1
|
Jiang YQ, Chen QZ, Yang Y, Zang CX, Ma JW, Wang JR, Dong YR, Zhou N, Yang X, Li FF, Bao XQ, Zhang D. White matter lesions contribute to motor and non-motor disorders in Parkinson's disease: a critical review. GeroScience 2025; 47:591-609. [PMID: 39576561 PMCID: PMC11872850 DOI: 10.1007/s11357-024-01428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/08/2024] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease, characterized by movement disorders and non-motor symptoms like cognitive impairment and depression. Degeneration of dopaminergic neurons in the substantia nigra and Lewy bodies have long been considered as main neuropathological changes. However, recent magnetic resonance imaging (MRI) studies have shown that white matter lesions (WMLs) were present in PD patients. WMLs are characterized by loss or impairment of myelin sheath in central nerve fibers, which are closely correlated with motor and cognitive dysfunction in PD. WMLs alterations precede nigrostriatal neuronal losses and can independently affect the clinical severity or characteristics of motor coordination in PD patients. Currently, the exact mechanism of WMLs involvement in the occurrence and development of PD remains unclear. It is speculated that WMLs may participate in the pathogenesis of PD by disrupting important connections in brain or promoting axonal degeneration. In this review, we will discuss the pathological changes and mechanisms of WMLs, elaborate the impact of WMLs on the progression of PD, clarify the importance of WMLs in PD pathogenesis, and thus provide novel targets for PD treatments.
Collapse
Affiliation(s)
- Yue-Qi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Qiu-Zhu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Cai-Xia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Jing-Wei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Jin-Rong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Yi-Rong Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Ning Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Xing Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Fang-Fang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China.
| |
Collapse
|
2
|
Gill AJ, Smith MD, Galleguillos D, Garton T, Mace JW, Gadani SP, Kumar S, Pokharel A, Solem K, Potluri S, Hussein O, Rogines GS, Singh A, Clark A, Calabresi PA, Gharagozloo M. NLRX1 limits inflammatory neurodegeneration in the anterior visual pathway. J Neuroinflammation 2025; 22:21. [PMID: 39875919 PMCID: PMC11773851 DOI: 10.1186/s12974-025-03339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1-/- and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1-/- mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models. To minimize the effects of Nlrx1-/- on peripheral lymphocyte priming during EAE, we performed adoptive transfer experiments, in which activated myelin-specific T cells were transferred into lymphocyte-deficient Rag-/- or Nlrx1-/-Rag-/- mice. In this model, we found more severe microgliosis and astrogliosis in the optic nerve of Nlrx1-/-Rag-/- mice compared to Rag-/- mice, suggesting a regulatory role of NLRX1 in innate immune cells. Transcriptome analysis in primary astrocytes activated with LPS and IFNγ demonstrated that NLRX1 suppresses NF-κB activation and regulates mitochondrial oxidative phosphorylation in inflammatory reactive astrocytes. The novel pharmacologic NLRX1 activators NX-13 and LABP-66 decreased LPS-mediated gene expression of inflammatory cytokines and chemokines in mixed glial cultures. Moreover, treating EAE mice with oral LABP-66, compared to vehicle, after the onset of paralysis resulted in less anterior visual pathway neurodegeneration. These data suggest that pharmacologic NLRX1 activators have the potential to limit inflammatory neurodegeneration. This study highlights that NLRX1 could serve as a promising target for neuroprotection in progressive MS and other neurodegenerative diseases. Further studies are needed to better understand the cell-specific mechanisms underlying the neuroprotective role of NLRX1 in response to inflammation in the CNS.
Collapse
Affiliation(s)
- Alexander J Gill
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Danny Galleguillos
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Thomas Garton
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jackson W Mace
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sachin P Gadani
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Swati Kumar
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Aayush Pokharel
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Krista Solem
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Saahith Potluri
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Omar Hussein
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Giuliana Sardi Rogines
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Arihant Singh
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Annatje Clark
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Marjan Gharagozloo
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Miguel-Hidalgo JJ, Pang Y. Primary Central Nervous System (CNS) Cultures with Mixed Neural Cell Types to Study Correlative Effects of High Glucocorticoids on Astrocytes, Oligodendrocytes, and Myelination Markers. Methods Mol Biol 2025; 2896:95-106. [PMID: 40111599 DOI: 10.1007/978-1-0716-4366-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Dissociated glial and neuronal precursors from the spinal cord or cerebral cortex of late rat embryos are cultured on top of glass coverslips to ascertain the in vitro effects of high glucocorticoid levels on the process of myelination and on astrocyte markers during postnatal development and determine the dependence of those effects on glucocorticoid receptor activation. The study includes the immunohistochemical processing of culture-carrying coverslips with antibodies to astrocytic, neuronal, oligodendroglial, and myelin proteins to determine changes in those markers after glucocorticoid treatment. In addition, we describe oligodendrocyte-astrocyte cultures from neonatal embryos to determine the effects of high glucocorticoids on the morphology of oligodendrocytes in the absence of developing neurons.
Collapse
Affiliation(s)
- José J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
4
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
5
|
Waddell J, Lin S, Carter K, Truong T, Hebert M, Ojeda N, Fan LW, Bhatt A, Pang Y. Early Postnatal Neuroinflammation Produces Key Features of Diffuse Brain White Matter Injury in Rats. Brain Sci 2024; 14:976. [PMID: 39451991 PMCID: PMC11505921 DOI: 10.3390/brainsci14100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Perinatal infection is a major risk factor for diffuse white matter injury (dWMI), which remains the most common form of neurological disability among very preterm infants. The disease primarily targets oligodendrocytes (OL) lineage cells in the white matter but also involves injury and/or dysmaturation of neurons of the gray matter. This study aimed to investigate whether neuroinflammation preferentially affects the cellular compositions of the white matter or gray matter. METHOD Neuroinflammation was initiated by intracerebral administration of lipopolysaccharide (LPS) to rat pups at postnatal (P) day 5, and neurobiological and behavioral outcomes were assessed between P6 and P21. RESULTS LPS challenge rapidly activates microglia and astrocytes, which is associated with the inhibition of OL and neuron differentiation leading to myelination deficits. Specifically, neuroinflammation reduces the immature OLs but not progenitors and causes acute axonal injury (β-amyloid precursor protein immunopositivity) and impaired dendritic maturation (reduced MAP2+ neural fiber density) in the cortical area at P7. Neuroinflammation also reduces the expression of doublecortin in the hippocampus, suggesting compromise in neurogenesis. Utilizing a battery of behavioral assessments, we found that LPS-exposed animals exhibited deficits in sensorimotor, neuromuscular, and cognitive domains. CONCLUSION Our overall results indicate that neuroinflammation alone in the early postnatal period can produce cardinal neuropathological features of dWMI.
Collapse
Affiliation(s)
- John Waddell
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Shuying Lin
- Department of Physical Therapy, School of Health-Related Professionals, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Kathleen Carter
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Tina Truong
- Undergraduate Summer Research Program, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.T.)
| | - May Hebert
- Undergraduate Summer Research Program, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.T.)
| | - Norma Ojeda
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Lir-Wan Fan
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Abhay Bhatt
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| | - Yi Pang
- Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.); (K.C.); (N.O.); (L.-W.F.); (A.B.)
| |
Collapse
|
6
|
Louie AY, Drnevich J, Johnson JL, Woodard M, Kukekova AV, Johnson RW, Steelman AJ. Respiratory infection with influenza A virus delays remyelination and alters oligodendrocyte metabolism. iScience 2024; 27:110464. [PMID: 39104416 PMCID: PMC11298649 DOI: 10.1016/j.isci.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Peripheral viral infection disrupts oligodendrocyte (OL) homeostasis such that endogenous remyelination may be affected. Here, we demonstrate that influenza A virus infection perpetuated a demyelination- and disease-associated OL phenotype following cuprizone-induced demyelination that resulted in delayed OL maturation and remyelination in the prefrontal cortex. Furthermore, we assessed cellular metabolism ex vivo, and found that infection altered brain OL and microglia metabolism in a manner that opposed the metabolic profile induced by remyelination. Specifically, infection increased glycolytic capacity of OLs and microglia, an effect that was recapitulated by lipopolysaccharide (LPS) stimulation of mixed glia cultures. In contrast, mitochondrial dependence was increased in OLs during remyelination, which was similarly observed in OLs of myelinating P14 mice compared to adult and aged mice. Collectively, our data indicate that respiratory viral infection is capable of suppressing remyelination, and suggest that metabolic dysfunction of OLs is implicated in remyelination impairment.
