1
|
Gao Y, Liu Y, Zhao S, Liu Y, Zhang C, Hui S, Mikkelsen M, Edden RAE, Meng X, Yu B, Xiao L. MRS study on the correlation between frontal GABA+/Glx ratio and abnormal cognitive function in medication-naive patients with narcolepsy. Sleep Med 2024; 119:1-8. [PMID: 38626481 DOI: 10.1016/j.sleep.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE To compare the GABA+/Glx (glutamate-glutamine) ratio in the prefrontal lobe under non-rapid eye movement sleep between patients with narcolepsy type 1 (NT1) and normal controls and explore the correlation between this difference and abnormal cognitive function, using synchronous electroencephalography-functional magnetic resonance spectroscopy (EEG-fMRS). METHODS MRS measurements of GABA+ and Glx concentrations as well as synchronous EEG data were obtained from 26 medication-naive patients with NT1 and 29 sex- and age-matched healthy community volunteers. Cognition was appraised with the Beijing version of the Montreal Cognitive Assessment, and daytime sleepiness was measured using the Epworth Sleepiness Scale. All subjects recorded a 2-week sleep log as well as an overnight polysomnography within 1 week before MR scanning to understand their sleep habits and determine sleep stages. After PSG, they also underwent multiple sleep latency trials. Patient/control group differences in the individual measurements of GABA+ and Glx and the GABA+/Glx ratio and their relationship with cognition were assessed. RESULTS The GABA+/Glx ratio and GABA + levels of patients with narcolepsy were higher than those of the control group (P<0.0001 and P = 0.0008, respectively). However, there was no significant difference in Glx levels (P = 0.6360). The GABA+/Glx ratio negatively correlated with abnormal cognitive function (r = -0.6710, P = 0.0002). Moreover, GABA + levels were inversely proportional to rapid eye movement sleep latency (REML) in patients with narcolepsy (r = -0.5019, P = 0.0106). CONCLUSION The GABA+/Glx ratio in the prefrontal lobe was higher in NT1 patients during N2 sleep than in normal controls, mainly caused by GABA + levels; this ratio was negatively related to abnormal cognitive function. In addition, GABA + levels were inversely proportional to REML.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanting Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Sihui Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yishu Liu
- Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chen Zhang
- MR Research Collaboration Team, Siemens Healthcare, Beijing, 100102, China
| | - Steve Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Xiao Meng
- Clinical Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Bing Yu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Li Xiao
- Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
Xu L, Xue R, Ai Z, Huang Y, Liu X, Wang L, Liang D, Wang Z. Resting-State Functional Magnetic Resonance Imaging as an Indicator of Neuropsychological Changes in Type 1 Narcolepsy. Acad Radiol 2024; 31:69-81. [PMID: 37821344 DOI: 10.1016/j.acra.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023]
Abstract
RATIONALE AND OBJECTIVES To explore indicators of neuropsychological changes in patients with type 1 narcolepsy (NT1) using resting-state functional magnetic resonance imaging (rs-fMRI). MATERIALS AND METHODS Thirty-four NT1 patients and 34 age- and sex-matched healthy volunteers were recruited for neuropsychiatric assessments and rs-fMRI data acquisition. Fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and related brain functional connectivity (FC) were calculated for the two groups and compared using a two-sample t test with cluster-level FDR correction. Moreover, partial correlation analysis was performed between these functional values of changed brain regions and clinical scales. RESULTS Compared to those of healthy controls, spontaneous functional activities were significantly weakened in patients with NT1 in regions such as the left/right posterior cerebellum lobe, left inferior temporal gyrus, and left dorsolateral superior frontal gyrus, whereas those in regions such as the left middle occipital gyrus, right inferior occipital gyrus, and left/right lingual gyrus were significantly strengthened. Furthermore, NT1 patients displayed significantly changed FCs between the left/right anterior cingulate gyrus (ACG) and regions such as the left/right cerebellum, left middle occipital gyrus, and left inferior frontal gyrus in the operculum. In partial correlation analysis, the functions in the left dorsolateral superior frontal gyrus were significantly related to the Trail Making Tests (TMT) score. Moreover, the FC between the left ACG and left inferior frontal gyrus in the operculum was highly correlated with anxiety and depression features, including the Hamilton Anxiety Scale (HAMA) score and Hamilton Depression Rating Scale (HAMD-17) score. CONCLUSION Patients with NT1 exhibited abnormalities in the anterior cingulate cortex, frontal-parietal cortex, hippocampus, and left/right posterior cerebellum lobe. The deactivation of the left frontal-temporal cortex is stronger, which is involved in the cognitive decline and mental disorders in these patients. Damage to the ACG may affect its FC with other regions and cause cognition and emotion dysregulation, perhaps by impairing patients' visual pathways and frontal-temporal-parietal networks. Hence, these could be important biomarkers for their neuropsychological changes.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Zhu Ai
- Department of Neurology, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (Z.A.)
