1
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
2
|
Missner AA, Sheykhsoltan M, Hakimi A, Hoa M. The role of selective serotonin reuptake inhibitors and tricyclic antidepressants in addressing reduction of Meniere's disease burden: A scoping review. World J Otorhinolaryngol Head Neck Surg 2024; 10:206-212. [PMID: 39233854 PMCID: PMC11369805 DOI: 10.1002/wjo2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 09/06/2024] Open
Abstract
Objective To assess the effect of selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) in reducing vertigo, tinnitus, and hearing loss among patients with Meniere's disease (MD). Data Sources The following databases were utilized in this scoping review: Ovid Medline, PubMed-NCBI, CINAHL, Cochrane Library, Web of Science, and Clinicaltrials.gov. Method Studies were identified through the following search phrases: "serotonin specific reuptake inhibitors" OR "tricyclic antidepressants" AND "Meniere's disease." References from included manuscripts were examined for possible inclusion of additional studies. Results The literature search yielded 23 results, which were screened by three independent reviewers. Seventeen studies and three duplicates were excluded. An examination of references from the included studies yielded two additional publications. A total of four published studies assessing SSRIs and TCAs among 147 patients with MD were ultimately included. Four studies described significant reductions in vertigo attack frequency among patients treated with either SSRIs or TCAs compared to their pretreatment baseline. Three studies assessed the drugs' effects on hearing, of which none found a significant difference among patients treated with SSRIs or TCAs. One study found a significant decrease in patient-reported tinnitus following treatment with TCAs or SSRIs compared to their pretreatment baseline. Conclusions Data exploring SSRIs and TCAs among patients with MD suggests that these medications may reduce the frequency of tinnitus and vertigo, although there was significant heterogeneity in outcome reporting. There remains a need for larger-scale prospective studies that emphasize objective data to evaluate their effectiveness in reducing common MD symptoms.
Collapse
Affiliation(s)
| | - Mana Sheykhsoltan
- Georgetown University School of MedicineWashingtonDistrict of ColumbiaUSA
| | - Amir Hakimi
- Department of Otolaryngology‐Head and Neck SurgeryGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Michael Hoa
- Department of Otolaryngology‐Head and Neck SurgeryGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Auditory Development and Restoration ProgramNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
3
|
Pineros J, Zhu X, Ding B, Frisina RD. Connexins 30 and 43 expression changes in relation to age-related hearing loss. Hear Res 2024; 444:108971. [PMID: 38359484 PMCID: PMC10939722 DOI: 10.1016/j.heares.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is the number one communication disorder for aging adults. Connexin proteins are essential for intercellular communication throughout the human body, including the cochlea. Mutations in connexin genes have been linked to human syndromic and nonsyndromic deafness; thus, we hypothesize that changes in connexin gene and protein expression with age are involved in the etiology of ARHL. Here, connexin gene and protein expression changes for CBA/CaJ mice at different ages were examined, and correlations were analyzed between the changes in expression levels and functional hearing measures, such as ABRs and DPOAEs. Moreover, we investigated potential treatment options for ARHL. Results showed significant downregulation of Cx30 and Cx43 gene expression and significant correlations between the degree of hearing loss and the changes in gene expression for both genes. Moreover, dose-dependent treatments utilizing cochlear cell lines showed that aldosterone hormone therapy significantly increased Cx expression. In vivo mouse treatments with aldosterone also showed protective effects on connexin expression in aging mice. Based on these functionally relevant findings, next steps can include more investigations of the mechanisms related to connexin family gap junction protein expression changes during ARHL; and expand knowledge of clinically-relevant treatment options by knowing what specific members of the Cx family and related inter-cellular proteins should be targeted therapeutically.
Collapse
Affiliation(s)
- Jennifer Pineros
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Department of Communication Sciences and Disorders, College of Behavioral & Community Sciences, University of South Florida, Tampa, FL 33620, USA; Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
4
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis. Sci Rep 2024; 14:3038. [PMID: 38321040 PMCID: PMC10847169 DOI: 10.1038/s41598-024-52663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Sydney Nixon
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Soumya Korrapati
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Samuel Adadey
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA.
