1
|
He Q, Yuan Q, Shan H, Wu C, Gu Y, Wu K, Hu W, Zhang Y, He X, Xu HE, Zhao LH. Mechanisms of ligand recognition and activation of melanin-concentrating hormone receptors. Cell Discov 2024; 10:48. [PMID: 38710677 DOI: 10.1038/s41421-024-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that regulates food intake, energy balance, and other physiological functions by stimulating MCHR1 and MCHR2 receptors, both of which are class A G protein-coupled receptors. MCHR1 predominately couples to inhibitory G protein, Gi/o, and MCHR2 can only couple to Gq/11. Here we present cryo-electron microscopy structures of MCH-activated MCHR1 with Gi and MCH-activated MCHR2 with Gq at the global resolutions of 3.01 Å and 2.40 Å, respectively. These structures reveal that MCH adopts a consistent cysteine-mediated hairpin loop configuration when bound to both receptors. A central arginine from the LGRVY core motif between the two cysteines of MCH penetrates deeply into the transmembrane pocket, triggering receptor activation. Integrated with mutational and functional insights, our findings elucidate the molecular underpinnings of ligand recognition and MCH receptor activation and offer a structural foundation for targeted drug design.
Collapse
Affiliation(s)
- Qian He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Shan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yimin Gu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yumu Zhang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Li-Hua Zhao
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
3
|
Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci 2023; 46:738-749. [PMID: 37353461 PMCID: PMC10524917 DOI: 10.1016/j.tins.2023.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.
Collapse
Affiliation(s)
- Mark A Rossi
- Child Health Institute of New Jersey, New Brunswick, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
4
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Salminen I, Read S, Crespi B. Do the diverse phenotypes of Prader-Willi syndrome reflect extremes of covariation in typical populations? Front Genet 2022; 13:1041943. [PMID: 36506301 PMCID: PMC9731222 DOI: 10.3389/fgene.2022.1041943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The phenotypes of human imprinted neurogenetic disorders can be hypothesized as extreme alterations of typical human phenotypes. The imprinted neurogenetic disorder Prader-Willi syndrome (PWS) features covarying phenotypes that centrally involve altered social behaviors, attachment, mood, circadian rhythms, and eating habits, that can be traced to altered functioning of the hypothalamus. Here, we conducted analyses to investigate the extent to which the behavioral variation shown in typical human populations for a set of PWAS-associated traits including autism spectrum cognition, schizotypal cognition, mood, eating, and sleeping phenotypes shows covariability that recapitulates the covariation observed in individuals with PWS. To this end, we collected data from 296 typical individuals for this set of phenotypes, and showed, using principal components analysis, evidence of a major axis reflecting key covarying PWS traits. We also reviewed the literature regarding neurogenetic syndromes that overlap in their affected traits with PWS, to determine their prevalence and properties. These findings demonstrate that a notable suite of syndromes shows phenotypic overlap with PWS, implicating a large set of imprinted and non-imprinted genes, some of which interact, in the phenotypes of this disorder. Considered together, these findings link variation in and among neurogenetic disorders with variation in typical populations, especially with regard to pleiotropic effects mediated by the hypothalamus. This work also implicates effects of imprinted gene variation on cognition and behavior in typical human populations.
Collapse
|
6
|
Abstract
Behavioral states naturally alternate between wakefulness and the sleep phases rapid eye movement and nonrapid eye movement sleep. Waking and sleep states are complex processes that are elegantly orchestrated by spatially fine-tuned neurochemical changes of neurotransmitters and neuromodulators including glutamate, acetylcholine, γ-aminobutyric acid, norepinephrine, dopamine, serotonin, histamine, hypocretin, melanin concentrating hormone, adenosine, and melatonin. However, as highlighted in this brief overview, no single neurotransmitter or neuromodulator, but rather their complex interactions within organized neuronal ensembles, regulate waking and sleep states. The neurochemical pathways presented here are aimed to provide a conceptual framework for the understanding of the effects of currently used sleep medications.
Collapse
Affiliation(s)
- Sebastian C Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci 2022; 23:ijms23094599. [PMID: 35562990 PMCID: PMC9103574 DOI: 10.3390/ijms23094599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep and wakefulness are basic behavioral states that require coordination between several brain regions, and they involve multiple neurochemical systems, including neuropeptides. Neuropeptides are a group of peptides produced by neurons and neuroendocrine cells of the central nervous system. Like traditional neurotransmitters, neuropeptides can bind to specific surface receptors and subsequently regulate neuronal activities. For example, orexin is a crucial component for the maintenance of wakefulness and the suppression of rapid eye movement (REM) sleep. In addition to orexin, melanin-concentrating hormone, and galanin may promote REM sleep. These results suggest that neuropeptides play an important role in sleep–wake regulation. These neuropeptides can be divided into three categories according to their effects on sleep–wake behaviors in rodents and humans. (i) Galanin, melanin-concentrating hormone, and vasoactive intestinal polypeptide are sleep-promoting peptides. It is also noticeable that vasoactive intestinal polypeptide particularly increases REM sleep. (ii) Orexin and neuropeptide S have been shown to induce wakefulness. (iii) Neuropeptide Y and substance P may have a bidirectional function as they can produce both arousal and sleep-inducing effects. This review will introduce the distribution of various neuropeptides in the brain and summarize the roles of different neuropeptides in sleep–wake regulation. We aim to lay the foundation for future studies to uncover the mechanisms that underlie the initiation, maintenance, and end of sleep–wake states.
Collapse
|
8
|
Linehan V, Hirasawa M. Short-term fasting induces alternate activation of orexin and melanin-concentrating hormone neurons in rats. Neuroscience 2022; 491:156-165. [DOI: 10.1016/j.neuroscience.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
|
9
|
Mehramiz M, Porter T, Laws SM, Rainey-Smith SR. Sleep, Sirtuin 1 and Alzheimer's disease: A review. AGING BRAIN 2022; 2:100050. [PMID: 36908890 PMCID: PMC9997138 DOI: 10.1016/j.nbas.2022.100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep plays a major role in brain health, and cognition. Disrupted sleep is a well-described symptom of Alzheimer's disease (AD). However, accumulating evidence suggests suboptimal sleep also increases AD risk. The deacetylase Sirtuin 1 (Sirt 1), encoded by the SIRT1 gene, impacts sleep via its relationship to wake-sleep neurotransmitters and somnogens. Evidence from animal and human studies supports a significant and complex relationship between sleep, Sirt 1/ SIRT1 and AD. Numerous hypotheses attempt to explain the critical impact of Sirt 1/ SIRT1 on wake- and sleep- promoting neurons, their related mechanisms and neurotransmitters. However, there is a paucity of studies assessing the interaction between sleep and Sirt 1/ SIRT1, as a principal component of sleep regulation, on AD pathology. In this review, we explore the potential association between Sirt 1/ SIRT1, sleep, and AD aetiology. Given sleep is a likely modifiable risk factor for AD, and recent studies suggest Sirt 1/ SIRT1 activation can be modulated by lifestyle or dietary approaches, further research in this area is required to explore its potential as a target for AD prevention and treatment.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, WA, Australia.,School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
10
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 2021; 26:3152-3168. [PMID: 33093653 PMCID: PMC8060355 DOI: 10.1038/s41380-020-00921-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Sleep abnormalities are often a prominent contributor to withdrawal symptoms following chronic drug use. Notably, rapid eye movement (REM) sleep regulates emotional memory, and persistent REM sleep impairment after cocaine withdrawal negatively impacts relapse-like behaviors in rats. However, it is not understood how cocaine experience may alter REM sleep regulatory machinery, and what may serve to improve REM sleep after withdrawal. Here, we focus on the melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH), which regulate REM sleep initiation and maintenance. Using adult male Sprague-Dawley rats trained to self-administer intravenous cocaine, we did transcriptome profiling of LH MCH neurons after long-term withdrawal using RNA-sequencing, and performed functional assessment using slice electrophysiology. We found that 3 weeks after withdrawal from cocaine, LH MCH neurons exhibit a wide range of gene expression changes tapping into cell membrane signaling, intracellular signaling, and transcriptional regulations. Functionally, they show reduced membrane excitability and decreased glutamatergic receptor activity, consistent with increased expression of voltage-gated potassium channel gene Kcna1 and decreased expression of metabotropic glutamate receptor gene Grm5. Finally, chemogenetic or optogenetic stimulations of LH MCH neural activity increase REM sleep after long-term withdrawal with important differences. Whereas chemogenetic stimulation promotes both wakefulness and REM sleep, optogenetic stimulation of these neurons in sleep selectively promotes REM sleep. In summary, cocaine exposure persistently alters gene expression profiles and electrophysiological properties of LH MCH neurons. Counteracting cocaine-induced hypoactivity of these neurons selectively in sleep enhances REM sleep quality and quantity after long-term withdrawal.
