1
|
McManus G, Galfano A, Budrow C, Lipari N, Tseng KY, Manfredsson FP, Bishop C. Effects of genetic knockdown of the serotonin transporter on established L-DOPA-induced dyskinesia and gene expression in hemiparkinsonian rats. Neuropharmacology 2025; 266:110227. [PMID: 39561852 DOI: 10.1016/j.neuropharm.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder typified by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) leading to motor symptoms including resting tremor, rigidity, akinesia, and postural instability. DA replacement therapy with levodopa (L-DOPA) remains the gold-standard treatment for the motor symptoms of PD. Unfortunately, chronic use of L-DOPA leads to the development of side effects known as L-DOPA-induced dyskinesia (LID). The mechanisms underlying LID are multifaceted, but accumulating research has strongly implicated maladaptive neuroplasticity within the raphe-striatal serotonin (5-HT) circuit. The 5-HT transporter (SERT) has emerged as an intriguing therapeutic target as it is upregulated in the brains of dyskinetic patients and animal models of LID, and pharmacological blockade of SERT alters L-DOPA's effects. Therefore, the current study employed an interventional genetic knockdown of SERT (SERT-KD) to investigate its role in LID expression and LID-associated transcription factors. To do so, hemiparkinsonian, stably dyskinetic rats (N = 68) received adeno-associated virus 9 (AAV9) expressing either a short-hairpin RNA against SERT (SERT-shRNA) or a scrambled control shRNA (SCR-shRNA) after which LID reinstatement and motor performance were assayed over 2 weeks. Dorsal raphe and striatal tissue were collected for the expression analyses of known parkinsonian and LID-associated genes. Results demonstrated that SERT-KD significantly and durably reduced LID and L-DOPA-induced striatal cFOS mRNA without altering L-DOPA efficacy. Such findings point to SERT-mediated adaptations as a 5-HT mechanism by which L-DOPA exerts its actions and therapeutic target for LID.
Collapse
Affiliation(s)
- Grace McManus
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA.
| | - Ashley Galfano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA
| | - Carla Budrow
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA
| | - Natalie Lipari
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois Chicago - College of Medicine, Chicago, IL, 60612, USA
| | - Fredric P Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Pheonix, AZ, 85013, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
2
|
Douma EH, Stoop J, Lingl MVR, Smidt MP, van der Heide LP. Phosphodiesterase inhibition and Gucy2C activation enhance tyrosine hydroxylase Ser40 phosphorylation and improve 6-hydroxydopamine-induced motor deficits. Cell Biosci 2024; 14:132. [PMID: 39456033 PMCID: PMC11515495 DOI: 10.1186/s13578-024-01312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the nigrostriatal pathway, leading to dopamine deficiency and motor impairments. Current treatments, such as L-DOPA, provide symptomatic relief but result in off-target effects and diminished efficacy over time. This study explores an alternative approach by investigating the activation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Specifically, we explore the effects of phosphodiesterase (PDE) inhibition and guanylate cyclase-C (GUCY2C) activation on tyrosine hydroxylase Ser40 phosphorylation and their impact on motor behavior in a 6-hydroxydopamine (6-OHDA) Parkinson's disease model. RESULTS Our findings demonstrate that increasing cyclic nucleotide levels through PDE inhibition and GUCY2C activation significantly enhances tyrosine hydroxylase Ser40 phosphorylation. In a Pitx3-deficient mouse model, which mimics the loss of dopaminergic neurons seen in Parkinson's disease, Ser40 phosphorylation remained manipulable despite reduced tyrosine hydroxylase protein levels. Moreover, we observed no evidence of tyrosine hydroxylase degradation due to Ser40 phosphorylation, challenging previous reports. Furthermore, both PDE inhibition and GUCY2C activation resulted in improved motor behavior in the 6-OHDA Parkinson's disease mouse model, highlighting the potential therapeutic benefits of these approaches. CONCLUSIONS This study underscores the therapeutic potential of enhancing tyrosine hydroxylase Ser40 phosphorylation to improve motor function in Parkinson's disease. Both PDE inhibition and GUCY2C activation represent promising non-invasive strategies to modulate endogenous dopamine biosynthesis and address motor deficits. These findings suggest that targeting cyclic nucleotide pathways could lead to novel therapeutic approaches, either as standalone treatments or in combination with existing therapies like L-DOPA, aiming to provide more durable symptom relief and potentially mitigate neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Erik H Douma
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Parkinnova Therapeutics B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jesse Stoop
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Matthijs V R Lingl
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Cardinale A, de Iure A, Picconi B. Neuroinflammation and Dyskinesia: A Possible Causative Relationship? Brain Sci 2024; 14:514. [PMID: 38790492 PMCID: PMC11118841 DOI: 10.3390/brainsci14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson's disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication, synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible new therapeutic interventions for dyskinesia prevention targeting glia cells.
Collapse
Affiliation(s)
- Antonella Cardinale
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Antonio de Iure
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| |
Collapse
|
4
|
Huang YT, Chen YW, Lin TY, Chen JC. Suppression of presynaptic corticostriatal glutamate activity attenuates L-dopa-induced dyskinesia in 6-OHDA-lesioned Parkinson's disease mice. Neurobiol Dis 2024; 193:106452. [PMID: 38401650 DOI: 10.1016/j.nbd.2024.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
A common adverse effect of Parkinson's disease (PD) treatment is L-dopa-induced dyskinesia (LID). This condition results from both dopamine (DA)-dependent and DA-independent mechanisms, as glutamate inputs from corticostriatal projection neurons impact DA-responsive medium spiny neurons in the striatum to cause the dyskinetic behaviors. In this study, we explored whether suppression of presynaptic corticostriatal glutamate inputs might affect the behavioral and biochemical outcomes associated with LID. We first established an animal model in which 6-hydroxydopamine (6-OHDA)-lesioned mice were treated daily with L-dopa (10 mg/kg, i.p.) for 2 weeks; these mice developed stereotypical abnormal involuntary movements (AIMs). When the mice were pretreated with the NMDA antagonist, amantadine, we observed suppression of AIMs and reductions of phosphorylated ERK1/2 and NR2B in the striatum. We then took an optogenetic approach to manipulate glutamatergic activity. Slc17a6 (vGluT2)-Cre mice were injected with pAAV5-Ef1a-DIO-eNpHR3.0-mCherry and received optic fiber implants in either the M1 motor cortex or dorsolateral striatum. Optogenetic inactivation at either optic fiber implant location could successfully reduce the intensity of AIMs after 6-OHDA lesioning and L-dopa treatment. Both optical manipulation strategies also suppressed phospho-ERK1/2 and phospho-NR2B signals in the striatum. Finally, we performed intrastriatal injections of LDN 212320 in the dyskenesic mice to enhance expression of glutamate uptake transporter GLT-1. Sixteen hours after the LDN 212320 treatment, L-dopa-induced AIMs were reduced along with the levels of striatal phospho-ERK1/2 and phospho-NR2B. Together, our results affirm a critical role of corticostriatal glutamate neurons in LID and strongly suggest that diminishing synaptic glutamate, either by suppression of neuronal activity or by upregulation of GLT-1, could be an effective approach for managing LID.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Wen Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tze-Yen Lin
- Department and Graduate Institute of Physiology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, Healthy Ageing Research Center, Chang-Gung University, Taiwan; Neuroscience Research Center and Department of Psychiatry, Chang-Gung Memorial Hospitall, Linkou, Taiwan.