| |
Collapse
|
5
|
Choi JS, Ahn YJ, Lee S, Park DJ, Park J, Ha SM, Seo YJ. Role of Kir4.1 Channels in Aminoglycoside-Induced Ototoxicity of Hair Cells. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4191999. [PMID: 38143588 PMCID: PMC10748730 DOI: 10.1155/2023/4191999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023]
Abstract
The Kir4.1 channel, an inwardly rectifying potassium ion (K+) channel, is located in the hair cells of the organ of Corti as well as the intermediate cells of the stria vascularis. The Kir4.1 channel has a crucial role in the generation of endolymphatic potential and maintenance of the resting membrane potential. However, the role and functions of the Kir4.1 channel in the progenitor remain undescribed. To observe the role of Kir4.1 in the progenitor treated with the one-shot ototoxic drugs (kanamycin and furosemide), we set the proper condition in culturing Immortomouse-derived HEI-OC1 cells to express the potassium-related channels well. And also, that was reproduced in mice experiments to show the important role of Kir4.1 in the survival of hair cells after treating the ototoxicity drugs. In our results, when kanamycin and furosemide drugs were cotreated with HEI-OC1 cells, the Kir4.1 channel did not change, but the expression levels of the NKCC1 cotransporter and KCNQ4 channel are decreased. This shows that inward and outward channels were blocked by the two drugs (kanamycin and furosemide). However, noteworthy here is that the expression level of Kir4.1 channel increased when kanamycin was treated alone. This shows that Kir4.1, an inwardly rectifying potassium channel, acts as an outward channel in place of the corresponding channel when the KCNQ4 channel, an outward channel, is blocked. These results suggest that the Kir4.1 channel has a role in maintaining K+ homeostasis in supporting cells, with K+ concentration compensator when the NKCC1 cotransporter and Kv7.4 (KCNQ4) channels are deficient.
Collapse
Affiliation(s)
- Jin Sil Choi
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ye Ji Ahn
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - SuHoon Lee
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Dong Jun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - JeongEun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sun Mok Ha
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
6
|
Johns JD, Olszewski R, Strepay D, Lopez IA, Ishiyama A, Hoa M. Emerging Mechanisms in the Pathogenesis of Menière's Disease: Evidence for the Involvement of Ion Homeostatic or Blood-Labyrinthine Barrier Dysfunction in Human Temporal Bones. Otol Neurotol 2023; 44:1057-1065. [PMID: 37733989 PMCID: PMC10840868 DOI: 10.1097/mao.0000000000004016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
HYPOTHESIS Analysis of human temporal bone specimens of patients with Menière's disease (MD) may demonstrate altered expression of gene products related to barrier formation and ionic homeostasis within cochlear structures compared with control specimens. BACKGROUND MD represents a challenging otologic disorder for investigation. Despite attempts to define the pathogenesis of MD, there remain many gaps in our understanding, including differences in protein expression within the inner ear. Understanding these changes may facilitate the identification of more targeted therapies for MD. METHODS Human temporal bones from patients with MD (n = 8) and age-matched control patients (n = 8) were processed with immunohistochemistry stains to detect known protein expression related to ionic homeostasis and barrier function in the cochlea, including CLDN11, CLU, KCNJ10, and SLC12A2. Immunofluorescence intensity analysis was performed to quantify protein expression in the stria vascularis, organ of Corti, and spiral ganglion neuron (SGN). RESULTS Expression of KCNJ10 was significantly reduced in all cochlear regions, including the stria vascularis (9.23 vs 17.52, p = 0.011), OC (14.93 vs 29.16, p = 0.014), and SGN (7.69 vs 18.85, p = 0.0048) in human temporal bone specimens from patients with MD compared with control, respectively. CLDN11 (7.40 vs 10.88, p = 0.049) and CLU (7.80 vs 17.51, p = 0.0051) expression was significantly reduced in the SGN. CONCLUSION The results of this study support that there may be differences in the expression of proteins related to ionic homeostasis and barrier function within the cochlea, potentially supporting the role of targeted therapies to treat MD.