Collapse
|
12
|
Izawa S, Yoneshiro T, Kondoh K, Nakagiri S, Okamatsu-Ogura Y, Terao A, Minokoshi Y, Yamanaka A, Kimura K. Melanin-concentrating hormone-producing neurons in the hypothalamus regulate brown adipose tissue and thus contribute to energy expenditure. J Physiol 2021; 600:815-827. [PMID: 33899241 DOI: 10.1113/jp281241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Melanin-concentrating hormone (MCH) neuron-ablated mice exhibit increased energy expenditure and reduced fat weight. Increased brown adipose tissue (BAT) activity and locomotor activity-independent energy expenditure contributed to body weight reduction in MCH neuron-ablated mice. MCH neurons send inhibitory input to the medullary raphe nucleus to modulate BAT activity. ABSTRACT Hypothalamic melanin-concentrating hormone (MCH) peptide robustly affects energy homeostasis. However, it is unclear whether and how MCH-producing neurons, which contain and release a variety of neuropeptides/transmitters, regulate energy expenditure in the central nervous system and peripheral tissues. We thus examined the regulation of energy expenditure by MCH neurons, focusing on interscapular brown adipose tissue (BAT) activity. MCH neuron-ablated mice exhibited reduced body weight, increased oxygen consumption, and increased BAT activity, which improved locomotor activity-independent energy expenditure. Trans-neuronal retrograde tracing with the recombinant pseudorabies virus revealed that MCH neurons innervate BAT via the sympathetic premotor region in the medullary raphe nucleus (MRN). MRN neurons were activated by MCH neuron ablation. Therefore, endogenous MCH neuron activity negatively modulates energy expenditure via BAT inhibition. MRN neurons might receive inhibitory input from MCH neurons to suppress BAT activity.
Collapse
Affiliation(s)
- Shuntaro Izawa
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Takeshi Yoneshiro
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shohei Nakagiri
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Akira Terao
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Department of Biology, School of Biological Sciences, Tokai University, Sapporo, 005-8601, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
13
|
Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020; 20:55. [PMID: 33006677 DOI: 10.1007/s11910-020-01075-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Melanin-concentrating hormone (MCH)-expressing neurons located in the lateral hypothalamus are considered as an integral component of sleep-wake circuitry. However, the precise role of MCH neurons in sleep-wake regulation has remained unclear, despite several years of research employing a wide range of techniques. We review recent data on this aspect, which are mostly inconsistent, and propose a novel role for MCH neurons in sleep regulation. RECENT FINDINGS While almost all studies using "gain-of-function" approaches show an increase in rapid eye movement sleep (or paradoxical sleep; PS), loss-of-function approaches have not shown reductions in PS. Similarly, the reported changes in wakefulness or non-rapid eye movement sleep (slow-wave sleep; SWS) with manipulation of the MCH system using conditional genetic methods are inconsistent. Currently available data do not support a role for MCH neurons in spontaneous sleep-wake but imply a crucial role for them in orchestrating sleep-wake responses to changes in external and internal environments.
Collapse
Affiliation(s)
- Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
| | - Mudasir A Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Nazifa Ibrahim
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA.,Department of Public Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA. .,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Rogers AA, Aiani LM, Blanpain LT, Yuxian S, Moore R, Willie JT. Deep brain stimulation of hypothalamus for narcolepsy-cataplexy in mice. Brain Stimul 2020; 13:1305-1316. [PMID: 32320748 DOI: 10.1016/j.brs.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Narcolepsy type 1 (NT1, narcolepsy with cataplexy) is a disabling neurological disorder caused by loss of excitatory orexin neurons from the hypothalamus and is characterized by decreased motivation, sleep-wake fragmentation, intrusion of rapid-eye-movement sleep (REMS) during wake, and abrupt loss of muscle tone, called cataplexy, in response to sudden emotions. OBJECTIVE We investigated whether subcortical stimulation, analogous to clinical deep brain stimulation (DBS), would ameliorate NT1 using a validated transgenic mouse model with postnatal orexin neuron degeneration. METHODS Using implanted electrodes in freely behaving mice, the immediate and prolonged effects of DBS were determined upon behavior using continuous video-electroencephalogram-electromyogram (video/EEG/EMG) and locomotor activity, and neural activation in brain sections, using immunohistochemical labeling of the immediate early gene product c-Fos. RESULTS Brief 10-s stimulation to the region of the lateral hypothalamus and zona incerta (LH/ZI) dose-responsively reversed established sleep and cataplexy episodes without negative sequelae. Continuous 3-h stimulation increased ambulation, improved sleep-wake consolidation, and ameliorated cataplexy. Brain c-Fos from mice sacrificed after 90 min of DBS revealed dose-responsive neural activation within wake-active nuclei of the basal forebrain, hypothalamus, thalamus, and ventral midbrain. CONCLUSION Acute and continuous LH/ZI DBS enhanced behavioral state control in a mouse model of NT1, supporting the feasibility of clinical DBS for NT1 and other sleep-wake disorders.