| |
Collapse
|
5
|
Chaib S, Vidal B, Bouillot C, Depoortere R, Newman-Tancredi A, Zimmer L, Levigoureux E. Multimodal imaging study of the 5-HT 1A receptor biased agonist, NLX-112, in a model of L-DOPA-induced dyskinesia. Neuroimage Clin 2023; 39:103497. [PMID: 37632990 PMCID: PMC10474496 DOI: 10.1016/j.nicl.2023.103497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
INTRODUCTION The leading treatment for motor signs of Parkinson's disease is L-DOPA, but, upon extended use, it can lead to levodopa-induced dyskinesia (LID). Serotonergic neurons are involved in LID etiology and previous pre-clinical studies have shown that NLX-112, a 5-HT1A biased agonist, has robust antidyskinetic effects. Here, we investigated its effects in hemiparkinsonian (HPK) rats with a unilateral nigrostriatal 6-OHDA lesion. METHODS We compared HPK rats with LID (i.e., sensitized to the dyskinetic effects of chronic L-DOPA) and without LID (HPK-non-LID), using [18F]FDG PET imaging and fMRI functional connectivity following systemic treatment with saline, L-DOPA, NLX-112 or L-DOPA + NLX-112. RESULTS In HPK-non-LID rats, [18F]FDG PET experiments showed that L-DOPA led to hypermetabolism in motor areas (cerebellum, brainstem, and mesencephalic locomotor region) and to hypometabolism in cortical regions. L-DOPA effects were also observed in HPK-LID rats, with the additional emergence of hypermetabolism in raphe nuclei and hypometabolism in hippocampus and striatum. NLX-112 attenuated L-DOPA-induced raphe hypermetabolism and cingulate cortex hypometabolism in HPK-LID rats. Moreover, in fMRI experiments NLX-112 partially corrected the altered neural circuit connectivity profile in HPK-LID rats, through activity in regions rich in 5-HT1A receptors. CONCLUSION This neuroimaging study sheds light for the first time on the brain activation patterns of HPK-LID rats. The 5-HT1A receptor agonist, NLX-112, prevents occurrence of LID, likely by activating pre-synaptic autoreceptors in the raphe nuclei, resulting in a partial restoration of brain metabolic and connectivity profiles. In addition, NLX-112 also rescues L-DOPA-induced deficits in cortical activation, suggesting potential benefit against non-motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Sarah Chaib
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Benjamin Vidal
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France; CERMEP-Imaging Platform, Bron, France.
| | - Elise Levigoureux
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
Pinna A, Parekh P, Morelli M. Serotonin 5-HT 1A receptors and their interactions with adenosine A 2A receptors in Parkinson's disease and dyskinesia. Neuropharmacology 2023; 226:109411. [PMID: 36608814 DOI: 10.1016/j.neuropharm.2023.109411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The dopamine neuronal loss that characterizes Parkinson's Disease (PD) is associated to changes in neurotransmitters, such as serotonin and adenosine, which contribute to the symptomatology of PD and to the onset of dyskinetic movements associated to levodopa treatment. The present review describes the role played by serotonin 5-HT1A receptors and the adenosine A2A receptors on dyskinetic movements induced by chronic levodopa in PD. The focus is on preclinical and clinical results showing the interaction between serotonin 5-HT1A receptors and other receptors such as 5-HT1B receptors and adenosine A2A receptors. 5-HT1A/1B receptor agonists and A2A receptor antagonists, administered in combination, contrast dyskinetic movements induced by chronic levodopa without impairing motor behaviour, suggesting that this drug combination might be a useful therapeutic approach for counteracting the PD motor deficits and dyskinesia associated with chronic levodopa treatment. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| | - Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| |
Collapse
|
7
|
Role of P11 through serotonergic and glutamatergic pathways in LID. Mol Biol Rep 2023; 50:4535-4549. [PMID: 36853472 DOI: 10.1007/s11033-023-08326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder caused by the degeneration of dopaminergic neurons. This leads to the pathogenesis of multiple basal ganglia-thalamomotor loops and diverse neurotransmission alterations. Dopamine replacement therapy, and on top of that, levodopa and l-3,4-dihydroxyphenylalanine (L-DOPA), is the gold standard treatment, while it develops numerous complications. Levodopa-induced dyskinesia (LID) is well-known as the most prominent side effect. Several studies have been devoted to tackling this problem. Studies showed that metabotropic glutamate receptor 5 (mGluR5) antagonists and 5-hydroxytryptamine receptor 1B (5HT1B) agonists significantly reduced LID when considering the glutamatergic overactivity and compensatory mechanisms of serotonergic neurons after L-DOPA therapy. Moreover, it is documented that these receptors act through an adaptor protein called P11 (S100A10). This protein has been thought to play a crucial role in LID due to its interactions with numerous ion channels and receptors. Lately, experiments have shown successful evidence of the effects of P11 blockade on alleviating LID greater than 5HT1B and mGluR5 manipulations. In contrast, there is a trace of ambiguity in the exact mechanism of action. P11 has shown the potential to be a promising target to diminish LID and prolong L-DOPA therapy in parkinsonian patients owing to further studies and experiments.
Collapse
|
8
|
Lipari N, Centner A, Glinski J, Cohen S, Manfredsson FP, Bishop C. Characterizing the relationship between L-DOPA-induced-dyskinesia and psychosis-like behaviors in a bilateral rat model of Parkinson's disease. Neurobiol Dis 2023; 176:105965. [PMID: 36526089 DOI: 10.1016/j.nbd.2022.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease associated psychosis (PDAP) is a prevalent non-motor symptom (NMS) that significantly erodes patients' and caregivers' quality of life yet remains vastly understudied. One potential source of PDAP in late-stage Parkinson's disease (PD) is the common dopamine (DA) replacement therapy for motor symptoms, Levodopa (L-DOPA). Given the high incidence of L-DOPA-induced dyskinesia (LID) in later phases of PD, this study sought to characterize the relationship between PDAP and LID in a bilateral medial forebrain bundle 6-hydroxydopamine hydrobromide (6-OHDA) lesion rat model. To assess PDAP in this model, prepulse inhibition (PPI), a well-validated assay of sensorimotor gating, was employed. First, we tested whether a bilateral lesion alone or after chronic L-DOPA treatment was sufficient to induce PPI dysfunction. Rats were also monitored for LID development, using the abnormal involuntary movements (AIMs) test, to examine PPI and LID associations. In experiment 2, Vilazodone (VZD), a serotonin transporter (SERT) blocker and 1A receptor (5-HT1A) partial agonist was administered to test its potential efficacy in reducing LID and PPI dysfunction. Once testing was complete, tissue was collected for high performance liquid chromatography (HPLC) to examine the monoamine levels in motor and non-motor circuits. Results indicate that bilateral DA lesions produced motor deficits and that chronic L-DOPA induced moderate AIMs; importantly, rats that developed more severe AIMs were more likely to display sensorimotor gating dysfunction. In addition, VZD treatment dose-dependently reduced L-DOPA-induced AIMs without impairing L-DOPA efficacy, although VZD's effects on PPI were limited. Altogether, this project established the bilateral 6-OHDA lesion model accurately portrayed LID and PDAP-like behaviors, uncovered their potential relationship, and finally, demonstrated the utility of VZD for reducing LID.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - John Glinski
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Sophie Cohen
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
9
|
Kamińska K, Lenda T, Konieczny J, Lorenc-Koci E. Behavioral and neurochemical interactions of the tricyclic antidepressant drug desipramine with L-DOPA in 6-OHDA-lesioned rats. Implications for motor and psychiatric functions in Parkinson's disease. Psychopharmacology (Berl) 2022; 239:3633-3656. [PMID: 36178508 PMCID: PMC9584871 DOI: 10.1007/s00213-022-06238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
Abstract
RATIONALE The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored. OBJECTIVES The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion. METHODS The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method. RESULTS Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus. CONCLUSIONS The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects.
Collapse
Affiliation(s)
- Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Tomasz Lenda
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Jolanta Konieczny
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland.
| |
Collapse
|
10
|
Li X, Zheng Y, Zhao X, Cui R, Li X. Relationship between the role of muscarinic M 3 receptors in morphine-induced conditioned place preference and the mesolimbic dopamine system. Neurosci Lett 2022; 786:136774. [PMID: 35809878 DOI: 10.1016/j.neulet.2022.136774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Opioid use disorder mainly results from functional defects in the brain reward loop, which includs the ventral tegmental area (VTA) and nucleus accumbens (NAc; consisting of shell and core, NAcS and NAcC). Reward effects contribute to opioid use disorder. RMTg M3 receptors play a role in opioid reward by regulating the γ-aminobutyric acid (GABA) neuron activity. Dopamine D1 receptors expressed on GABA neurons regulate opioid reward by mediating the dopamine neuron activity in the VTA. Therefore, we investigated the effect of activating M3 receptors by microinjecting pilocarpine into the RMTg along with activating D1 receptors by microinjecting SKF38393 into the VTA on morphine-induced reward effect, using the conditioned place preference (CPP) paradigm (locomotion was also recorded). We also investigated whether the activation of M3 receptors in the RMTg influenced dopamine release in the NAcS. The results showed that the inhibitory role of RMTg pilocarpine (60 μg/rat) infusions in morphine-induced CPP was reversed by VTA SKF38393 (4 μg/rat) infusions. Moreover, morphine (5 mg/kg, i.p.) increased dopamine release in the NAcS, which was blunted by microinjecting pilocarpine (60 μg/rat) into the RMTg. These results indicate that RMTg M3 receptors mediate morphine-induced reward effect, which is probably related to the dopamine activity within the VTA and NAcS. The relationship between RMTg M3 receptors and the mesolimbic dopamine system could be a potential direction for the treatment of opioid use disorder, but further verification through more comprehensive techniques is needed.
