1
|
Barzegar Behrooz A, Aghanoori MR, Nazari M, Latifi-Navid H, Vosoughian F, Anjomani M, Lotfi J, Ahmadiani A, Eliassi A, Nabavizadeh F, Soleimani E, Ghavami S, Khodagholi F, Fahanik-Babaei J. 40 Hz light preserves synaptic plasticity and mitochondrial function in Alzheimer's disease model. Sci Rep 2024; 14:26949. [PMID: 39506052 PMCID: PMC11541745 DOI: 10.1038/s41598-024-78528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Its causes are not fully understood, but it is now known that factors like mitochondrial dysfunction, oxidative stress, and compromised ion channels contribute to its onset and progression. Flickering light therapy has shown promise in AD treatment, though its mechanisms remain unclear. In this study, we used a rat model of streptozotocin (STZ)-induced AD to evaluate the effects of 40 Hz flickering light therapy. Rats received intracerebroventricular (ICV) STZ injections, and 7 days after, they were exposed to 40 Hz flickering light for 15 min daily over seven days. Cognitive and memory functions were assessed using Morris water maze, novel object recognition, and passive avoidance tests. STZ-induced AD rats exhibited cognitive decline, elevated reactive oxygen species, amyloid beta accumulation, decreased serotonin and dopamine levels, and impaired mitochondrial function. However, light therapy prevented these effects, preserving cognitive function and synaptic plasticity. Additionally, flickering light restored mitochondrial metabolites and normalized ATP-insensitive mitochondrial calcium-sensitive potassium (mitoBKCa) channel activity, which was otherwise downregulated in AD rats. Our findings suggest that 40 Hz flickering light therapy could be a promising treatment for neurodegenerative disorders like AD by preserving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad-Reza Aghanoori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary & Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Maryam Nazari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Vosoughian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Anjomani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, 41-800, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Fahanik-Babaei J, Bagheri M, Salari S. Characterization of a novel Ca 2+-Activated potassium channel in rat brain rough endoplasmic reticulum. Arch Biochem Biophys 2024; 759:110105. [PMID: 39059600 DOI: 10.1016/j.abb.2024.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Potassium channels in the endoplasmic reticulum (ER) are crucial for maintaining calcium balance during calcium fluxes. Disruption in ER calcium balance leads to ER stress, implicated in diseases like diabetes and Alzheimer's disease (AD). However, limited data exists on ER potassium channels in excitable tissues such as the brain. To fill this gap, we aimed to evaluate potassium currents in rat brain rough endoplasmic reticulum (RER). METHODS Rats were euthanized under deep anesthesia and their brains were immediately removed. The brains were then homogenized in ice-cold sucrose buffer, followed by the extraction of RER microsomes through a series of centrifugation processes. Purity of sample was evaluated using western blotting technique. Single channel recordings were done in voltage steps from +50 to -60 mV following incorporation of rat brain RER vesicles into planar bilayers. RESULTS We observed a voltage-dependent potassium channel with an approximate conductance of 188 pS. Channel open probability was low at negative voltages, increasing at positive voltages. The channel was blocked by Charybdotoxin but not by Iberiotoxin. Additionally, TRAM-34, a specific KCa3.1 channel blocker, suppressed channel current amplitude and open probability. Western blot analysis revealed specific bands for anti-KCa3.1 antibody, approximately 50 kDa in brain homogenate and RER fraction. CONCLUSION Our study provides strong evidence for the presence of an KCa3.1 channel on the RER membrane in rat brain, exhibiting distinct electro-pharmacological profile compared to plasma membrane and other organelles.
