1
|
Komaki S, Amiri P, Safari S, Abbasi E, Ramezani-Aliakbari F, Golipoor M, Kourosh-Arami M, Rashno M, Komaki A. Investigation of protective effects of olanzapine on impaired learning and memory using behavioral tests in a rat model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1376074. [PMID: 40018516 PMCID: PMC11865076 DOI: 10.3389/fnagi.2025.1376074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Evidence suggests that oxidative stress plays a critical role in the pathogenesis and progression of Alzheimer's disease (AD). Consequently, antioxidants may mitigate neurotoxicity induced by beta-amyloid (Aβ) and potentially reduce cell death. Previous research has demonstrated that olanzapine (OLZ) possesses antioxidant and neuroprotective properties. In this study, we investigated the protective and therapeutic effects of OLZ on an animal model of AD induced by Aβ using behavioral assessments. Methods Rats were randomly assigned to one of five groups (n = 10 rats per group): a control group, a sham group that received an intracerebrovascular (ICV) injection of phosphate-buffered saline (the solvent for Aβ), an AD group that received an ICV injection of Aβ, an OLZ group that received OLZ via gavage for two months, and an AD + OLZ group that received OLZ for one month before and one month after AD induction. Results We used the Elevated Plus Maze (EPM), Novel Object Recognition Test (NORT), Barnes Maze (BM), Passive Avoidance Test (PAT), and Morris Water Maze (MWM) to assess behavioral performance in the experimental rats. Aβ administration impaired cognition and increased anxiety-like behavior. Treatment with OLZ improved cognitive decline and reduced anxiety-like behavior in Aβ-infused rats. Conclusion Our findings suggest that OLZ can restore cognitive performance and alleviate anxiety-like behavior following Aβ injection. Thus, OLZ may have both preventive and therapeutic potential for AD and could be considered a viable pharmacological option.
Collapse
Affiliation(s)
- Somayeh Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Amiri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samaneh Safari
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mandana Golipoor
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoumeh Kourosh-Arami
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Horvath G, Ducza E, Adlan LG, Büki A, Kekesi G. Distinct Effects of Olanzapine Depot Treatment on Behavior and Muscarinic M1 Receptor Expression in the Triple-Hit Wisket Rat Model of Schizophrenia. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70015. [PMID: 39844699 PMCID: PMC11754962 DOI: 10.1111/gbb.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to characterize the triple-hit schizophrenia-like model rats (Wisket) by the assessment of (1) behavioral parameters in different test conditions (reward-based Ambitus test and HomeManner system) for a prolonged period, (2) cerebral muscarinic M1 receptor (M1R) expression, and (3) the effects of olanzapine treatment on these parameters. Wistar (control) and Wisket rats were injected for three consecutive weeks with olanzapine depot (100 mg/kg) and spent 4 weeks in large cages with environmental enrichment (HomeManner). The vehicle-treated Wisket rats spent longer time awake with decreased grooming activity compared to controls, without changes in their active social behavior (sniffing, playing, fighting) obtained in HomeManner. Olanzapine treatment decreased most of these parameters, only the passive social interaction (huddling during sleeping) enhanced mostly in the Wisket rats on the injection day, which recovered within 4 days. In the Ambitus test, vehicle-treated Wisket rats showed lower locomotor and exploratory activities and impaired cognition compared to control rats, deteriorating by olanzapine in both groups. In Wisket brain samples, the M1R mRNA expression was significantly lower in the cerebral cortex and elevated in the hippocampus, with no difference in the prefrontal cortex versus control. Olanzapine normalized the hippocampal M1R expression, but enhanced it in the prefrontal cortex. The triple-hit Wisket model rats had impaired behavioral characteristics in both acute reward-based test and undisturbed circumstances investigated for prolonged periods, and altered cerebral M1R expression. Chronic olanzapine treatment resulted deterioration of some parameters in control group, and could restore only few negative signs in model rats.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of PharmacyUniversity of SzegedSzegedHungary
| | | | - Alexandra Büki
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| | - Gabriella Kekesi
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| |
Collapse
|
3
|
Ferreira V, Folgueira C, García-Altares M, Guillén M, Ruíz-Rosario M, DiNunzio G, Garcia-Martinez I, Alen R, Bookmeyer C, Jones JG, Cigudosa JC, López-Larrubia P, Correig-Blanchar X, Davis RJ, Sabio G, Rada P, Valverde ÁM. Hypothalamic JNK1-hepatic fatty acid synthase axis mediates a metabolic rewiring that prevents hepatic steatosis in male mice treated with olanzapine via intraperitoneal: Additional effects of PTP1B inhibition. Redox Biol 2023; 63:102741. [PMID: 37230004 DOI: 10.1016/j.redox.