Collapse
Affiliation(s)
- Allison Y. Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Meagan Woodard
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anna V. Kukekova
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rodney W. Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J. Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Yadav P, Jahan S, Nisar KS. Analysis of fractal-fractional Alzheimer's disease mathematical model in sense of Caputo derivative. AIMS Public Health 2024; 11:399-419. [PMID: 39027396 PMCID: PMC11252576 DOI: 10.3934/publichealth.2024020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
Alzheimer's disease stands as one of the most widespread neurodegenerative conditions associated with aging, giving rise to dementia and posing significant public health challenges. Mathematical models are considered as valuable tools to gain insights into the mechanisms underlying the onset, progression, and potential therapeutic approaches for AD. In this paper, we introduce a mathematical model for AD that employs the fractal fractional operator in the Caputo sense to characterize the temporal dynamics of key cell populations. This model encompasses essential elements, including amyloid-β ($\mathbb{ A_\beta }$), neurons, astroglia and microglia. Using the fractal fractional operator, we have established the existence and uniqueness of solutions for the model under consideration, employing Leray-Schaefer's theorem and the Banach fixed-point methods. Utilizing functional techniques, we have analyzed the proposed model stability under the Ulam-Hyers condition. The suggested model has been numerically simulated by using a fractional Adams-Bashforth approach, which involves a two-step Lagrange polynomial. For numerical simulations, different ranges of fractional order values and fractal dimensions are considered. This new fractal fractional operator in the form of the Caputo derivative was determined to yield better results than an ordinary integer order. Various outcomes are shown graphically by for different fractal dimensions and arbitrary orders.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Mathematics, Central University of Haryana, Mohindergarh-123031, India
| | - Shah Jahan
- Department of Mathematics, Central University of Haryana, Mohindergarh-123031, India
| | - Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
- Saveetha School of Engineering, SIMATS, Chennai, India
| |
Collapse
|
8
|
Harry GJ. Microglia Colonization Associated with Angiogenesis and Neural Cell Development. ADVANCES IN NEUROBIOLOGY 2024; 37:163-178. [PMID: 39207692 DOI: 10.1007/978-3-031-55529-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The temporal and spatial pattern of microglia colonization of the nervous system implies a role in early stages of organ development including cell proliferation, differentiation, and neurovascularization. As microglia colonize and establish within the developing nervous system, they assume a neural-specific identity and contribute to key developmental events. Their association around blood vessels implicates them in development of the vascular system or vice versa. A similar association has been reported for neural cell proliferation and associated phenotypic shifts and for cell fate differentiation to neuronal or glial phenotypes. These processes are accomplished by phagocytic activities, cell-cell contact relationships, and secretion of various factors. This chapter will present data currently available from studies evaluating the dynamic and interactive nature of these processes throughout the progression of nervous system development.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
10
|
Hu X, Geng P, Zhao X, Wang Q, Liu C, Guo C, Dong W, Jin X. The NG2-glia is a potential target to maintain the integrity of neurovascular unit after acute ischemic stroke. Neurobiol Dis 2023; 180:106076. [PMID: 36921779 DOI: 10.1016/j.nbd.2023.106076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The neurovascular unit (NVU) plays a critical role in health and disease. In the current review, we discuss the critical role of a class of neural/glial antigen 2 (NG2)-expressing glial cells (NG2-glia) in regulating NVU after acute ischemic stroke (AIS). We first introduce the role of NG2-glia in the formation of NVU during development as well as aging-induced damage to NVU and accompanying NG2-glia change. We then discuss the reciprocal interactions between NG2-glia and the other component cells of NVU, emphasizing the factors that could influence NG2-glia. Damage to the NVU integrity is the pathological basis of edema and hemorrhagic transformation, the most dreaded complication after AIS. The role of NG2-glia in AIS-induced NVU damage and the effect of NG2-glia transplantation on AIS-induced NVU damage are summarized. We next discuss the role of NG2-glia and the effect of NG2-glia transplantation in oligodendrogenesis and white matter repair as well as angiogenesis which is associated with the outcome of the patients after AIS. Finally, we review the current strategies to promote NG2-glia proliferation and differentiation and propose to use the dental pulp stem cells (DPSC)-derived exosome as a promising strategy to reduce AIS-induced injury and promote repair through maintaining the integrity of NVU by regulating endogenous NG2-glia proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyun Zhao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Changqing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Wen Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
11
|
Grassi S, Cabitta L, Prioni S, Mauri L, Ciampa MG, Yokoyama N, Iwabuchi K, Zorina Y, Prinetti A. Identification of the Lipid Antigens Recognized by rHIgM22, a Remyelination-Promoting Antibody. Neurochem Res 2023; 48:1783-1797. [PMID: 36695984 DOI: 10.1007/s11064-023-03859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Failure of the immune system to discriminate myelin components from foreign antigens plays a critical role in the pathophysiology of multiple sclerosis. In fact, the appearance of anti-myelin autoantibodies, targeting both proteins and glycolipids, is often responsible for functional alterations in myelin-producing cells in this disease. Nevertheless, some of these antibodies were reported to be beneficial for remyelination. Recombinant human IgM22 (rHIgM22) binds to myelin and to the surface of O4-positive oligodendrocytes, and promotes remyelination in mouse models of chronic demyelination. Interestingly, the identity of the antigen recognized by this antibody remains to be elucidated. The preferential binding of rHIgM22 to sulfatide-positive cells or tissues suggests that sulfatide might be part of the antigen pattern recognized by the antibody, however, cell populations lacking sulfatide expression are also responsive to rHIgM22. Thus, we assessed the binding of rHIgM22 in vitro to purified lipids and lipid extracts from various sources to identify the antigen(s) recognized by this antibody. Our results show that rHIgM22 is indeed able to bind both sulfatide and its deacylated form, whereas no significant binding for other myelin sphingolipids has been detected. Remarkably, binding of rHIgM22 to sulfatide in lipid monolayers can be positively or negatively regulated by the presence of other lipids. Moreover, rHIgM22 also binds to phosphatidylinositol, phosphatidylserine and phosphatidic acid, suggesting that not only sulfatide, but also other membrane lipids might play a role in the binding of rHIgM22 to oligodendrocytes and to other cell types not expressing sulfatide.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy.
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| | - Noriko Yokoyama
- Institute for Environmental and Gender Specific Medicine, Graduate School of Medicine, Juntendo University, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine, Graduate School of Medicine, Juntendo University, Urayasu, Chiba, Japan
| | | | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Segrate, 20090, Milan, Italy
| |
Collapse
|
12
|
Lacalle-Aurioles M, Iturria-Medina Y. Fornix degeneration in risk factors of Alzheimer's disease, possible trigger of cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100158. [PMID: 36703699 PMCID: PMC9871745 DOI: 10.1016/j.cccb.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Risk factors of late-onset Alzheimer's disease (AD) such as aging, type 2 diabetes, obesity, heart failure, and traumatic brain injury can facilitate the appearance of cognitive decline and dementia by triggering cerebrovascular pathology and neuroinflammation. White matter (WM) microstructure and function are especially vulnerable to these conditions. Microstructural WM changes, assessed with diffusion weighted magnetic resonance imaging, can already be detected at preclinical stages of AD, and in the presence of the aforementioned risk factors. Particularly, the limbic system and cortico-cortical association WM tracts, which myelinate late during brain development, degenerate at the earliest stages. The fornix, a C-shaped WM tract that originates from the hippocampus, is one of the limbic tracts that shows early microstructural changes. Fornix integrity is necessary for ensuring an intact executive function and memory performance. Thus, a better understanding of the mechanisms that cause fornix degeneration is critical in the development of therapeutic strategies aiming to prevent cognitive decline in populations at risk. In this literature review, i) we deepen the idea that partial loss of forniceal integrity is an early event in AD, ii) we describe the role that common risk factors of AD can play in the degeneration of the fornix, and iii) we discuss some potential cellular and physiological mechanisms of WM degeneration in the scenario of cerebrovascular disease and inflammation.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Corresponding author at: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada,McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| |
Collapse
|
13
|
Cheng Y, Cao P, Geng C, Chu X, Li Y, Cui J. The adenosine A (2A) receptor antagonist SCH58261 protects photoreceptors by inhibiting microglial activation and the inflammatory response. Int Immunopharmacol 2022; 112:109245. [PMID: 36150227 DOI: 10.1016/j.intimp.2022.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Photoreceptor degeneration is a principal event in a variety of human retinal diseases. Progressive apoptosis of photoreceptors leads to impaired vision and blindness, for which there is no curative treatment. Adenosine 2A receptors (A2AR) are expressed in microglia. Blockade of A2AR has been shown to protect neurons via suppression of inflammation. However, the therapeutic effects of A2AR antagonists on photoreceptor degeneration have not been characterized. In this study, adult zebrafish were exposed to short term high-intensity light to induce photoreceptor death. SCH58261, a selective A2AR antagonist, was immediately injected into the vitreous body. Photoreceptor degeneration and microglia-induced inflammation were evaluated using immunohistochemistry, quantitative real-time polymerase chain reaction, polarization sensitive optical coherence tomography, and optomotor response. Co-culture of BV2 and 661W cells was used to investigate the interaction between microglia and photoreceptors. The results showed that A2AR was over-expressed during photoreceptor degeneration. Following intraocular SCH58261 injection, microglial activation and release of inflammatory factors were inhibited, and photoreceptor survival increased. Inactivation of microglia prevented apoptosis and autophagy in photoreceptors. Our results showed that SCH58261 intervention at the early stage of photoreceptor degeneration protected photoreceptors through inhibition of the inflammatory response, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Yajia Cheng
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China; Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Peipei Cao
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China
| | - Chao Geng
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China
| | - Xiaoqi Chu
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China
| | - Yuhao Li
- Beijing Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jianlin Cui
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China.