Collapse
Affiliation(s)
- Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bagheri
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sajjad Salari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
3
|
Flori L, Spezzini J, Calderone V, Testai L. Role of mitochondrial potassium channels in ageing. Mitochondrion 2024; 76:101857. [PMID: 38403095 DOI: 10.1016/j.mito.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Ageing is described as an inevitable decline in body functions over time and an increase in susceptibility to age-related diseases. Therefore, the increase of life expectancy is also viewed as a condition in which many elderly will develop age-related diseases and disabilities, such as cardiovascular, metabolic, neurological and oncological ones. Currently, several recognized cellular hallmarks of senescence are taken in consideration to evaluate the level of biological ageing and are the topic to plan preventive/curative anti-ageing interventions, including genomic instability, epigenetic alterations, and mitochondrial dysfunction. In this scenario, alterations in the function/expression of mitochondrial ion channels have been found in ageing and associated to an impairment of calcium cycling and a reduced mitochondrial membrane potential. Although several ion channels have been described at mitochondrial level, undoubtedly the mitochondrial potassium (mitoK) channels are the most investigated. Therefore, this review summarized the evidence that sheds to light a correlation between age-related diseases and alteration of mitoK channels, focusing the attention of the main age-related diseases, i.e. cardiovascular, neurological and oncological ones.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
The Effect of 40-Hz White LED Therapy on Structure-Function of Brain Mitochondrial ATP-Sensitive Ca-Activated Large-Conductance Potassium Channel in Amyloid Beta Toxicity. Neurotox Res 2022; 40:1380-1392. [PMID: 36057039 DOI: 10.1007/s12640-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aβ neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aβ1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-β2 subunit expression was determined using western blot analysis in Aβ-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aβ-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-β2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-β2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aβ-induced neurotoxicity rat model, an effect that can be linked to increased expression of β2 subunit.
Collapse
|
5
|
González-Cota AL, Santana-Calvo C, Servín-Vences R, Orta G, Balderas E. Regulatory mechanisms of mitochondrial BK Ca channels. Channels (Austin) 2021; 15:424-437. [PMID: 33955332 PMCID: PMC8117780 DOI: 10.1080/19336950.2021.1919463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial BKCa channel (mitoBKCa) is a splice variant of plasma membrane BKCa (Maxi-K, BKCa, Slo1, KCa1.1). While a high-resolution structure of mitoBKCa is not available yet, functional and structural studies of the plasma membrane BKCa have provided important clues on the gating of the channel by voltage and Ca2+, as well as the interaction with auxiliary subunits. To date, we know that the control of expression of mitoBKCa, targeting and voltage-sensitivity strongly depends on its association with its regulatory β1-subunit, which overall participate in the control of mitochondrial Ca2+-overload in cardiac myocytes. Moreover, novel regulatory mechanisms of mitoBKCa such as β-subunits and amyloid-β have recently been proposed. However, major basic questions including how the regulatory BKCa-β1-subunit reaches mitochondria and the mechanism through which amyloid-β impairs mitoBKCa channel function remain to be addressed.
Collapse
Affiliation(s)
- Ana L. González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM. Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Carmen Santana-Calvo
- Instituto Gulbenkian de Ciência. Rua da Quinta Grande 6, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universida de Nova de Lisboa. Av. da República, Oeiras, Portugal
| | - Rocío Servín-Vences
- Department of Neuroscience, The Scripps Research Institute. 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Gerardo Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM. Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
González-Sanabria N, Echeverría F, Segura I, Alvarado-Sánchez R, Latorre R. BK in Double-Membrane Organelles: A Biophysical, Pharmacological, and Functional Survey. Front Physiol 2021; 12:761474. [PMID: 34764886 PMCID: PMC8577798 DOI: 10.3389/fphys.2021.761474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the 1970s, calcium-activated potassium currents were recorded for the first time. In 10years, this Ca2+-activated potassium channel was identified in rat skeletal muscle, chromaffin cells and characterized in skeletal muscle membranes reconstituted in lipid bilayers. This calcium- and voltage-activated potassium channel, dubbed BK for “Big K” due to its large ionic conductance between 130 and 300 pS in symmetric K+. The BK channel is a tetramer where the pore-forming α subunit contains seven transmembrane segments. It has a modular architecture containing a pore domain with a highly potassium-selective filter, a voltage-sensor domain and two intracellular Ca2+ binding sites in the C-terminus. BK is found in the plasma membrane of different cell types, the inner mitochondrial membrane (mitoBK) and the nuclear envelope’s outer membrane (nBK). Like BK channels in the plasma membrane (pmBK), the open probability of mitoBK and nBK channels are regulated by Ca2+ and voltage and modulated by auxiliary subunits. BK channels share common pharmacology to toxins such as iberiotoxin, charybdotoxin, paxilline, and agonists of the benzimidazole family. However, the precise role of mitoBK and nBK remains largely unknown. To date, mitoBK has been reported to play a role in protecting the heart from ischemic injury. At the same time, pharmacology suggests that nBK has a role in regulating nuclear Ca2+, membrane potential and expression of eNOS. Here, we will discuss at the biophysical level the properties and differences of mitoBK and nBK compared to those of pmBK and their pharmacology and function.