| | - Yaqin Huang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Xuan Liu
- Department of Neurology, Airport Hospital, General Hospital of Tianjin Medical University, Tianjin, China (X.L.)
| | - Linlin Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China (L.W.)
| | - Danqi Liang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Zuojun Wang
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, China (Z.W.).
| |
Collapse
|
3
|
Coray R, Quednow BB. The role of serotonin in declarative memory: A systematic review of animal and human research. Neurosci Biobehav Rev 2022; 139:104729. [PMID: 35691469 DOI: 10.1016/j.neubiorev.2022.104729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The serotonergic system is involved in diverse cognitive functions including memory. Of particular importance to daily life are declarative memories that contain information about personal experiences, general facts, and events. Several psychiatric or neurological diseases, such as depression, attention-deficit-hyperactivity disorder (ADHD), and dementia, show alterations in serotonergic signalling and attendant memory disorders. Nevertheless, understanding serotonergic neurotransmission and its influence on memory remained a challenge until today. In this systematic review, we summarize recent psychopharmacological studies in animals and humans from a psychological memory perspective, in consideration of task-specific requirements. This approach has the advantage that comparisons between serotonin (5-HT)-related neurochemical mechanisms and manipulations are each addressing specific mnemonic circuits. We conclude that applications of the same 5-HT-related treatments can differentially affect unrelated tasks of declarative memories. Moreover, the analysis of specific mnemonic phases (e.g., encoding vs. consolidation) reveals opposing impacts of increased or decreased 5-HT tones, with low 5-HT supporting spatial encoding but impairing the consolidation of objects and verbal memories. Promising targets for protein synthesis-dependent consolidation enhancements include 5-HT4 receptor agonists and 5-HT6 receptor antagonists, with the latter being of special interest for the treatment of age-related decline. Further implications are pointed out as base for the development of novel therapeutic targets for memory impairment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
4
|
Gao F, Liu T, Tuo M, Chi S. The role of orexin in Alzheimer disease: From sleep-wake disturbance to therapeutic target. Neurosci Lett 2021; 765:136247. [PMID: 34530113 DOI: 10.1016/j.neulet.2021.136247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has shown that sleep disturbance is a common symptom in Alzheimer's disease (AD), which is regarded as a modifiable risk factor for AD. Orexin is a key modulator of the sleep-wake cycle and has been found to be dysregulated in AD patients. The increased orexin in cerebrospinal fluid (CSF) is associated with decreased sleep efficiency and REM sleep, as well as cognitive impairment in AD patients. The orexin system has profuse projections to brain regions that are implicated in arousal and cognition and has been found to participate in the progression of AD pathology. Conversely the orexin receptor antagonists are able to consolidate sleep and reduce AD pathology. Therefore, improved understanding of the mechanisms linking orexin system, sleep disturbance and AD could make orexin receptor antagonists a promising target for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Fan Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miao Tuo
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018; 7. [PMID: 30254737 PMCID: PMC6127742 DOI: 10.12688/f1000research.15097.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The hypocretins (Hcrts) are two alternatively spliced neuropeptides (Hcrt1/Ox-A and Hcrt2/Ox-B) that are synthesized exclusively in the hypothalamus. Data collected in the 20 years since their discovery have supported the view that the Hcrts play a broad role in the control of arousal with a particularly important role in the maintenance of wakefulness and sleep-to-wake transitions. While this latter point has received an overwhelming amount of research attention, a growing literature has begun to broaden our understanding of the many diverse roles that the Hcrts play in physiology and behavior. Here, we review recent advances in the neurobiology of Hcrt in three sections. We begin by surveying findings on Hcrt function within normal sleep/wake states as well as situations of aberrant sleep (that is, narcolepsy). In the second section, we discuss research establishing a role for Hcrt in mood and affect (that is, anxiety, stress, and motivation). Finally, in the third section, we briefly discuss future directions for the field and place an emphasis on analytical modeling of Hcrt neural activity. We hope that the data discussed here provide a broad overview of recent progress in the field and make clear the diversity of roles played by these neuromodulators.