| |
Collapse
|
14
|
Lee GA, Zhao HW, Chang YW, Lee CJ, Yang YCSH, Wu YC, Lin WL, Liu YR, Ning DS, Tseng SH. KI Essence extract (a spleen-tonifying formula) promotes neurite outgrowth, alleviates oxidative stress and hypomyelination, and modulates microbiome in maternal immune activation offspring. Front Pharmacol 2022; 13:964255. [PMID: 36091751 PMCID: PMC9453593 DOI: 10.3389/fphar.2022.964255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Mushrooms and Chinese traditional herbs have bioactive nutraceuticals with multiple therapeutic functions, including antioxidant and antibacterial activities and microbiome modulation properties. Mushroom-derived bioactive compounds are used in medicines for the treatment of neurological disorders with abnormal brain–gut–microbiome axis. This study examined the effects of KI Essence extract, a spleen-tonifying formula, on neurite growth, antioxidant activity, hypomyelination modulation, and the microbiome profile in lipopolysaccharide (LPS)-induced maternal immune activation (MIA) offspring. The KI Essence extract induced PC12 cell neurite growth by increasing extracellular signal–regulated kinase (ERK) phosphorylation, promoting 2,2′-diphenyl-1-picrylhydrazyl radical scavenging activity, reducing the level of tert-butylhydroperoxide–induced lipid peroxidation in brain homogenates, protecting PC12 cells from H2O2-induced cell death (through the inhibition of ERK phosphorylation), alleviating hypomyelination, and downregulating interleukin‐1β through LPS-activated microglia production; moreover, the numbers of Enterobacteriaceae, Actinobacteria, Peptostreptococcaceae, Erysipelotrichaceae, and Bifidobacterium bacteria in MIA offspring increased. In summary, the KI Essence extract promotes neurite outgrowth, alleviates oxidative stress and hypomyelination, and modulates microbiota dysbiosis in MIA offspring.
Collapse
Affiliation(s)
- Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Child Development Research Center, Taipei Medical University Hospital,, Taipei, Taiwan
| | - Hong-Wei Zhao
- Infinitus (China) Company Ltd, Guangzhou, Guangdong, China
| | - Yu-Wei Chang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Jung Lee
- PhD Program for Clinical Drug Discovery of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy Science, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chieh Wu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wan-Li Lin
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - De-Shan Ning
- Infinitus (China) Company Ltd, Guangzhou, Guangdong, China
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
- *Correspondence: Sung-Hui Tseng,
| |
Collapse
|
15
|
Favrais G, Bokobza C, Saliba E, Chalon S, Gressens P. Alteration of the Oligodendrocyte Lineage Varies According to the Systemic Inflammatory Stimulus in Animal Models That Mimic the Encephalopathy of Prematurity. Front Physiol 2022; 13:881674. [PMID: 35928559 PMCID: PMC9343871 DOI: 10.3389/fphys.2022.881674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth before the gestational age of 32 weeks is associated with the occurrence of specific white matter damage (WMD) that can compromise the neurological outcome. These white matter abnormalities are embedded in more global brain damage defining the encephalopathy of prematurity (EoP). A global reduction in white matter volume that corresponds to chronic diffuse WMD is the most frequent form in contemporary cohorts of very preterm infants. This WMD partly results from alterations of the oligodendrocyte (OL) lineage during the vulnerability window preceding the beginning of brain myelination. The occurrence of prenatal, perinatal and postnatal events in addition to preterm birth is related to the intensity of WMD. Systemic inflammation is widely recognised as a risk factor of WMD in humans and in animal models. This review reports the OL lineage alterations associated with the WMD observed in infants suffering from EoP and emphasizes the role of systemic inflammation in inducing these alterations. This issue is addressed through data on human tissue and imaging, and through neonatal animal models that use systemic inflammation to induce WMD. Interestingly, the OL lineage damage varies according to the inflammatory stimulus, i.e., the liposaccharide portion of the E.Coli membrane (LPS) or the proinflammatory cytokine Interleukin-1β (IL-1β). This discrepancy reveals multiple cellular pathways inducible by inflammation that result in EoP. Variable long-term consequences on the white matter morphology and functioning may be speculated upon according to the intensity of the inflammatory challenge. This hypothesis emerges from this review and requires further exploration.
Collapse
Affiliation(s)
- Geraldine Favrais
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- Neonatology Unit, CHRU de Tours, Tours, France
- *Correspondence: Geraldine Favrais,
| | - Cindy Bokobza
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
| | - Elie Saliba
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | | |
Collapse
|
16
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
17
|
Guerriero C, Puliatti G, Di Marino T, Tata AM. Effects Mediated by Dimethyl Fumarate on In Vitro Oligodendrocytes: Implications in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23073615. [PMID: 35408975 PMCID: PMC8998768 DOI: 10.3390/ijms23073615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Dimethyl fumarate (DMF) is a drug currently in use in oral therapy for the treatment of relapsing-remitting multiple sclerosis (RRMS) due to its immunomodulatory and neuroprotective effects. The mechanisms by which DMF exerts its therapeutic effects in MS and in particular its influence on the oligodendrocytes (OLs) survival or differentiation have not yet been fully understood. Methods: Characterization of Oli neu cells was performed by immunocytochemistry and RT-PCR. The effect of DMF on cell proliferation and morphology was assessed by MTT assay, trypan blue staining, RT-PCR and Western blot analysis. The antioxidant and anti-inflammatory properties of DMF were analysed by ROS detection through DCFDA staining and lipid content analysis by Oil Red O staining and TLC. Results: DMF has been observed to induce a slowdown of cell proliferation, favoring the oligodendrocyte lineage cells (OLCs) differentiation. DMF has an antioxidant effect and is able to modify the lipid content even after the LPS-mediated inflammatory stimulus in Oli neu cells. Conclusions: The results obtained confirm that DMF has anti-inflammatory and antioxidant effects also on Oli neu cells. Interestingly, it appears to promote the OLCs differentiation towards mature and potentially myelinating cells.
Collapse
Affiliation(s)
- Claudia Guerriero
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (C.G.); (G.P.); (T.D.M.)
| | - Giulia Puliatti
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (C.G.); (G.P.); (T.D.M.)
| | - Tamara Di Marino
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (C.G.); (G.P.); (T.D.M.)
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (C.G.); (G.P.); (T.D.M.)
- Research Centre of Neurobiology Daniel Bovet, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Pierre WC, Londono I, Quiniou C, Chemtob S, Lodygensky GA. Modulatory effect of IL‐1 inhibition following lipopolysaccharide‐induced neuroinflammation in neonatal microglia and astrocytes. Int J Dev Neurosci 2022; 82:243-260. [DOI: 10.1002/jdn.10179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wyston C. Pierre
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| | - Irène Londono
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Christiane Quiniou
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Sylvain Chemtob
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
- Department of Pharmacology and Therapeutics McGill University Montréal Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| |
Collapse
|
19
|
Lipopolysaccharide-Induced Strain-Specific Differences in Neuroinflammation and MHC-I Pathway Regulation in the Brains of Bl6 and 129Sv Mice. Cells 2022; 11:cells11061032. [PMID: 35326484 PMCID: PMC8946912 DOI: 10.3390/cells11061032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Many studies have demonstrated significant mouse-strain-specific differences in behavior and response to pathogenic and pharmacological agents. This study seeks to characterize possible differences in microglia activation and overall severity of neuroinflammation in two widely used mouse strains, C57BL/6NTac (Bl6) and 129S6/SvEvTac (129Sv), in response to acute lipopolysaccharide (LPS) administration. Locomotor activity within the open field arena revealed similar 24 h motor activity decline in both strains. Both strains also exhibited significant bodyweight loss due to LPS treatment, although it was more severe in the Bl6 strain. Furthermore, LPS induced a hypothermic response in Bl6 mice, which was not seen in 129Sv. We found that 24 h LPS challenge significantly increased the inflammatory status of microglia in 129Sv mice. On the other hand, we observed that, under physiological conditions, microglia of Bl6 seemed to be in a higher immune-alert state. Gene and protein expression analysis revealed that LPS induces a significantly stronger upregulation of MHC-I-pathway-related components in the brain of Bl6 compared to 129Sv mice. The most striking difference was detected in the olfactory bulb, where we observed significant LPS-induced upregulation of MHC-I pathway components in Bl6 mice, whereas no alterations were observed in 129Sv. We observed significant positive correlations between bodyweight decline and expressions of MHC-I components in the olfactory bulbs of Bl6 mice and the frontal cortex of 129Sv, highlighting different brain regions most affected by LPS in these strains. Our findings suggest that the brains of Bl6 mice exist in a more immunocompetent state compared to 129Sv mice.