Collapse
Affiliation(s)
- Naileth González-Sanabria
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Echeverría
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ignacio Segura
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sánchez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramon Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
8
|
Torabi N, Noursadeghi E, Shayanfar F, Nazari M, Fahanik-Babaei J, Saghiri R, Khodagholi F, Eliassi A. Intranasal insulin improves the structure-function of the brain mitochondrial ATP-sensitive Ca 2+ activated potassium channel and respiratory chain activities under diabetic conditions. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166075. [PMID: 33444710 DOI: 10.1016/j.bbadis.2021.166075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022]
Abstract
Although it is well established that diabetes impairs mitochondrial respiratory chain activity, little is known of the effects of intranasal insulin (INI) on the mitochondrial respiratory chain and structure-function of mitoBKCa channel in diabetes. We have investigated this mechanism in an STZ-induced early type 2 diabetic model. Single ATP-sensitive mitoBKCa channel activity was considered in diabetic and INI-treated rats using a channel incorporated into the bilayer lipid membrane. Because mitoBKCa channels have been involved in mitochondrial respiratory chain activity, a study was undertaken to investigate whether the NADH, complexes I and IV, mitochondrial ROS production, and ΔΨm are altered in an early diabetic model. In this work, we provide evidence for a significant decrease in channel open probability and conductance in diabetic rats. Evidence has been shown that BKCa channel β2 subunits induce a left shift in the BKCa channel voltage dependent curve in low Ca2+ conditions,; our results indicated a significant decrease in mitoBKCa β2 subunits using Western blot analysis. Importantly, INI treatment improved mitoBKCa channel behaviors and β2 subunits expression up to ~70%. We found that early diabetes decreased activities of complex I and IV and increased NADH, ROS production, and ΔΨm. Surprisingly, INI modified the mitochondrial respiratory chain, ROS production, and ΔΨm up to ~70%. Our results thus demonstrate an INI improvement in respiratory chain activity and ROS production in brain mitochondrial preparations coming from the STZ early diabetic rat model, an effect potentially linked to INI improvement in mitoBKCa channel activity and channel β2 subunit expression.
Collapse
Affiliation(s)
- Nihad Torabi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Noursadeghi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shayanfar
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nazari
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Fahanik-Babaei J, Rezaee B, Nazari M, Torabi N, Saghiri R, Sauve R, Eliassi A. A new brain mitochondrial sodium-sensitive potassium channel: effect of sodium ions on respiratory chain activity. J Cell Sci 2020; 133:jcs242446. [PMID: 32327555 DOI: 10.1242/jcs.242446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
We have determined the electropharmacological properties of a new potassium channel from brain mitochondrial membrane using a planar lipid bilayer method. Our results show the presence of a channel with a conductance of 150 pS at potentials between 0 and -60 mV in 200 mM cis/50 mM trans KCl solutions. The channel was voltage independent, with an open probability value of approximately 0.6 at different voltages. ATP did not affect current amplitude or open probability at positive and negative voltages. Notably, adding iberiotoxin, charybdotoxin, lidocaine or margatoxin had no effect on the channel behavior. Similarly, no changes were observed by decreasing the cis pH to 6. Interestingly, the channel was inhibited by adding sodium in a dose-dependent manner. Our results also indicated a significant increase in mitochondrial complex IV activity and membrane potential and a decrease in complex I activity and mitochondrial ROS production in the presence of sodium ions. We propose that inhibition of mitochondrial potassium transport by sodium ions on potassium channel opening could be important for cell protection and ATP synthesis.