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Olanzapine (OLA), a widely used second-generation antipsychotic (SGA), causes weight gain and metabolic alterations when administered orally to patients. Recently, we demonstrated that, contrarily to the oral treatment which induces weight gain, OLA administered via intraperitoneal (i.p.) in male mice resulted in body weight loss. This protection was due to an increase in energy expenditure (EE) through a mechanism involving the modulation of hypothalamic AMPK activation by higher OLA levels reaching this brain region compared to those of the oral treatment. Since clinical studies have shown hepatic steatosis upon chronic treatment with OLA, herein we further investigated the role of the hypothalamus-liver interactome upon OLA administration in wild-type (WT) and protein tyrosine phosphatase 1B knockout (PTP1B-KO) mice, a preclinical model protected against metabolic syndrome. WT and PTP1B-KO male mice were fed an OLA-supplemented diet or treated via i.p. Mechanistically, we found that OLA i.p. treatment induces mild oxidative stress and inflammation in the hypothalamus in a JNK1-independent and dependent manner, respectively, without features of cell dead. Hypothalamic JNK activation up-regulated lipogenic gene expression in the liver though the vagus nerve. This effect concurred with an unexpected metabolic rewiring in the liver in which ATP depletion resulted in increased AMPK/ACC phosphorylation. This starvation-like signature prevented steatosis. By contrast, intrahepatic lipid accumulation was observed in WT mice treated orally with OLA; this effect being absent in PTP1B-KO mice. We also demonstrated an additional benefit of PTP1B inhibition against hypothalamic JNK activation, oxidative stress and inflammation induced by chronic OLA i.p. treatment, thereby preventing hepatic lipogenesis. The protection conferred by PTP1B deficiency against hepatic steatosis in the oral OLA treatment or against oxidative stress and neuroinflammation in the i.p. treatment strongly suggests that targeting PTP1B might be also a therapeutic strategy to prevent metabolic comorbidities in patients under OLA treatment in a personalized manner.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - María García-Altares
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Giada DiNunzio
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Christoph Bookmeyer
- Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - John G Jones
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | | | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Xavier Correig-Blanchar
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain; Institut D'Investigacio Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Roger J Davis
- Program in Molecular Medicine, Chan Medical School, University of Massachusetts, Worcester, USA
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| |
Collapse
|
4
|
Ferreira V, Folgueira C, Guillén M, Zubiaur P, Navares M, Sarsenbayeva A, López-Larrubia P, Eriksson JW, Pereira MJ, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight. Metabolism 2022; 137:155335. [PMID: 36272468 DOI: 10.1016/j.metabol.2022.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| |
Collapse
|
5
|
Parmar S, Tadavarty R, Sastry BR. G-protein coupled receptors and synaptic plasticity in sleep deprivation. World J Psychiatry 2021; 11:954-980. [PMID: 34888167 PMCID: PMC8613756 DOI: 10.5498/wjp.v11.i11.954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/05/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient sleep has been correlated to many physiological and psychoneurological disorders. Over the years, our understanding of the state of sleep has transcended from an inactive period of rest to a more active state involving important cellular and molecular processes. In addition, during sleep, electrophysiological changes also occur in pathways in specific regions of the mammalian central nervous system (CNS). Activity mediated synaptic plasticity in the CNS can lead to long-term and sometimes permanent strengthening and/or weakening synaptic strength affecting neuronal network behaviour. Memory consolidation and learning that take place during sleep cycles, can be affected by changes in synaptic plasticity during sleep disturbances. G-protein coupled receptors (GPCRs), with their versatile structural and functional attributes, can regulate synaptic plasticity in CNS and hence, may be potentially affected in sleep deprived conditions. In this review, we aim to discuss important functional changes that can take place in the CNS during sleep and sleep deprivation and how changes in GPCRs can lead to potential problems with therapeutics with pharmacological interventions.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Ramakrishna Tadavarty
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Bhagavatula R Sastry
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| |
Collapse
|
6
|
Lockington MR, Hughes RN. Effects of olanzapine on anxiety-related behaviour in male and female rats assessed after 21-24 and 42-45 days of chronic treatment. Behav Pharmacol 2021; 32:194-211. [PMID: 33229894 DOI: 10.1097/fbp.0000000000000612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Olanzapine can decrease anxiety and impair memory, but there is limited information about length of treatment or sex differences in its effectiveness. Therefore, effects of 21-24 and 41-45 days of treatment and sex differences on anxiety-related behaviour and spatial memory were assessed in PVG/c (PVG/c is the internationally recognised way of referring to this rat strain) male and female rats. From 70 days after birth (PND70), all rats received no drug or 6, 11 or 15 mg/kg/day olanzapine via drinking water. From PND91, they were given four daily tests in an open field, light-dark box, zero maze and Y maze, and then again 21 days later from PND112. At PND91-94, all olanzapine doses decreased open-field ambulation and walking, and 6 and 15 mg/kg/day decreased rearing, increased immobility while 15 mg/kg/day decreased shuttles in the light/dark box (all suggesting higher anxiety). At PND112-115, 11 mg/kg/day increased open-field ambulation, walking, rearing, centre occupancy and light/dark-box shuttles and light-side entries while decreasing open-field immobility and corner occupancy (all suggesting lower anxiety). There were also several results in the open field and light/dark box suggesting olanzapine decreased anxiety for males but increased it for females. A significant olanzapine-related preference for the novel Y-maze arm either improved spatial memory, or decreased anxiety. Olanzapine thus appeared anxiogenic after 21 days' treatment, becoming anxiolytic after 42 days. This could depend on the sex of the rats (females more responsive to lower doses), and the dose (11 mg/kg/day being most effective). Therefore, while olanzapine was generally anxiolytic, it also had some treatment length- and sex-related anxiogenic effects.