Collapse
|
20
|
Liu L, Fang L, Duan B, Wang Y, Cui Z, Yang L, Wu D. Multi-Hit White Matter Injury-Induced Cerebral Palsy Model Established by Perinatal Lipopolysaccharide Injection. Front Pediatr 2022; 10:867410. [PMID: 35733809 PMCID: PMC9207278 DOI: 10.3389/fped.2022.867410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral palsy (CP) is a group of permanent, but not unchanging, disorders of movement and/or posture and motor function. Since the major brain injury associated with CP is white matter injury (WMI), especially, in preterm infants, we established a "multi-hit" rat model to mimic human WMI in symptomatology and at a histological level. In our WMI model, pups suffering from limb paresis, incoordination, and direction difficulties fit the performance of CP. Histologically, they present with fewer neural cells, inordinate fibers, and more inflammatory cell infiltration, compared to the control group. From the electron microscopy results, we spotted neuronal apoptosis, glial activation, and myelination delay. Besides, the abundant appearance of IBA1-labeled microglia also implied that microglia play a role during neuronal cell injury. After activation, microglia shift between the pro-inflammatory M1 type and the anti-inflammatory M2 type. The results showed that LPS/infection stimulated IBA1 + (marked activated microglia) expression, downregulated CD11c + (marked M1 phenotype), and upregulated Arg 1 + (marked M2 phenotype) protein expression. It indicated an M1 to M2 transition after multiple infections. In summary, we established a "multi-hit" WMI-induced CP rat model and demonstrated that the microglial activation correlates tightly with CP formation, which may become a potential target for future studies.
Collapse
Affiliation(s)
- Le Liu
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Pediatrics, Maternal and Child Health Hospital, The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liwei Fang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Boyang Duan
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhen Cui
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Luan W, Qi X, Liang F, Zhang X, Jin Z, Shi L, Luo B, Dai X. Microglia Impede Oligodendrocyte Generation in Aged Brain. J Inflamm Res 2021; 14:6813-6831. [PMID: 34924766 PMCID: PMC8674668 DOI: 10.2147/jir.s338242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose Age-related increase in myelin loss may be responsible for brain atrophy, and the mechanism is not completely understood. We aim to comprehensively delineate oligodendrocyte heterogeneity in young and aged mice and to reveal the underlying mechanism for myelin loss during aging. Methods Diffusion tensor imaging and immunofluorescent staining were performed to verify the demyelination in the aged brains of both rodents and human. Further, the single-cell RNA sequencing data of all brain cells from young and aged mice were deeply analyzed to identify the subsets of oligodendrocyte lineage cells. Cell-to-cell interaction analysis was performed to detect the mechanism of observed changes in oligodendrocyte generation. Results Oligodendrocytes were observed to up-regulate several senescence associated genes in aged brain. Four clusters of oligodendrocyte precursor cells (OPCs) were identified in both young and aged brains. The number of those OPCs in basal state was significantly increased, while the OPCs in the procedure of differentiation were immensely decreased in aged brain. Furthermore, it was identified that activated microglia in the aged brain released inflammatory factors to suppress OPC differentiation. Stat1 might be a potential target to transform senescent microglia into tissue repair type to promote oligodendrocyte generation. Conclusion These results provided a perspective on how age activated microglia could impede remyelination and might give a new therapeutic target for age-related remyelinating diseases.
Collapse
Affiliation(s)
- Weimin Luan
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiqian Qi
- Department of Neurology, Ningbo Municipal Hospital of T.C.M., Ningbo, Zhejiang, People's Republic of China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaotao Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ziyang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuejiao Dai
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Ahn JH, Lee HJ, Lee K, Lim J, Hwang JK, Kim CR, Kim HA, Kim HS, Park HK. Effects of Lipopolysaccharide on Oligodendrocyte Differentiation at Different Developmental Stages: an In Vitro Study. J Korean Med Sci 2021; 36:e332. [PMID: 34931496 PMCID: PMC8688345 DOI: 10.3346/jkms.2021.36.e332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) exerts cytotoxic effects on brain cells, especially on those belonging to the oligodendrocyte lineage, in preterm infants. The susceptibility of oligodendrocyte lineage cells to LPS-induced inflammation is dependent on the developmental stage. This study aimed to investigate the effect of LPS on oligodendrocyte lineage cells at different developmental stages in a microglial cell and oligodendrocyte co-culture model. METHODS The primary cultures of oligodendrocytes and microglia cells were prepared from the forebrains of 2-day-old Sprague-Dawley rats. The oligodendrocyte progenitor cells (OPCs) co-cultured with microglial cells were treated with 0 (control), 0.01, 0.1, and 1 µg/mL LPS at the D3 stage to determine the dose of LPS that impairs oligodendrocyte differentiation. The co-culture was treated with 0.01 µg/mL LPS, which was the lowest dose that did not impair oligodendrocyte differentiation, at the developmental stages D1 (early LPS group), D3 (late LPS group), or D1 and D3 (double LPS group). On day 7 of differentiation, oligodendrocytes were subjected to neural glial antigen 2 (NG2) and myelin basic protein (MBP) immunostaining to examine the number of OPCs and mature oligodendrocytes, respectively. RESULTS LPS dose-dependently decreased the proportion of mature oligodendrocytes (MBP+ cells) relative to the total number of cells. The number of MBP+ cells in the early LPS group was significantly lower than that in the late LPS group. Compared with those in the control group, the MBP+ cell numbers were significantly lower and the NG2+ cell numbers were significantly higher in the double LPS group, which exhibited impaired oligodendrocyte lineage cell development, on day 7 of differentiation. CONCLUSION Repetitive LPS stimulation during development significantly inhibited brain cell development by impairing oligodendrocyte differentiation. In contrast, brain cell development was not affected in the late LPS group. These findings suggest that inflammation at the early developmental stage of oligodendrocytes increases the susceptibility of the preterm brain to inflammation-induced injury.
Collapse
Affiliation(s)
- Ja-Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeongmi Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea
| | - Jean Lim
- Kangwon National University College of Veterinary Medicine, Chuncheon, Korea
| | - Jae Kyoon Hwang
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, Korea
| | - Chang-Ryul Kim
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, Korea
| | - Hyun A Kim
- Department of Child Psychotherapy, Hanyang University Graduate School of Medicine, Seoul, Korea
| | - Han-Suk Kim
- Department of Pediatrics, Seoul University College of Medicine, Seoul, Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Favrais G, Saliba E, Savary L, Bodard S, Gulhan Z, Gressens P, Chalon S. Partial protective effects of melatonin on developing brain in a rat model of chorioamnionitis. Sci Rep 2021; 11:22167. [PMID: 34773065 PMCID: PMC8589852 DOI: 10.1038/s41598-021-01746-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Melatonin has shown promising neuroprotective effects due to its anti-oxidant, anti-inflammatory and anti-apoptotic properties, making it a candidate drug for translation to humans in conditions that compromise the developing brain. Our study aimed to explore the impact of prenatal melatonin in an inflammatory/infectious context on GABAergic neurons and on oligodendrocytes (OLs), key cells involved in the encephalopathy of prematurity. An inflammatory/infectious agent (LPS, 300 μg/kg) was injected intraperitoneally (i.p.) to pregnant Wistar rats at gestational day 19 and 20. Melatonin (5 mg/kg) was injected i.p. following the same schedule. Immunostainings focusing on GABAergic neurons, OL lineage and myelination were performed on pup brain sections. Melatonin succeeded in preventing the LPS-induced decrease of GABAergic neurons within the retrospenial cortex, and sustainably promoted GABAergic neurons within the dentate gyrus in the inflammatory/infectious context. However, melatonin did not effectively prevent the LPS-induced alterations on OLs and myelination. Therefore, we demonstrated that melatonin partially prevented the deleterious effects of LPS according to the cell type. The timing of exposure related to the cell maturation stage is likely to be critical to achieve an efficient action of melatonin. Furthermore, it can be speculated that melatonin exerts a modest protective effect on extremely preterm infant brains.