Collapse
Affiliation(s)
- Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1419733141, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Bahareh Rezaee
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Maryam Nazari
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Nihad Torabi
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran 1985717443, Iran
| | - Remy Sauve
- Department of Pharmacology and Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| |
Collapse
|
10
|
Balderas E, Torres NS, Rosa-Garrido M, Chaudhuri D, Toro L, Stefani E, Olcese R. MitoBK Ca channel is functionally associated with its regulatory β1 subunit in cardiac mitochondria. J Physiol 2019; 597:3817-3832. [PMID: 31173379 DOI: 10.1113/jp277769] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Association of plasma membrane BKCa channels with BK-β subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCa channel (mitoBKCa ) by BK-β subunits is not established. MitoBKCa -α and the regulatory BK-β1 subunit associate in mouse cardiac mitochondria. A large fraction of mitoBKCa display properties similar to that of plasma membrane BKCa when associated with BK-β1 (left-shifted voltage dependence of activation, V1/2 = -55 mV, 12 µm matrix Ca2+ ). In BK-β1 knockout mice, cardiac mitoBKCa displayed a low Po and a depolarized V1/2 of activation (+47 mV at 12 µm matrix Ca2+ ) Co-expression of BKCa with the BK-β1 subunit in HeLa cells doubled the density of BKCa in mitochondria. The present study supports the view that the cardiac mitoBKCa channel is functionally modulated by the BK-β1 subunit; proper targeting and activation of mitoBKCa shapes mitochondrial Ca2+ handling. ABSTRACT Association of the plasma membrane BKCa channel with auxiliary BK-β1-4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa ) with regulatory subunits is unknown. We report that mitoBKCa functionally associates with its regulatory subunit BK-β1 in adult rodent cardiomyocytes. Cardiac mitoBKCa is a calcium- and voltage-activated channel that is sensitive to paxilline with a large conductance for K+ of 300 pS. Additionally, mitoBKCa displays a high open probability (Po ) and voltage half-activation (V1/2 = -55 mV, n = 7) resembling that of plasma membrane BKCa when associated with its regulatory BK-β1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa -α and its BK-β1 subunit. Mitochondria from the BK-β1 knockout (KO) mice showed sparse mitoBKCa currents (five patches with mitoBKCa activity out of 28 total patches from n = 5 different hearts), displaying a depolarized V1/2 of activation (+47 mV in 12 µm matrix Ca2+ ). The reduced activity of mitoBKCa was accompanied by a high expression of BKCa transcript in the BK-β1 KO, suggesting a lower abundance of mitoBKCa channels in this genotype. Accordingly, BK-β1subunit increased the localization of BKDEC (i.e. the splice variant of BKCa that specifically targets mitochondria) into mitochondria by two-fold. Importantly, both paxilline-treated and BK-β1 KO mitochondria displayed a more rapid Ca2+ overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCa associates with its regulatory BK-β1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCa channel that helps to maintain mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Manuel Rosa-Garrido
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Ligia Toro
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Cardiovascular Research Laboratories.,Department of Molecular and Medical Pharmacology.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Enrico Stefani
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology.,Cardiovascular Research Laboratories.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology.,Cardiovascular Research Laboratories.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria. Biochem J 2016; 473:4457-4471. [PMID: 27729542 DOI: 10.1042/bcj20160732] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023]
Abstract
Potassium channels have been found in the inner mitochondrial membrane of various cells. These channels regulate the mitochondrial membrane potential, respiration and production of reactive oxygen species. In the present study, we identified the activity of a mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa channel) in mitoplasts isolated from a primary human dermal fibroblast cell line. A potassium selective current was recorded with a mean conductance of 280 ± 2 pS in a symmetrical 150 mM KCl solution. The mitoBKCa channel was activated by the Ca2+ and by potassium channel opener NS1619. The channel activity was irreversibly inhibited by paxilline, a selective inhibitor of the BKCa channels. In isolated fibroblast mitochondria NS1619 depolarized the mitochondrial membrane potential, stimulated nonphosphorylating respiration and decreased superoxide formation. Additionally, the α- and β-subunits (predominantly the β3-form) of the BKCa channels were identified in fibroblast mitochondria. Our findings indicate, for the first time, the presence of a large-conductance Ca2+-regulated potassium channel in the inner mitochondrial membrane of human dermal fibroblasts.
