noise-exposed cochlea, and also promoted the conservation of both efferent and afferent nerve terminals on the outer and inner hair cells. These findings suggest that the amelioration of impaired mitochondrial electron transport and the potentiation of NT-3 expression by treatment with MB have a significant therapeutic value in preventing ROS-mediated sensorineural hearing loss.
Collapse
|
11
|
Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen JC, Cory-Slechta DA, Costa D, Diaz-Sanchez D, Dorman DC, Gold DR, Gray K, Jeng HA, Kaufman JD, Kleinman MT, Kirshner A, Lawler C, Miller DS, Nadadur SS, Ritz B, Semmens EO, Tonelli LH, Veronesi B, Wright RO, Wright RJ. The outdoor air pollution and brain health workshop. Neurotoxicology 2012; 33:972-84. [PMID: 22981845 PMCID: PMC3726250 DOI: 10.1016/j.neuro.2012.08.014] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/15/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that outdoor air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists that was assigned the task of identifying research gaps and priority goals essential for advancing this growing field and addressing an emerging human health concern. Here, we review recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel.
Collapse
Affiliation(s)
- Michelle L Block
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mazurek B, Amarjargal N, Haupt H, Fuchs J, Olze H, Machulik A, Gross J. Expression of genes implicated in oxidative stress in the cochlea of newborn rats. Hear Res 2011; 277:54-60. [PMID: 21447374 DOI: 10.1016/j.heares.2011.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an important mechanism inducing ototoxicity-, age- and noise-induced hearing loss. To better understand this phenomenon, we examined cochlear tissues for the expression of following genes involved directly or indirectly in the oxidative stress response: glyceraldehyde-3-phosphate dehydrogenase (Gapdh); solute carrier family-2 (facilitated glucose transporter), member-1 (Slc2a1); heme oxygenase-1 (Hmox1); heme oxygenase-2 (Hmox2); inducible nitric oxide synthase-2 (Nos2); transferrin (Tf); transferrin receptor (Tfrc); glutathione S-transferase A3 (Gsta3) and metallothionein-1a (Mt1a). Cochlear tissues were dissected from the p3-p5 Wistar rats, divided into the organ of Corti (OC), modiolus (MOD) and stria vascularis together with spiral ligament (SV + SL) and processed immediately or cultured under normoxic conditions or a short-term, mild hypoxia followed by re-oxygenation. After 24 h, explants were collected and total RNA isolated, transcribed and amplified in the real time RT-PCR. We found all genes listed above expressed in the freshly isolated cochlear tissues. In the OC and MOD, Slc2a1, Tf, and Mt1a were expressed on a lower level than in the SV + SL. In the OC, Hmox1 was expressed on a lower level than in the MOD and SV + SL. Hypoxic and normoxic cultures increased the transcript number of Gapdh, Slc2a1 and Hmox1 in all cochlear tissues. The expression of Nos2, Tf, Gsta3 and Mt1a increased in a tissue-specific manner. In the SV + SL, Mt1a expression decreased after normoxic and hypoxic conditions. Taken together, using real time RT-PCR, our results imply that oxidative stress may be an important component of cochlear injury during the developing period. In spite of the immaturity of the tissue, a differential response of antioxidant enzymes/proteins with respect to the pathway, the expression levels and regions was observed.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Beltran-Parrazal L, Acuna D, Ngan AM, Kim E, Ngan A, Kawakami K, Edmond J, Lopez IA. Neuroglobin, cytoglobin, and transcriptional profiling of hypoxia-related genes in the rat cerebellum after prenatal chronic very mild carbon monoxide exposure (25 ppm). Brain Res 2010; 1330:61-71. [PMID: 20230802 DOI: 10.1016/j.brainres.2010.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
The expression of neuroglobin (Ngb) and cytoglobin (Cygb), two recently discovered globins with a potential neuroprotective activity against hypoxia and oxidative stress, was investigated in the cerebellum of young rats (postnatal day 20) after being exposed to chronic mild carbon monoxide (CO) at 25 ppm during prenatal (group A), prenatal and postnatal (group B), the postnatal period only (group C), and air (group D). The expression of genes associated with hypoxia signaling pathways was also investigated in the rat cerebella by real-time RT-PCR after CO exposure. Ngb and Cygb mRNAs did not change in any CO-exposed group. Quantitative immunohistochemistry showed no significant change in Ngb protein; however, there was a significant increase of Cygb protein in rats from groups A, B, and C when compared with group D. In group B, genes related to the generation of reactive oxygen species (Nos2) and lipid metabolism (Apat2) were upregulated. In contrast, no changes were found in the expression of 8 genes typically upregulated by hypoxic conditions (Angptl4, Arnt2, Casp1, Crebbp, Hif1a, Hif3a, Mt3, or Vegfa) in any CO-exposed group, suggesting that hypoxia-related gene expression is not altered by this mild CO exposure. Cygb but not Ngb may protect cerebellar cells from the chronic presence of CO exposure during prenatal and postnatal development.