Collapse
Affiliation(s)
| | - Lauren M Aiani
- Department of Neurosurgery, Emory University, USA; Department of Neurology, Emory University, USA
| | | | - Sun Yuxian
- Department of Biostatistics and Bioinformatics, Emory University, USA
| | - Renee Moore
- Department of Biostatistics and Bioinformatics, Emory University, USA
| | - Jon T Willie
- Department of Neurosurgery, Emory University, USA; Department of Neurology, Emory University, USA.
| |
Collapse
|
15
|
Noble EE, Wang Z, Liu CM, Davis EA, Suarez AN, Stein LM, Tsan L, Terrill SJ, Hsu TM, Jung AH, Raycraft LM, Hahn JD, Darvas M, Cortella AM, Schier LA, Johnson AW, Hayes MR, Holschneider DP, Kanoski SE. Hypothalamus-hippocampus circuitry regulates impulsivity via melanin-concentrating hormone. Nat Commun 2019; 10:4923. [PMID: 31664021 PMCID: PMC6820566 DOI: 10.1038/s41467-019-12895-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023] Open
Abstract
Behavioral impulsivity is common in various psychiatric and metabolic disorders. Here we identify a hypothalamus to telencephalon neural pathway for regulating impulsivity involving communication from melanin-concentrating hormone (MCH)-expressing lateral hypothalamic neurons to the ventral hippocampus subregion (vHP). Results show that both site-specific upregulation (pharmacological or chemogenetic) and chronic downregulation (RNA interference) of MCH communication to the vHP increases impulsive responding in rats, indicating that perturbing this system in either direction elevates impulsivity. Furthermore, these effects are not secondary to either impaired timing accuracy, altered activity, or increased food motivation, consistent with a specific role for vHP MCH signaling in the regulation of impulse control. Results from additional functional connectivity and neural pathway tracing analyses implicate the nucleus accumbens as a putative downstream target of vHP MCH1 receptor-expressing neurons. Collectively, these data reveal a specific neural circuit that regulates impulsivity and provide evidence of a novel function for MCH on behavior.
Collapse
Affiliation(s)
- Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Foods and Nutrition, University of Georgia, Athens, GA, 30606, USA
| | - Zhuo Wang
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Clarissa M Liu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Elizabeth A Davis
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah J Terrill
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ted M Hsu
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - A-Hyun Jung
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lauren M Raycraft
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Joel D Hahn
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alyssa M Cortella
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lindsey A Schier
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel P Holschneider
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
16
|
Walker WH, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019; 20:E2780. [PMID: 31174326 PMCID: PMC6600154 DOI: 10.3390/ijms20112780] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019; 17:e3000172. [PMID: 30893297 PMCID: PMC6426208 DOI: 10.1371/journal.pbio.3000172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting). A neurotensin-producing subset of neurons in the lateral hypothalamus promote arousal and thermogenesis; these neurons are necessary for appropriate sleep-wake and body temperature responses to various stressors. Adjusting sleep-wake behavior in response to environmental and physiological challenges may not only be of protective value, but can also be vital for the survival of the organism. For example, while it is crucial to increase wake to explore a novel environment to search for potential threats and food sources, it is also necessary to decrease wake and reduce energy expenditure during prolonged absence of food. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to such challenges. We show that brief activation of NtsLH neurons in mice evokes immediate arousals from sleep, while their sustained activation increases wake, locomotor activity, and body temperature for several hours. In contrast, when NtsLH neurons are inhibited, mice are neither able to sustain wake in a novel environment nor able to reduce wake during food deprivation. These data suggest that NtsLH neurons may be necessary for generating appropriate sleep-wake responses to a wide variety of environmental and physiological challenges.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sathyajit S. Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joseph C. Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience 2019; 406:314-324. [PMID: 30890480 DOI: 10.1016/j.neuroscience.2019.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 11/28/2022]
Abstract
Neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamic area (LH) have been shown to promote rapid eye movement sleep (REMs) in mice. However, the downstream neural pathways through which MCH neurons influence REMs remained unclear. Because MCH neurons are considered to be primarily inhibitory, we hypothesized that these neurons inhibit the midbrain 'REMs-suppressing' region consisting of the ventrolateral periaqueductal gray and the lateral pontine tegmentum (vlPAG/LPT) to promote REMs. To test this hypothesis, we optogenetically inhibited MCH terminals in the vlPAG/LPT under baseline conditions as well as with simultaneous chemogenetic activation of MCH soma. We found that inhibition of MCH terminals in the vlPAG/LPT significantly reduced transitions into REMs during spontaneous sleep-wake cycles and prevented the increase in REMs transitions observed after chemogenetic activation of MCH neurons. These results strongly suggest that the vlPAG/LPT may be an essential relay through which MCH neurons modulate REMs.
Collapse
Affiliation(s)
- Daniel Kroeger
- Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215, United States.
| | - Sathyajit S Bandaru
- Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215, United States.
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215, United States.
| | - Ramalingam Vetrivelan
- Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215, United States.
| |
Collapse
|
19
|
Tso W, Chan M, Ho FK, Rao N, Li AM, Chan KL, Tiwari A, Wong ICK, Wing YK, Van Voorhees B, Li SL, Goh WHS, Ip P. Early sleep deprivation and attention-deficit/hyperactivity disorder. Pediatr Res 2019; 85:449-455. [PMID: 30679794 DOI: 10.1038/s41390-019-0280-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/15/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND This study aims to study prospectively specific sleep patterns and risk of ADHD after adjusting for potential confounders such as obstructive sleep apnoea (OSA) and methylphenidate use. METHODS A population-representative sample of 514 Chinese preschool children was recruited when in kindergarten (K3). Parents reported on their socioeconomic status and children's sleep duration. The cohort was reassessed 3 years later when the children were in Grade 3 (P3). Parents reported on children's sleep patterns and ADHD symptoms. Information on OSA diagnosis and methylphenidate use was retrieved from health records. RESULTS Among the 514 parent-child dyads (mean [SD] age, 5.52 [0.33] years), 411 were reassessed (80.0% retention; 9.35 [0.33] years) at follow-up. There were no significant baseline differences between follow-up and drop-out groups. A gradient relationship was observed between probable ADHD in P3 and sleep duration in K3. The risk of probable ADHD was 15.5 per 100 for children with <8 h of sleep in K3, whereas it was 1.1 per 100 for children with 11-12 h of sleep in K3. The adjusted risk ratio was 14.19 (p = 0.02). CONCLUSIONS Sleep deprivation in early childhood is associated with higher risk of ADHD in middle childhood.
