1
|
Zhao Q, Li C, Xu Y, Zhong J, Liu H, Yin Y, Liu Y, Yang C, Yu L, Liu L, Pan L, Tan B. Treadmill exercise supplemented by OPN promote axon regeneration through the IGF-1R/Akt/mTOR signaling pathway. Exp Neurol 2024; 385:115096. [PMID: 39657897 DOI: 10.1016/j.expneurol.2024.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Regeneration of the corticospinal tract (CST) is considered a therapeutic target to achieve improved recovery of motor function after spinal cord injury (SCI), which is an incurable CNS damage that affects millions of people. Exercise training is effective in improving multiple functions in spinal cord-injured patients. However, the effects of exercise training on axon regeneration have not been sufficiently reported. Osteopontin (OPN) has great potential application as a neuroprotective agent for the repair of the nervous system. Studies have shown that the extent of axon regeneration strongly correlates with the expression of OPN. Our previous studies demonstrated that treadmill exercise supplemented by OPN enhances motor function recovery, but axon regeneration is still limited. Extending the treadmill exercise for 12 weeks, we observed promoted axon regeneration, motor function improvement, and signaling pathway activation in mice with SCI after supplementing OPN. Axon regeneration was observed with an anterograde tracer, motor function recovery was evaluated by animal ethology and electrophysiology, and the levels of IGF-1R/Akt/mTOR signaling pathway were evaluated. The results showed that the CST of C5 crushed mice regenerated and formed synaptic connections with neurons after treadmill exercise supplemented by OPN, the horizontal ladder and cylinder rearing test of injured limbs were improved, motor evoked potential also suggested enhanced nerve conduction, and the expression of p-IR, p-Akt, and p-S6 were increased. And the improvements were more obvious than that of the exercise group. Collectively, our study found that treadmill exercise supplemented by OPN promote axon regeneration and motor function through the IGF-1R/Akt/mTOR signaling pathways, and these improvements can be inhibited by rapamycin and Methyl-β-CD(M-B-CD).
Collapse
Affiliation(s)
- Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China; Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong province 250000, China.
| | - Ci Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong province 250000, China.
| | - Yangjie Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Juan Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Hongzhen Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Yuan Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Ce Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Li Liu
- Department of Brain, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China.
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| |
Collapse
|
2
|
Shepard CT, Brown BL, Van Rijswijck MA, Zalla RM, Burke DA, Morehouse JR, Riegler AS, Whittemore SR, Magnuson DSK. Silencing long-descending inter-enlargement propriospinal neurons improves hindlimb stepping after contusive spinal cord injuries. eLife 2023; 12:e82944. [PMID: 38099572 PMCID: PMC10776087 DOI: 10.7554/elife.82944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Spinal locomotor circuitry is comprised of rhythm generating centers, one for each limb, that are interconnected by local and long-distance propriospinal neurons thought to carry temporal information necessary for interlimb coordination and gait control. We showed previously that conditional silencing of the long ascending propriospinal neurons (LAPNs) that project from the lumbar to the cervical rhythmogenic centers (L1/L2 to C6), disrupts right-left alternation of both the forelimbs and hindlimbs without significantly disrupting other fundamental aspects of interlimb and speed-dependent coordination (Pocratsky et al., 2020). Subsequently, we showed that silencing the LAPNs after a moderate thoracic contusive spinal cord injury (SCI) resulted in better recovered locomotor function (Shepard et al., 2021). In this research advance, we focus on the descending equivalent to the LAPNs, the long descending propriospinal neurons (LDPNs) that have cell bodies at C6 and terminals at L2. We found that conditional silencing of the LDPNs in the intact adult rat resulted in a disrupted alternation of each limb pair (forelimbs and hindlimbs) and after a thoracic contusion SCI significantly improved locomotor function. These observations lead us to speculate that the LAPNs and LDPNs have similar roles in the exchange of temporal information between the cervical and lumbar rhythm generating centers, but that the partial disruption of the pathway after SCI limits the independent function of the lumbar circuitry. Silencing the LAPNs or LDPNs effectively permits or frees-up the lumbar circuitry to function independently.