Collapse
Affiliation(s)
- Natalie Nevárez
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Luis de Lecea
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Huang HJ, Huang HY, Hsieh-Li HM. MGCD0103, a selective histone deacetylase inhibitor, coameliorates oligomeric Aβ 25-35 -induced anxiety and cognitive deficits in a mouse model. CNS Neurosci Ther 2018; 25:175-186. [PMID: 29978554 PMCID: PMC6488906 DOI: 10.1111/cns.13029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/24/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
AIMS Recently, histone deacetylase (HDAC) inhibitors are considered a possible therapeutic strategy in Alzheimer's disease (AD). However, HDACi treatments exhibit diverse functions with unfavorable effects in AD. Thus, the development of selective HDACi without side effects is urgently needed. METHODS HDACi, namely, BML210, MGCD0103, PXD101, and Droxinostat, were screened in mouse hippocampal primary cultures incubated with oligomeric Aβ25-35 (50 μmol/L). MGCD0103 was chosen for in vivo tests and was intraperitoneally injected into C57BL/6J mice (0.5 mg/kg, once per day) for 4 weeks following an intrahippocampal CA1 injection of oligomeric Aβ25-35 . Brain samples were collected for pathological analyses after the behavioral analyses including open- field test (OFT), elevated plus maze (EPM), Y-maze, and Morris water maze (MWM). RESULTS Among the HDACi, MGCD0103 exhibited significant neuroprotection against the Aβ toxicity in primary cultures. MGCD0103 coattenuated cognitive deficits and anxiety against Aβ damage in mice. MGCD0103 further ameliorated pathological features such as the levels of acetylated histone 3 at Lys 9 site (H3K9) and α-tubulin, synaptophysin, Aβ, tau protein phosphorylation, and serotonergic neuron loss against Aβ toxicity. Furthermore, chronic MGCD0103 treatment did not show liver or kidney toxicity in mice. CONCLUSIONS These results reveal MGCD0103 could be a potential therapeutic agent against AD.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
7
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Prouty EW, Chandler DJ, Waterhouse BD. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons. Brain Res 2017; 1675:28-40. [PMID: 28867482 PMCID: PMC5822427 DOI: 10.1016/j.brainres.2017.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 11/22/2022]
Abstract
Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant.
Collapse
Affiliation(s)
- Eric W Prouty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Daniel J Chandler
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Barry D Waterhouse
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
9
|
Cui SY, Li SJ, Cui XY, Zhang XQ, Yu B, Huang YL, Cao Q, Xu YP, Yang G, Ding H, Song JZ, Ye H, Sheng ZF, Wang ZJ, Zhang YH. Ca(2+) in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats. Mol Brain 2016; 9:71. [PMID: 27456222 PMCID: PMC4960696 DOI: 10.1186/s13041-016-0252-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) are involved in the control of sleep-wake states. Our previous studies have indicated that calcium (Ca(2+)) modulation in the DRN plays an important role in rapid-eye-movement sleep (REMS) and non-REMS (NREMS) regulation during pentobarbital hypnosis. The present study investigated the effects of Ca(2+) in the DRN on sleep-wake regulation and the related neuronal mechanism in freely moving rats. Our results showed that microinjection of CaCl2 (25 or 50 nmol) in the DRN promoted wakefulness and suppressed NREMS including slow wave sleep and REMS in freely moving rats. Application of CaCl2 (25 or 50 nmol) in the DRN significantly increased serotonin in the DRN and hypothalamus, and noradrenaline in the locus coeruleus and hypothalamus. Immunohistochemistry study indicated that application of CaCl2 (25 or 50 nmol) in the DRN significantly increased c-Fos expression ratio in wake-promoting neurons including serotonergic neurons in the DRN, noradrenergic neurons in the locus coeruleus, and orxinergic neurons in the perifornical nucleus, but decreased c-Fos expression ratio of GABAergic sleep-promoting neurons in the ventrolateral preoptic nucleus. These results suggest that Ca(2+) in the DRN exert arousal effects via up-regulating serotonergic functions in the endogenous sleep-wake regulating pathways.