Collapse
Affiliation(s)
- Luis Beltran-Parrazal
- Department of Surgery, Division of Head & Neck, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Neuroglobin expression in the cochlea of rat pups exposed to chronic very mild carbon monoxide (25ppm) in air during and after the prenatal period. Brain Res 2010; 1327:56-68. [PMID: 20211612 DOI: 10.1016/j.brainres.2010.02.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 02/26/2010] [Accepted: 02/26/2010] [Indexed: 02/03/2023]
Abstract
The distribution of neuroglobin (Ngb) was investigated in the normal rat cochlea using immunohistochemistry and non-radioactive insitu hybridization. We also determined whether chronic, very mild CO exposure at 25ppm in air over the gestational and postnatal period alters the expression of Ngb. Pregnant rats were exposed chronically to CO from gestational days 5-20. Four groups were made as follows: prenatal exposure to CO only; prenatal exposure to CO followed by postnatal exposure from postnatal days (5) P5 to P20; rat pups were exposed to CO from P5 to P20; controls (air without CO). In normal adult rats and control group pups, Ngb was found in spiral ganglia neurons, fibrocytes of the spiral ligament, and supporting cells of the organ of Corti. Ngb was not present in the stria vascularis and the inner and outer hair cells. At P20 Ngb immunoreactivity and transcript expression decreased in spiral ganglia neurons and the spiral ligament in the prenatal and pre- and postnatal groups. This decrease was not observed in the postnatal group. Ngb-IR did not decrease in supporting cells in any CO group. Cytochrome-C immunoreactivity followed Ngb distribution in normal controls and CO treated groups. A decrease in Ngb in spiral ganglia neurons and rat spiral ligament, but not in supporting cells, following CO exposure supports the idea that chronic, mild exposure to CO may create a vulnerable cellular environment predisposed to adverse cochlear development.
Collapse
|
15
|
Lopez IA, Acuna D, Beltran-Parrazal L, Lopez IE, Amarnani A, Cortes M, Edmond J. Evidence for oxidative stress in the developing cerebellum of the rat after chronic mild carbon monoxide exposure (0.0025% in air). BMC Neurosci 2009; 10:53. [PMID: 19580685 PMCID: PMC2700113 DOI: 10.1186/1471-2202-10-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 05/27/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The present study was designed to test the hypothesis that chronic very mild prenatal carbon monoxide (CO) exposure (25 parts per million) subverts the normal development of the rat cerebellar cortex. Studies at this chronic low CO exposure over the earliest periods of mammalian development have not been performed to date. Pregnant rats were exposed chronically to CO from gestational day E5 to E20. In the postnatal period, rat pups were grouped as follows: Group A: prenatal exposure to CO only; group B: prenatal exposure to CO then exposed to CO from postnatal day 5 (P5) to P20; group C: postnatal exposure only, from P5 to P20, and group D, controls (air without CO). At P20, immunocytochemical analyses of oxidative stress markers, and structural and functional proteins were assessed in the cerebellar cortex of the four groups. Quantitative real time PCR assays were performed for inducible (iNOS), neuronal (nNOS), and endothelial (eNOS) nitric oxide synthases. RESULTS Superoxide dismutase-1 (SOD1), SOD2, and hemeoxygenase-1 (HO-1) immunoreactivity increased in cells of the cerebellar cortex of CO-exposed pups. INOS and nitrotyrosine immunoreactivity also increased in blood vessels and Purkinje cells (PCs) of pups from group-A, B and C. By contrast, nNOS immunoreactivity decreased in PCs from group-B. Endothelial NOS immunoreactivity showed no changes in any CO-exposed group. The mRNA levels for iNOS were significantly up-regulated in the cerebellum of rats from group B; however, mRNA levels for nNOS and eNOS remained relatively unchanged in groups A, B and C. Ferritin-H immunoreactivity increased in group-B. Immunocytochemistry for neurofilaments (structural protein), synapsin-1 (functional protein), and glutamic acid decarboxylase (the enzyme responsible for the synthesis of the inhibitory neurotransmitter GABA), were decreased in groups A and B. Immunoreactivity for two calcium binding proteins, parvalbumin and calbindin, remained unchanged. The immunoreactivity of the astrocytic marker GFAP increased after prenatal exposure. CONCLUSION We conclude that exogenously supplied CO during the prenatal period promotes oxidative stress as indicated by the up-regulation of SOD-1, SOD-2, HO-1, Ferritin-H, and iNOS with increased nitrotyrosine in the rat cerebella suggesting that deleterious and protective mechanisms were activated. These changes correlate with reductions of proteins important to cerebellar function: pre-synaptic terminals proteins (synapsin-1), proteins for the maintenance of neuronal size, shape and axonal quality (neurofilaments) and protein involved in GABAergic neurotransmission (GAD). Increased GFAP immunoreactivity after prenatal CO-exposure suggests a glial mediated response to the constant presence of CO. There were differential responses to prenatal vs. postnatal CO exposure: Prenatal exposure seems to be more damaging; a feature exemplified by the persistence of markers indicating oxidative stress in pups at P20, following prenatal only CO-exposure. The continuation of this cellular environment up to day 20 after CO exposure suggests the condition is chronic. Postnatal exposure without prenatal exposure shows the least impact, whereas prenatal followed by postnatal exposure exhibits the most pronounced outcome among the groups.
Collapse
Affiliation(s)
- Ivan A Lopez
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dora Acuna
- Mental Retardation Research Center, Neuroscience Research Building, Room 260C, 635 Charles E Young Drive South, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7332, USA
| | - Luis Beltran-Parrazal
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ivan E Lopez
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Abhimanyu Amarnani
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Max Cortes
- Department of Surgery (Division of Head and Neck), 31-25 Rehabilitation Center, 1000 Veteran Avenue, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - John Edmond
- Mental Retardation Research Center, Neuroscience Research Building, Room 260C, 635 Charles E Young Drive South, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7332, USA
| |
Collapse
|