Collapse
Affiliation(s)
- Xuhong Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China; Department of Education, Luliang University, Shanxi, China
| | - Yuqian Zheng
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Xiaoxuan Zhao
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China; School of Education, Cangzhou Normal University, Hebei, China
| | - Ruisi Cui
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China.
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China.
| |
Collapse
|
11
|
Wilson L, Lee CA, Mason CF, Khodjaniyazova S, Flores KB, Muddiman DC, Sombers LA. Simultaneous Measurement of Striatal Dopamine and Hydrogen Peroxide Transients Associated with L-DOPA Induced Rotation in Hemiparkinsonian Rats. ACS MEASUREMENT SCIENCE AU 2022; 2:120-131. [PMID: 36785724 PMCID: PMC9838821 DOI: 10.1021/acsmeasuresciau.1c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder commonly treated with levodopa (L-DOPA), which eventually induces abnormal involuntary movements (AIMs). The neurochemical contributors to these dyskinesias are unknown; however, several lines of evidence indicate an interplay of dopamine (DA) and oxidative stress. Here, DA and hydrogen peroxide (H2O2) were simultaneously monitored at discrete recording sites in the dorsal striata of hemiparkinsonian rats using fast-scan cyclic voltammetry. Mass spectrometry imaging validated the lesions. Hemiparkinsonian rats exhibited classic L-DOPA-induced AIMs and rotations as well as increased DA and H2O2 tone over saline controls after 1 week of treatment. By week 3, DA tone remained elevated beyond that of controls, but H2O2 tone was largely normalized. At this time point, rapid chemical transients were time-locked with spontaneous bouts of rotation. Striatal H2O2 rapidly increased with the initiation of contraversive rotational behaviors in lesioned L-DOPA animals, in both hemispheres. DA signals simultaneously decreased with rotation onset. The results support a role for these striatal neuromodulators in the adaptive changes that occur with L-DOPA treatment in PD and reveal a precise interplay between DA and H2O2 in the initiation of involuntary locomotion.
Collapse
Affiliation(s)
- Leslie
R. Wilson
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Christie A. Lee
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Catherine F. Mason
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Sitora Khodjaniyazova
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Kevin B. Flores
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - David C. Muddiman
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Angela Cenci M, Skovgård K, Odin P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson's disease. Neuropharmacology 2022; 210:109027. [DOI: 10.1016/j.neuropharm.2022.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
|
13
|
Neuroinflammation and L-dopa-induced abnormal involuntary movements in 6-hydroxydopamine-lesioned rat model of Parkinson's disease are counteracted by combined administration of a 5-HT 1A/1B receptor agonist and A 2A receptor antagonist. Neuropharmacology 2021; 196:108693. [PMID: 34229013 DOI: 10.1016/j.neuropharm.2021.108693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
Several lines of evidence have strongly implicated neuroinflammation in Parkinson's disease (PD) progression and l-dopa-induced dyskinesia. The present study investigated whether early subchronic pretreatment with the serotonin 5-HT1A/1B receptor agonist eltoprazine plus the adenosine A2A receptor antagonist preladenant counteracted l-dopa-induced abnormal involuntary movements (AIMs, index of dyskinesia), and neuroinflammation, in unilateral 6-hydroxydopamine(6-OHDA)-lesioned rat model of PD. The immunoreactivity of glial fibrillary acidic protein (GFAP), and the colocalization of ionized calcium binding adaptor molecule-1 (IBA-1), with interleukin (IL)-1β, tumor-necrosis-factor-α (TNF-α) and IL-10 were evaluated in the denervated caudate-putamen (CPu) and substantia nigra pars-compacta (SNc). The combined subchronic pretreatment with l-dopa plus eltoprazine and preladenant reduced AIMs induced by acute l-dopa challenge in these rats and decreased GFAP and IBA-1 immunoreactivity induced by the drug in both CPu and SNc, with reduction in IL-1β in IBA-1-positive cells in both CPu and SNc, and in TNF-α in IBA-1-positive cells in SNc. Moreover, a significant increase in IL-10 in IBA-1-positive cells was observed in SNc. Evaluation of immediate early-gene zif-268 (index of neuronal activation) after l-dopa challenge, showed an increase in its expression in denervated CPu of rats pretreated with l-dopa or l-dopa plus preladenant compared with vehicle, whereas rats pretreated with eltoprazine, with or without preladenant, had lower zif-268 expression. Finally, tyrosine hydroxylase and dopamine transporter examined to evaluate neurodegeneration, showed a significant equal decrease in all experimental groups. The present findings suggest that combination of l-dopa with eltoprazine and preladenant may be promising therapeutic strategy for delaying the onset of dyskinesia, preserving l-dopa efficacy and reducing neuroinflammation markers in nigrostriatal system of 6-OHDA-lesioned rats.
Collapse
|
14
|
Mechanisms of Antiparkinsonian Anticholinergic Therapy Revisited. Neuroscience 2021; 467:201-217. [PMID: 34048797 DOI: 10.1016/j.neuroscience.2021.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023]
Abstract
Before the advent of L-DOPA, the gold standard symptomatic therapy for Parkinson's disease (PD), anticholinergic drugs (muscarinic receptor antagonists) were the preferred antiparkinsonian therapy, but their unwanted side effects associated with impaired extrastriatal cholinergic function limited their clinical utility. Since most patients treated with L-DOPA also develop unwanted side effects such as L-DOPA-induced dyskinesia (LID), better therapies are needed. Recent studies in animal models demonstrate that optogenetic and chemogenetic manipulation of striatal cholinergic interneurons (SCIN), the main source of striatal acetylcholine, modulate parkinsonism and LID, suggesting that restoring SCIN function might serve as a therapeutic option that avoids extrastriatal anticholinergics' side effects. However, it is still unclear how the altered SCIN activity in PD and LID affects the striatal circuit, whereas the mechanisms of action of anticholinergic drugs are still not fully understood. Recent animal model studies showing that SCINs undergo profound changes in their tonic discharge pattern after chronic L-DOPA administration call for a reexamination of classical views of how SCINs contribute to PD symptoms and LID. Here, we review the recent advances on the circuit implications of aberrant striatal cholinergic signaling in PD and LID in an effort to provide a comprehensive framework to understand the effects of anticholinergic drugs and with the aim of shedding light into future perspectives of cholinergic circuit-based therapies.