Collapse
Affiliation(s)
- Geraldine Favrais
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France. .,Neonatology Unit, CHRU de Tours, Tours, France.
| | - Elie Saliba
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Léa Savary
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Sylvie Bodard
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Zuhal Gulhan
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | | | - Sylvie Chalon
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| |
Collapse
|
24
|
Ramarao S, Pang Y, Carter K, Bhatt A. Azithromycin Protects Oligodendrocyte Progenitor Cells against Lipopolysaccharide-activated Microglia-induced damage. Dev Neurosci 2021; 44:1-12. [PMID: 34571509 DOI: 10.1159/000519874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sumana Ramarao
- Division of Newborn Medicine, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Yi Pang
- Division of Newborn Medicine, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kathleen Carter
- Division of Newborn Medicine, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Abhay Bhatt
- Division of Newborn Medicine, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
25
|
Abstract
Intrauterine growth restriction is a condition that prevents normal fetal development, and previous studies have reported that intrauterine growth restriction is caused by adverse intrauterine factors. This condition affects both short- and long-term neurodevelopmental disorders. Studies have revealed that neurodevelopmental disorders can contribute to gray and white matter damage and decrease the brain volume of affected individuals. Further, these disorders are associated with increased risks of mental retardation, cognitive impairment, and cerebral palsy, which seriously affect the quality of life. Although the mechanisms underlying the neurologic injury associated with intrauterine growth restriction are not completely clear, studies have revealed that neuronal apoptosis, neuroinflammation, oxidative stress, excitatory toxicity, disruption of blood-brain barrier, and epigenetics may be involved in this process. This article reviews the manifestations and possible mechanisms underlying neurologic injury in intrauterine growth restriction and provides a theoretical basis for the effective prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lijia Wan
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Kaiju Luo
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Pingyang Chen
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Kalafatakis I, Karagogeos D. Oligodendrocytes and Microglia: Key Players in Myelin Development, Damage and Repair. Biomolecules 2021; 11:1058. [PMID: 34356682 PMCID: PMC8301746 DOI: 10.3390/biom11071058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes, the myelin-making cells of the CNS, regulate the complex process of myelination under physiological and pathological conditions, significantly aided by other glial cell types such as microglia, the brain-resident, macrophage-like innate immune cells. In this review, we summarize how oligodendrocytes orchestrate myelination, and especially myelin repair after damage, and present novel aspects of oligodendroglial functions. We emphasize the contribution of microglia in the generation and regeneration of myelin by discussing their beneficial and detrimental roles, especially in remyelination, underlining the cellular and molecular components involved. Finally, we present recent findings towards human stem cell-derived preclinical models for the study of microglia in human pathologies and on the role of microbiome on glial cell functions.
Collapse
Affiliation(s)
- Ilias Kalafatakis
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
27
|
Ogawa S, Hagiwara M, Misumi S, Tajiri N, Shimizu T, Ishida A, Suzumori N, Sugiura-Ogasawara M, Hida H. Transplanted Oligodendrocyte Progenitor Cells Survive in the Brain of a Rat Neonatal White Matter Injury Model but Less Mature in Comparison with the Normal Brain. Cell Transplant 2021; 29:963689720946092. [PMID: 32757665 PMCID: PMC7563029 DOI: 10.1177/0963689720946092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Preterm infants have a high risk of neonatal white matter injury (WMI) caused by hypoxia-ischemia. Cell-based therapies are promising strategies for neonatal WMI by providing trophic substances and replacing lost cells. Using a rat model of neonatal WMI in which oligodendrocyte progenitors (OPCs) are predominantly damaged, we investigated whether insulin-like growth factor 2 (IGF2) has trophic effects on OPCs in vitro and whether OPC transplantation has potential as a cell replacement therapy. Enhanced expression of Igf2 mRNA was first confirmed in the brain of P5 model rats by real-time polymerase chain reaction. Immunostaining for IGF2 and its receptor IGF2 R revealed that both proteins were co-expressed in OLIG2-positive and GFAP-positive cells in the corpus callosum (CC), indicating autocrine and paracrine effects of IGF2. To investigate the in vitro effect of IGF2 on OPCs, IGF2 (100 ng/ml) was added to the differentiation medium containing ciliary neurotrophic factor (10 ng/ml) and triiodothyronine (20 ng/ml), and IGF2 promoted the differentiation of OPCs into mature oligodendrocytes. We next transplanted rat-derived OPCs that express green fluorescent protein into the CC of neonatal WMI model rats without immunosuppression and investigated the survival of grafted cells for 8 weeks. Although many OPCs survived for at least 8 weeks, the number of mature oligodendrocytes was unexpectedly small in the CC of the model compared with that in the sham-operated control. These findings suggest that the mechanism in the brain that inhibits differentiation should be solved in cell replacement therapy for neonatal WMI as same as trophic support from IGF2.
Collapse
Affiliation(s)
- Shino Ogawa
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mutsumi Hagiwara
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sachiyo Misumi
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Tajiri
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimasa Ishida
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiro Suzumori
- Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mayumi Sugiura-Ogasawara
- Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hideki Hida
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
28
|
Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021; 15:654284. [PMID: 34234647 PMCID: PMC8255483 DOI: 10.3389/fncel.2021.654284] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan W. Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
29
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
30
|
Prasad JD, Gunn KC, Davidson JO, Galinsky R, Graham SE, Berry MJ, Bennet L, Gunn AJ, Dean JM. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int J Mol Sci 2021; 22:4008. [PMID: 33924540 PMCID: PMC8069827 DOI: 10.3390/ijms22084008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.
Collapse
Affiliation(s)
- Jaya D. Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Katherine C. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Scott E. Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Mary J. Berry
- Department of Pediatrics and Health Care, University of Otago, Dunedin 9016, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| |
Collapse
|
31
|
Microglia activated by microbial neuraminidase contributes to ependymal cell death. Fluids Barriers CNS 2021; 18:15. [PMID: 33757539 PMCID: PMC7986511 DOI: 10.1186/s12987-021-00249-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
The administration of microbial neuraminidase into the brain ventricular cavities of rodents represents a model of acute aseptic neuroinflammation. Ependymal cell death and hydrocephalus are unique features of this model. Here we demonstrate that activated microglia participates in ependymal cell death. Co-cultures of pure microglia with ependymal cells (both obtained from rats) were performed, and neuraminidase or lipopolysaccharide were used to activate microglia. Ependymal cell viability was unaltered in the absence of microglia or inflammatory stimulus (neuraminidase or lipopolysaccharide). The constitutive expression by ependymal cells of receptors for cytokines released by activated microglia, such as IL-1β, was demonstrated by qPCR. Besides, neuraminidase induced the overexpression of both receptors in ventricular wall explants. Finally, ependymal viability was evaluated in the presence of functional blocking antibodies against IL-1β and TNFα. In the co-culture setting, an IL-1β blocking antibody prevented ependymal cell death, while TNFα antibody did not. These results suggest that activated microglia are involved in the ependymal damage that occurs after the administration of neuraminidase in the ventricular cavities, and points to IL-1β as possible mediator of such effect. The relevance of these results lies in the fact that brain infections caused by neuraminidase-bearing pathogens are frequently associated to ependymal death and hydrocephalus.
Collapse
|
32
|
Shao R, Sun D, Hu Y, Cui D. White matter injury in the neonatal hypoxic-ischemic brain and potential therapies targeting microglia. J Neurosci Res 2021; 99:991-1008. [PMID: 33416205 DOI: 10.1002/jnr.24761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Neonatal hypoxic-ischemic (H-I) injury, which mainly causes neuronal damage and white matter injury (WMI), is among the predominant causes of infant morbidity (cerebral palsy, cognitive and persistent motor disabilities) and mortality. Disruptions to the oxygen and blood supply in the perinatal brain affect the cerebral microenvironment and may affect microglial activation, excitotoxicity, and oxidative stress. Microglia are significantly associated with axonal damage and myelinating oligodendrocytes, which are major pathological components of WMI. However, the effects of H-I injury on microglial functions and underlying transformation mechanisms remain poorly understood. The historical perception that these cells are major risk factors for ischemic stroke has been questioned due to our improved understanding of the diversity of microglial phenotypes and their alterable functions, which exacerbate or attenuate injuries in different regions in response to environmental instability. Unfortunately, although therapeutic hypothermia is an efficient treatment, death and disability remain the prognosis for a large proportion of neonates with H-I injury. Hence, novel neuroprotective therapies to treat WMI following H-I injury are urgently needed. Here, we review microglial mechanisms that might occur in the developing brain due to neonatal H-I injury and discuss whether microglia function as a double-edged sword in WMI. Then, we emphasize microglial heterogeneity, notably at the single-cell level, and sex-specific effects on the etiology of neurological diseases. Finally, we discuss current knowledge of strategies aiming to improve microglia modulation and remyelination following neonatal H-I injury. Overall, microglia-targeted therapy might provide novel and valuable insights into the treatment of neonatal H-I insult.