Collapse
Affiliation(s)
- Molly R Lockington
- School of Psychology Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
7
|
Ardıç CM, Ilgın S, Baysal M, Karaduman AB, Kılıç V, Aydoğan-Kılıç G, Uçarcan Ş, Atlı-Eklioğlu Ö. Olanzapine induced reproductive toxicity in male rats. Sci Rep 2021; 11:4739. [PMID: 33637793 PMCID: PMC7910427 DOI: 10.1038/s41598-021-84235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Although it is reported that olanzapine (OLZ), which is an atypical antipsychotic drug, causes sexual dysfunction in men, it is noteworthy that there is not any study evaluating the toxic effects of OLZ on the male reproductive system. In the scope of this research, it was aimed to assess the reproductive toxic effects of OLZ by oral administration of 2.5, 5, or 10 mg/kg of it to male rats for 28 days. For this purpose, sperm concentration, motility and morphology, and DNA damage were determined, and histopathological examination of testis tissue was carried out in rats. Also, the levels of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone, which play roles in the regulation of reproductive functions, and the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA) which play roles in reproductive pathologies as oxidative stress biomarkers, were determined. According to the results, normal sperm morphology was decreased in 5 ve 10 mg/kg OLZ-administered groups, and pathological findings were evident in the testicular structure of the OLZ-administered group when compared with the control group. It was determined that serum LH, FSH, and testosterone levels were decreased in the OLZ-administered group. Also, decreases of GSH levels in testis tissue were determined and evaluated as the markers of the oxidative stress induced by OLZ in the testis. In conclusion, it was determined that reproductive toxic effects were induced in rats by OLZ administration. This pathology was accompanied by alterations of the hormone levels and testicular oxidative stress.
Collapse
Affiliation(s)
- Cankız Mina Ardıç
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - A Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Volkan Kılıç
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskisehir, Turkey
| | - Gözde Aydoğan-Kılıç
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskisehir, Turkey
| | - Şeyda Uçarcan
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskisehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.
| |
Collapse
|
8
|
Poddar I, Callahan PM, Hernandez CM, Pillai A, Yang X, Bartlett MG, Terry AV. Oral quetiapine treatment results in time-dependent alterations of recognition memory and brain-derived neurotrophic factor-related signaling molecules in the hippocampus of rats. Pharmacol Biochem Behav 2020; 197:172999. [PMID: 32702397 DOI: 10.1016/j.pbb.2020.172999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Antipsychotic drugs (APDs) have a variety of important therapeutic applications for neuropsychiatric disorders. However, they are routinely prescribed off-label across all age categories, a controversial practice given their potential for producing metabolic and extrapyramidal side effects. Evidence also suggests that chronic treatment with some APDs may lead to impairments in cognition and decreases in brain volume, although these findings are controversial. The purpose of the studies described here was to evaluate one of the most commonly prescribed APDs, quetiapine, for chronic effects on recognition memory, brain-derived neurotrophic factor (BDNF), its precursor proBDNF, as well as relevant downstream signaling molecules that are known to influence neuronal plasticity and cognition. Multiple cohorts of adult rats were treated with quetiapine (25.0 mg/kg/day) for 30 or 90 days in their drinking water then evaluated for drug effects on motor function in a catalepsy assessment, recognition memory in a spontaneous novel object recognition (NOR) task, and BDNF-related signaling molecules in the post mortem hippocampus via Western Blot. The results indicated that oral quetiapine at a dose that did not induce catalepsy, led to time-dependent impairments in NOR performance, increases in the proBDNF/BDNF ratio, and decreases in Akt and CREB phosphorylation in the hippocampus. These results indicate that chronic treatment with quetiapine has the potential to adversely affect recognition memory and neurotrophin-related signaling molecules that support synaptic plasticity and cognitive function. Given the widespread use this APD across multiple conditions and patient populations, such long-term effects observed in animals should be considered.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
9
|
Poddar I, Callahan PM, Hernandez CM, Pillai A, Yang X, Bartlett MG, Terry AV. Chronic oral treatment with risperidone impairs recognition memory and alters brain-derived neurotrophic factor and related signaling molecules in rats. Pharmacol Biochem Behav 2020; 189:172853. [PMID: 31945381 DOI: 10.1016/j.pbb.2020.172853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 01/09/2023]
Abstract
Antipsychotic drugs (APDs) are essential for the treatment of schizophrenia and other neuropsychiatric illnesses such as bipolar disease. However, they are also extensively prescribed off-label for many other conditions, a practice that is controversial given their potential for long-term side effects. There is clinical and preclinical evidence that chronic treatment with some APDs may lead to impairments in cognition and decreases in brain volume, although the molecular mechanisms of these effects are unknown. The purpose of the rodent studies described here was to evaluate a commonly prescribed APD, risperidone, for chronic effects on recognition memory, brain-derived neurotrophic factor (BDNF), its precursor proBDNF, as well as relevant downstream signaling molecules that are known to influence neuronal plasticity and cognition. Multiple cohorts of adult rats were treated with risperidone (2.5 mg/kg/day) or