Collapse
|
13
|
Li B, Gao TM. Functional Role of Mitochondrial and Nuclear BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:163-91. [PMID: 27238264 DOI: 10.1016/bs.irn.2016.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BK channels are important for the regulation of many cell functions. The significance of plasma membrane BK channels in the control of action potentials, resting membrane potential, and neurotransmitter release is well established; however, the composition and functions of mitochondrial and nuclear BK (nBK) channels are largely unknown. In this chapter, we summarize the recent findings on the subcellular localization, biophysical, and pharmacological properties of mitochondrial and nBK channels and discuss their molecular identity and physiological functions.
Collapse
Affiliation(s)
- B Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - T-M Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Salari S, Ghasemi M, Fahanik-Babaei J, Saghiri R, Sauve R, Eliassi A. Evidence for a KATP Channel in Rough Endoplasmic Reticulum (rerKATP Channel) of Rat Hepatocytes. PLoS One 2015; 10:e0125798. [PMID: 25950903 PMCID: PMC4423865 DOI: 10.1371/journal.pone.0125798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/25/2015] [Indexed: 12/24/2022] Open
Abstract
We report in a previous study the presence of a large conductance K+ channel in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity in this case was found to decrease in presence of ATP 100 µM on the cytoplasmic side and was totally inhibited at ATP concentrations greater than 0.25 mM. Although such features would be compatible with the presence of a KATP channel in the RER, recent data obtained from a brain mitochondrial inner membrane preparation have provided evidence for a Maxi-K channel which could also be blocked by ATP within the mM concentration range. A series of channel incorporation experiments was thus undertaken to determine if the ATP-sensitive channel originally observed in the RER corresponds to KATP channel. Our results indicate that the gating and permeation properties of this channel are unaffected by the addition of 800 nM charybdotoxin and 1 µM iberiotoxin, but appeared sensitive to 10 mM TEA and 2.5 mM ATP. Furthermore, adding 100 µM glibenclamide at positive potentials and 400 µM tolbutamide at negative or positive voltages caused a strong inhibition of channel activity. Finally Western blot analyses provided evidence for Kir6.2, SUR1 and/or SUR2B, and SUR2A expression in our RER fractions. It was concluded on the basis of these observations that the channel previously characterized in RER membranes corresponds to KATP, suggesting that opening of this channel may enhance Ca2+ releases, alter the dynamics of the Ca2+ transient and prevent accumulation of Ca2+ in the ER during Ca2+ overload.