Collapse
Affiliation(s)
- Rongjiao Shao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dawei Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yue Hu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Derong Cui
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Segawa K, Blumenthal Y, Yamawaki Y, Ohtsuki G. A Destruction Model of the Vascular and Lymphatic Systems in the Emergence of Psychiatric Symptoms. BIOLOGY 2021; 10:34. [PMID: 33419067 PMCID: PMC7825436 DOI: 10.3390/biology10010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023]
Abstract
The lymphatic system is important for antigen presentation and immune surveillance. The lymphatic system in the brain was originally introduced by Giovanni Mascagni in 1787, while the rediscovery of it by Jonathan Kipnis and Kari Kustaa Alitalo now opens the door for a new interpretation of neurological diseases and therapeutic applications. The glymphatic system for the exchanges of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is associated with the blood-brain barrier (BBB), which is involved in the maintenance of immune privilege and homeostasis in the brain. Recent notions from studies of postmortem brains and clinical studies of neurodegenerative diseases, infection, and cerebral hemorrhage, implied that the breakdown of those barrier systems and infiltration of activated immune cells disrupt the function of both neurons and glia in the parenchyma (e.g., modulation of neurophysiological properties and maturation of myelination), which causes the abnormality in the functional connectivity of the entire brain network. Due to the vulnerability, such dysfunction may occur in developing brains as well as in senile or neurodegenerative diseases and may raise the risk of emergence of psychosis symptoms. Here, we introduce this hypothesis with a series of studies and cellular mechanisms.
Collapse
Affiliation(s)
- Kohei Segawa
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| | - Yukari Blumenthal
- Urology Department at Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road Cambridge, Cambridge CB2 0QQ, UK;
| | - Yuki Yamawaki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| |
Collapse
|
34
|
Zhan D, Zhang C, Long W, Wei L, Jin S, Du C, Li Z, Guo S, Huang L, Ning Q, Luo X. Intrauterine inflammation induced white matter injury protection by fibrinogen-like protein 2 deficiency in perinatal mice. Pediatr Res 2021; 89:1706-1714. [PMID: 33075801 PMCID: PMC8249236 DOI: 10.1038/s41390-020-01211-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND White matter injury (WMI) induced by intrauterine inflammation can cause adverse neurological outcomes. Fibrinogen-like protein 2 (FGL2)/fibroleukin is an important trigger of inflammatory responses and is involved in some cerebral diseases. However, the role of FGL2 in intrauterine inflammation-induced WMI remains unclear. METHODS Lipopolysaccharide (LPS) was intraperitoneally injected into wild-type and FGL2 knockout mice to induce intrauterine inflammation. Body weight and brain weight of offspring were monitored. Major basic protein (MBP) expression was evaluated to demonstrate the myelination of offspring. To investigate the regulatory mechanism of FGL2, cytokine expression, microglial polarization, and the activation of mitogen-activated protein kinase (MAPK) signaling pathway in the offspring were analyzed. RESULTS Upon LPS exposure, FGL2 knockout offspring showed a significant increase in body weight loss. MBP reduction induced by LPS was prevented in FGL2 knockout offspring. Expression levels of proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α, and M1 marker CD86 were suppressed, while the expression levels of anti-inflammatory cytokines IL-10 and M2 marker CD206 were increased. FGL2 deficiency significantly inhibited the phosphorylation of p38MAPK and c-Jun N-terminal kinase (JNK) protein. CONCLUSIONS FGL2 deficiency can ameliorate WMI induced by intrauterine inflammation, reducing inflammatory cascade and improving hypomyelination, through the regulation of microglial polarization and MAPK signaling pathways. IMPACT Intrauterine inflammation induces WMI leading to severe neurological sequelae. FGL2 plays an important role in the progression of WMI induced by intrauterine inflammation. FGL2 deficiency can protect against WMI by inhibiting p38 MAPK and JNK phosphorylation, regulating microglia polarization, and reducing inflammation response. FGL2 could be a novel molecular target for protecting against WMI induced by intrauterine inflammation.
Collapse
Affiliation(s)
- Di Zhan
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Cai Zhang
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenjun Long
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lan Wei
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Shengjuan Jin
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Caiqi Du
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Zhuxi Li
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Shusen Guo
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lianjing Huang
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Qin Ning
- grid.33199.310000 0004 0368 7223Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
35
|
de Waard DM, Bugiani M. Astrocyte-Oligodendrocyte-Microglia Crosstalk in Astrocytopathies. Front Cell Neurosci 2020; 14:608073. [PMID: 33328899 PMCID: PMC7710860 DOI: 10.3389/fncel.2020.608073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.
Collapse
Affiliation(s)
| | - Marianna Bugiani
- Department of Pathology, VU Medical center, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
36
|
Lacalle-Aurioles M, Cassel de Camps C, Zorca CE, Beitel LK, Durcan TM. Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Front Cell Neurosci 2020; 14:594304. [PMID: 33281561 PMCID: PMC7689345 DOI: 10.3389/fncel.2020.594304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and mortality in children and young adults and has a profound impact on the socio-economic wellbeing of patients and their families. Initially, brain damage is caused by mechanical stress-induced axonal injury and vascular dysfunction, which can include hemorrhage, blood-brain barrier disruption, and ischemia. Subsequent neuronal degeneration, chronic inflammation, demyelination, oxidative stress, and the spread of excitotoxicity can further aggravate disease pathology. Thus, TBI treatment requires prompt intervention to protect against neuronal and vascular degeneration. Rapid advances in the field of stem cells (SCs) have revolutionized the prospect of repairing brain function following TBI. However, more than that, SCs can contribute substantially to our knowledge of this multifaced pathology. Research, based on human induced pluripotent SCs (hiPSCs) can help decode the molecular pathways of degeneration and recovery of neuronal and glial function, which makes these cells valuable tools for drug screening. Additionally, experimental approaches that include hiPSC-derived engineered tissues (brain organoids and bio-printed constructs) and biomaterials represent a step forward for the field of regenerative medicine since they provide a more suitable microenvironment that enhances cell survival and grafting success. In this review, we highlight the important role of hiPSCs in better understanding the molecular pathways of TBI-related pathology and in developing novel therapeutic approaches, building on where we are at present. We summarize some of the most relevant findings for regenerative therapies using biomaterials and outline key challenges for TBI treatments that remain to be addressed.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Camille Cassel de Camps
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Pons V, Rivest S. Beneficial Roles of Microglia and Growth Factors in MS, a Brief Review. Front Cell Neurosci 2020; 14:284. [PMID: 33173466 PMCID: PMC7538672 DOI: 10.3389/fncel.2020.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Microglia are the brain resident immune cells; they can produce a large variety of growth factors (GFs) to prevent neuronal damages and promote recovery. In neurodegenerative diseases, microglia can play both benefic and deleterious roles, depending on different factors and disease context. In multiple sclerosis, microglia are involved in both demyelination (DM) and remyelination (RM) processes. Recent studies suggest a beneficial role of microglia in regenerative processes. These include the regenerative development of myelin after DM. This review gives an overlook of how microglia and GFs can influence the RM properties.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, Department of Molecular Medicine, Faculty of Medicine, CHU de Québec Research Center, Laval University, Québec City, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, Department of Molecular Medicine, Faculty of Medicine, CHU de Québec Research Center, Laval University, Québec City, QC, Canada
| |
Collapse
|
38
|
Hayashida S, Masaki K, Suzuki SO, Yamasaki R, Watanabe M, Koyama S, Isobe N, Matsushita T, Takahashi K, Tabira T, Iwaki T, Kira JI. Distinct microglial and macrophage distribution patterns in the concentric and lamellar lesions in Baló's disease and neuromyelitis optica spectrum disorders. Brain Pathol 2020; 30:1144-1157. [PMID: 32902014 DOI: 10.1111/bpa.12898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/23/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
TMEM119 and purinergic receptor P2Y12 (P2RY12), which are not expressed by recruited peripheral blood macrophages, are proposed to discriminate microglia from macrophages. Therefore, we investigated the distribution patterns of microglia and macrophages in 10 concentric lesions from four autopsied Baló's disease cases and one neuromyelitis optica spectrum disorder (NMOSD) case, using quantitative immunohistochemistry for the markers TMEM119, P2RY12, CD68, CD163 and GLUT5. Three cases with Baló's disease had distal oligodendrogliopathy (DO) showing preferential loss of myelin-associated glycoprotein and early active demyelination in the outermost demyelinating layer (termed DMY-MO). In DMY-MO with DO, TMEM119-positive activated microglia expressing upregulated GLUT5 but markedly downregulated P2RY12 were significantly increased. These activated microglia expressed inducible nitric oxide synthase. Oligodendrocytes and their precursors showed apoptotic-like nuclear condensation in DMY-MO. TMEM119-negative and CD68/CD163-positive macrophages were distributed throughout the lesion center of DMY-MO with DO and these cells demonstrated foamy morphology only in the inner portion but not in the outer portion. In concentric demyelinating lesions from another Baló's case and lamellar demyelinating lesions in an NMOSD case, which had late active demyelination without DO, the densities of TMEM119-, GLUT5- and P2RY12-positive microglia with ramified morphology were significantly increased in myelinated layers but not in demyelinating layers. In particular, in the NMOSD case, TMEM119-positive microglia were confined to the outer portion of the myelinated layers. CD68-positive macrophages with foamy morphology also expressing CD163 accumulated in myelinated as well as in demyelinated layers. These findings suggest that activated microglia expressing TMEM119 and GLUT5, but not P2RY12, are associated with apoptosis of oligodendrocytes in the leading edge of Baló's concentric lesions with DO, whereas TMEM119-, GLUT5- and P2RY12-positive microglia with ramified morphology are associated with myelin preservation in concentric lesions without DO in Baló's disease and NMOSD. These two types of microglia appear to play distinct roles in the formation of concentric lesions.