Collapse
|
15
|
Fabbrini A, Guerra A. Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. J Exp Pharmacol 2021; 13:469-485. [PMID: 33953618 PMCID: PMC8092630 DOI: 10.2147/jep.s265282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
16
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
17
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
18
|
Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. Cannabidiol as a Therapeutic Target: Evidence of its Neuroprotective and Neuromodulatory Function in Parkinson's Disease. Front Pharmacol 2020; 11:595635. [PMID: 33384602 PMCID: PMC7770114 DOI: 10.3389/fphar.2020.595635] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The phytocannabinoids of Cannabis sativa L. have, since ancient times, been proposed as a pharmacological alternative for treating various central nervous system (CNS) disorders. Interestingly, cannabinoid receptors (CBRs) are highly expressed in the basal ganglia (BG) circuit of both animals and humans. The BG are subcortical structures that regulate the initiation, execution, and orientation of movement. CBRs regulate dopaminergic transmission in the nigro-striatal pathway and, thus, the BG circuit also. The functioning of the BG is affected in pathologies related to movement disorders, especially those occurring in Parkinson’s disease (PD), which produces motor and non-motor symptoms that involving GABAergic, glutamatergic, and dopaminergic neural networks. To date, the most effective medication for PD is levodopa (l-DOPA); however, long-term levodopa treatment causes a type of long-term dyskinesias, l-DOPA-induced dyskinesias (LIDs). With neuromodulation offering a novel treatment strategy for PD patients, research has focused on the endocannabinoid system (ECS), as it participates in the physiological neuromodulation of the BG in order to control movement. CBRs have been shown to inhibit neurotransmitter release, while endocannabinoids (eCBs) play a key role in the synaptic regulation of the BG. In the past decade, cannabidiol (CBD), a non-psychotropic phytocannabinoid, has been shown to have compensatory effects both on the ECS and as a neuromodulator and neuroprotector in models such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and reserpine, as well as other PD models. Although the CBD-induced neuroprotection observed in animal models of PD has been attributed to the activation of the CB1 receptor, recent research conducted at a molecular level has proposed that CBD is capable of activating other receptors, such as CB2 and the TRPV-1 receptor, both of which are expressed in the dopaminergic neurons of the nigro-striatal pathway. These findings open new lines of scientific inquiry into the effects of CBD at the level of neural communication. Cannabidiol activates the PPARγ, GPR55, GPR3, GPR6, GPR12, and GPR18 receptors, causing a variety of biochemical, molecular, and behavioral effects due to the broad range of receptors it activates in the CNS. Given the low number of pharmacological treatment alternatives for PD currently available, the search for molecules with the therapeutic potential to improve neuronal communication is crucial. Therefore, the investigation of CBD and the mechanisms involved in its function is required in order to ascertain whether receptor activation could be a treatment alternative for both PD and LID.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alan Axel Morales-Andrade
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Facultad De Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
19
|
Kim M, Kim JS, Youn J, Park H, Cho JW. GraphNet-based imaging biomarker model to explain levodopa-induced dyskinesia in Parkinson's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105713. [PMID: 32846317 DOI: 10.1016/j.cmpb.2020.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Levodopa-induced dyskinesia (LID) is a disabling complication of Parkinson's disease (PD). Imaging-based measurements, especially those related to the surface shape of the basal ganglia, have shown potential for explaining the severity of LID in PD. Here, we aimed to explore a novel application of the methodology to find biomarkers of LID severity in PD using regularization. METHODS We proposed an application of graph-constrained elastic net (GraphNet) regularization to detect surface-based shape biomarkers explaining the severity of LID and compared the approach with other conventional regularization methods. To examine the methods, we used two independent datasets, one as a training dataset to build the model, and the other dataset was used to validate the constructed model. RESULTS We found that the left striatum (putamen was the greatest and the caudate was second) was the most significant surface-based biomarker related to the severity of LID. Our results improved the interpretability of identified surface-based biomarkers compared to competing methods. We also found that GraphNet regularization improved prediction of the severity of LID better than the conventional regularization methods. Our model performed better in terms of root-mean-squared error and correlation coefficient between predicted and actual clinical scores. CONCLUSION The proposed algorithm offers an advantage of interpretable anatomical variations related to the deformation of the cortical surface. The experimental results showed that GraphNet regularization was robust to identify surface-based shape biomarkers related to both hypokinetic and hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Mansu Kim
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA; Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea; Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Korea; School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea.
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
20
|
Ahmadian SM, Alaei H, Ghahremani P. An Assessment between D1 Receptor Agonist and D2 receptor Antagonist into the Ventral Tegmental Area on Conditioned Place Preference and Locomotor Activity. Adv Biomed Res 2019; 8:72. [PMID: 32002395 PMCID: PMC6952765 DOI: 10.4103/abr.abr_82_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The release of dopamine (DA) has certain roles in the induction of conditioned place preference (CPP) and motor learning in the ventral tegmental area (VTA). The aim of this study was to investigate the excitatory effects of DA through DA-D1 agonist (SKF38393) and elimination of the inhibitory effects of DA through DA-D2 antagonist (eticlopride) into the VTA and its synergistic effects with an ineffective dose of morphine in the induction of CPP. MATERIALS AND METHODS Morphine (2.5 mg/kg; s. c.) did not induce a significant CPP, without any effect on the locomotor activity during the testing phase. SKF38393 (0.125, 0.5, and 1 μg/side) and eticlopride (0.5, 1, and 2 μg/side) individually or simultaneously were microinjected bilaterally into the VTA. RESULTS The administration of SKF38393 (1 and 2 μg/rat) with ineffective morphine and also without morphine caused CPP on test day, while eticlopride (2 μg/rat) caused CPP with morphine only. Locomotor activity increased in groups receiving D1 agonist and D2 antagonist that presumed to be caused by the reinforcing effect. In addition, the concurrent administration of ineffective doses of D1 agonist and D2 antagonist into the VTA with ineffective morphine caused CPP but not with saline. CONCLUSIONS This study showed that there was a need for morphine to activate the reward circuit through the D2 receptor in the VTA while the administration of the D1 agonist could independently activate the reward circuit. In addition, there was a probable synergistic effect using ineffective doses of D1 and D2 receptors, in the acquisition of morphine-induced CPP.
Collapse
Affiliation(s)
- Seyed Mostafa Ahmadian
- From the Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- From the Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Ghahremani
- From the Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Avila-Luna A, Ríos C, Gálvez-Rosas A, Montes S, Arias-Montaño JA, Bueno-Nava A. Chronic administration of the histamine H 3 receptor agonist immepip decreases L-Dopa-induced dyskinesias in 6-hydroxydopamine-lesioned rats. Psychopharmacology (Berl) 2019; 236:1937-1948. [PMID: 30762089 DOI: 10.1007/s00213-019-5182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/28/2019] [Indexed: 01/06/2023]
Abstract
RATIONALE Histamine H3 receptors (H3Rs) are co-expressed with dopamine D1 receptors (D1Rs) by striato-nigral medium spiny GABAergic neurons, where they functionally antagonize D1R-mediated responses. OBJECTIVES AND METHODS We examined whether the chronic administration of the H3R agonist immepip modifies dyskinesias induced by L-3,4-dihydroxyphenylalanine, L-Dopa (LIDs), in rats lesioned with 6-hydroxydopamine in the substantia nigra pars compacta, and the effect of D1R and H3R co-activation on glutamate and GABA content in dialysates from the dorsal striatum of naïve rats. RESULTS The systemic administration (i.p.) of L-Dopa for 14 days significantly increased axial, limb, and orolingual abnormal involuntary movements (AIMs) compared with the vehicle group. The chronic administration of the H3R agonist immepip alongside L-Dopa significantly decreased axial, limb, and orolingual AIMs compared with L-Dopa alone, but AIMs returned to previous values on immepip withdrawal. Chronic immepip was ineffective when administered prior to L-Dopa. The chronic administration of immepip significantly decreased GABA and glutamate content in striatal dialysates, whereas the administration of L-Dopa alone increased GABA and glutamate content. CONCLUSIONS These results indicate that chronic H3R activation reduces LIDs, and the effects on striatal GABA and glutamate release provide evidence for a functional interaction between D1Rs and H3Rs.