Collapse
Affiliation(s)
- Su-Ying Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Sheng-Jie Li
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Xiang-Yu Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Xue-Qiong Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Bin Yu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Yuan-Li Huang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Qing Cao
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Ya-Ping Xu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Guang Yang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Hui Ding
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Jin-Zhi Song
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Hui Ye
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Zhao-Fu Sheng
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Zi-Jun Wang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Yong-He Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| |
Collapse
|
10
|
López JM, Sanz-Morello B, González A. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. Peptides 2014; 61:23-37. [PMID: 25169954 DOI: 10.1016/j.peptides.2014.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/12/2023]
Abstract
Cladistians are primitive actinopterygian fishes mostly neglected in neuroanatomical studies. In the present study, the detailed neuroanatomical distribution of orexin (hypocretin)-like immunoreactive (OX-ir) cell bodies and fibers was analyzed in the brain of two species representative of the two extant genera of cladistians. Antibodies against mammalian orexin-A and orexin-B peptides were used. Simultaneous detection of orexins with neuropeptide Y (NPY), tyrosine hydroxylase (TH), and serotonin (5-HT) was used to establish accurately the topography of the orexin system and to evaluate the possible interactions with NPY and monoaminergic systems. A largely common pattern of OX-ir distribution in the two cladistian species was observed. Most OX-ir cells were located in the suprachiasmatic nucleus and tuberal hypothalamus, whereas scarce cells were observed in the posterior tubercle. In addition, a population of OX-ir cells was found in the preoptic area only in Polypterus and some cells also contained TH. The observed widespread distribution of OX-ir fibers was especially abundant in the retrobulbar area, subpallial areas, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic area, prethalamus, thalamus, pretectum, optic tectum, and tegmentum. Low innervation was found in relation to monoaminergic cell groups, whereas a high NPY innervation was observed in all OX-ir cell groups. These relationships would represent the anatomical substrate for the functional interdependence between these systems. The organization of the orexin system in cladistians revealed a pattern largely consistent with those reported for all studied groups of vertebrates, suggesting that the primitive organization of this peptidergic system occurred in the common ancestor of gnathostome vertebrates.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Berta Sanz-Morello
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Del Cid-Pellitero E, Garzón M. Hypocretin1/orexinA-immunoreactive axons form few synaptic contacts on rat ventral tegmental area neurons that project to the medial prefrontal cortex. BMC Neurosci 2014; 15:105. [PMID: 25194917 PMCID: PMC4167264 DOI: 10.1186/1471-2202-15-105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypocretins/orexins (Hcrt/Ox) are hypothalamic neuropeptides involved in sleep-wakefulness regulation. Deficiency in Hcrt/Ox neurotransmission results in the sleep disorder narcolepsy, which is characterized by an inability to maintain wakefulness. The Hcrt/Ox neurons are maximally active during wakefulness and project widely to the ventral tegmental area (VTA). A dopamine-containing nucleus projecting extensively to the cerebral cortex, the VTA enhances wakefulness. In the present study, we used retrograde tracing from the medial prefrontal cortex (mPFC) to examine whether Hcrt1/OxA neurons target VTA neurons that could sustain behavioral wakefulness through their projections to mPFC. RESULTS The retrograde tracer Fluorogold (FG) was injected into mPFC and, after an optimal survival period, sections through the VTA were processed for dual immunolabeling of anti-FG and either anti-Hcrt1/OxA or anti-TH antisera. Most VTA neurons projecting to the mPFC were located in the parabrachial nucleus of the ipsilateral VTA and were non-dopaminergic. Only axonal profiles showed Hcrt1/OxA-immunoreactivity in VTA. Hcrt1/OxA reactivity was observed in axonal boutons and many unmyelinated axons. The Hcrt1/OxA