Collapse
Affiliation(s)
- Shotaro Hayashida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Takahashi
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Takeshi Tabira
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toru Iwaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Ookawa, Japan.,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, Fukuoka, Japan
| |
Collapse
|
39
|
Zimmer TS, Broekaart DWM, Gruber VE, van Vliet EA, Mühlebner A, Aronica E. Tuberous Sclerosis Complex as Disease Model for Investigating mTOR-Related Gliopathy During Epileptogenesis. Front Neurol 2020; 11:1028. [PMID: 33041976 PMCID: PMC7527496 DOI: 10.3389/fneur.2020.01028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) represents the prototypic monogenic disorder of the mammalian target of rapamycin (mTOR) pathway dysregulation. It provides the rational mechanistic basis of a direct link between gene mutation and brain pathology (structural and functional abnormalities) associated with a complex clinical phenotype including epilepsy, autism, and intellectual disability. So far, research conducted in TSC has been largely neuron-oriented. However, the neuropathological hallmarks of TSC and other malformations of cortical development also include major morphological and functional changes in glial cells involving astrocytes, oligodendrocytes, NG2 glia, and microglia. These cells and their interglial crosstalk may offer new insights into the common neurobiological mechanisms underlying epilepsy and the complex cognitive and behavioral comorbidities that are characteristic of the spectrum of mTOR-associated neurodevelopmental disorders. This review will focus on the role of glial dysfunction, the interaction between glia related to mTOR hyperactivity, and its contribution to epileptogenesis in TSC. Moreover, we will discuss how understanding glial abnormalities in TSC might give valuable insight into the pathophysiological mechanisms that could help to develop novel therapeutic approaches for TSC or other pathologies characterized by glial dysfunction and acquired mTOR hyperactivation.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| |
Collapse
|
40
|
Gilles FH, Leviton A. Neonatal white matter damage and the fetal inflammatory response. Semin Fetal Neonatal Med 2020; 25:101111. [PMID: 32299712 DOI: 10.1016/j.siny.2020.101111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In 1962 a long-recognized pathologic abnormality in neonatal brains characterized by multiple telencephalic focal white matter necroses was renamed periventricular leukomalacia (PVL) and the authors inappropriately asserted that their entity was caused by anoxia. They also failed to include three other white matter histologic abnormalities. In this essay, we identify the breadth of white matter pathology, especially in very preterm newborns, and show that none of the four histologic expressions of white matter damage, including focal necrosis, are associated with hypoxemia or correlates as hypotension, but are instead associated with markers of fetal or perinatal inflammation, particularly in preterm babies. We begin with the background needed to evaluate the evidence.
Collapse
Affiliation(s)
- F H Gilles
- Children's Hospital Los Angeles, The University of Southern California, USA.
| | - A Leviton
- Boston Children's Hospital, Harvard Medical School, USA.
| |
Collapse
|
41
|
Mu M, Gao P, Yang Q, He J, Wu F, Han X, Guo S, Qian Z, Song C. Alveolar Epithelial Cells Promote IGF-1 Production by Alveolar Macrophages Through TGF-β to Suppress Endogenous Inflammatory Signals. Front Immunol 2020; 11:1585. [PMID: 32793225 PMCID: PMC7385185 DOI: 10.3389/fimmu.2020.01585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
To maintain alveolar gas exchange, the alveolar surface has to limit unnecessary inflammatory responses. This involves crosstalk between alveolar epithelial cells (AECs) and alveolar macrophages (AMs) in response to damaging factors. We recently showed that insulin-like growth factor (IGF)-1 regulates the phagocytosis of AECs. AMs secrete IGF-1 into the bronchoalveolar lavage fluid (BALF) in response to inflammatory stimuli. However, whether AECs regulate the production of IGF-1 by AMs in response to inflammatory signals remains unclear, as well as the role of IGF-1 in controlling the alveolar balance in the crosstalk between AMs and AECs under inflammatory conditions. In this study, we demonstrated that IGF-1 was upregulated in BALF and lung tissues of acute lung injury (ALI) mice, and that the increased IGF-1 was mainly derived from AMs. In vitro experiments showed that the production and secretion of IGF-1 by AMs as well as the expression of TGF-β were increased in LPS-stimulated AEC-conditioned medium (AEC-CM). Pharmacological blocking of TGF-β in AECs and addition of TGF-β neutralizing antibody to AEC-CM suggested that this AEC-derived cytokine mediates the increased production and secretion of IGF-1 from AMs. Blocking TGF-β synthesis or treatment with TGF-β neutralizing antibody attenuated the increase of IGF-1 in BALF in ALI mice. TGF-β induced the production of IGF-1 by AMs through the PI3K/Akt signaling pathway. IGF-1 prevented LPS-induced p38 MAPK activation and the expression of the inflammatory factors MCP-1, TNF-α, and IL-1β in AECs. However, IGF-1 upregulated PPARγ to increase the phagocytosis of apoptotic cells by AECs. Intratracheal instillation of IGF-1 decreased the number of polymorphonuclear neutrophils in BALF of ALI model mice, reduced alveolar congestion and edema, and suppressed inflammatory cell infiltration in lung tissues. These results elucidated a mechanism by which AECs used TGF-β to regulate IGF-1 production from AMs to attenuate endogenous inflammatory signals during alveolar inflammation.
Collapse
Affiliation(s)
- Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Qian Yang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Xue Han
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Shujun Guo
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| |
Collapse
|
42
|
Fleiss B, Gressens P, Stolp HB. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Front Neurol 2020; 11:575. [PMID: 32765390 PMCID: PMC7381224 DOI: 10.3389/fneur.2020.00575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
43
|
Karagiannis P, Inoue H. ALS, a cellular whodunit on motor neuron degeneration. Mol Cell Neurosci 2020; 107:103524. [PMID: 32629110 DOI: 10.1016/j.mcn.2020.103524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets motor neurons. Motor neurons from ALS patients show cytoplasmic inclusions that are reflective of an altered RNA metabolism and protein degradation. Causal gene mutations are found in all cell types even though patient motor neurons are by far the most susceptible to the degeneration. Using induced pluripotent stem cell (iPSC) technology, researchers have generated motor neurons with the same genotype as the patient including sporadic ones. They have also generated other cell types associated with the disease such as astrocytes, microglia and oligodendrocytes. These cells provide not only new insights on the mechanisms of the disease from the early stage, but also a platform for drug screening that has led to several clinical trials. This review examines the knowledge gained from iPSC studies using patient cells on the gene mutations and cellular networks in ALS and relevant experimental therapies.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
44
|
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci 2020; 14:51. [PMID: 32265656 PMCID: PMC7098326 DOI: 10.3389/fncel.2020.00051] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Collapse
Affiliation(s)
- Denisa Belov Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
45
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
46
|
Dietz AG, Goldman SA, Nedergaard M. Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 2020; 7:272-281. [PMID: 31704113 PMCID: PMC7267935 DOI: 10.1016/s2215-0366(19)30302-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
The cellular neurobiology of schizophrenia remains poorly understood. We discuss neuroimaging studies, pathological findings, and experimental work supporting the idea that glial cells might contribute to the development of schizophrenia. Experimental studies suggest that abnormalities in the differentiation competence of glial progenitor cells lead to failure in the morphological and functional maturation of oligodendrocytes and astrocytes. We propose that immune activation of microglial cells during development, superimposed upon genetic risk factors, could contribute to defective differentiation competence of glial progenitor cells. The resulting hypomyelination and disrupted white matter integrity might contribute to transmission desynchronisation and dysconnectivity, whereas the failure of astrocytic differentiation results in abnormal glial coverage and support of synapses. The delayed and deficient maturation of astrocytes might, in parallel, lead to disruption of glutamatergic, potassium, and neuromodulatory homoeostasis, resulting in dysregulated synaptic transmission. By highlighting a role for glial cells in schizophrenia, these studies potentially point to new mechanisms for disease modification.