Collapse
Affiliation(s)
- Courtney T Shepard
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Brandon L Brown
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Morgan A Van Rijswijck
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Rachel M Zalla
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Johnny R Morehouse
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Amberly S Riegler
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Scott R Whittemore
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - David SK Magnuson
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| |
Collapse
|
3
|
Fortino TA, Randelman ML, Hall AA, Singh J, Bloom DC, Engel E, Hoh DJ, Hou S, Zholudeva LV, Lane MA. Transneuronal tracing to map connectivity in injured and transplanted spinal networks. Exp Neurol 2022; 351:113990. [DOI: 10.1016/j.expneurol.2022.113990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
|
4
|
Shepard CT, Pocratsky AM, Brown BL, Van Rijswijck MA, Zalla RM, Burke DA, Morehouse JR, Riegler AS, Whittemore SR, Magnuson DSK. Silencing long ascending propriospinal neurons after spinal cord injury improves hindlimb stepping in the adult rat. eLife 2021; 10:e70058. [PMID: 34854375 PMCID: PMC8639151 DOI: 10.7554/elife.70058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Long ascending propriospinal neurons (LAPNs) are a subpopulation of spinal cord interneurons that directly connect the lumbar and cervical enlargements. Previously we showed, in uninjured animals, that conditionally silencing LAPNs disrupted left-right coordination of the hindlimbs and forelimbs in a context-dependent manner, demonstrating that LAPNs secure alternation of the fore- and hindlimb pairs during overground stepping. Given the ventrolateral location of LAPN axons in the spinal cord white matter, many likely remain intact following incomplete, contusive, thoracic spinal cord injury (SCI), suggesting a potential role in the recovery of stepping. Thus, we hypothesized that silencing LAPNs after SCI would disrupt recovered locomotion. Instead, we found that silencing spared LAPNs post-SCI improved locomotor function, including paw placement order and timing, and a decrease in the number of dorsal steps. Silencing also restored left-right hindlimb coordination and normalized spatiotemporal features of gait such as stance and swing time. However, hindlimb-forelimb coordination was not restored. These data indicate that the temporal information carried between the spinal enlargements by the spared LAPNs post-SCI is detrimental to recovered hindlimb locomotor function. These findings are an illustration of a post-SCI neuroanatomical-functional paradox and have implications for the development of neuronal- and axonal-protective therapeutic strategies and the clinical study/implementation of neuromodulation strategies.
Collapse
Affiliation(s)
- Courtney T Shepard
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Amanda M Pocratsky
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Brandon L Brown
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Morgan A Van Rijswijck
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Rachel M Zalla
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Johnny R Morehouse
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Amberley S Riegler
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Scott R Whittemore
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - David SK Magnuson
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| |
Collapse
|
5
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
6
|
Khodabandeh Z, Mehrabani D, Dehghani F, Gashmardi N, Erfanizadeh M, Zare S, Bozorg-Ghalati F. Spinal cord injury repair using mesenchymal stem cells derived from bone marrow in mice: A stereological study. Acta Histochem 2021; 123:151720. [PMID: 34083065 DOI: 10.1016/j.acthis.2021.151720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Transplantation of bone marrow stem cells (BMSCs) has shown to have a vital role in promoting nerve regeneration after SCI. The aim of this study was to investigate the effect of BMSCs transplantation in healing of spinal cord injury (SCI) in mice based on morphologic parameters. Forty two male mice were randomly divided into 3 groups of control with no intervention, experimental SCI without treatment, and experimental SCI transplanted with 2 × 105 BMSCs intravenously. To induce SCI bilaterally, T10 was compressed for 2 min. The animals were sacrificed 3 and 5 weeks after SCI and T7-T11 segments of spinal cord were removed and stained by Giemsa and H&E methods. Stereological assessment estimated the gray and white matter volume, the number of neurons and neuroglia and diameter of central canal. The average amount of gray matter in SCI injury group was significantly lower than control group. An increase in the number of neurons was noted after cell transplantation. The number of neurons in SCI injury group significantly decreased in comparison to the control group. In cell transplantation group, a significant increase in the number of neurons was visible when compared to SCI injury group. The increase in the number of neurons after cell transplantation denotes to the regenerative potential of BMSCs in SCI. These findings can be added to the literature and open a new window when targeting treatment of SCI.