immunoreactivity was found filling axons but it was also observed in parts of the cytoplasm and dense-core vesicles. Hcrt1/OxA-labeled boutons frequently apposed FG-immunolabeled dendrites. However, Hcrt1/OxA-labeled boutons rarely established synapses, which, when they were established, were mainly asymmetric (excitatory-type), with either FG-labeled or unlabeled dendrites. CONCLUSIONS Our results provide ultrastructural evidence that Hcrt1/OxA neurons may exert a direct synaptic influence on mesocortical neurons that would facilitate arousal and wakefulness. The paucity of synapses, however, suggest that the activity of VTA neurons with cortical projections might also be modulated by Hcrt1/OxA non-synaptic actions. In addition, Hcrt1/OxA could modulate the postsynaptic excitatory responses of VTA neurons with cortical projections to a co-released excitatory transmitter from Hcrt1/OxA axons. Our observation of Hcrt1/OxA targeting of mesocortical neurons supports Hcrt1/OxA wakefulness enhancement in the VTA and could help explain the characteristic hypersomnia present in narcoleptic patients.
Collapse
Affiliation(s)
| | - Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Tuckwell HC, Penington NJ. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Prog Neurobiol 2014; 118:59-101. [PMID: 24784445 DOI: 10.1016/j.pneurobio.2014.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 01/14/2023]
Abstract
Serotonergic neurons of the dorsal raphe nucleus, with their extensive innervation of limbic and higher brain regions and interactions with the endocrine system have important modulatory or regulatory effects on many cognitive, emotional and physiological processes. They have been strongly implicated in responses to stress and in the occurrence of major depressive disorder and other psychiatric disorders. In order to quantify some of these effects, detailed mathematical models of the activity of such cells are required which describe their complex neurochemistry and neurophysiology. We consider here a single-compartment model of these neurons which is capable of describing many of the known features of spike generation, particularly the slow rhythmic pacemaking activity often observed in these cells in a variety of species. Included in the model are 11 kinds of ion channels: a fast sodium current INa, a delayed rectifier potassium current IKDR, a transient potassium current IA, a slow non-inactivating potassium current IM, a low-threshold calcium current IT, two high threshold calcium currents IL and IN, small and large conductance potassium currents ISK and IBK, a hyperpolarization-activated cation current IH and a leak current ILeak. In Sections 3-8, each current type is considered in detail and parameters estimated from voltage clamp data where possible. Three kinds of model are considered for the BK current and two for the leak current. Intracellular calcium ion concentration Cai is an additional component and calcium dynamics along with buffering and pumping is discussed in Section 9. The remainder of the article contains descriptions of computed solutions which reveal both spontaneous and driven spiking with several parameter sets. Attention is focused on the properties usually associated with these neurons, particularly long duration of action potential, steep upslope on the leading edge of spikes, pacemaker-like spiking, long-lasting afterhyperpolarization and the ramp-like return to threshold after a spike. In some cases the membrane potential trajectories display doublets or have humps or notches as have been reported in some experimental studies. The computed time courses of IA and IT during the interspike interval support the generally held view of a competition between them in influencing the frequency of spiking. Spontaneous activity was facilitated by the presence of IH which has been found in these neurons by some investigators. For reasonable sets of parameters spike frequencies between about 0.6Hz and 1.2Hz are obtained, but frequencies as high as 6Hz could be obtained with special parameter choices. Topics investigated and compared with experiment include shoulders, notches, anodal break phenomena, the effects of noradrenergic input, frequency versus current curves, depolarization block, effects of cell size and the effects of IM. The inhibitory effects of activating 5-HT1A autoreceptors are also investigated. There is a considerable discussion of in vitro versus in vivo firing behavior, with focus on the roles of noradrenergic input, corticotropin-releasing factor and orexinergic inputs. Location of cells within the nucleus is probably a major factor, along with the state of the animal.