vehicle (dilute acetic acid solution) in their drinking water for 30 or 90 days. Subjects were then evaluated for drug effects on recognition memory in a spontaneous novel object recognition task and protein levels of BDNF-related signaling molecules in the hippocampus and prefrontal cortex. The results indicated that depending on the treatment period, a therapeutically relevant daily dose of risperidone impaired recognition memory and increased the proBDNF/BDNF ratio in the hippocampus and prefrontal cortex. Risperidone treatment also led to a decrease in Akt and CREB phosphorylation in the prefrontal cortex. These results indicate that chronic treatment with a commonly prescribed APD, risperidone, has the potential to adversely affect recognition memory and neurotrophin-related signaling molecules that support synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, United States of America
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
10
|
Naeem S, Najam R, Khan SS, Mirza T, Sikandar B. Neuroprotective effect of diclofenac on chlorpromazine induced catalepsy in rats. Metab Brain Dis 2019; 34:1191-1199. [PMID: 31055785 DOI: 10.1007/s11011-019-00416-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation plays a key role in progressive degeneration of dopaminergic cells. Upregulation of prostaglandins and free radicals formation are involved in the mechanisms of cell death in Parkinson's disease (PD). The present study aimed to investigate the neuroprotective effect of diclofenac against chlorpromazine (CPZ) induced catalepsy and motor impairment in mice. Adult Wistar rats treated with CPZ (3 mg/kg/day, IP) were orally dosed with diclofenac and L-dopa/carbidopa for 21 days. Catalepsy was measured after 21 days of dosing by using standard bar test at 30, 60, 90, 120 and 180 min then motor performances were assessed via open field test and wire hanging test. Histopathological investigation and determination of dopamine (DA) and 3,4-Dihydroxyphenylacetic acid (DOPAC) levels of rat's brain was also carried out. We found that CPZ treated group exhibited reduced motor impairment after 21 days of treatment in open field and wire hanging test (P < 0.01) as compared to control group. The cataleptic scores of CPZ treated rats were also significantly increased (P < 0.01) after 21 days of chronic dosing, however diclofenac treated groups showed significant reduction in cataleptic scores with improved motor performances. Histopathology of CPZ treated rats showed marked degeneration with architecture distortion in the mid brain region. Dopaminergic degeneration is confirmed by neurochemical results that showed reduced amount of dopamine and DOPAC levels in mid brain. Moreover, histopathological slides of diclofenac treated rats showed improved architecture with reduced gliosis of mid brain region as well as improved dopamine and DOPAC levels were achieved after 21 days dosing of diclofenac. Taken together, the present work provide an evidence that diclofenac ameliorated behavioral performances by mediating neuroprotection against CPZ induced PD via preventing dopaminergic neuronal cell death.
Collapse
Affiliation(s)
- Sadaf Naeem
- Department of Pharmacology, University of Karachi, Karachi, Pakistan.
| | - Rahila Najam
- Department of Pharmacology, University of Karachi, Karachi, Pakistan
| | - Saira Saeed Khan
- Department of Pharmacology, University of Karachi, Karachi, Pakistan
| | - Talat Mirza
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Bushra Sikandar
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
11
|
Mahmoud GS, Sayed SA, Abdelmawla SN, Amer MA. Positive effects of systemic sodium benzoate and olanzapine treatment on activities of daily life, spatial learning and working memory in ketamine-induced rat model of schizophrenia. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:21-30. [PMID: 31149324 PMCID: PMC6526385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sodium Benzoate (SB) significantly improved positive, negative, and cognitive symptoms as add on treatment in schizophrenia. Olanzapine (Ola), the most effective atypical antipsychotic drug, has been linked to hepatic steatosis, acute kidney injury, reproductive side effects and poor effect on negative symptoms in some patients. GOALS is to compare the efficacy and check the safety of long-term monotherapy with SB 0.01 mg/Kg versus Ola on male cognitive, memory, hepatic, renal and testicular functions in rat model of schizophrenia. METHODS 48 young adult male rats were divided into 6 groups; C: control; O: received Ola; SB: received SB; K: received single IP ketamine (Ket) injection; K+O: received Ola and Ket and K+SB: received SB and Ket. Ola and SB given orally for 3 or 10 weeks for behavioral or serological studies respectively. We measured activities of daily life (ADL), spatial learning and memory in radial arm water maze (RAWM), serum parameters of hepatic, renal and testicular functions. RESULTS Both Ola and SB significantly improved hoarding and burrowing, caused significant decrease in time to reach target (TRT), working memory errors (WME) in K+O and K+SB groups compared to K group. Ola caused significant increase in ALT, AST and creatinine and decrease in serum LH, testosterone compared to controls. SB caused significant rise in serum LH, ALT, AST and decrease in protein and albumin compared to both C and O groups. CONCLUSION Both Ola and SB improved ADL, cognitive and memory functions. Although SB saved testicular and renal functions, it worsened liver function compared to Ola.
Collapse
Affiliation(s)
- Ghada S Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | - Sally A Sayed
- Department of Medical Physiology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | | | | |
Collapse
|
12
|
De Sanctis C, Bellenchi GC, Viggiano D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res 2018; 261:508-516. [PMID: 29395873 DOI: 10.1016/j.psychres.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.