Collapse
Affiliation(s)
- Alberto Avila-Luna
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, 14389, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Col Villa Quietud, 04960, Mexico City, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSa, Insurgentes Sur 3877, 14269, Mexico City, Mexico.,Lab. Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, Mexico City, Mexico
| | - Arturo Gálvez-Rosas
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, 14389, Mexico City, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSa, Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, 07360, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, 14389, Mexico City, Mexico.
| |
Collapse
|
22
|
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019; 126:377-396. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany.
| | - Martin T Henrich
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| |
Collapse
|
23
|
Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for theta oscillations in the dorsolateral striatum and substantia nigra pars reticulate. Neuropharmacology 2019; 148:1-10. [PMID: 30612008 DOI: 10.1016/j.neuropharm.2018.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Abstract
Oscillatory activities within basal ganglia (BG) circuitry in L-DOPA induced dyskinesia (LID), a condition that occurs in patients with Parkinson disease (PD), are not well understood. The aims of this study were firstly to investigate oscillations in main BG input and output structures-the dorsolateral striatum (dStr) and substantia nigra pars reticulata (SNr), respectively- including the direction of oscillation information flow, and secondly to investigate the effects of 5-HT1A/B receptor agonism with eltoprazine on oscillatory activities and abnormal involuntary movements (AIMs) characteristic. To this end, we conducted local field potential (LFP) electrophysiology in the dStr and SNr of LID rats simultaneous with AIM scoring. The LFP data were submitted to power spectral density, coherence, and partial Granger causality analyses. AIM data were analyzed relative to simultaneous oscillatory activities, with and without eltoprazine. We obtained four major findings. 1) Theta band (5-8 Hz) oscillations were enhanced in the dStr and SNr of LID rats. 2) Theta power correlated with AIM scores in the 180-min period after the last LID-inducing L-DOPA injection, but not with daily summed AIM scores during LID development. 3) Oscillatory information flowed from the dStr to the SNr. 4) Chronic eltoprazine reduced BG theta activity in LID rats and normalized information flow directionality, relative to that in LID rats not given eltoprazine. These results indicate that dStr activity plays a determinative role in the causal interactions of theta oscillations and that serotonergic inhibition may suppress dyskinesia by reducing dStr-SNr theta activity and restoring theta network information flow.
Collapse
|
24
|
Kamińska K, Lenda T, Konieczny J, Wardas J, Lorenc-Koci E. Interactions of the tricyclic antidepressant drug amitriptyline with L-DOPA in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Relevance to motor dysfunction in Parkinson's disease. Neurochem Int 2018; 121:125-139. [PMID: 30290201 DOI: 10.1016/j.neuint.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
Antidepressant drugs are recommended for the treatment of Parkinson's disease (PD)-associated depression but their role in the modulation of L-DOPA-induced behavioral and neurochemical markers is poorly explored. The aim of the present study was to examine the impact of the tricyclic antidepressant amitriptyline and L-DOPA, administered chronically alone or in combination, on rotational behavior, monoamine levels and binding of radioligands to their transporters in the dopaminergic brain structures of unilaterally 6-OHDA-lesioned rats. Binding of [3H]nisoxetine to noradrenaline transporter (NET), [3H]GBR 12,935 to dopamine transporter (DAT) and [3H]citalopram to serotonin transporter (SERT) were analyzed by autoradiography. Amitriptyline administered alone did not induce rotational behavior but in combination with L-DOPA increased the number of contralateral rotations much more strongly than L-DOPA alone. The combined treatment also significantly increased the tissue dopamine (DA) content in the ipsilateral striatum and substantia nigra (SN) vs. L-DOPA alone. 6-OHDA-mediated lesion of nigrostriatal DA neurons drastically reduced DAT and NET bindings in the ipsilateral striatum. In the ipsilateral SN, DAT binding decreased while NET binding rose. SERT binding increased significantly mainly in the SN. Amitriptyline administered alone or jointly with L-DOPA had no effect on DAT binding on the lesioned side, significantly decreased SERT binding in the striatum and SN while NET binding only in the SN. Since in the DA-denervated striatum, SERT is mainly responsible for reuptake of L-DOPA-derived DA while in the SN, SERT and NET are involved, the inhibition of these transporters by antidepressant drugs may improve dopaminergic transmission and consequently motor behavior.
Collapse
Affiliation(s)
- Kinga Kamińska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Tomasz Lenda
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Jolanta Konieczny
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Jadwiga Wardas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Elżbieta Lorenc-Koci
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| |
Collapse
|
25
|
Treadmill Exercise Attenuates L-DOPA-Induced Dyskinesia and Increases Striatal Levels of Glial Cell-Derived Neurotrophic Factor (GDNF) in Hemiparkinsonian Mice. Mol Neurobiol 2018; 56:2944-2951. [PMID: 30073506 DOI: 10.1007/s12035-018-1278-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Exercise can act as a disease-modifying agent in Parkinson's disease (PD), and we have previously demonstrated that voluntary exercise in running wheels during 2 weeks normalizes striatopallidal dopaminergic signaling and prevents the development of L-DOPA-induced dyskinesia (LID) in C57BL/6 mice. We now tested whether LID in Swiss albino mice could be attenuated by treadmill-controlled exercise alone or in combination with the reference antidyskinetic drug amantadine. The daily intraperitoneal (i.p.) treatment with three different doses of L-DOPA/benserazide (30/12.5, 50/25, or 70/35 mg/kg) during 3 weeks induced increasing levels of LID scores in hemiparkinsonian Swiss albino mice previously lesioned with a unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA, 10 μg). Then, we addressed the antidyskinetic effects of treadmill-controlled exercise by comparing LID, induced by L-DOPA/benserazide (50/25 mg/kg, i.p.) during 4 weeks, in sedentary and daily exercised mice. Exercise reduced LID and improved motor skills of dyskinetic mice, as indicated by decreased contralateral bias, increase in maximal load test, and latency to fall in rotarod. The antidyskinetic effect of amantadine (60 mg/kg, i.p.) was only observed in sedentary mice, indicating the absence of synergistic antidyskinetic effect of the combination of treadmill exercise plus amantadine. Finally, Western blot analysis unraveled an ability of exercise to increase the striatal immunocontent of glial cell-derived neurotrophic factor (GDNF), apart from normalizing striatal levels of tyrosine hydroxylase. These findings show that controlled treadmill exercise attenuates LID and provide the first indication that the antidyskinetic effects of treadmill exercise may involve increased striatal GDNF levels.
Collapse
|
26
|
Apomorphine and levodopa infusion for motor fluctuations and dyskinesia in advanced Parkinson disease. J Neural Transm (Vienna) 2018; 125:1131-1135. [DOI: 10.1007/s00702-018-1906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
|
27
|
Cenci MA, Jörntell H, Petersson P. On the neuronal circuitry mediating L-DOPA-induced dyskinesia. J Neural Transm (Vienna) 2018; 125:1157-1169. [PMID: 29704061 PMCID: PMC6060876 DOI: 10.1007/s00702-018-1886-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 11/27/2022]
Abstract
With the advent of rodent models of l-DOPA-induced dyskinesia (LID), a growing literature has linked molecular changes in the striatum to the development and expression of abnormal involuntary movements. Changes in information processing at the striatal level are assumed to impact on the activity of downstream basal ganglia nuclei, which in turn influence brain-wide networks, but very little is actually known about systems-level mechanisms of dyskinesia. As an aid to approach this topic, we here review the anatomical and physiological organisation of cortico-basal ganglia-thalamocortical circuits, and the changes affecting these circuits in animal models of parkinsonism and LID. We then review recent findings indicating that an abnormal cerebellar compensation plays a causal role in LID, and that structures outside of the classical motor circuits are implicated too. In summarizing the available data, we also propose hypotheses and identify important knowledge gaps worthy of further investigation. In addition to informing novel therapeutic approaches, the study of LID can provide new clues about the interplay between different brain circuits in the control of movement.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Lund University, Lund, Sweden.
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Petersson
- The Group for Integrative Neurophysiology and Neurotechnology, Neuronano Research Centre, Department Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
28
|
Pisanu A, Boi L, Mulas G, Spiga S, Fenu S, Carta AR. Neuroinflammation in L-DOPA-induced dyskinesia: beyond the immune function. J Neural Transm (Vienna) 2018. [PMID: 29541852 DOI: 10.1007/s00702-018-1874-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a main component of Parkinson's disease (PD) neuropathology, where unremitting reactive microglia and microglia-secreted soluble molecules such as cytokines, contribute to the neurodegenerative process as part of an aberrant immune reaction. Besides, pro-inflammatory cytokines, predominantly TNF-α, play an important neuromodulatory role in the healthy and diseased brain, being involved in neurotransmitter metabolism, synaptic scaling and brain plasticity. Recent preclinical studies have evidenced an exacerbated neuroinflammatory reaction in the striatum of parkinsonian rats that developed dyskinetic responses following L-DOPA administration. These findings prompted investigation of non-neuronal mechanisms of L-DOPA-induced dyskinesia (LID) involving glial cells and glial-secreted soluble molecules. Hence, besides the classical mechanisms of LID that include abnormal corticostriatal neurotransmission and maladaptive changes in striatal medium spiny neurons (MSNs), here we review studies supporting a role of striatal neuroinflammation in the development of LID, with a focus on microglia and the pro-inflammatory cytokine TNF-α. Moreover, we discuss several mechanisms that have been involved in the development of LID, which are directly or indirectly under the control of TNF-α, and might be abnormally affected by its chronic overproduction and release by microglia in PD. It is proposed that TNF-α may contribute to the altered neuronal responses occurring in LID by targeting receptor trafficking and function in MSNs, but also dopamine synthesis in preserved dopaminergic terminals and serotonin metabolism in serotonergic neurons. Therapeutic approaches specifically targeting glial-secreted cytokines may represent a novel target for preventing or treating LID.