Collapse
Affiliation(s)
- Zahra Khodabandeh
- Stem cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Iran; Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada.
| | - Farzaneh Dehghani
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahboobeh Erfanizadeh
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Bozorg-Ghalati
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Anderson MA. Targeting Central Nervous System Regeneration with Cell Type Specificity. Neurosurg Clin N Am 2021; 32:397-405. [PMID: 34053727 DOI: 10.1016/j.nec.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There have been tremendous advances in identifying cellular and molecular mechanisms constraining axon growth and strategies have been developed to overcome regenerative failure. However, reproducible and meaningful functional recovery remains elusive. An emerging reason is that neurons possess subtype-specific activation requirements. Much of this evidence comes from studying retinal ganglion cells following optic nerve injury. This review summarizes key neuropathologic events following spinal cord injury, and draws on findings from the optic nerve to suggest how a similar framework may be used to dissect and manipulate the heterogeneous and subtype-specific responses of neurons useful to target for spinal cord injury.
Collapse
Affiliation(s)
- Mark A Anderson
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland; Neural Repair Unit, NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM, Levin JZ, Lin D, Wang C, Lieber CM, Regev A, He Z, Sanes JR. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron 2019; 104:1039-1055.e12. [PMID: 31784286 PMCID: PMC6923571 DOI: 10.1016/j.neuron.2019.11.006] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
Neuronal types in the central nervous system differ dramatically in their resilience to injury or other insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ∼80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC; characterized transcriptomic, physiological, and morphological changes that preceded degeneration; and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.
Collapse
Affiliation(s)
- Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karthik Shekhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Inbal Benhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Material Science and Engineering and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xian Adiconis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - McKinzie E Arnold
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jung Min Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua Z Levin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dingchang Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA and Department of Biology and Koch Institute, MIT, Cambridge, MA 02139, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Trawczynski M, Liu G, David BT, Fessler RG. Restoring Motor Neurons in Spinal Cord Injury With Induced Pluripotent Stem Cells. Front Cell Neurosci 2019; 13:369. [PMID: 31474833 PMCID: PMC6707336 DOI: 10.3389/fncel.2019.00369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that damages motor, sensory, and autonomic pathways. Recent advances in stem cell therapy have allowed for the in vitro generation of motor neurons (MNs) showing electrophysiological and synaptic activity, expression of canonical MN biomarkers, and the ability to graft into spinal lesions. Clinical translation, especially the transplantation of MN precursors in spinal lesions, has thus far been elusive because of stem cell heterogeneity and protocol variability, as well as a hostile microenvironment such as inflammation and scarring, which yield inconsistent pre-clinical results without a consensus best-practice therapeutic strategy. Induced pluripotent stem cells (iPSCs) in particular have lower ethical and immunogenic concerns than other stem cells, which could make them more clinically applicable. In this review, we focus on the differentiation of iPSCs into neural precursors, MN progenitors, mature MNs, and MN subtype fates. Previous reviews have summarized MN development and differentiation, but an up-to-date summary of technological and experimental advances holding promise for bench-to-bedside translation, especially those targeting individual MN subtypes in SCI, is currently lacking. We discuss biological mechanisms of MN lineage, recent experimental protocols and techniques for MN differentiation from iPSCs, and transplantation of neural precursors and MN lineage cells in spinal cord lesions to restore motor function. We emphasize efficient, clinically safe, and personalized strategies for the application of MN and their subtypes as therapy in spinal lesions.