Collapse
Affiliation(s)
- Claudia De Sanctis
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy.
| |
Collapse
|
13
|
Delis F, Rosko L, Shroff A, Leonard KE, Thanos PK. Oral haloperidol or olanzapine intake produces distinct and region-specific increase in cannabinoid receptor levels that is prevented by high fat diet. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:268-280. [PMID: 28619471 DOI: 10.1016/j.pnpbp.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Clinical studies show higher levels of cannabinoid CB1 receptors (CB1R) in the brain of schizophrenic patients while preclinical studies report a significant functional interaction between dopamine D2 receptors and CB1Rs as well as an upregulation of CB1Rs after antipsychotic treatment. These findings prompted us to study the effects of chronic oral intake of a first and a second generation antipsychotic, haloperidol and olanzapine, on the levels and distribution of CB1Rs in the rat brain. Rats consumed either regular chow or high-fat food and drank water, haloperidol drinking solution (1.5mg/kg), or olanzapine drinking solution (10mg/kg) for four weeks. Motor and cognitive functions were tested at the end of treatment week 3 and upon drug discontinuation. Two days after drug discontinuation, rats were euthanized and brains were processed for in vitro receptor autoradiography. In chow-fed animals, haloperidol and olanzapine increased CB1R levels in the basal ganglia and the hippocampus, in a similar, but not identical pattern. In addition, olanzapine had unique effects in CB1R upregulation in higher order cognitive areas, in the secondary somatosensory cortex, in the visual and auditory cortices and the geniculate nuclei, as well as in the hypothalamus. High fat food consumption prevented antipsychotic-induced increase in CB1R levels in all regions examined, with one exception, the globus pallidus, in which they were higher in haloperidol-treated rats. The results point towards the hypothesis that increased CB1R levels could be a confounding effect of antipsychotic medication in schizophrenia that is circumveneted by high fat feeding.
Collapse
Affiliation(s)
- Foteini Delis
- Department of Pharmacology, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - Lauren Rosko
- Georgetown University Medical Center, Georgetown University, Washington, DC, 20007, USA
| | - Aditya Shroff
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kenneth E Leonard
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
14
|
Huhtaniska S, Jääskeläinen E, Heikka T, Moilanen JS, Lehtiniemi H, Tohka J, Manjón JV, Coupé P, Björnholm L, Koponen H, Veijola J, Isohanni M, Kiviniemi V, Murray GK, Miettunen J. Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: The Northern Finland Birth Cohort 1966 study. Psychiatry Res Neuroimaging 2017; 266:73-82. [PMID: 28618327 DOI: 10.1016/j.pscychresns.2017.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
Abstract
High doses of antipsychotics have been associated with loss in cortical and total gray matter in schizophrenia. However, previous imaging studies have not taken benzodiazepine use into account, in spite of evidence suggesting adverse effects such as cognitive impairment and increased mortality. In this Northern Finland Birth Cohort 1966 study, 69 controls and 38 individuals with schizophrenia underwent brain MRI at the ages of 34 and 43 years. At baseline, the average illness duration was over 10 years. Brain structures were delineated using an automated volumetry system, volBrain, and medication data on cumulative antipsychotic and benzodiazepine doses were collected using medical records and interviews. We used linear regression with intracranial volume and sex as covariates; illness severity was also taken into account. Though both medication doses associated to volumetric changes in subcortical structures, after adjusting for each other and the average PANSS total score, higher scan-interval antipsychotic dose associated only to volume increase in lateral ventricles and higher benzodiazepine dose associated with volume decrease in the caudate nucleus. To our knowledge, there are no previous studies reporting associations between benzodiazepine dose and brain structural changes. Further studies should focus on how these observations correspond to cognition and functioning.
Collapse
Affiliation(s)
- Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland.
| | - Erika Jääskeläinen
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Tuomas Heikka
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Jani S Moilanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Heli Lehtiniemi
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, France
| | - Lassi Björnholm
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Hannu Koponen
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 22, University of Helsinki, Finland
| | - Juha Veijola
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Matti Isohanni
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, FIN-90029 Oulu, Finland
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Box 189, Cambridge CB2 2QQ, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge CB2 3EB, UK
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| |
Collapse
|
15
|
Hutchings EJ, Waller JL, Terry AV. Differential long-term effects of haloperidol and risperidone on the acquisition and performance of tasks of spatial working and short-term memory and sustained attention in rats. J Pharmacol Exp Ther 2013; 347:547-56. [PMID: 24042161 PMCID: PMC3836316 DOI: 10.1124/jpet.113.209031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
A common feature of the neuropsychiatric disorders for which antipsychotic drugs are prescribed is cognitive dysfunction, yet the effects of long-term antipsychotic treatment on cognition are largely unknown. In the current study, we evaluated the effects of long-term oral treatment with the first-generation antipsychotic haloperidol (1.0 and 2.0 mg/kg daily) and the second-generation antipsychotic risperidone (1.25 and 2.5 mg/kg daily) on the acquisition and performance of two radial-arm maze (RAM) tasks and a five-choice serial reaction-time task (5C-SRTT) in rats during days 15-60 and 84-320 days of treatment, respectively. In the RAM, neither antipsychotic significantly affected the acquisition or performance of a spatial win shift or a delayed non-match-to-position task. Conversely, in the rats administered 5C-SRTT, haloperidol was associated with profound deficits in performance, and the subjects were not able to progress through all stages of task acquisition. Depending on the dose, risperidone was associated with a greater number of trials to meet specific performance criteria during task acquisition compared with vehicle-treated controls; however, most subjects were eventually able to achieve all levels of task acquisition. Both haloperidol and risperidone also increased the number of perseverative and time-out responses during certain stages of task acquisition, and the response and reward latencies were slightly higher than controls during several stages of the study. These results in rats suggest that while long-term treatment with haloperidol or risperidone may not significantly affect spatial working or short-term memory, both antipsychotics can (depending on dose) impair sustained attention, decrease psychomotor speed, increase compulsive-type behaviors, and impair cognitive flexibility.