Collapse
Affiliation(s)
- Augusta Pisanu
- Institute of Neuroscience, National Research Council, SS 554 km 4.500, Monserrato, 09042, Cagliari, Italy
| | - Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, Cagliari, Italy
| | - Sandro Fenu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy.
| |
Collapse
|
29
|
Carta M, Björklund A. The serotonergic system in L-DOPA-induced dyskinesia: pre-clinical evidence and clinical perspective. J Neural Transm (Vienna) 2018; 125:1195-1202. [PMID: 29480391 DOI: 10.1007/s00702-018-1865-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 11/28/2022]
Abstract
During the last decade, the serotonergic system has emerged as a key player in the appearance of L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Clinical investigations, based on imaging and postmortem analyses, suggest that the serotonin neurons are also involved in the etiology of this complication of long-term L-DOPA treatment in parkinsonian patients. These findings have stimulated efforts to develop new therapies using drugs targeting the malfunctioning serotonin neurons. In this review, we summarize the experimental and clinical data obtained so far and discuss the prospects for further development of this therapeutic strategy.
Collapse
Affiliation(s)
- Manolo Carta
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cittadella Universitaria, SS554, Km 4.5, 09042, Monserrato, Italy.
| | - Anders Björklund
- Division of Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
| |
Collapse
|
30
|
Role of adenosine A 2A receptors in motor control: relevance to Parkinson's disease and dyskinesia. J Neural Transm (Vienna) 2018; 125:1273-1286. [PMID: 29396609 DOI: 10.1007/s00702-018-1848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
Adenosine is an endogenous purine nucleoside that regulates several physiological functions, at the central and peripheral levels. Besides, adenosine has emerged as a major player in the regulation of motor behavior. In fact, adenosine receptors of the A2A subtype are highly enriched in the caudate-putamen, which is richly innervated by dopamine. Moreover, several studies in experimental animals have consistently demonstrated that the pharmacological antagonism of A2A receptors has a facilitatory influence on motor behavior. Taken together, these findings have envisaged A2A receptors as a promising target for symptomatic therapies aimed at ameliorating motor deficits. Accordingly, A2A receptor antagonists have been extensively studied as new agents for the treatment of Parkinson's disease (PD), the epitome of motor disorders. In this review, we provide an overview of the effects that adenosine A2A receptor antagonists elicit in rodent and primate experimental models of PD, with regard to the counteraction of motor deficits as well as to manifestation of dyskinesia and motor fluctuations. Moreover, we briefly present the results of clinical trials of A2A receptor antagonists in PD patients experiencing motor fluctuations, with particular regard to dyskinesia. Finally, we discuss the interaction between A2A receptor antagonists and serotonin receptor agonists, since combined administration of these drugs has recently emerged as a new potential therapeutic strategy in the treatment of dyskinesia.
Collapse
|
31
|
Molecular Imaging of the Serotonergic System in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:173-210. [DOI: 10.1016/bs.irn.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Pagano G, Niccolini F, Politis M. The serotonergic system in Parkinson's patients with dyskinesia: evidence from imaging studies. J Neural Transm (Vienna) 2017; 125:1217-1223. [PMID: 29264660 PMCID: PMC6060863 DOI: 10.1007/s00702-017-1823-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022]
Abstract
The purpose of review is to review the current status of positron emission tomography (PET) molecular imaging of serotonergic system in Parkinson’s patients who experience levodopa-induced (LIDs) and graft-induced dyskinesias (GIDs). PET imaging studies have shown that Parkinson’s disease is characterized by progressive loss of dopaminergic and serotonergic neurons. Parkinson’s patients who experienced LIDs and GIDs have an aberrant spreading of serotonergic terminals, which lead to an increased serotonergic/dopaminergic terminals ratio within the putamen. Serotonergic terminals convert exogenous levodopa into dopamine in a non-physiological manner and release an abnormal amount of dopamine without an auto-regulatory feedback. This results in higher swings in synaptic levels of dopamine, which leads to the development of LIDs and GIDs. The modulation of serotonergic terminals with 5-HT1A and 5-HT1B receptors agonists partially reduced these motor complications. In vivo PET studies confirmed that abnormal spreading of serotonergic terminals within the putamen has a pivotal role in the development of LIDs and GIDs. However, glutamatergic, adenosinergic, opioid systems, and phosphodiesterases 10A may also play a role in the development of these motor complications. An integrative multimodal imaging approach combining PET and MRI imaging techniques is needed to fully understand the mechanisms underlying the development of LIDs and GIDs.
Collapse
Affiliation(s)
- Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK.
| |
Collapse
|
33
|
Abstract
Purpose of Review To review the current status of positron emission tomography (PET) molecular imaging research of levodopa-induced dyskinesias (LIDs) in Parkinson’s disease (PD). Recent Findings Recent PET studies have provided robust evidence that LIDs in PD are associated with elevated and fluctuating striatal dopamine synaptic levels, which is a consequence of the imbalance between dopaminergic and serotonergic terminals, with the latter playing a key role in mishandling presynaptic dopamine release. Long-term exposure to levodopa is no longer believed to solely induce LIDs, as studies have highlighted that PD patients who go on to develop LIDs exhibit elevated putaminal dopamine release before the initiation of levodopa treatment, suggesting the involvement of other mechanisms, including altered neuronal firing and abnormal levels of phosphodiesterase 10A. Summary Dopaminergic, serotonergic, glutamatergic, adenosinergic and opioid systems and phosphodiesterase 10A levels have been shown to be implicated in the development of LIDs in PD. However, no system may be considered sufficient on its own for the development of LIDs, and the mechanisms underlying LIDs in PD may have a multisystem origin. In line with this notion, future studies should use multimodal PET molecular imaging in the same individuals to shed further light on the different mechanisms underlying the development of LIDs in PD.
Collapse
|
34
|
Ko WKD, Li Q, Cheng LY, Morelli M, Carta M, Bezard E. A preclinical study on the combined effects of repeated eltoprazine and preladenant treatment for alleviating L-DOPA-induced dyskinesia in Parkinson's disease. Eur J Pharmacol 2017; 813:10-16. [DOI: 10.1016/j.ejphar.2017.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
|
35
|
Cerri S, Siani F, Blandini F. Investigational drugs in Phase I and Phase II for Levodopa-induced dyskinesias. Expert Opin Investig Drugs 2017; 26:777-791. [PMID: 28535734 DOI: 10.1080/13543784.2017.1333598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Prolonged treatment of Parkinson's disease (PD) with levodopa (L-DOPA) results in motor complications, including motor fluctuations and involuntary movements known as L-DOPA induced dyskinesias (LIDs). LIDs represent an additional cause of disability for PD patients and a major challenge for the clinical neurologist. Preclinical research has provided invaluable insights into the molecular and neural substrates of LIDs, identifying a number of potential targets for new anti-dyskinetic strategies. Areas covered: This review article is centered on drugs currently in Phase I and II clinical trials for LIDs and their relative pharmacological targets, which include glutamate, acetylcholine, serotonin, adrenergic receptors and additional targets of potential therapeutic interest. Expert opinion: LIDs are sustained by complex molecular and neurobiological mechanisms that are difficult to disentangle or target, unless one or more prevalent mechanisms are identified. In this context, the role of the serotonergic system and mGluR5 glutamate receptors seem to stand out. Interesting results have been obtained, for example, with partial 5-HT1A/5-HT1B receptor agonist eltoprazine and mGluR5 negative allosteric modulator dipraglurant. Confirmation of these results through large-scale, Phase III clinical trials will be needed, to obtain new pharmacological tools that may be used to optimize the treatment of PD patients with motor complications.