Collapse
Affiliation(s)
- Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gele Liu
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
10
|
Rodemer W, Selzer ME. Role of axon resealing in retrograde neuronal death and regeneration after spinal cord injury. Neural Regen Res 2019; 14:399-404. [PMID: 30539805 PMCID: PMC6334596 DOI: 10.4103/1673-5374.245330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spinal cord injury leads to persistent behavioral deficits because mammalian central nervous system axons fail to regenerate. A neuron's response to axon injury results from a complex interplay of neuron-intrinsic and environmental factors. The contribution of axotomy to the death of neurons in spinal cord injury is controversial because very remote axotomy is unlikely to result in neuronal death, whereas death of neurons near an injury may reflect environmental factors such as ischemia and inflammation. In lampreys, axotomy due to spinal cord injury results in delayed apoptosis of spinal-projecting neurons in the brain, beyond the extent of these environmental factors. This retrograde apoptosis correlates with delayed resealing of the axon, and can be reversed by inducing rapid membrane resealing with polyethylene glycol. Studies in mammals also suggest that polyethylene glycol may be neuroprotective, although the mechanism(s) remain unclear. This review examines the early, mechanical, responses to axon injury in both mammals and lampreys, and the potential of polyethylene glycol to reduce injury-induced pathology. Identifying the mechanisms underlying a neuron's response to axotomy will potentially reveal new therapeutic targets to enhance regeneration and functional recovery in humans with spinal cord injury.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA, USA
| | - Michael E Selzer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation); Department of Neurology, the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Zholudeva LV, Iyer N, Qiang L, Spruance VM, Randelman ML, White NW, Bezdudnaya T, Fischer I, Sakiyama-Elbert SE, Lane MA. Transplantation of Neural Progenitors and V2a Interneurons after Spinal Cord Injury. J Neurotrauma 2018; 35:2883-2903. [PMID: 29873284 DOI: 10.1089/neu.2017.5439] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is growing interest in the use of neural precursor cells to treat spinal cord injury (SCI). Despite extensive pre-clinical research, it remains unclear as to which donor neuron phenotypes are available for transplantation, whether the same populations exist across different sources of donor tissue (e.g., developing tissue vs. cultured cells), and whether donor cells retain their phenotype once transplanted into the hostile internal milieu of the injured adult spinal cord. In addition, while functional improvements have been reported after neural precursor transplantation post-SCI, the extent of recovery is limited and variable. The present work begins to address these issues by harnessing ventrally derived excitatory pre-motor V2a spinal interneurons (SpINs) to repair the phrenic motor circuit after cervical SCI. Recent studies have demonstrated that Chx10-positive V2a SpINs contribute to anatomical plasticity within the phrenic circuitry after cervical SCI, thus identifying them as a therapeutic candidate. Building upon this discovery, the present work tests the hypothesis that transplantation of neural progenitor cells (NPCs) enriched with V2a INs can contribute to neural networks that promote repair and enhance respiratory plasticity after cervical SCI. Cultured NPCs (neuronal and glial restricted progenitor cells) isolated from E13.5 Green fluorescent protein rats were aggregated with TdTomato-mouse embryonic stem cell-derived V2a INs in vitro, then transplanted into the injured cervical (C3-4) spinal cord. Donor cells survive, differentiate and integrate with the host spinal cord. Functional diaphragm electromyography indicated recovery 1 month following treatment in transplant recipients. Animals that received donor cells enriched with V2a INs showed significantly greater functional improvement than animals that received NPCs alone. The results from this study offer insight into the neuronal phenotypes that might be effective for (re)establishing neuronal circuits in the injured adult central nervous system.
Collapse
Affiliation(s)
- Lyandysha V Zholudeva
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nisha Iyer
- 3 Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin
| | - Liang Qiang
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Victoria M Spruance
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Margo L Randelman
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nicholas W White
- 4 Department of Biomedical Engineering, University of Texas, Austin, Texas
| | - Tatiana Bezdudnaya
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Itzhak Fischer
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | | | - Michael A Lane
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Sheikh IS, Keefe KM, Sterling NA, Junker IP, Eneanya CI, Liu Y, Tang XQ, Smith GM. Retrogradely Transportable Lentivirus Tracers for Mapping Spinal Cord Locomotor Circuits. Front Neural Circuits 2018; 12:60. [PMID: 30090059 PMCID: PMC6068242 DOI: 10.3389/fncir.2018.00060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Retrograde tracing is a key facet of neuroanatomical studies involving long distance projection neurons. Previous groups have utilized a variety of tools ranging from classical chemical tracers to newer methods employing viruses for gene delivery. Here, we highlight the usage of a lentivirus that permits highly efficient retrograde transport (HiRet) from synaptic terminals within the cervical and lumbar enlargements of the spinal cord. By injecting HiRet, we can clearly identify supraspinal and propriospinal circuits innervating motor neuron pools relating to forelimb and hindlimb function. We observed robust labeling of propriospinal neurons, including high fidelity details of dendritic arbors and axon terminals seldom seen with chemical tracers. In addition, we examine changes in interneuronal circuits occurring after a thoracic contusion, highlighting populations that potentially contribute to spontaneous behavioral recovery in this lesion model. Our study demonstrates that the HiRet lentivirus is a unique tool for examining neuronal circuitry within the brain and spinal cord.