Collapse
Affiliation(s)
- Winnie Tso
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Meanne Chan
- Department of Psychiatry, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Frederick K Ho
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Nirmala Rao
- Faculty of Education, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Albert M Li
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, 30 Ngan Shing Street, Sha Tin, Hong Kong
| | - Ko Ling Chan
- Department of Applied Social Science, The Hong Kong Polytechnic University, Pokfulam, Hong Kong
| | - Agnes Tiwari
- School of Nursing, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ian C K Wong
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yun Kwok Wing
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin Hospital, 33A Kung Kok Street, Ma On Shan, Hong Kong
| | - Benjamin Van Voorhees
- Department of Paediatrics, College of Medicine at Chicago, University of Illinois, Chicago, IL, USA
| | - Sophia Ling Li
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Winnie H S Goh
- Division of Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Kallang, Singapore
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
20
|
Engle SE, Antonellis PJ, Whitehouse LS, Bansal R, Emond MR, Jontes JD, Kesterson RA, Mykytyn K, Berbari NF. A CreER mouse to study melanin concentrating hormone signaling in the developing brain. Genesis 2019; 56:e23217. [PMID: 29806135 PMCID: PMC6167158 DOI: 10.1002/dvg.23217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 12/28/2022]
Abstract
The neuropeptide, melanin concentrating hormone (MCH), and its G protein-coupled receptor, melanin concentrating hormone receptor 1 (Mchr1), are expressed centrally in adult rodents. MCH signaling has been implicated in diverse behaviors such as feeding, sleep, anxiety, as well as addiction and reward. While a model utilizing the Mchr1 promoter to drive constitutive expression of Cre recombinase (Mchr1-Cre) exists, there is a need for an inducible Mchr1-Cre to determine the roles for this signaling pathway in neural development and adult neuronal function. Here, we generated a BAC transgenic mouse where the Mchr1 promotor drives expression of tamoxifen inducible CreER recombinase. Many aspects of the Mchr1-Cre expression pattern are recapitulated by the Mchr1-CreER model, though there are also notable differences. Most strikingly, compared to the constitutive model, the new Mchr1-CreER model shows strong expression in adult animals in hypothalamic brain regions involved in feeding behavior but diminished expression in regions involved in reward, such as the nucleus accumbens. The inducible Mchr1-CreER allele will help reveal the potential for Mchr1 signaling to impact neural development and subsequent behavioral phenotypes, as well as contribute to the understanding of the MCH signaling pathway in terminally differentiated adult neurons and the diverse behaviors that it influences.
Collapse
Affiliation(s)
- Staci E Engle
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Patrick J Antonellis
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Logan S Whitehouse
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Michelle R Emond
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio
| | - James D Jontes
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
21
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
22
|
Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct 2018; 224:99-110. [PMID: 30284033 DOI: 10.1007/s00429-018-1766-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Neurons containing melanin-concentrating hormone (MCH) in the posterior lateral hypothalamus play an integral role in rapid eye movement sleep (REMs) regulation. As MCH neurons also contain a variety of other neuropeptides [e.g., cocaine- and amphetamine-regulated transcript (CART) and nesfatin-1] and neurotransmitters (e.g., glutamate), the specific neurotransmitter responsible for REMs regulation is not known. We hypothesized that glutamate, the primary fast-acting neurotransmitter in MCH neurons, is necessary for REMs regulation. To test this hypothesis, we deleted vesicular glutamate transporter (Vglut2; necessary for synaptic release of glutamate) specifically from MCH neurons by crossing MCH-Cre mice (expressing Cre recombinase in MCH neurons) with Vglut2flox/flox mice (expressing LoxP-modified alleles of Vglut2), and studied the amounts, architecture and diurnal variation of sleep-wake states during baseline conditions. We then activated the MCH neurons lacking glutamate neurotransmission using chemogenetic methods and tested whether these MCH neurons still promoted REMs. Our results indicate that glutamate in MCH neurons contributes to normal diurnal variability of REMs by regulating the levels of REMs during the dark period, but MCH neurons can promote REMs even in the absence of glutamate.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA.
| |
Collapse
|
23
|
Abstract
The regulated alternations between wakefulness and sleep states reflect complex behavioral processes, orchestrated by distinct neurochemical changes in brain parenchyma. No single neurotransmitter or neuromodulator controls the sleep-wake states in isolation. Rather, fine-tuned interactions within organized neuronal circuits regulate waking and sleep states and drive their transitions. Structural or functional dysregulation and medications interfering with these ensembles can lead to sleep-wake disorders and exert wanted or unwanted pharmacological actions on sleep-wake states. Knowledge of the neurochemical bases of sleep-wake states, which will be discussed in this article, provides the conceptual framework for understanding pharmacological effects on sleep and wake.
Collapse
Affiliation(s)
- Sebastian C Holst
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 28 Juliane Maries Vej 6931, Copenhagen 2100, Denmark.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017; 40:3059391. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complexity of the brain is yielding to technology. In the area of sleep neurobiology, conventional neuroscience tools such as lesions, cell recordings, c-Fos, and axon-tracing methodologies have been instrumental in identifying the complex and intermingled populations of sleep- and arousal-promoting neurons that orchestrate and generate wakefulness, NREM, and REM sleep. In the last decade, new technologies such as optogenetics, chemogenetics, and the CRISPR-Cas system have begun to transform how biologists understand the finer details associated with sleep-wake regulation. These additions to the neuroscience toolkit are helping to identify how discrete populations of brain cells function to trigger and shape the timing and transition into and out of different sleep-wake states, and how glia partner with neurons to regulate sleep. Here, we detail how some of the newest technologies are being applied to understand the neural circuits underlying sleep and wake.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Ralph H. Johnson Veterans Administration Medical Center, Research Service, Charleston, SC
| | - John H Peever
- Centre for Biological Timing and Cognition, Department Cell and Systems Biology, and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017; 27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavioral state whose regulation remains poorly understood. To identify genes that regulate vertebrate sleep, we recently performed a genetic screen in zebrafish, and here we report the identification of neuropeptide Y (NPY) as both necessary for normal daytime sleep duration and sufficient to promote sleep. We show that overexpression of NPY increases sleep, whereas mutation of npy or ablation of npy-expressing neurons decreases sleep. By analyzing sleep architecture, we show that NPY regulates sleep primarily by modulating the length of wake bouts. To determine how NPY regulates sleep, we tested for interactions with several systems known to regulate sleep, and provide anatomical, molecular, genetic, and pharmacological evidence that NPY promotes sleep by inhibiting noradrenergic signaling. These data establish NPY as an important vertebrate sleep/wake regulator and link NPY signaling to an established arousal-promoting system.
Collapse
|
26
|
Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. eLife 2017; 6:25727. [PMID: 29106375 PMCID: PMC5705210 DOI: 10.7554/elife.25727] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022] Open
Abstract
Sleep is an essential and phylogenetically conserved behavioral state, but it remains unclear to what extent genes identified in invertebrates also regulate vertebrate sleep. RFamide-related neuropeptides have been shown to promote invertebrate sleep, and here we report that the vertebrate hypothalamic RFamide neuropeptide VF (NPVF) regulates sleep in the zebrafish, a diurnal vertebrate. We found that NPVF signaling and npvf-expressing neurons are both necessary and sufficient to promote sleep, that mature peptides derived from the NPVF preproprotein promote sleep in a synergistic manner, and that stimulation of npvf-expressing neurons induces neuronal activity levels consistent with normal sleep. These results identify NPVF signaling and npvf-expressing neurons as a novel vertebrate sleep-promoting system and suggest that RFamide neuropeptides participate in an ancient and central aspect of sleep control.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Andrey Andreev
- Department of Bioengineering, University of Southern California, Los Angeles, United States
| | - Thai V Truong
- Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - Audrey Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Andrew J Hill
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Uyen Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Young K Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Steven Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Laura Glass
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Viveca Sapin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jae Engle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Scott E Fraser
- Department of Bioengineering, University of Southern California, Los Angeles, United States.,Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
27
|
Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017; 18:ijms18081773. [PMID: 28809797 PMCID: PMC5578162 DOI: 10.3390/ijms18081773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Modulation between sleep and wake states is controlled by a number of heterogeneous neuron populations. Due to the topological proximity and genetic co-localization of the neurons underlying sleep-wake state modulation optogenetic methods offer a significant improvement in the ability to benefit from both the precision of genetic targeting and millisecond temporal control. Beginning with an overview of the neuron populations mediating arousal, this review outlines the progress that has been made in the investigation of arousal circuits since the incorporation of optogenetic techniques and the first in vivo application of optogenetic stimulation in hypocretin neurons in the lateral hypothalamus. This overview is followed by a discussion of the future progress that can be made by incorporating more recent technological developments into the research of neural circuits.