Collapse
Affiliation(s)
- Elizabeth J Hutchings
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (E.J.H., A.V.T.), Department of Biostatistics, Georgia Regents University, Augusta, Georgia (J.L.W.)
| | | | | |
Collapse
|
16
|
Chronic treatment with olanzapine increases adiposity by changing fuel substrate and causes desensitization of the acute metabolic side effects. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:185-95. [DOI: 10.1007/s00210-013-0933-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/16/2013] [Indexed: 01/02/2023]
|
17
|
Olanzapine treatment of adolescent rats alters adult reward behaviour and nucleus accumbens function. Int J Neuropsychopharmacol 2013; 16:1599-609. [PMID: 23351612 PMCID: PMC5819604 DOI: 10.1017/s1461145712001642] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug (APD) treatment. Most APDs are potent antagonists or partial agonists of dopamine (DA) D₂ receptors; atypical APDs also have multiple serotonergic activities. DA and serotonin regulate many neurodevelopmental processes. Thus, early life APD treatment can, potentially, perturb these processes, causing long-term behavioural and neurobiological sequelae. We treated adolescent, male rats with olanzapine (Ola) on post-natal days 28-49, under dosing conditions that approximate those employed therapeutically in humans. As adults, they exhibited enhanced conditioned place preference for amphetamine, as compared to vehicle-treated rats. In the nucleus accumbens core, DA D₁ receptor binding was reduced, D₂ binding was increased and DA release evoked by electrical stimulation of the ventral tegmental area was reduced. Thus, adolescent Ola treatment enduringly alters a key behavioural response to rewarding stimuli and modifies DAergic neurotransmission in the nucleus accumbens. The persistence of these changes suggests that even limited periods of early life Ola treatment may induce enduring changes in other reward-related behaviours and in behavioural and neurobiological responses to therapeutic and illicit psychotropic drugs. These results underscore the importance of improved understanding of the enduring sequelae of paediatric APD treatment as a basis for weighing the benefits and risks of adolescent APD therapy, especially prophylactic treatment in high-risk, asymptomatic patients.
Collapse
|
18
|
Long-term effects of chronic intermittent ethanol exposure in adolescent and adult rats: radial-arm maze performance and operant food reinforced responding. PLoS One 2013; 8:e62940. [PMID: 23675442 PMCID: PMC3652810 DOI: 10.1371/journal.pone.0062940] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/27/2013] [Indexed: 01/13/2023] Open
Abstract
Background Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM) and operant food-reinforced responding in male rats. Methodology/Principal Findings Male Sprague Dawley rats were exposed to CIE (or saline) and then allowed to recover. Animals were then trained in either the RAM task or an operant task using fixed- and progressive- ratio schedules. After baseline testing was completed all animals received an acute ethanol challenge while blood ethanol levels (BECs) were monitored in a subset of animals. CIE exposure during adolescence, but not adulthood decreased the amount of time that animals spent in the open portions of the RAM arms (reminiscent of deficits in risk-reward integration) and rendered animals more susceptible to the acute effects of an ethanol challenge on working memory tasks. The operant food reinforced task showed that these effects were not due to altered food motivation or to differential sensitivity to the nonspecific performance-disrupting effects of ethanol. However, CIE pre-treated animals had lower BEC levels than controls during the acute ethanol challenges indicating persistent pharmacokinetic tolerance to ethanol after the CIE treatment. There was little evidence of enduring effects of CIE alone on traditional measures of spatial and working memory. Conclusions/Significance These effects indicate that adolescence is a time of selective vulnerability to the long-term effects of repeated ethanol exposure on neurobehavioral function and acute ethanol sensitivity. The positive and negative findings reported here help to further define the nature and extent of the impairments observed after adolescent CIE and provide direction for future research.
Collapse
|
19
|
Milstein JA, Elnabawi A, Vinish M, Swanson T, Enos JK, Bailey AM, Kolb B, Frost DO. Olanzapine treatment of adolescent rats causes enduring specific memory impairments and alters cortical development and function. PLoS One 2013; 8:e57308. [PMID: 23437365 PMCID: PMC3577739 DOI: 10.1371/journal.pone.0057308] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/21/2013] [Indexed: 01/31/2023] Open
Abstract
Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug treatment. Most antipsychotic drugs are potent antagonists or partial agonists of dopamine D2 receptors; atypical antipsychotic drugs also antagonize type 2A serotonin receptors. Dopamine and serotonin regulate many neurodevelopmental processes. Thus, early life antipsychotic drug treatment can, potentially, perturb these processes, causing long-term behavioral- and neurobiological impairments. Here, we treated adolescent, male rats with olanzapine on post-natal days 28-49. As adults, they exhibited impaired working memory, but normal spatial memory, as compared to vehicle-treated control rats. They also showed a deficit in extinction of fear conditioning. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, parietal cortex, nucleus accumbens core and dentate gyrus, adolescent olanzapine treatment altered the developmental dynamics and mature values of dendritic spine density in a region-specific manner. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, D1 binding was reduced and binding of GABA(A) receptors with open Cl(-) channels was increased. In medial prefrontal cortex, D2 binding was also increased. The persistence of these changes underscores the importance of improved understanding of the enduring sequelae of pediatric APD treatment as a basis for weighing the benefits and risks of adolescent antipsychotic drug therapy, especially prophylactic treatment in high risk, asymptomatic patients. The long-term changes in neurotransmitter receptor binding and neural circuitry induced by adolescent APD treatment may also cause enduring changes in behavioral- and neurobiological responses to other therapeutic- or illicit psychotropic drugs.