Collapse
Affiliation(s)
- Sajjad Salari
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Remy Sauve
- Department of Molecular and Integrative Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
15
|
Leo A, Citraro R, Constanti A, De Sarro G, Russo E. Are big potassium-type Ca2+-activated potassium channels a viable target for the treatment of epilepsy? Expert Opin Ther Targets 2015; 19:911-26. [DOI: 10.1517/14728222.2015.1026258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Balderas E, Zhang J, Stefani E, Toro L. Mitochondrial BKCa channel. Front Physiol 2015; 6:104. [PMID: 25873902 PMCID: PMC4379900 DOI: 10.3389/fphys.2015.00104] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022] Open
Abstract
Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa) has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS), voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain open. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.
Collapse
Affiliation(s)
- Enrique Balderas
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Jin Zhang
- Deparment of Molecular and Medical Pharmacology, University of California, Los Angeles Los Angeles, CA, USA
| | - Enrico Stefani
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA ; Department of Physiology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; Cardiovascular Research Laboratory, University of California, Los Angeles Los Angeles, CA, USA
| | - Ligia Toro
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA ; Deparment of Molecular and Medical Pharmacology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; Cardiovascular Research Laboratory, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
17
|
Brain mitochondrial ATP-insensitive large conductance Ca⁺²-activated K⁺ channel properties are altered in a rat model of amyloid-β neurotoxicity. Exp Neurol 2015; 269:8-16. [PMID: 25828534 DOI: 10.1016/j.expneurol.2014.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/01/2014] [Accepted: 12/20/2014] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is a hallmark of amyloid-beta (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was undertaken to investigate whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive-IbTx-sensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a rat model of Aβ neurotoxicity. Aβ1-42 (4 μg/μl) was intracerebroventricularly injected in male Wistar rats (220-250 g). Brain Aβ accumulation was confirmed two weeks later on the basis of an immunohistochemistry staining assay, and physiological impacts measured in passive avoidance task cognitive performance experiments. Brain mitochondrial inner membranes were then extracted and membrane vesicles prepared for channel incorporation into bilayer lipid. Purity of the cell fraction was confirmed by Western blot using specific markers of mitochondria, plasma membrane, endoplasmic reticulum, and Golgi. Our results first provide evidence for differences in mitoBKCa ion permeation properties with channels coming from Aβ vesicle preparations characterized by an inward rectifying I-V curve, in contrast to control mitoBKCa channels which showed a linear I-V relationship under the same ionic conditions (200 mM cis/50mM trans). More importantly the open probability of channels from Aβ vesicles appeared 1.5 to 2.5 smaller compared to controls, the most significant decrease being observed at depolarizing potentials (30 mV to 50 mV). Because BKCa-β4 subunit has been documented to shift the BKCa channel voltage dependence curve, a Western blot analysis was undertaken where expression of mitoBKCa α and β4 subunits was estimated using anti-α and β4 subunit antibodies. Our results indicated a significant increase in mitoBKCa-β4 subunit expression coupled to a decrease in the expression of α subunit. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from a rat model of Aβ neurotoxicity, an effect potentially linked to a change in mitoBKCa-β4 and -α subunits expression or increased ROS production due to an enhanced Aβ mitochondrial accumulation. Our results may provide new insights into the cellular mechanisms underlying mitochondrial dysfunctions in Aβ neurotoxicity.