Collapse
Affiliation(s)
- Henry C Tuckwell
- Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany; School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Nicholas J Penington
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA; Program in Neural and Behavioral Science and Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| |
Collapse
|
13
|
Kohlmeier KA, Tyler CJ, Kalogiannis M, Ishibashi M, Kristensen MP, Gumenchuk I, Chemelli RM, Kisanuki YY, Yanagisawa M, Leonard CS. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy. Front Neurosci 2013; 7:246. [PMID: 24391530 PMCID: PMC3869224 DOI: 10.3389/fnins.2013.00246] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/29/2013] [Indexed: 12/14/2022] Open
Abstract
Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2) are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic [laterodorsal tegmental nucleus (LDT)] and monoaminergic [dorsal raphe (DR) and locus coeruleus (LC)] brainstem nuclei—where orexins promote arousal and suppress REM sleep. In slices from OX−/−2 mice, orexin-A (300 nM) elicited wild-type responses in LDT, DR, and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX−/−1 mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX−/−1 mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2+ transients produced by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor knockout mice.
Collapse
Affiliation(s)
- Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | | | - Mike Kalogiannis
- Department of Physiology, New York Medical College Valhalla, NY, USA
| | - Masaru Ishibashi
- Department of Physiology, New York Medical College Valhalla, NY, USA
| | - Morten P Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Iryna Gumenchuk
- Department of Physiology, New York Medical College Valhalla, NY, USA
| | - Richard M Chemelli
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Yaz Y Kisanuki
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Masashi Yanagisawa
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
14
|
Witteveen JS, Middelman A, van Hulten JA, Martens GJM, Homberg JR, Kolk SM. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Front Cell Neurosci 2013; 7:143. [PMID: 24109430 PMCID: PMC3790074 DOI: 10.3389/fncel.2013.00143] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/15/2013] [Indexed: 11/13/2022] Open
Abstract
Besides its "classical" neurotransmitter function, serotonin (5-HT) has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system, besides an external placental source, represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC), an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known, however, about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT), an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster) and a target (mPFC) of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT(-/-)). While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT(-/-) pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for further research in this largely unexplored area.
Collapse
Affiliation(s)
- Josefine S Witteveen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Chandler DJ, Lamperski CS, Waterhouse BD. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res 2013; 1522:38-58. [PMID: 23665053 DOI: 10.1016/j.brainres.2013.04.057] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex (PFC) is implicated in a variety of cognitive and executive functions and is composed of several distinct networks, including anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). These regions serve dissociable cognitive functions, and are heavily innervated by acetylcholine, dopamine, serotonin and norepinephrine systems. In this study, fluorescently labeled retrograde tracers were injected into the ACC, mPFC, and OFC, and labeled cells were identified in the nucleus basalis (NB), ventral tegmental area (VTA), dorsal raphe nucleus (DRN) and locus coeruleus (LC). DRN and LC showed similar distributions of retrogradely labeled neurons such that most were single labeled and the largest population projected to mPFC. VTA showed a slightly greater proportion of double and triple labeled neurons, with the largest population projecting to OFC. NB, on the other hand, showed mostly double and triple labeled neurons projecting to multiple subregions. Therefore, subsets of VTA, DRN and LC neurons may be capable of modulating individual prefrontal subregions independently, whereas NB cells may exert a more unified influence on the three areas simultaneously. These findings emphasize the unique aspects of the cholinergic and monoaminergic projections to functionally and anatomically distinct subregions of PFC.
Collapse
Affiliation(s)
- Daniel J Chandler
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19128, United States
| | | | | |
Collapse
|
16
|
Tuckwell HC. Biophysical properties and computational modeling of calcium spikes in serotonergic neurons of the dorsal raphe nucleus. Biosystems 2013; 112:204-13. [PMID: 23391700 DOI: 10.1016/j.biosystems.2013.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022]
Abstract
Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons.