Collapse
Affiliation(s)
- Silvia Cerri
- a Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases , C. Mondino National Neurological Institute , Pavia , Italy
| | - Francesca Siani
- a Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases , C. Mondino National Neurological Institute , Pavia , Italy
| | - Fabio Blandini
- a Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases , C. Mondino National Neurological Institute , Pavia , Italy
| |
Collapse
|
36
|
Andersen AD, Blaabjerg M, Binzer M, Kamal A, Thagesen H, Kjaer TW, Stenager E, Gramsbergen JBP. Cerebrospinal fluid levels of catecholamines and its metabolites in Parkinson's disease: effect of l-DOPA treatment and changes in levodopa-induced dyskinesia. J Neurochem 2017; 141:614-625. [PMID: 28244186 DOI: 10.1111/jnc.13997] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/28/2022]
Abstract
Levodopa (l-DOPA, l-3,4-dihydroxyphenylalanine) is the most effective drug in the symptomatic treatment of Parkinson's disease (PD), but chronic use initiates a maladaptive process leading to l-DOPA-induced dyskinesia (LID). Risk factors for early onset LID include younger age, more severe disease at baseline and higher daily l-DOPA dose, but biomarkers to predict the risk of motor complications are not yet available. Here, we investigated whether CSF levels of catecholamines and its metabolites are altered in PD patients with LID [PD-LID, n = 8)] as compared to non-dyskinetic PD patients receiving l-DOPA (PD-L, n = 6), or not receiving l-DOPA (PD-N, n = 7) as well as non-PD controls (n = 16). PD patients were clinically assessed using the Unified Parkinson's Disease Rating Scale and Unified Dyskinesia Rating Scale and CSF was collected after overnight fasting and 1-2 h after oral intake of l-DOPA or other anti-Parkinson medication. CSF catecholamines and its metabolites were analyzed by HPLC with electrochemical detection. We observed (i) decreased levels of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid in PD patients not receiving l-DOPA (ii) higher dopamine (DA) levels in PD-LID as compared to controls (iii) higher DA/l-DOPA and lower DOPAC/DA ratio's in PD-LID as compared to PD-L and (iv) an age-dependent increase of DA and decrease of DOPAC/DA ratio in controls. These results suggest increased DA release from non-DA cells and deficient DA re-uptake in PD-LID. Monitoring DA and DOPAC in CSF of l-DOPA-treated PD patients may help identify patients at risk of developing LID.
Collapse
Affiliation(s)
- Andreas Dammann Andersen
- Department of Neurology, Hospital of Southern Jutland, Sønderborg, Denmark.,Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark.,Odense Patient data Exploratory Network, Odense University Hospital, Odense, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Binzer
- Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Akram Kamal
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Helle Thagesen
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | | | - Egon Stenager
- Department of Neurology, Hospital of Southern Jutland, Sønderborg, Denmark.,Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark.,The Multiple Sclerosis Clinic of Southern Jutland, Vejle, Sonderborg, Esbjerg, Denmark
| | - Jan Bert Paul Gramsbergen
- Institute of Molecular Medicine, Neurobiological Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
37
|
F Hernández L, Castela I, Ruiz-DeDiego I, Obeso JA, Moratalla R. Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease. Mov Disord 2017; 32:530-537. [PMID: 28256089 DOI: 10.1002/mds.26947] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Long-term levodopa (l-dopa) treatment is associated with the development of l-dopa-induced dyskinesias in the majority of patients with Parkinson disease (PD). The etiopathogonesis and mechanisms underlying l-dopa-induced dyskinesias are not well understood. METHODS We used striatal optogenetic stimulation to induce dyskinesias in a hemiparkinsonian model of PD in rats. Striatal dopamine depletion was induced unilaterally by 6-hydroxydopamine injection into the medial forebrain bundle. For the optogenetic manipulation, we injected adeno-associated virus particles expressing channelrhodopsin to stimulate striatal medium spiny neurons with a laser source. RESULTS Simultaneous optical activation of medium spiny neurons of the direct and indirect striatal pathways in the 6-hydroxydopamine lesion but l-dopa naïve rats induced involuntary movements similar to l-dopa-induced dyskinesias, labeled here as optodyskinesias. Noticeably, optodyskinesias were facilitated by l-dopa in animals that did not respond initially to the laser stimulation. In general, optodyskinesias lasted while the laser stimulus was applied, but in some instances remained ongoing for a few seconds after the laser was off. Postmortem tissue analysis revealed increased FosB expression, a molecular marker of l-dopa-induced dyskinesias, primarily in medium spiny neurons of the direct pathway in the dopamine-depleted hemisphere. CONCLUSION Selective optogenetic activation of the dorsolateral striatum elicits dyskinesias in the 6-hydroxydopamine rat model of PD. This effect was associated with a preferential activation of the direct striato-nigral pathway. These results potentially open new avenues in the understanding of mechanisms involved in l-dopa-induced dyskinesias. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ledia F Hernández
- HM-CINAC, Hospital Universitario HM Puerta del Sur, Mostoles and Medical School, CEU-San Pablo University, Madrid, Spain.,CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Ivan Castela
- HM-CINAC, Hospital Universitario HM Puerta del Sur, Mostoles and Medical School, CEU-San Pablo University, Madrid, Spain
| | - Irene Ruiz-DeDiego
- CIBERNED, Instituto Carlos III, Madrid, Spain.,Instituto Cajal-CSIC, Madrid, Spain
| | - Jose A Obeso
- HM-CINAC, Hospital Universitario HM Puerta del Sur, Mostoles and Medical School, CEU-San Pablo University, Madrid, Spain.,CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Rosario Moratalla
- CIBERNED, Instituto Carlos III, Madrid, Spain.,Instituto Cajal-CSIC, Madrid, Spain
| |
Collapse
|
38
|
Yang Z, Wang X, Yang J, Sun M, Wang Y, Wang X. Aberrant CpG Methylation Mediates Abnormal Transcription of MAO-A Induced by Acute and Chronic l-3,4-Dihydroxyphenylalanine Administration in SH-SY5Y Neuronal Cells. Neurotox Res 2016; 31:334-347. [DOI: 10.1007/s12640-016-9686-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/27/2016] [Accepted: 12/01/2016] [Indexed: 01/07/2023]
|
39
|
Carta AR, Mulas G, Bortolanza M, Duarte T, Pillai E, Fisone G, Vozari RR, Del-Bel E. l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci 2016; 45:73-91. [DOI: 10.1111/ejn.13482] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anna R. Carta
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Mariza Bortolanza
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Terence Duarte
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Elisabetta Pillai
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Gilberto Fisone
- Department of Neuroscience; Karolinska Institutet; Retzius väg 8 17177 Stockholm Sweden
| | - Rita Raisman Vozari
- INSERM U 1127; CNRS UMR 7225; UPMC Univ Paris 06; UMR S 1127; Institut Du Cerveau et de La Moelle Epiniére; ICM; Paris France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
| |
Collapse
|
40
|
Ludwig M, Apps D, Menzies J, Patel JC, Rice ME. Dendritic Release of Neurotransmitters. Compr Physiol 2016; 7:235-252. [PMID: 28135005 DOI: 10.1002/cphy.c160007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Apps
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - John Menzies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
41
|
Klietz M, Keber U, Carlsson T, Chiu WH, Höglinger GU, Weihe E, Schäfer MKH, Depboylu C. l-DOPA-induced dyskinesia is associated with a deficient numerical downregulation of striatal tyrosine hydroxylase mRNA-expressing neurons. Neuroscience 2016; 331:120-33. [DOI: 10.1016/j.neuroscience.2016.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 01/11/2023]
|
42
|
Wattanathorn J, Sutalangka C. Novel Food Supplement "CP1" Improves Motor Deficit, Cognitive Function, and Neurodegeneration in Animal Model of Parkinson's Disease. Rejuvenation Res 2016; 19:273-85. [PMID: 26414358 DOI: 10.1089/rej.2015.1729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- 1 Department of Physiology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand
- 2 Integrative Complementary Alternative Medicine Research and Development Center, Khon Kaen University , Khon Kaen, Thailand
| | - Chatchada Sutalangka
- 2 Integrative Complementary Alternative Medicine Research and Development Center, Khon Kaen University , Khon Kaen, Thailand
- 3 Neuroscience Program, Department of Physiology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand
| |
Collapse
|
43
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
44
|
Inhibiting Lateral Habenula Improves L-DOPA-Induced Dyskinesia. Biol Psychiatry 2016; 79:345-353. [PMID: 25442003 DOI: 10.1016/j.biopsych.2014.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND A systematic search of brain nuclei putatively involved in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson's disease shed light, notably, upon the lateral habenula (LHb), which displayed an overexpression of the ∆FosB, ARC, and Zif268 immediate-early genes only in rats experiencing abnormal involuntary movements (AIMs). We thus hypothesized that LHb might play a role in LID. METHODS ∆FosB immunoreactivity, 2-deoxyglucose uptake, and firing activity of LHb were studied in experimental models of Parkinson's disease and LID. ΔFosB-expressing LHb neurons were then targeted using the Daun02-inactivation method. A total of 18 monkeys and 55 rats were used. RESULTS LHb was found to be metabolically modified in dyskinetic monkeys and its neuronal firing frequency significantly increased in ON L-DOPA dyskinetic 6-hydroxydopamine-lesioned rats, suggesting that increased LHb neuronal activity in response to L-DOPA is related to AIM manifestation. Therefore, to mechanistically test if LHb neuronal activity might affect AIM severity, following induction of AIMs, 6-hydroxydopamine rats were injected with Daun02 in the LHb previously transfected with ß-galactosidase under control of the FosB promoter. Three days after Daun02 administration, animals were tested daily with L-DOPA to assess LID and L-DOPA-induced rotations. Inactivation of ∆FosB-expressing neurons significantly reduced AIM severity and also increased rotations. Interestingly, the dopaminergic D1 receptor was overexpressed only on the lesioned side of dyskinetic rats in LHb and co-localized with ΔFosB, suggesting a D1 receptor-mediated mechanism supporting the LHb involvement in AIMs. CONCLUSIONS This study highlights the role of LHb in LID, offering a new target to innovative treatments of LID.