Collapse
Affiliation(s)
- Jean A. Milstein
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmed Elnabawi
- Dept. of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Monika Vinish
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas Swanson
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer K. Enos
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aileen M. Bailey
- Dept. of Psychology, St. Mary's College of Maryland, St. Mary's, Maryland, United States of America
| | - Bryan Kolb
- University of Lethbridge, Canadian Center for Behavioral Neuroscience, Lethbridge, Alberta, Canada
| | - Douglas O. Frost
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Wilson CA, Terry AV. Variable maternal stress in rats alters locomotor activity, social behavior, and recognition memory in the adult offspring. Pharmacol Biochem Behav 2012; 104:47-61. [PMID: 23287801 DOI: 10.1016/j.pbb.2012.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022]
Abstract
Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral signs that are similar to those manifested in several neuropsychiatric disorders such as deficits in attention and inhibitory control, and impairments in memory-related task performance. The purpose of the study described here was to conduct a comprehensive battery of tests to further characterize the behavioral phenotype of PNS rats as well as to evaluate the sensitivity of the model to therapeutic interventions (i.e., to compounds previously shown to have therapeutic potential in neuropsychiatric disorders). The results of this study indicated that PNS in rats is associated with: 1) increased locomotor activity and stereotypic behaviors, 2) elevated sensitivity to the psychostimulant amphetamine, 3) increased aggressive behaviors toward both adult and juvenile rats and 4) delay-dependent deficits in recognition memory. There was no evidence that PNS rats exhibited deficits in other areas of motor function/learning, sensorimotor gating, spatial learning and memory, social withdrawal, or anhedonia. In addition, the results revealed that the second generation antipsychotic risperidone attenuated amphetamine-related increases in locomotor activity in PNS rats; however, the effect was not sustained over time. Furthermore, deficits in recognition memory in PNS rats were attenuated by the norepinephrine reuptake inhibitor, atomoxetine, but not by the α7 nicotinic acetylcholine receptor partial agonist, GTS-21. This study supports the supposition that important phenomenological similarities exist between rats exposed to PNS and patients afflicted with neuropsychiatric disorders thus further establishing the face validity of the model for evaluating potential therapeutic interventions.
Collapse
Affiliation(s)
- Christina A Wilson
- Dept. of Pharmacology and Toxicology, School of Graduate Studies, Georgia Health Science University, Augusta, GA 30912, United States
| | | |
Collapse
|
21
|
Repeated exposures to chlorpyrifos lead to spatial memory retrieval impairment and motor activity alteration. Neurotoxicol Teratol 2012; 34:442-9. [PMID: 22640976 DOI: 10.1016/j.ntt.2012.05.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 11/22/2022]
Abstract
Chlorpyrifos (CPF) is one of the most commonly used insecticides throughout the world and has become one of the major pesticides detected in farm products. Chronic exposures to CPF, especially at the dosages without eliciting any systemic toxicity, require greater attention. The purpose of this study was, therefore, to evaluate the behavioral effects of repeated low doses (doses that do not produce overt signs of cholinergic toxicity) of CPF in adult rats. Male rats were given 0, 1.0, 5.0 or 10.0mg/kg of CPF through intragastric administration daily for 4 consecutive weeks. The behavioral functions were assessed in a series of behavioral tests, including water maze task, open-field test, grip strength and rotarod test. Furthermore, the present study was designed to evaluate the effects of repeated exposures to CPF on water maze recall and not acquisition. The results showed that the selected doses only had mild inhibition effects on cholinesterase activity, and have no effects on weight gain and daily food consumption. Performances in the spatial retention task (Morris water maze) were impaired after the 4-week exposure to CPF, but the performances of grip strength and rotarod test were not affected. Motor activities in the open field were changed, especially the time spent in the central zone increased. The results indicated that repeated exposures to low doses of CPF may lead to spatial recall impairments, behavioral abnormalities. However, the underlying mechanism needs further investigations.
Collapse
|
22
|
Atypical antipsychotics: trends in analysis and sample preparation of various biological samples. Bioanalysis 2012; 4:961-80. [DOI: 10.4155/bio.12.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Atypical antipsychotics are increasingly popular and increasingly prescribed. In some countries, they can even be obtained over-the-counter, without a prescription, making their abuse quite easy. Although atypical antipsychotics are thought to be safer than typical antipsychotics, they still have severe side effects. Intoxications are not rare and some of them have a fatal outcome. Drug interactions involving atypical antipsychotics complicate patient management in clinical settings and the determination of the cause of death in fatalities. In view of the above, analytical strategies that can efficiently isolate atypical antipsychotics from a variety of biological samples and quantify them accurately, sensitively and reliably, are of utmost importance both for the clinical, as well as for the forensic toxicologist. In this review, we will present and discuss novel analytical strategies that have been developed from 2004 to the present day for the determination of atypical antipsychotics in various biological samples.