Collapse
Affiliation(s)
- Imran S Sheikh
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kathleen M Keefe
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Noelle A Sterling
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ian P Junker
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Chidubem I Eneanya
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yingpeng Liu
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiao-Qing Tang
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function. Neurobiol Dis 2017; 105:194-212. [PMID: 28578003 DOI: 10.1016/j.nbd.2017.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023] Open
Abstract
The majority of spinal cord injuries (SCI) occur at the cervical level, which results in significant impairment. Neurologic level and severity of injury are primary endpoints in clinical trials; however, how level-specific damages relate to behavioural performance in cervical injury is incompletely understood. We hypothesized that ascending level of injury leads to worsening forelimb performance, and correlates with loss of neural tissue and muscle-specific neuron pools. A direct comparison of multiple models was made with injury realized at the C5, C6, C7 and T7 vertebral levels using clip compression with sham-operated controls. Animals were assessed for 10weeks post-injury with numerous (40) outcome measures, including: classic behavioural tests, CatWalk, non-invasive MRI, electrophysiology, histologic lesion morphometry, neuron counts, and motor compartment quantification, and multivariate statistics on the total dataset. Histologic staining and T1-weighted MR imaging revealed similar structural changes and distinct tissue loss with cystic cavitation across all injuries. Forelimb tests, including grip strength, F-WARP motor scale, Inclined Plane, and forelimb ladder walk, exhibited stratification between all groups and marked impairment with C5 and C6 injuries. Classic hindlimb tests including BBB, hindlimb ladder walk, bladder recovery, and mortality were not different between cervical and thoracic injuries. CatWalk multivariate gait analysis showed reciprocal and progressive changes forelimb and hindlimb function with ascending level of injury. Electrophysiology revealed poor forelimb axonal conduction in cervical C5 and C6 groups alone. The cervical enlargement (C5-T2) showed progressive ventral horn atrophy and loss of specific motor neuron populations with ascending injury. Multivariate statistics revealed a robust dataset, rank-order contribution of outcomes, and allowed prediction of injury level with single-level discrimination using forelimb performance and neuron counts. Level-dependent models were generated using clip-compression SCI, with marked and reliable differences in forelimb performance and specific neuron pool loss.
Collapse
|
14
|
Axonal Degeneration in Retinal Ganglion Cells Is Associated with a Membrane Polarity-Sensitive Redox Process. J Neurosci 2017; 37:3824-3839. [PMID: 28275163 DOI: 10.1523/jneurosci.3882-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Axonal degeneration is a pathophysiological mechanism common to several neurodegenerative diseases. The slow Wallerian degeneration (WldS) mutation, which results in reduced axonal degeneration in the central and peripheral nervous systems, has provided insight into a redox-dependent mechanism by which axons undergo self-destruction. We studied early molecular events in axonal degeneration with single-axon laser axotomy and time-lapse imaging, monitoring the initial changes in transected axons of purified retinal ganglion cells (RGCs) from wild-type and WldS rat retinas using a polarity-sensitive annexin-based biosensor (annexin B12-Cys101,Cys260-N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylenediamine). Transected axons demonstrated a rapid and progressive change in membrane phospholipid polarity, manifested as phosphatidylserine externalization, which was significantly delayed and propagated more slowly in axotomized WldS RGCs compared with wild-type axons. Delivery of bis(3-propionic acid methyl ester)phenylphosphine borane complex, a cell-permeable intracellular disulfide-reducing drug, slowed the onset and velocity of phosphatidylserine externalization in wild-type axons significantly, replicating the WldS phenotype, whereas extracellular redox modulation reversed the WldS phenotype. These findings are consistent with an intra-axonal redox mechanism for axonal degeneration associated with the initiation and propagation of phosphatidylserine externalization after axotomy.SIGNIFICANCE STATEMENT Axonal degeneration is a neuronal process independent of somal apoptosis, the propagation of which is unclear. We combined single-cell laser axotomy with time-lapse imaging to study the dynamics of phosphatidylserine externalization immediately after axonal injury in purified retinal ganglion cells. The extension of phosphatidylserine externalization was slowed and delayed in Wallerian degeneration slow (WldS) axons and this phenotype could be reproduced by intra-axonal disulfide reduction in wild-type axons and reversed by extra-axonal reduction in WldS axons. These results are consistent with a redox mechanism for propagation of membrane polarity asymmetry in axonal degeneration.