Collapse
|
45
|
Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias. Neurobiol Dis 2016; 91:47-58. [PMID: 26921469 DOI: 10.1016/j.nbd.2016.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 11/23/2022] Open
Abstract
L-dopa-induced dyskinesias (LIDs) are a serious complication of L-dopa therapy for Parkinson's disease. Emerging evidence indicates that the nicotinic cholinergic system plays a role in LIDs, although the pathways and mechanisms are poorly understood. Here we used optogenetics to investigate the role of striatal cholinergic interneurons in LIDs. Mice expressing cre-recombinase under the control of the choline acetyltransferase promoter (ChAT-Cre) were lesioned by unilateral injection of 6-hydroxydopamine. AAV5-ChR2-eYFP or AAV5-control-eYFP was injected into the dorsolateral striatum, and optical fibers implanted. After stable virus expression, mice were treated with L-dopa. They were then subjected to various stimulation protocols for 2h and LIDs rated. Continuous stimulation with a short duration optical pulse (1-5ms) enhanced LIDs. This effect was blocked by the general muscarinic acetylcholine receptor (mAChR) antagonist atropine indicating it was mAChR-mediated. By contrast, continuous stimulation with a longer duration optical pulse (20ms to 1s) reduced LIDs to a similar extent as nicotine treatment (~50%). The general nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine blocked the decline in LIDs with longer optical pulses showing it was nAChR-mediated. None of the stimulation regimens altered LIDs in control-eYFP mice. Lesion-induced motor impairment was not affected by optical stimulation indicating that cholinergic transmission selectively regulates LIDs. Longer pulse stimulation increased the number of c-Fos expressing ChAT neurons, suggesting that changes in this immediate early gene may be involved. These results demonstrate that striatal cholinergic interneurons play a critical role in LIDs and support the idea that nicotine treatment reduces LIDs via nAChR desensitization.
Collapse
|
46
|
Rice ME, Patel JC. Somatodendritic dopamine release: recent mechanistic insights. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0185. [PMID: 26009764 DOI: 10.1098/rstb.2014.0185] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K(+) channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca(2+) dependence of release and the potential role of exocytotic proteins.
Collapse
Affiliation(s)
- Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
47
|
Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel E. Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by L-DOPA? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0190. [PMID: 26009769 DOI: 10.1098/rstb.2014.0190] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammatory mechanisms are proposed to play a role in L-DOPA-induced dyskinesia. Cyclooxygenase-2 (COX2) contributes to inflammation pathways in the periphery and is constitutively expressed in the central nervous system. Considering that inhibition of nitric oxide (NO) formation attenuates L-DOPA-induced dyskinesia, this study aimed at investigating if a NO synthase (NOS) inhibitor would change COX2 brain expression in animals with L-DOPA-induced dyskinesia. To this aim, male Wistar rats received unilateral 6-hydroxydopamine microinjection into the medial forebrain bundle were treated daily with L-DOPA (21 days) combined with 7-nitroindazole or vehicle. All hemi-Parkinsonian rats receiving l-DOPA showed dyskinesia. They also presented increased neuronal COX2 immunoreactivity in the dopamine-depleted dorsal striatum that was directly correlated with dyskinesia severity. Striatal COX2 co-localized with choline-acetyltransferase, calbindin and DARPP-32 (dopamine-cAMP-regulated phosphoprotein-32), neuronal markers of GABAergic neurons. NOS inhibition prevented L-DOPA-induced dyskinesia and COX2 increased expression in the dorsal striatum. These results suggest that increased COX2 expression after L-DOPA long-term treatment in Parkinsonian-like rats could contribute to the development of dyskinesia.
Collapse
Affiliation(s)
- Mariza Bortolanza
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil
| | - Fernando E Padovan-Neto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Maurício Dos Santos-Pereira
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Paris, France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Pinna A, Ko WKD, Costa G, Tronci E, Fidalgo C, Simola N, Li Q, Tabrizi MA, Bezard E, Carta M, Morelli M. Antidyskinetic effect of A2Aand 5HT1A/1Breceptor ligands in two animal models of Parkinson's disease. Mov Disord 2016; 31:501-11. [DOI: 10.1002/mds.26475] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute; Cagliari Italy
| | - Wai Kin D. Ko
- Motac Neuroscience Ltd; Manchester UK
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences; Beijing China
| | - Giulia Costa
- Department of Biomedical Sciences, section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, section of Physiology; University of Cagliari; Cagliari Italy
| | - Camino Fidalgo
- Department of Biomedical Sciences, section of Physiology; University of Cagliari; Cagliari Italy
| | - Nicola Simola
- Department of Biomedical Sciences, section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Qin Li
- Motac Neuroscience Ltd; Manchester UK
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences; Beijing China
| | | | - Erwan Bezard
- Motac Neuroscience Ltd; Manchester UK
- Université de Bordeaux, Institut des Maladies Neurodégénératives; Bordeaux France
- CNRS, Institut des Maladies Neurodégénératives; Bordeaux France
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences; Beijing China
| | - Manolo Carta
- Department of Biomedical Sciences, section of Physiology; University of Cagliari; Cagliari Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute; Cagliari Italy
- Department of Biomedical Sciences, section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| |
Collapse
|
49
|
Ghiglieri V, Mineo D, Vannelli A, Cacace F, Mancini M, Pendolino V, Napolitano F, di Maio A, Mellone M, Stanic J, Tronci E, Fidalgo C, Stancampiano R, Carta M, Calabresi P, Gardoni F, Usiello A, Picconi B. Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiol Dis 2016; 86:140-53. [DOI: 10.1016/j.nbd.2015.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022] Open
|
50
|
Ohno Y, Shimizu S, Tokudome K, Kunisawa N, Sasa M. New insight into the therapeutic role of the serotonergic system in Parkinson's disease. Prog Neurobiol 2015; 134:104-21. [DOI: 10.1016/j.pneurobio.2015.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/17/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022]
|