Collapse
|
28
|
Xie Y, Kaufmann D, Moulton MJ, Panahi S, Gaynes JA, Watters HN, Zhou D, Xue HH, Fung CM, Levine EM, Letsou A, Brennan KC, Dorsky RI. Lef1-dependent hypothalamic neurogenesis inhibits anxiety. PLoS Biol 2017; 15:e2002257. [PMID: 28837622 PMCID: PMC5570277 DOI: 10.1371/journal.pbio.2002257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/21/2017] [Indexed: 11/19/2022] Open
Abstract
While innate behaviors are conserved throughout the animal kingdom, it is unknown whether common signaling pathways regulate the development of neuronal populations mediating these behaviors in diverse organisms. Here, we demonstrate that the Wnt/ß-catenin effector Lef1 is required for the differentiation of anxiolytic hypothalamic neurons in zebrafish and mice, although the identity of Lef1-dependent genes and neurons differ between these 2 species. We further show that zebrafish and Drosophila have common Lef1-dependent gene expression in their respective neuroendocrine organs, consistent with a conserved pathway that has diverged in the mouse. Finally, orthologs of Lef1-dependent genes from both zebrafish and mouse show highly correlated hypothalamic expression in marmosets and humans, suggesting co-regulation of 2 parallel anxiolytic pathways in primates. These findings demonstrate that during evolution, a transcription factor can act through multiple mechanisms to generate a common behavioral output, and that Lef1 regulates circuit development that is fundamentally important for mediating anxiety in a wide variety of animal species.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Dan Kaufmann
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew J. Moulton
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Samin Panahi
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - John A. Gaynes
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Harrison N. Watters
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Dingxi Zhou
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- School of Life Sciences, Peking University, Beijing, China
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - K. C. Brennan
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Richard I. Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
29
|
Silkis IG. Hypothetical neurochemical mechanisms of paradoxical sleep deficiency in Alzheimer’s disease. NEUROCHEM J+ 2017. [DOI: 10.1134/s181971241702012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Ferreira JGP, Bittencourt JC, Adamantidis A. Melanin-concentrating hormone and sleep. Curr Opin Neurobiol 2017; 44:152-158. [DOI: 10.1016/j.conb.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 01/11/2023]
|
31
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone as an Integrative Peptide Driving Motivated Behaviors. Front Syst Neurosci 2017; 11:32. [PMID: 28611599 PMCID: PMC5447028 DOI: 10.3389/fnsys.2017.00032] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is an important peptide implicated in the control of motivated behaviors. History, however, made this peptide first known for its participation in the control of skin pigmentation, from which its name derives. In addition to this peripheral role, MCH is strongly implicated in motivated behaviors, such as feeding, drinking, mating and, more recently, maternal behavior. It is suggested that MCH acts as an integrative peptide, converging sensory information and contributing to a general arousal of the organism. In this review, we will discuss the various aspects of energy homeostasis to which MCH has been associated to, focusing on the different inputs that feed the MCH peptidergic system with information regarding the homeostatic status of the organism and the exogenous sensory information that drives this system, as well as the outputs that allow MCH to act over a wide range of homeostatic and behavioral controls, highlighting the available morphological and hodological aspects that underlie these integrative actions. Besides the well-described role of MCH in feeding behavior, a prime example of hypothalamic-mediated integration, we will also examine those functions in which the participation of MCH has not yet been extensively characterized, including sexual, maternal, and defensive behaviors. We also evaluated the available data on the distribution of MCH and its function in the context of animals in their natural environment. Finally, we briefly comment on the evidence for MCH acting as a coordinator between different modalities of motivated behaviors, highlighting the most pressing open questions that are open for investigations and that could provide us with important insights about hypothalamic-dependent homeostatic integration.
Collapse
Affiliation(s)
- Giovanne B. Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Jackson C. Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
- Center for Neuroscience and Behavior, Institute of Psychology, University of São PauloSão Paulo, Brazil
| |
Collapse
|
32
|
Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res 2017; 118:74-81. [PMID: 28526553 DOI: 10.1016/j.neures.2017.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022]
Abstract
Sleep is one of the most important physiological functions in mammals. It is regulated by not only homeostatic regulation but also circadian clock. Several neuropeptide-producing neurons located in the hypothalamus are implicated in the regulation of sleep/wakefulness. Among them, orexin/hypocretin-producing neurons (orexin neurons) are a crucial component for maintenance of wakefulness, because lack of orexin function results in narcolepsy, which is a sleep disorder. Recent findings have identified substances that excite or inhibit neural activity of orexin neurons. Furthermore neural projections of the neurons which release these substances have been revealed. In addition to orexin, melanin concentrating hormone (MCH)-producing neurons in the lateral hypothalamic area (LHA) are also implicated in the regulation of sleep/wakefulness. MCH neurons are active during sleep but become silent during wakefulness. Recently developed innovative methods including optogenetics and pharmacogenetics have provided substantial insights into the regulation of sleep/wakefulness. In vivo optical recordings and retrograde and anterograde tracing methods will allow us to understand additional details regarding important interactions between these two types of neurons in the LHA and other neurons in the brain. Finally we discuss the circadian clock and sleep/wake cycle. Understanding of the neural networks and its circadian modulation of sleep/wake cycles remain to be investigated.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
33
|
Yamashita T, Yamanaka A. Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 2017; 44:94-100. [PMID: 28427008 DOI: 10.1016/j.conb.2017.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
Abstract
The lateral hypothalamic area (LHA) of the diencephalon is crucially involved in controlling instinctive behavior such as sleep-wake cycle and feeding behavior. LHA is a heterogeneous structure that contains spatially intermingled, genetically distinct cell populations. Among LHA neurons, orexin/hypocretin (OX) neuron is the key cell type that promotes waking, and specific loss of OX neurons results in narcolepsy. Melanin-concentrating hormone (MCH) containing neurons are known to be active during rapid eye movement (REM) sleep and stimulation of these neurons promotes REM sleep. Here we review the classical and more recent findings in this field and discuss the molecular and cellular network organization of LHA neurons that could ultimately regulate the switch between wakefulness and general states of sleep.