Collapse
|
15
|
Hu J, Zhang G, Rodemer W, Jin LQ, Shifman M, Selzer ME. The role of RhoA in retrograde neuronal death and axon regeneration after spinal cord injury. Neurobiol Dis 2016; 98:25-35. [PMID: 27888137 DOI: 10.1016/j.nbd.2016.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/24/2016] [Accepted: 11/20/2016] [Indexed: 01/13/2023] Open
Abstract
Paralysis following spinal cord injury (SCI) is due to interruption of axons and their failure to regenerate. It has been suggested that the small GTPase RhoA may be an intracellular signaling convergence point for several types of growth-inhibiting extracellular molecules. Even if this is true in vitro, it is not clear from studies in mammalian SCI, whether the effects of RhoA manipulations on axon growth in vivo are due to a RhoA-mediated inhibition of true regeneration or only of collateral sprouting from spared axons, since work on SCI generally is performed with partial injury models. RhoA also has been implicated in local neuronal apoptosis after SCI, but whether this reflects an effect on axotomy-induced cell death or an effect on other pathological mechanisms is not known. In order to resolve these ambiguities, we studied the effects of RhoA knockdown in the sea lamprey central nervous system (CNS), where after complete spinal cord transection (TX), robust but incomplete regeneration of large axons belonging to individually identified reticulospinal (RS) neurons occurs, and where some RS neurons show unambiguous delayed retrograde apoptosis after axotomy. RhoA protein was detected in neurons and axons of the lamprey brain and spinal cord, and its expression was increased post-TX. Knockdown of RhoA in vivo by retrogradely-delivered morpholino antisense oligonucleotides (MOs) to the RS neurons significantly reduced retrograde apoptosis signaling in identified RS neurons post-SCI, as indicated by Fluorochrome Labeled Inhibitor of Caspases (FLICA) in brain wholemounts. In individual RS neurons, the reduction of caspase activation by RhoA knockdown began at 2weeks post-TX and was still seen at 8weeks. RhoA knockdown slowed axon retraction and possibly increased early axon regeneration in the proximal stump. The number of axons regenerating beyond the lesion more than 5mm at 10weeks post-TX also was increased. Thus RhoA knockdown both enhanced true axon regeneration and inhibited retrograde apoptosis signaling after SCI.
Collapse
Affiliation(s)
- Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Li-Qing Jin
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Michael Shifman
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA; Dept. of Neurology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
16
|
Neuroprotective and Neurorestorative Processes after Spinal Cord Injury: The Case of the Bulbospinal Respiratory Neurons. Neural Plast 2016; 2016:7692602. [PMID: 27563469 PMCID: PMC4987469 DOI: 10.1155/2016/7692602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022] Open
Abstract
High cervical spinal cord injuries interrupt the bulbospinal respiratory pathways projecting to the cervical phrenic motoneurons resulting in important respiratory defects. In the case of a lateralized injury that maintains the respiratory drive on the opposite side, a partial recovery of the ipsilateral respiratory function occurs spontaneously over time, as observed in animal models. The rodent respiratory system is therefore a relevant model to investigate the neuroplastic and neuroprotective mechanisms that will trigger such phrenic motoneurons reactivation by supraspinal pathways. Since part of this recovery is dependent on the damaged side of the spinal cord, the present review highlights our current understanding of the anatomical neuroplasticity processes that are developed by the surviving damaged bulbospinal neurons, notably axonal sprouting and rerouting. Such anatomical neuroplasticity relies also on coordinated molecular mechanisms at the level of the axotomized bulbospinal neurons that will promote both neuroprotection and axon growth.