Collapse
|
18
|
Ghasemi M, Khodaei N, Salari S, Eliassi A, Saghiri R. Gating behavior of endoplasmic reticulum potassium channels of rat hepatocytes in diabetes. IRANIAN BIOMEDICAL JOURNAL 2015; 18:165-72. [PMID: 24842143 PMCID: PMC4048481 DOI: 10.6091/ibj.1308.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. METHOD Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. RESULTS Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. CONCLUSION We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran
| | - Naser Khodaei
- Dept. of Physiology, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran
| | - Sajjad Salari
- Dept. of Physiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran.,Dept. of Physiology, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran
| | - Reza Saghiri
- Dept. of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Impairment of brain mitochondrial charybdotoxin- and ATP-insensitive BK channel activities in diabetes. Neuromolecular Med 2014; 16:862-71. [PMID: 25344764 DOI: 10.1007/s12017-014-8334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Existing evidence indicates an impairment of mitochondrial functions and alterations in potassium channel activities in diabetes. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a streptozotocin (STZ) model of diabetes. Using ion channel incorporation of brain mitochondrial inner membrane into the bilayer lipid membrane, we provide in this work evidence for modifications of the mitoBKCa ion permeation properties with channels from vesicles preparations coming from diabetic rats characterized by a significant decrease in conductance. More importantly, the open probability of channels from diabetic rats was reduced 1.5-2.5 fold compared to control, the most significant decrease being observed at depolarizing potentials. Because BKCa β4 subunit has been documented to left shift the BKCa channel voltage dependence curve in high Ca(2+) conditions, a Western blot analysis was undertaken where the expression of mitoBKCa α and β4 subunits was estimated using of anti-α and β4 subunit antibodies. Our results indicated a significant decrease in mitoBKCa β4 subunit expression coupled to a decrease in the expression of α subunit, an observation compatible with the observed decrease in Ca(2+) sensitivity. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from STZ model of diabetic rats, an effect potentially linked to a change in mitoBKCa β4 and α subunits expression and/or to an increase in reactive oxygen species production in high glucose conditions.
Collapse
|
20
|
Soltysinska E, Bentzen BH, Barthmes M, Hattel H, Thrush AB, Harper ME, Qvortrup K, Larsen FJ, Schiffer TA, Losa-Reyna J, Straubinger J, Kniess A, Thomsen MB, Brüggemann A, Fenske S, Biel M, Ruth P, Wahl-Schott C, Boushel RC, Olesen SP, Lukowski R. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury. PLoS One 2014; 9:e103402. [PMID: 25072914 PMCID: PMC4114839 DOI: 10.1371/journal.pone.0103402] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at normoxia and upon re-oxygenation after prolonged anoxia and that IP might indeed favor survival of the myocardium upon I/R injury in a BK-dependent mode stemming from both mitochondrial post-anoxic ROS modulation and non-mitochondrial localizations.
Collapse
MESH Headings
- Animals
- Cell Hypoxia
- Disease Models, Animal
- Energy Metabolism
- Indoles/pharmacology
- Ischemic Preconditioning
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism
- Large-Conductance Calcium-Activated Potassium Channels/chemistry
- Large-Conductance Calcium-Activated Potassium Channels/genetics
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oxidative Phosphorylation/drug effects
- Reactive Oxygen Species/metabolism
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Tetrazoles/pharmacology
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
Collapse
Affiliation(s)
- Ewa Soltysinska
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Hjorth Bentzen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Maria Barthmes
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Helle Hattel
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A. Brianne Thrush
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Klaus Qvortrup
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip J. Larsen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas A. Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jose Losa-Reyna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Straubinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Angelina Kniess
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Morten Bækgaard Thomsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Stefanie Fenske
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Christian Wahl-Schott
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Robert Christopher Boushel
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren-Peter Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SPO); (RL)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
- * E-mail: (SPO); (RL)
| |
Collapse
|
21
|