Collapse
Affiliation(s)
- Takayuki Yamashita
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
34
|
Narwade SC, Mallick BN, Deobagkar DD. Transcriptome Analysis Reveals Altered Expression of Memory and Neurotransmission Associated Genes in the REM Sleep Deprived Rat Brain. Front Mol Neurosci 2017; 10:67. [PMID: 28367113 PMCID: PMC5355427 DOI: 10.3389/fnmol.2017.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Sleep disorders are associated with cognitive impairment. Selective rapid eye movement sleep (REMS) deprivation (REMSD) alters several physiological processes and behaviors. By employing NGS platform we carried out transcriptomic analysis in brain samples of control rats and those exposed to REMSD. The expression of genes involved in chromatin assembly, methylation, learning, memory, regulation of synaptic transmission, neuronal plasticity and neurohypophysial hormone synthesis were altered. Increased transcription of BMP4, DBH and ATP1B2 genes after REMSD supports our earlier findings and hypothesis. Alteration in the transcripts encoding histone subtypes and important players in chromatin remodeling was observed. The mRNAs which transcribe neurotransmitters such as OXT, AVP, PMCH and LNPEP and two small non-coding RNAs, namely RMRP and BC1 were down regulated. At least some of these changes are likely to regulate REMS and may participate in the consequences of REMS loss. Thus, the findings of this study have identified key epigenetic regulators and neuronal plasticity genes associated to REMS and its loss. This analysis provides a background and opens up avenues for unraveling their specific roles in the complex behavioral network particularly in relation to sustained REMS-loss associated changes.
Collapse
Affiliation(s)
- Santosh C Narwade
- Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune University Pune, India
| | | | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune UniversityPune, India; Bioinformatics Center, Savitribai Phule Pune UniversityPune, India
| |
Collapse
|
35
|
Herrera CG, Ponomarenko A, Korotkova T, Burdakov D, Adamantidis A. Sleep & metabolism: The multitasking ability of lateral hypothalamic inhibitory circuitries. Front Neuroendocrinol 2017; 44:27-34. [PMID: 27884682 DOI: 10.1016/j.yfrne.2016.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 02/01/2023]
Abstract
The anatomical and functional mapping of lateral hypothalamic circuits has been limited by the numerous cell types and complex, yet unclear, connectivity. Recent advances in functional dissection of input-output neurons in the lateral hypothalamus have identified subset of inhibitory cells as crucial modulators of both sleep-wake states and metabolism. Here, we summarize these recent studies and discuss the multi-tasking functions of hypothalamic circuitries in integrating sleep and metabolism in the mammalian brain.
Collapse
Affiliation(s)
- Carolina Gutierrez Herrera
- Department of Neurology and Department of Clinical Research, Inselspital University Hospital, University of Bern, Bern, Switzerland; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Alexey Ponomarenko
- Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Tatiana Korotkova
- Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Denis Burdakov
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK; Department of Developmental Neurobiology, King's College London, London WC2R 2LS, UK
| | - Antoine Adamantidis
- Department of Neurology and Department of Clinical Research, Inselspital University Hospital, University of Bern, Bern, Switzerland; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
36
|
QRFP-Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety-Like Behavior. PLoS One 2016; 11:e0164716. [PMID: 27835635 PMCID: PMC5105951 DOI: 10.1371/journal.pone.0164716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
How the hypothalamus transmits hunger information to other brain regions to govern whole brain function to orchestrate feeding behavior has remained largely unknown. Our present study suggests the importance of a recently found lateral hypothalamic neuropeptide, QRFP, in this signaling. Qrfp-/- mice were hypophagic and lean, and exhibited increased anxiety-like behavior, and were hypoactive in novel circumstances as compared with wild type littermates. They also showed decreased wakefulness time in the early hours of the dark period. Histological studies suggested that QRFP neurons receive rich innervations from neurons in the arcuate nucleus which is a primary region for sensing the body’s metabolic state by detecting levels of leptin, ghrelin and glucose. These observations suggest that QRFP is an important mediator that acts as a downstream mediator of the arcuate nucleus and regulates feeding behavior, mood, wakefulness and activity.
Collapse
|
37
|
Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016; 44:2846-2857. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023]
Abstract
Neurons containing melanin-concentrating hormone (MCH) are located in the hypothalamus. In mice, optogenetic activation of the MCH neurons induces both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep at night, the normal wake-active period for nocturnal rodents [R. R. Konadhode et al. (2013) J. Neurosci., 33, 10257-10263]. Here we selectively activate these neurons in rats to test the validity of the sleep network hypothesis in another species. Channelrhodopsin-2 (ChR2) driven by the MCH promoter was selectively expressed by MCH neurons after injection of rAAV-MCHp-ChR2-EYFP into the hypothalamus of Long-Evans rats. An in vitro study confirmed that the optogenetic activation of MCH neurons faithfully triggered action potentials. In the second study, in Long-Evans rats, rAAV-MCH-ChR2, or the control vector, rAAV-MCH-EYFP, were delivered into the hypothalamus. Three weeks later, baseline sleep was recorded for 48 h without optogenetic stimulation (0 Hz). Subsequently, at the start of the lights-off cycle, the MCH neurons were stimulated at 5, 10, or 30 Hz (1 mW at tip; 1 min on - 4 min off) for 24 h. Sleep was recorded during the 24-h stimulation period. Optogenetic activation of MCH neurons increased both REM and NREM sleep at night, whereas during the day cycle, only REM sleep was increased. Delta power, an indicator of sleep intensity, was also increased. In control rats without ChR2, optogenetic stimulation did not increase sleep or delta power. These results lend further support to the view that sleep-active MCH neurons contribute to drive sleep in mammals.
Collapse
Affiliation(s)
- Carlos Blanco-Centurion
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Roda P Konadhode
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Xiaobing Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Dheeraj Pelluru
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | | | - Priyattam J Shiromani
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| |
Collapse
|
38
|
Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016; 336:102-113. [PMID: 27595887 DOI: 10.1016/j.neuroscience.2016.08.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022]
Abstract
Currently available evidence indicates that neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamus are critical modulators of sleep-wakefulness, but their precise role in this function is not clear. Studies employing optogenetic stimulation of MCH neurons have yielded inconsistent results, presumably due to differences in the optogenetic stimulation protocols, which do not approximate normal patterns of cell firing. In order to resolve this discrepancy, we (1) selectively activated the MCH neurons using a chemogenetic approach (Cre-dependent hM3Dq expression) and (2) selectively destroyed MCH neurons using a genetically targeted diphtheria toxin deletion method, and studied the changes in sleep-wake in mice. Our results indicate that selective activation of MCH neurons causes specific increases in rapid eye movement (REM) sleep without altering wake or non-REM (NREM) sleep. On the other hand, selective deletions of MCH neurons altered the diurnal rhythm of wake and REM sleep without altering their total amounts. These results indicate that activation of MCH neurons primarily drives REM sleep and their presence may be necessary for normal expression of diurnal variation of REM sleep and wake.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States.
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Programs of Neuroscience and Cellular, Molecular and Development Biology, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, United States
| | - Loris L Ferrari
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States
| | - Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
39
|
Abstract
UNLABELLED The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control. SIGNIFICANCE STATEMENT The hypothalamus is thought to play a key role in regulating sleep in vertebrate animals, but few sleep-promoting signaling pathways that function in the hypothalamus have been identified. Here we use the zebrafish, a diurnal vertebrate, to functionally and anatomically characterize the neuropeptide QRFP. We show that QRFP is exclusively expressed in a small number of neurons in the larval zebrafish hypothalamus that project widely in the brain. We also show that QRFP overexpression reduces locomotor activity, whereas animals that lack QRFP signaling are more active and sleep less. These results suggest that QRFP signaling participates in the hypothalamic regulation of sleep.