Collapse
|
17
|
Ford TW, Anissimova NP, Meehan CF, Kirkwood PA. Functional plasticity in the respiratory drive to thoracic motoneurons in the segment above a chronic lateral spinal cord lesion. J Neurophysiol 2015; 115:554-67. [PMID: 26490290 DOI: 10.1152/jn.00614.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022] Open
Abstract
A previous neurophysiological investigation demonstrated an increase in functional projections of expiratory bulbospinal neurons (EBSNs) in the segment above a chronic lateral thoracic spinal cord lesion that severed their axons. We have now investigated how this plasticity might be manifested in thoracic motoneurons by measuring their respiratory drive and the connections to them from individual EBSNs. In anesthetized cats, simultaneous recordings were made intracellularly from motoneurons in the segment above a left-side chronic (16 wk) lesion of the spinal cord in the rostral part of T8, T9, or T10 and extracellularly from EBSNs in the right caudal medulla, antidromically excited from just above the lesion but not from below. Spike-triggered averaging was used to measure the connections between pairs of EBSNs and motoneurons. Connections were found to have a very similar distribution to normal and were, if anything (nonsignificantly), weaker than normal, being present for 42/158 pairs, vs. 55/154 pairs in controls. The expiratory drive in expiratory motoneurons appeared stronger than in controls but again not significantly so. Thus we conclude that new connections made by the EBSNs following these lesions were made to neurons other than α-motoneurons. However, a previously unidentified form of functional plasticity was seen in that there was a significant increase in the excitation of motoneurons during postinspiration, being manifest either in increased incidence of expiratory decrementing respiratory drive potentials or in an increased amplitude of the postinspiratory depolarizing phase in inspiratory motoneurons. We suggest that this component arose from spinal cord interneurons.
Collapse
Affiliation(s)
- T W Ford
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - N P Anissimova
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - C F Meehan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - P A Kirkwood
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
18
|
Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 2015; 85:1244-56. [PMID: 25754821 PMCID: PMC4391013 DOI: 10.1016/j.neuron.2015.02.017] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/22/2014] [Accepted: 01/17/2015] [Indexed: 12/23/2022]
Abstract
In mammals, few retinal ganglion cells (RGCs) survive following axotomy, and even fewer regenerate axons. This could reflect differential extrinsic influences or the existence of subpopulations that vary in their responses to injury. We tested these alternatives by comparing responses of molecularly distinct subsets of mouse RGCs to axotomy. Survival rates varied dramatically among subtypes, with alpha-RGCs (αRGCs) surviving preferentially. Among survivors, αRGCs accounted for nearly all regeneration following downregulation of PTEN, which activates the mTOR pathway. αRGCs have uniquely high mTOR signaling levels among RGCs and also selectively express osteopontin (OPN) and receptors for the insulin-like growth factor 1 (IGF-1). Administration of OPN plus IGF-1 promotes regeneration as effectively as downregulation of PTEN; however, regeneration is still confined to αRGCs. Our results reveal dramatic subtype-specific differences in the ability of RGCs to survive and regenerate following injury, and they identify promising agents for promoting axonal regeneration.
Collapse
Affiliation(s)
- Xin Duan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Mu Qiao
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Fengfeng Bei
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - In-Jung Kim
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
19
|
Intraspinal AAV Injections Immediately Rostral to a Thoracic Spinal Cord Injury Site Efficiently Transduces Neurons in Spinal Cord and Brain. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e108. [PMID: 23881451 PMCID: PMC3731889 DOI: 10.1038/mtna.2013.34] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/03/2013] [Indexed: 12/18/2022]
Abstract
In the vast majority of studies utilizing adeno-associated virus (AAV) in central nervous system applications, including those published with spinal cord injury (SCI) models, AAV has been administered at the level of the cell body of neurons targeted for genetic modification, resulting in transduction of neurons in the vicinity of the injection site. However, as SCI interrupts many axon tracts, it may be more beneficial to transduce a diverse pool of supraspinal neurons. We determined if descending axons severed by SCI are capable of retrogradely transporting AAV to remotely transduce a variety of brain regions. Different AAV serotypes encoding the reporter green fluorescent protein (GFP) were injected into gray and white matter immediately rostral to a spinal transection site. This resulted in the transduction of thousands of neurons within the spinal cord and in multiple regions within the brainstem that project to spinal cord. In addition, we established that different serotypes had disparate regional specificity and that AAV5 transduced the most brain and spinal cord neurons. This is the first demonstration that retrograde transport of AAV by axons severed by SCI is an effective means to transduce a collection of supraspinal neurons. Thus, we identify a novel, minimally invasive means to transduce a variety of neuronal populations within both the spinal cord and the brain following SCI. This paradigm to broadly distribute viral vectors has the potential to be an important component of a combinatorial strategy to promote functional axonal regeneration.
Collapse
|