Collapse
|
23
|
Llorente-Berzal A, Mela V, Borcel E, Valero M, López-Gallardo M, Viveros MP, Marco EM. Neurobehavioral and metabolic long-term consequences of neonatal maternal deprivation stress and adolescent olanzapine treatment in male and female rats. Neuropharmacology 2012; 62:1332-41. [DOI: 10.1016/j.neuropharm.2011.07.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 07/09/2011] [Accepted: 07/19/2011] [Indexed: 12/18/2022]
|
24
|
Terry AV, Beck WD, Warner S, Vandenhuerk L, Callahan PM. Chronic impairments in spatial learning and memory in rats previously exposed to chlorpyrfos or diisopropylfluorophosphate. Neurotoxicol Teratol 2011; 34:1-8. [PMID: 22024239 DOI: 10.1016/j.ntt.2011.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 10/16/2022]
Abstract
The acute toxicity of organophosphates (OPs) has been studied extensively; however, much less attention has been given to the subject of repeated exposures that are not associated with overt signs of toxicity (i.e., subthreshold exposures). The objective of this study was to determine if the protracted spatial learning impairments we have observed previously after repeated subthreshold exposures to the insecticide chlorpyrifos (CPF) or the alkylphosphate OP, diisopropylfluorophosphate (DFP) persisted for longer periods after exposure. Male Wistar rats (beginning at two months of age) were initially injected subcutaneously with CPF (10.0 or 18.0mg/kg) or DFP (0.25 or 0.75 mg/kg) every other day for 30 days. After an extended OP-free washout period (behavioral testing begun 50 days after the last OP exposure), rats previously exposed to CPF, but not DFP, were impaired in a radial arm maze (RAM) win-shift task as well as a delayed non-match to position procedure. Later experiments (i.e., beginning 140 days after the last OP exposure) revealed impairments in the acquisition of a water maze hidden platform task associated with both OPs. However, only rats previously exposed to DFP were impaired in a second phase of testing when the platform location was changed (indicative of deficits of cognitive flexibility). These results indicate, therefore, that repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and alkylphosphate-based OPs may have differential effects depending on the cognitive domain evaluated.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | |
Collapse
|
25
|
de Siqueira Bringel S, de Amorim Júnior AA, Amorim MJAAL, Brito LT, Morais RN, de Torres SM, Tenorio BM, da Silva Junior VA. Endocrine and testicular changes induced by olanzapine in adult Wistar rats. J Appl Toxicol 2011; 33:24-31. [DOI: 10.1002/jat.1702] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Simone de Siqueira Bringel
- Department of Animal Morphology and Physiology; Federal Rural University of Pernambuco; Recife; Pernambuco; Brazil
| | | | | | - Lorena Tavares Brito
- Department of Animal Morphology and Physiology; Federal Rural University of Pernambuco; Recife; Pernambuco; Brazil
| | | | - Sandra Maria de Torres
- Department of Animal Morphology and Physiology; Federal Rural University of Pernambuco; Recife; Pernambuco; Brazil
| | - Bruno Mendes Tenorio
- Department of Animal Morphology and Physiology; Federal Rural University of Pernambuco; Recife; Pernambuco; Brazil
| | | |
Collapse
|
26
|
Metabolic and behavioral effects of chronic olanzapine treatment and cafeteria diet in rats. Behav Pharmacol 2010; 21:668-75. [DOI: 10.1097/fbp.0b013e32833e7f2a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 2010; 83:147-61. [PMID: 20433908 DOI: 10.1016/j.brainresbull.2010.04.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 12/25/2009] [Accepted: 04/19/2010] [Indexed: 01/20/2023]
Abstract
An endophenotype is a heritable trait that is generally considered to be more highly, associated with a gene-based neurological deficit than a disease phenotype itself. Such, endophenotypic deficits may therefore be observed in the non-affected relatives of disease patients. Once endophenotypes have been established for a given illness, such as schizophrenia, mechanisms of, action may then be established and treatment options developed in order to target such measures. The, current paper describes and assesses the merits and limitations of utilizing behavioral and, electrophysiological endophenotypes of schizophrenia in mice. Such endophenotypic deficits include: decreased auditory event related potential (ERP) amplitude and gating (specifically, that of the P20, N40, P80 and P120); impaired mismatch negativity (MMN); changes in theta and gamma frequency, analyses; decreased pre-pulse inhibition (PPI); impaired working and episodic memories (for instance, novel object recognition [NOR], contextual and cued fear conditioning, latent inhibition, Morris and, radial arm maze identification and nose poke); sociability; and locomotor activity. A variety of, pharmacological treatments, including ketamine, MK-801 and phencyclidine (PCP) can be used to, induce some of the deficits described above, and numerous transgenic mouse strains have been, developed to address the mechanisms responsible for such endophenotypic differences. We also, address the viability and validity of using such measures regarding their potential clinical implications, and suggest several practices that could increase the translatability of preclinical data.
Collapse
|