Collapse
Affiliation(s)
- Henry C Tuckwell
- Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany.
| |
Collapse
|
17
|
Yan J, He C, Xia JX, Zhang D, Hu ZA. Orexin-A excites pyramidal neurons in layer 2/3 of the rat prefrontal cortex. Neurosci Lett 2012; 520:92-7. [PMID: 22617634 DOI: 10.1016/j.neulet.2012.05.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/23/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
The arousal peptides, orexins, play an important role in regulating the function of the prefrontal cortex (PFC). Although orexins have been shown to increase the excitability of deep-layer neurons in the medial prefrontal cortex (mPFC), little is known about their effect on layer 2/3, the main intracortical processing layer. In this study, we investigated the effect of orexin-A on pyramidal neurons in layer 2/3 of the mPFC using whole-cell recordings in rat brain slices. We observed that orexin-A reversibly depolarized layer 2/3 pyramidal neurons through a postsynaptic action. This depolarization was concentration-dependent and mediated via orexin receptor 1. In voltage-clamp recordings, the orexin-A-induced current was reduced by the replacement of internal K(+) with Cs(+), removal of external Na(+), or an application of flufenamic acid (an inhibitor of nonselective cation channels). A blocker of Na(+)/Ca(2+) exchangers (SN-6) did not influence the excitatory effect of orexin-A. Moreover, the current induced by orexin-A reversed near E(k) when the external solution contained low levels of Na(+). When recording with Cs(+)-containing pipettes in normal external solution, the reversal potential of the current was approximately -25 mV. These data suggest an involvement of both K(+) channels and nonselective cation channels in the effect of orexin-A. The direct excitatory action of orexin-A on layer 2/3 mPFC neurons may contribute to the modulation of PFC activity, and play a role in cognitive arousal.
Collapse
Affiliation(s)
- Jie Yan
- Department of Physiology, Third Military Medical University, Chongqing, PR China
| | | | | | | | | |
Collapse
|
18
|
Leak RK, Moore RY. Innervation of ventricular and periventricular brain compartments. Brain Res 2012; 1463:51-62. [PMID: 22575559 DOI: 10.1016/j.brainres.2012.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/22/2012] [Accepted: 04/29/2012] [Indexed: 01/29/2023]
Abstract
Synaptic transmission is divided into two broad categories on the basis of the distance over which neurotransmitters travel. Wiring transmission is the release of transmitter into synaptic clefts in close apposition to receptors. Volume transmission is the release of transmitters or modulators over varying distances before interacting with receptors. One case of volume transmission over potentially long distances involves release into cerebrospinal fluid (CSF). The CSF contains neuroactive substances that affect brain function and range in size from small molecule transmitters to peptides and large proteins. CSF-contacting neurons are a well-known and universal feature of non-mammalian vertebrates, but only supra- and subependymal serotonergic plexuses are a commonly studied feature in mammals. The origin of most other neuroactive substances in CSF is unknown. In order to determine which brain regions communicate with CSF, we describe the distribution of retrograde neuronal labeling in the rat brain following ventricular injection of Cholera toxin, ß subunit (CTß), a tracer frequently used in brain circuit analysis. Within 15 to 30 min following intraventricular injection, there is only diffuse, non-specific staining adjacent to the ventricular surface. Within 2 to 10 days, however, there is extensive labeling of neuronal perikarya in specific nuclear groups in the telencephalon, thalamus, hypothalamus and brainstem, many at a considerable distance from the ventricles. These observations support the view that ventricular CSF is a significant channel for volume transmission and identifies those brain regions most likely to be involved in this process.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | | |
Collapse
|
19
|
Matthews PR, Harrison PJ. A morphometric, immunohistochemical, and in situ hybridization study of the dorsal raphe nucleus in major depression, bipolar disorder, schizophrenia, and suicide. J Affect Disord 2012; 137:125-34. [PMID: 22129767 PMCID: PMC3314923 DOI: 10.1016/j.jad.2011.10.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 12/05/2022]
Abstract
BACKGROUND Several lines of evidence implicate 5-hydroxytryptamine (5-HT, serotonin) in the pathophysiology of mood disorders and suicide. However, it is unclear whether these conditions include morphological involvement of the dorsal raphe nucleus (DRN), the origin of most forebrain 5-HT innervation. METHOD We used morphometric, immunohistochemical, and molecular methods to compare the DRN in post-mortem tissue of 50 subjects (13 controls, 14 major depressive disorder [MDD], 13 bipolar disorder, 10 schizophrenia; 17 of the cases died by suicide). NeuN and PH8 antibodies were used to assess all neurons and serotonergic neurons respectively; 5-HT(1A) autoreceptor expression was investigated by regional and cellular in situ hybridization. Measurements were made at three rostrocaudal levels of the DRN. RESULTS In MDD, the area of the DRN was decreased. In bipolar disorder, serotonergic neuronal size was decreased. Suicide was associated with an increased DRN area, and with a higher density but decreased size of serotonergic neurons. Total neuronal density and 5-HT(1A) receptor mRNA abundance were unaffected by diagnosis or suicide. No changes were seen in schizophrenia. CONCLUSION The results show that mood disorders and suicide are associated with differential, limited morphological alterations of the DRN. The contrasting influences of MDD and suicide may explain some of the discrepancies between previous studies, since their design precluded detection of the effect.