Choi SH, Lee BH, Kim HJ, Hwang SH, Lee SM, Nah SY. Activation of lysophosphatidic Acid receptor is coupled to enhancement of ca(2+)-activated potassium channel currents. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:223-8. [PMID: 23776399 PMCID: PMC3682083 DOI: 10.4196/kjpp.2013.17.3.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/07/2013] [Accepted: 05/22/2013] [Indexed: 11/15/2022]
Abstract
The calcium-activated K(+) (BKCa) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. Ca(2+) is the main regulator of BKCa channel activation. The BKCa channel contains two high affinity Ca(2+) binding sites, namely, regulators of K(+) conductance, RCK1 and the Ca(2+) bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular Ca(2+) levels through diverse G proteins such as Gαq/11, Gαi, Gα12/13, and Gαs and the related signal transduction pathway. In the present study, we examined LPA effects on BKCa channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated BKCa channel activation was also attenuated by the PLC inhibitor U-73122, IP3 inhibitor 2-APB, Ca(2+) chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated BKCa channel activation. The present study indicates that LPA-mediated activation of the BKCa channel is achieved through the PLC, IP3, Ca(2+), and PKC pathway and that LPA-mediated activation of the BKCa channel could be one of the biological effects of LPA in the nervous and vascular systems.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Bednarczyk P, Koziel A, Jarmuszkiewicz W, Szewczyk A. Large-conductance Ca²⁺-activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol Heart Circ Physiol 2013; 304:H1415-27. [PMID: 23542921 DOI: 10.1152/ajpheart.00976.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, we describe the existence of a large-conductance Ca²⁺-activated potassium (BKCa) channel in the mitochondria of the human endothelial cell line EA.hy926. A single-channel current was recorded from endothelial mitoplasts (i.e., inner mitochondrial membrane) using the patch-clamp technique in the mitoplast-attached mode. A potassium-selective current was recorded with a mean conductance equal to 270 ± 10 pS in a symmetrical 150/150 mM KCl isotonic solution. The channel activity, which was determined as the open probability, increased with the addition of calcium ions and the potassium channel opener NS1619. Conversely, the activity of the channel was irreversibly blocked by paxilline and iberiotoxin, BKCa channel inhibitors. The open-state probability was found to be voltage dependent. The substances known to modulate BKCa channel activity influenced the bioenergetics of mitochondria isolated from human endothelial EA.hy926 cells. In isolated mitochondria, 100 μM Ca²⁺, 10 μM NS1619, and 0.5 μM NS11021 depolarized the mitochondrial membrane potential and stimulated nonphosphorylating respiration. These effects were blocked by iberiotoxin and paxilline in a potassium-dependent manner. Under phosphorylating conditions, NS1619-induced, iberiotoxin-sensitive uncoupling diverted energy from ATP synthesis during the phosphorylating respiration of the endothelial mitochondria. Immunological analysis with antibodies raised against proteins of the plasma membrane BKCa channel identified a pore-forming α-subunit and an auxiliary β₂-subunit of the channel in the endothelial mitochondrial inner membrane. In conclusion, we show for the first time that the inner mitochondrial membrane in human endothelial EA.hy926 cells contains a large-conductance calcium-dependent potassium channel with properties similar to those of the surface membrane BKCa channel.
Collapse
Affiliation(s)
- Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
23
|
Abstract
The large conductance calcium- and voltage-activated potassium channel (BK(Ca)) is widely expressed at the plasma membrane. This channel is involved in a variety of fundamental cellular functions including excitability, smooth muscle contractility, and Ca(2+) homeostasis, as well as in pathological situations like proinflammatory responses in rheumatoid arthritis, and cancer cell proliferation. Immunochemical, biochemical and pharmacological studies from over a decade have intermittently shown the presence of BK(Ca) in intracellular organelles. To date, intracellular BK(Ca) (iBK(Ca)) has been localized in the mitochondria, endoplasmic reticulum, nucleus and Golgi apparatus but its functional role remains largely unknown except for the mitochondrial BK(Ca) whose opening is thought to play a role in protecting the heart from ischaemic injury. In the nucleus, pharmacology suggests a role in regulating nuclear Ca(2+), membrane potential and eNOS expression. Establishing the molecular correlates of iBK(Ca), the mechanisms defining iBK(Ca) organelle-specific targeting, and their modulation are challenging questions. This review summarizes iBK(Ca) channels, their possible functions, and efforts to identify their molecular correlates.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
24
|
Kajma A, Szewczyk A. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1867-78. [PMID: 22406520 DOI: 10.1016/j.bbabio.2012.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/13/2022]
Abstract
Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Anna Kajma
- Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|