Collapse
Affiliation(s)
- Andrea G Dietz
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
47
|
Michaličková D, Šíma M, Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol Res 2020; 69:1-19. [PMID: 31852206 DOI: 10.33549/physiolres.934276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination and axonal damage and resulting in a range of physical, mental or even psychiatric symptoms. Key role of oxidative stress (OS) in the pathogenesis of MS has been suggested, as indicated by the biochemical analysis of cerebrospinal fluid and blood samples, tissue homogenates, and animal models of multiple sclerosis. OS causes demyelination and neurodegeneration directly, by oxidation of lipids, proteins and DNA but also indirectly, by inducing a dysregulation of the immunity and favoring the state of pro-inflammatory response. In this review, we discuss the interrelated mechanisms of the impaired redox signaling, of which the most important are inflammation-induced production of free radicals by activated immune cells and growth factors, release of iron from myelin sheath during demyelination and mitochondrial dysfunction and consequent energy failure and impaired oxidative phosphorylation. Review also provides an overview of the interplay between inflammation, immunity and OS in MS. Finally, this review also points out new potential targets in MS regarding attenuation of OS and inflammatory response in MS.
Collapse
Affiliation(s)
- D Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
48
|
Li T, Niu J, Yu G, Ezan P, Yi C, Wang X, Koulakoff A, Gao X, Chen X, Sáez JC, Giaume C, Xiao L. Connexin 43 deletion in astrocytes promotes CNS remyelination by modulating local inflammation. Glia 2019; 68:1201-1212. [PMID: 31868275 DOI: 10.1002/glia.23770] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 11/30/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
As the most abundant gap junction protein in the central nervous system (CNS), astrocytic connexin 43 (Cx43) maintains astrocyte network homeostasis, affects oligodendroglial development and participates in CNS pathologies as well as injury progression. However, its role in remyelination is not yet fully understood. To address this issue, we used astrocyte-specific Cx43 conditional knockout (Cx43 cKO) mice generated through the use of a hGFAP-cre promoter, in combination with mice carrying a floxed Cx43 allele that were subjected to lysolecithin so as to induce demyelination. We found no significant difference in the demyelination of the corpus callosum between Cx43 cKO mice and their non-cre littermate controls, while the remyelination process in Cx43 cKO mice was accelerated. Moreover, an increased number of mature oligodendrocytes and an unaltered number of oligodendroglial lineage cells were found in Cx43 cKO mouse lesions. This indicates that oligodendrocyte precursor cell (OPC) differentiation was facilitated by astroglial Cx43 depletion as remyelination progressed. Underlying the latter, there was a down-regulated glial activation and modulated local inflammation as well as a reduction of myelin debris in Cx43 cKO mice. Importantly, 2 weeks of orally administrating boldine, a natural alkaloid that blocks Cx hemichannel activity in astrocytes without affecting gap junctional communication, obviously modulated local inflammation and promoted remyelination. Together, the data suggest that the astrocytic Cx43 hemichannel is negatively involved in the remyelination process by favoring local inflammation. Consequently, inhibiting Cx43 hemichannel functionality may be a potential therapeutic approach for demyelinating diseases in the CNS.
Collapse
Affiliation(s)
- Tao Li
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jianqin Niu
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangdan Yu
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Chenju Yi
- Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Annette Koulakoff
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Xing Gao
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjun Chen
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Lan Xiao
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
49
|
Yu Y, Luo X, Li C, Ding F, Wang M, Xie M, Yu Z, Ransom BR, Wang W. Microglial Hv1 proton channels promote white matter injuries after chronic hypoperfusion in mice. J Neurochem 2019; 152:350-367. [PMID: 31769505 DOI: 10.1111/jnc.14925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Microglia are critical in damage/repair processes during ischemic white matter injury (WMI). Voltage-gated proton channel (Hv1) is expressed in microglia and contributes to nicotinamide adenine dinucleotide phosphate oxidase complex-dependent production of reactive oxygen species (ROS). Recent findings have shown that Hv1 is involved in regulating luminal pH of M1-polarized microglial phagosomes and inhibits endocytosis in microglia. We previously reported that Hv1 facilitated production of ROS and pro-inflammatory cytokines in microglia and enhanced damage to oligodendrocyte progenitor cells from oxygen and glucose deprivation. To investigate the role of Hv1 in hypoperfusion-induced WMI, we employed mice that were genetically devoid of Hv1 (Hv1-/- ), as well as a model of subcortical vascular dementia via bilateral common carotid artery stenosis. Integrity of myelin was assessed using immunofluorescent staining and transmission electron microscopy, while cognitive impairment was assessed using an eight-arm radial maze test. Hv1 deficiency was found to attenuate bilateral common carotid artery stenosis-induced disruption of white matter integrity and impairment of working memory. Immunofluorescent staining and western blotting were used to assay changes in oligodendrocytes, OPCs, and microglial polarization. Compared with that in wild-type (WT) mice, Hv1-/- mice exhibited reduced ROS generation, decreased pro-inflammatory cytokines production, and an M2-dominant rather than M1-dominant microglial polarization. Furthermore, Hv1-/- mice exhibited enhanced OPC proliferation and differentiation into oligodendrocytes. Results of mouse-derived microglia-OPC co-cultures suggested that PI3K/Akt signaling was involved in Hv1-deficiency-induced M2-type microglial polarization and concomitant OPC differentiation. These results suggest that microglial Hv1 is a promising therapeutic target for reducing ischemic WMI and cognitive impairment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bruce R Ransom
- Department of Neurology, University of Washington School of Medicine HMC, Seattle, WA, USA
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Miguel-Hidalgo JJ, Carter K, Deloach PH, Sanders L, Pang Y. Glucocorticoid-Induced Reductions of Myelination and Connexin 43 in Mixed Central Nervous System Cell Cultures Are Prevented by Mifepristone. Neuroscience 2019; 411:255-269. [PMID: 31163207 PMCID: PMC6664452 DOI: 10.1016/j.neuroscience.2019.05.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022]
Abstract
Repeated stress induces systemic elevations in glucocorticoid levels. Stress is also associated with alterations in central nervous system astrocytes and oligodendrocytes that involve connexins and myelin proteins. Corticosteroid elevation seems a major factor in stress-induced neuropathology. Changes in astrocyte connexins and myelin components may be important mediators for the neurological effects of corticosteroid elevations. Two primary cell culture models, myelination culture from rat embryonic spinal cord (SC) or cerebral cortex (CC) consisting of neurons and glial cells (oligodendrocytes, microglia and astrocytes), and mixed astrocyte-and-oligodendrocyte culture prepared from postnatal rat CC, were used in this study. Cell cultures were treated with either vehicle, corticosterone (CORT) with or without glucocorticoid receptor antagonist mifepristone, or dexamethasone (DEX) during the period of in vitro myelination. Immunoreactivity of astrocyte connexin 43 (Cx43) and oligodendrocyte myelin basic protein (MBP), or the myelination index (co-localization of MBP and phosphorylated neurofilament) was determined by double immunofluorescent labeling. Oligodendrocyte morphology was evaluated by Sholl analysis. Prolonged exposure to CORT or DEX induced dose-dependent reduction of the myelination index, and of immunostaining for MBP and Cx43 in SC and CC myelination cultures, which was prevented by mifepristone. In glial cultures single CORT or DEX exposure caused shrinkage and simplification of/' MBP- or CNPase-positive oligodendrocyte processes. The results support that concurrent effects of glucocorticoids on myelination and astrocyte Cx43 immunoreactivity are mediated by glucocorticoid receptors and may partially account for the involvement of CNS glia in the pathological effects of prolonged stress.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA.
| | - Kathleen Carter
- Department of Pediatrics, University of Mississippi Medical Center
| | | | - Leon Sanders
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center
| | - Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center
| |
Collapse
|