Collapse
|
40
|
Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2016; 2:71-84. [PMID: 31236496 PMCID: PMC6575582 DOI: 10.1016/j.nbscr.2016.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022] Open
Abstract
Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic brain injury (TBI), with increased sleep need and excessive daytime sleepiness often reported. Behavioral and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH), hypothalamic neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n=6-10/group) were implanted with EEG recording electrodes and baseline recordings were obtained. After baseline recordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n=6-8/group) were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased during the dark period in moderately injured animals. There were no differences between groups in REM sleep time, nor were there differences between groups in sleep during the light period. TBI effects on hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we conclude that moderate TBI in mice reduces wakefulness and increases NREM sleep during the dark period, effects that may be mediated by hypocretin-producing neurons and/or downstream cholinergic effectors in the basal forebrain.
Collapse
Affiliation(s)
- Hannah E Thomasy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Heidi Y Febinger
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Kristyn M Ringgold
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Carmelina Gemma
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Mark R Opp
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
41
|
Holst SC, Valomon A, Landolt HP. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy. Annu Rev Pharmacol Toxicol 2016; 56:577-603. [DOI: 10.1146/annurev-pharmtox-010715-103801] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian C. Holst
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Amandine Valomon
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| |
Collapse
|
42
|
Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015; 9:475. [PMID: 26733789 PMCID: PMC4681773 DOI: 10.3389/fnins.2015.00475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/26/2015] [Indexed: 12/05/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons of the lateral sector of the posterior hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, including areas such as the dorsal (DR) and median (MR) raphe nuclei, which are involved in the control of sleep and mood. Major Depression (MD) is a prevalent psychiatric disease diagnosed on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability, and anhedonia. A short REM sleep latency (i.e., the interval between sleep onset and the first REM sleep period), as well as an increase in the duration of REM sleep and the density of rapid-eye movements during this state, are considered important biological markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends to indicate that MCH plays a critical role in the generation and maintenance of sleep, especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes REM sleep, while immunoneutralization of this peptide within the DR decreases the time spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a depressive-like behavior. In the DR, this effect is prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline) and blocked by the intra-DR microinjection of a specific MCH receptor antagonist. Using electrophysiological and microdialysis techniques we demonstrated also that MCH decreases the activity of serotonergic DR neurons. Therefore, there are substantive experimental data suggesting that the MCHergic system plays a role in the control of REM sleep and, in addition, in the pathophysiology of depression. Consequently, in the present report, we summarize and evaluate the current data and hypotheses related to the role of MCH in REM sleep and MD.
Collapse
Affiliation(s)
- Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Patricia Lagos
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Jessika Urbanavicius
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Luciana Benedetto
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Claudia Pascovich
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Ximena López-Hill
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Michael H Chase
- WebSciences International and University of California, Los Angeles School of Medicine Los Angeles, CA, USA
| | - Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine, Hospital de Clínicas, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
43
|
Varin C, Arthaud S, Salvert D, Gay N, Libourel PA, Luppi PH, Léger L, Fort P. Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons. Behav Brain Res 2015; 298:100-10. [PMID: 26529469 DOI: 10.1016/j.bbr.2015.10.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 12/23/2022]
Abstract
Recent reports support a key role of tuberal hypothalamic neurons secreting melanin concentrating-hormone (MCH) in the promotion of Paradoxical Sleep (PS). Controversies remain concerning their concomitant involvement in Slow-Wave Sleep (SWS). We studied the effects of their selective loss achieved by an Ataxin 3-mediated ablation strategy to decipher the contribution of MCH neurons to SWS and/or PS. Polysomnographic recordings were performed on male adult transgenic mice expressing Ataxin-3 transgene within MCH neurons (MCH(Atax)) and their wild-type littermates (MCH(WT)) bred on two genetic backgrounds (FVB/N and C57BL/6). Compared to MCH(WT) mice, MCH(Atax) mice were characterized by a significant drop in MCH mRNAs (-70%), a partial loss of MCH-immunoreactive neurons (-30%) and a marked reduction in brain density of MCH-immunoreactive fibers. Under basal condition, such MCH(Atax) mice exhibited higher PS amounts during the light period and a pronounced SWS fragmentation without any modification of SWS quantities. Moreover, SWS and PS rebounds following 4-h total sleep deprivation were quantitatively similar in MCH(Atax)vs. MCH(WT) mice. Additionally, MCH(Atax) mice were unable to consolidate SWS and increase slow-wave activity (SWA) in response to this homeostatic challenge as observed in MCH(WT) littermates. Here, we show that the partial loss of MCH neurons is sufficient to disturb the fine-tuning of sleep. Our data provided new insights into their contribution to subtle process managing SWS quality and its efficiency rather than SWS quantities, as evidenced by the deleterious impact on two powerful markers of sleep depth, i.e., SWS consolidation/fragmentation and SWA intensity under basal condition and under high sleep pressure.
Collapse
Affiliation(s)
- Christophe Varin
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Arthaud
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Denise Salvert
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Nadine Gay
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Paul-Antoine Libourel
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Pierre-Hervé Luppi
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Lucienne Léger
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France.
| |
Collapse
|
44
|
Qiu MH, Chen MC, Lu J. Cortical neuronal activity does not regulate sleep homeostasis. Neuroscience 2015; 297:211-8. [PMID: 25864961 DOI: 10.1016/j.neuroscience.2015.03.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/08/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
Abstract
The neural substrate of sleep homeostasis is unclear, but both cortical and subcortical structures are thought to be involved in sleep regulation. To test whether prior neuronal activity in the cortex or in subcortical regions drives sleep rebound, we systemically administered atropine (100mg/kg) to rats, producing a dissociated state with slow-wave cortical electroencephalogram (EEG) but waking behavior (e.g. locomotion). Atropine injections during the light period produced 6h of slow-wave cortical EEG but also subcortical arousal. Afterward, rats showed a significant increase in non-rapid eye movement (NREM) sleep, compared to the same period on a baseline day. Consistent with the behavioral and cortical EEG state produced by systemic atropine, c-Fos expression was low in the cortex but high in multiple subcortical arousal systems. These data suggest that subcortical arousal and behavior are sufficient to drive sleep homeostasis, while a sleep-like pattern of cortical activity is not sufficient to satisfy sleep homeostasis.
Collapse
Affiliation(s)
- M-H Qiu
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology, School of Basic Medical Science, Fudan University, Shanghai 200032, China; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston 02115, USA.
| | - M C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston 02115, USA
| | - J Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston 02115, USA.
| |
Collapse
|
45
|
Abstract
Sleep and wake are fundamental behavioral states whose molecular regulation remains mysterious. Brain states and body functions change dramatically between sleep and wake, are regulated by circadian and homeostatic processes, and depend on the nutritional and emotional condition of the animal. Sleep-wake transitions require the coordination of several brain regions and engage multiple neurochemical systems, including neuropeptides. Neuropeptides serve two main functions in sleep-wake regulation. First, they represent physiological states such as energy level or stress in response to environmental and internal stimuli. Second, neuropeptides excite or inhibit their target neurons to induce, stabilize, or switch between sleep-wake states. Thus, neuropeptides integrate physiological subsystems such as circadian time, previous neuron usage, energy homeostasis, and stress and growth status to generate appropriate sleep-wake behaviors. We review the roles of more than 20 neuropeptides in sleep and wake to lay the foundation for future studies uncovering the mechanisms that underlie the initiation, maintenance, and exit of sleep and wake states.