Collapse
Affiliation(s)
| | - Paul J. Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| |
Collapse
|
20
|
Ortega JE, Katner J, Davis R, Wade M, Nisenbaum L, Nomikos GG, Svensson KA, Perry KW. Modulation of neurotransmitter release in orexin/hypocretin-2 receptor knockout mice: a microdialysis study. J Neurosci Res 2011; 90:588-96. [PMID: 22038504 DOI: 10.1002/jnr.22781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/13/2011] [Accepted: 08/04/2011] [Indexed: 11/09/2022]
Abstract
Orexinergic neurons are discretely localized within the lateral hypothalamus and have widespread projections to the whole brain. Here, the role of orexin/hypocretin-2 receptors (OX2) in modulating extracellular concentrations of neurotransmitters was evaluated in the hypothalamus and the prefrontal cortex (PFC) of OX2 knockout (KO) mice by using a microdialysis technique. In the hypothalamus, basal concentrations of norephinephrine (NE), acetylcholine (ACh), and histamine (Hist) were significantly higher in KO mice, whereas KCl perfusion (147 mM) resulted in significantly lesser increases in NE, ACh, and Hist release in KO compared with wild-type (WT) mice. No differences in basal concentrations or evoked release of serotonin (5-HT) or dopamine (DA) were found in the hypothalamus between genotypes. In the PFC, no differences in the basal concentrations of the studied neurotransmitters were found between genotypes. After KCl perfusion, significantly higher increases in NE, 5-HT, and DA release were found in KO compared with WT mice. No differences in the evoked release of ACh and Hist in the PFC were found between genotypes. The present results demonstrate that genetic deletion of OX2 receptors differentially modulates extracellular concentrations of distinct neurotransmitters in the somatodendritic region vs. a nerve terminal region of the orexinergic neurons. In the hypothalamus, an inhibitory role of the OX2 receptors in modulating basal concentrations of NE, ACh, and Hist was revealed, which probably accounts for the reduced responsiveness to KCl as well. In the PFC, the evoked release of the monoamines NE, 5-HT, and DA seems to be controlled negatively by OX2 receptors.
Collapse
Affiliation(s)
- Jorge E Ortega
- Eli Lilly and Co., Indianapolis, Indiana 46240-0510, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cid-Pellitero ED, Garzon M. Hypocretin1/OrexinA Axon Targeting of Laterodorsal Tegmental Nucleus Neurons Projecting to the Rat Medial Prefrontal Cortex. Cereb Cortex 2011; 21:2762-73. [DOI: 10.1093/cercor/bhr070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Cid-Pellitero ED, GarzÓN M. Hypocretin1/OrexinA-containing axons innervate locus coeruleus neurons that project to the Rat medial prefrontal cortex. Implication in the sleep-wakefulness cycle and cortical activation. Synapse 2011; 65:843-57. [DOI: 10.1002/syn.20912] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/09/2010] [Indexed: 12/31/2022]
|