Collapse
Affiliation(s)
- Constance Richter
- Department of Molecular and Cellular Biology, Center for Brain Science, Division of Sleep Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| | | | | |
Collapse
|
46
|
Abstract
Sleep is expressed as a circadian rhythm and the two phenomena exist in a poorly understood relationship. Light affects each, simultaneously influencing rhythm phase and rapidly inducing sleep. Light has long been known to modulate sleep, but recent discoveries support its use as an effective nocturnal stimulus for eliciting sleep in certain rodents. “Photosomnolence” is mediated by classical and ganglion cell photoreceptors and occurs despite the ongoing high levels of locomotion at the time of stimulus onset. Brief photic stimuli trigger rapid locomotor suppression, sleep, and a large drop in core body temperature (Tc; Phase 1), followed by a relatively fixed duration interval of sleep (Phase 2) and recovery (Phase 3) to pre-sleep activity levels. Additional light can lengthen Phase 2. Potential retinal pathways through which the sleep system might be light-activated are described and the potential roles of orexin (hypocretin) and melanin-concentrating hormone are discussed. The visual input route is a practical avenue to follow in pursuit of the neural circuitry and mechanisms governing sleep and arousal in small nocturnal mammals and the organizational principles may be similar in diurnal humans. Photosomnolence studies are likely to be particularly advantageous because the timing of sleep is largely under experimenter control. Sleep can now be effectively studied using uncomplicated, nonintrusive methods with behavior evaluation software tools; surgery for EEG electrode placement is avoidable. The research protocol for light-induced sleep is easily implemented and useful for assessing the effects of experimental manipulations on the sleep induction pathway. Moreover, the experimental designs and associated results benefit from a substantial amount of existing neuroanatomical and pharmacological literature that provides a solid framework guiding the conduct and interpretation of future investigations.
Collapse
|
47
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
48
|
Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2015; 8:244. [PMID: 25620917 PMCID: PMC4287014 DOI: 10.3389/fnsys.2014.00244] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/12/2014] [Indexed: 01/22/2023] Open
Abstract
Neurons containing orexin (hypocretin), or melanin concentrating hormone (MCH) are intermingled with each other in the perifornical and lateral hypothalamus. Each is a separate and distinct neuronal population, but they project to similar target areas in the brain. Orexin has been implicated in regulating arousal since loss of orexin neurons is associated with the sleep disorder narcolepsy. Microinjections of orexin into the brain or optogenetic stimulation of orexin neurons increase waking. Orexin neurons are active in waking and quiescent in sleep, which is consistent with their role in promoting waking. On the other hand, the MCH neurons are quiet in waking but active in sleep, suggesting that they could initiate sleep. Recently, for the first time the MCH neurons were stimulated optogenetically and it increased sleep. Indeed, optogenetic activation of MCH neurons induced sleep in both mice and rats at a circadian time when they should be awake, indicating the powerful effect that MCH neurons have in suppressing the wake-promoting effect of not only orexin but also of all of the other arousal neurotransmitters. Gamma-Aminobutyric acid (GABA) is coexpressed with MCH in the MCH neurons, although MCH is also inhibitory. The inhibitory tone of the MCH neurons is opposite to the excitatory tone of the orexin neurons. We hypothesize that strength in activity of each determines wake vs. sleep.
Collapse
Affiliation(s)
- Roda Rani Konadhode
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA
| | - Dheeraj Pelluru
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA
| | - Priyattam J Shiromani
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA ; Ralph H. Johnson VA Medical Center, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
49
|
Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 2014; 34:6896-909. [PMID: 24828644 DOI: 10.1523/jneurosci.5344-13.2014] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide produced in neurons sparsely distributed in the lateral hypothalamic area. Recent studies have reported that MCH neurons are active during rapid eye movement (REM) sleep, but their physiological role in the regulation of sleep/wakefulness is not fully understood. To determine the physiological role of MCH neurons, newly developed transgenic mouse strains that enable manipulation of the activity and fate of MCH neurons in vivo were generated using the recently developed knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction system. The activity of these cells was controlled by optogenetics by expressing channelrhodopsin2 (E123T/T159C) or archaerhodopsin-T in MCH neurons. Acute optogenetic activation of MCH neurons at 10 Hz induced transitions from non-REM (NREM) to REM sleep and increased REM sleep time in conjunction with decreased NREM sleep. Activation of MCH neurons while mice were in NREM sleep induced REM sleep, but activation during wakefulness was ineffective. Acute optogenetic silencing of MCH neurons using archaerhodopsin-T had no effect on any vigilance states. Temporally controlled ablation of MCH neurons by cell-specific expression of diphtheria toxin A increased wakefulness and decreased NREM sleep duration without affecting REM sleep. Together, these results indicate that acute activation of MCH neurons is sufficient, but not necessary, to trigger the transition from NREM to REM sleep and that MCH neurons also play a role in the initiation and maintenance of NREM sleep.
Collapse
|
50
|
De la Herrán-Arita AK, García-García F. Current and emerging options for the drug treatment of narcolepsy. Drugs 2014; 73:1771-81. [PMID: 24122734 DOI: 10.1007/s40265-013-0127-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Narcolepsy/hypocretin deficiency (now called type 1 narcolepsy) is a lifelong neurologic disorder with well-established diagnostic criteria and etiology. Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness (EDS) and symptoms of dissociated rapid eye movement sleep such as cataplexy (sudden loss of muscle tone), hypnagogic hallucinations (sensory events that occur at the transition from wakefulness to sleep), sleep paralysis (inability to perform movements upon wakening or sleep onset), and nocturnal sleep disruption. As these symptoms are often disabling, most patients need life-long treatment. The treatment of narcolepsy is well defined, and, traditionally, amphetamine-like stimulants (i.e., dopaminergic release enhancers) have been used for clinical management to improve EDS and sleep attacks, whereas tricyclic antidepressants have been used as anticataplectics. However, treatments have evolved to better-tolerated compounds such as modafinil or armodafinil (for EDS) and adrenergic/serotonergic selective reuptake inhibitors (as anticataplectics). In addition, night-time administration of a short-acting sedative, c-hydroxybutyrate (sodium oxybate), has been used for the treatment for EDS and cataplexy. These therapies are almost always needed in combination with non-pharmacologic treatments (i.e., behavioral modification). A series of new drugs is currently being tested in animal models and in humans. These include a wide variety of hypocretin agonists, melanin- concentrating hormone receptor antagonists, antigenspecific immunopharmacology, and histamine H3 receptor antagonists/inverse agonists (e.g., pitolisant), which have been proposed for specific therapeutic applications, including the treatment of Alzheimer's disease, attention-deficit hyperactivity disorder, epilepsy, and more recently, narcolepsy. Even though current treatment is strictly symptomatic, based on the present state of knowledge of the pathophysiology of narcolepsy, we expect that more pathophysiology-based treatments will be available in the near future.
Collapse
|