Collapse
Affiliation(s)
- J. Dixon Johns
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, Georgetown University School of Medicine, Washington DC, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ivan A. Lopez
- Department of Head & Neck Surgery, University of California School of Medicine, Los Angeles, CA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California School of Medicine, Los Angeles, CA, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, Georgetown University School of Medicine, Washington DC, USA
| |
Collapse
|
7
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) Fluorescent Reporter Mice Allow Visualization of Intermediate Cells in the Stria Vascularis. RESEARCH SQUARE 2023:rs.3.rs-3393161. [PMID: 37886521 PMCID: PMC10602146 DOI: 10.21203/rs.3.rs-3393161/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Sydney Nixon
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Samuel Adadey
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health
| | | | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| |
Collapse
|
8
|
Yang W, Zhao X, Chai R, Fan J. Progress on mechanisms of age-related hearing loss. Front Neurosci 2023; 17:1253574. [PMID: 37727326 PMCID: PMC10505809 DOI: 10.3389/fnins.2023.1253574] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Age-related hearing loss, or presbycusis, is a common cause of hearing loss in elderly people worldwide. It typically presents as progressive, irreversible, and usually affects the high frequencies of hearing, with a tremendous impact on the quality of life. Presbycusis is a complex multidimensional disorder, in addition to aging, multiple factors including exposure to noise, or ototoxic agents, genetic susceptibility, metabolic diseases and lifestyle can influence the onset and severity of presbycusis. With the aging of the body, its ability to clean up deleterious substances produced in the metabolic process is weakened, and the self-protection and repair function of the body is reduced, which in turn leads to irreversible damage to the cochlear tissue, resulting in the occurrence of presbycusis. Presently, oxidative stress (OS), mitochondrial DNA damage, low-grade inflammation, decreased immune function and stem cell depletion have been demonstrated to play a critical role in developing presbycusis. The purpose of this review is to illuminate the various mechanisms underlying this age-related hearing loss, with the goal of advancing our understanding, prevention, and treatment of presbycusis.
Collapse
Affiliation(s)
- Wen Yang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
10
|
Richard EM, Brun E, Korchagina J, Crouzier L, Affortit C, Alves S, Cazevieille C, Mausset-Bonnefont AL, Lenoir M, Puel JL, Maurice T, Thiry M, Wang J, Delprat B. Wfs1 E864K knock-in mice illuminate the fundamental role of Wfs1 in endocochlear potential production. Cell Death Dis 2023; 14:387. [PMID: 37386014 PMCID: PMC10310813 DOI: 10.1038/s41419-023-05912-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase β1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase β1 subunit.
Collapse
Affiliation(s)
| | - Emilie Brun
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Stacy Alves
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Marc Lenoir
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, Liège, Belgique
| | - Jing Wang
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Benjamin Delprat
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
- INM, Univ Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
11
|
Strepay D, Olszewski R, Taukulis I, Johns JD, Gu S, Hoa M. Dissection of Adult Mouse Stria Vascularis for Single-Nucleus Sequencing or Immunostaining. J Vis Exp 2023:10.3791/65254. [PMID: 37154552 PMCID: PMC10443831 DOI: 10.3791/65254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Endocochlear potential, which is generated by the stria vascularis, is essential to maintain an environment conducive to appropriate hair cell mechanotransduction and ultimately hearing. Pathologies of the stria vascularis can result in a decreased hearing. Dissection of the adult stria vascularis allows for focused single-nucleus capture and subsequent single-nucleus sequencing and immunostaining. These techniques are used to study stria vascularis pathophysiology at the single-cell level. Single-nucleus sequencing can be used in the setting of transcriptional analysis of the stria vascularis. Meanwhile, immunostaining continues to be useful in identifying specific populations of cells. Both methods require proper stria vascularis dissection as a prerequisite, which can prove to be technically challenging.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Ian Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - J Dixon Johns
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health;
| |
Collapse
|
12
|
Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther 2023; 31:934-950. [PMID: 36755494 PMCID: PMC10124073 DOI: 10.1016/j.ymthe.2023.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy focuses on genetic modification to produce therapeutic effects or treat diseases by repairing or reconstructing genetic material, thus being expected to be the most promising therapeutic strategy for genetic disorders. Due to the growing attention to hearing impairment, an increasing amount of research is attempting to utilize gene therapy for hereditary hearing loss (HHL), an important monogenic disease and the most common type of congenital deafness. Several gene therapy clinical trials for HHL have recently been approved, and, additionally, CRISPR-Cas tools have been attempted for HHL treatment. Therefore, in order to further advance the development of inner ear gene therapy and promote its broad application in other forms of genetic disease, it is imperative to review the progress of gene therapy for HHL. Herein, we address three main gene therapy strategies (gene replacement, gene suppression, and gene editing), summarizing the strategy that is most appropriate for particular monogenic diseases based on different pathogenic mechanisms, and then focusing on their successful applications for HHL in preclinical trials. Finally, we elaborate on the challenges and outlooks of gene therapy for HHL.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Johns JD, Adadey SM, Hoa M. The role of the stria vascularis in neglected otologic disease. Hear Res 2023; 428:108682. [PMID: 36584545 PMCID: PMC9840708 DOI: 10.1016/j.heares.2022.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
The stria vascularis (SV) has been shown to play a critical role in the pathogenesis of many diseases associated with sensorineural hearing loss (SNHL), including age-related hearing loss (ARHL), noise-induced hearing loss (NIHL), hereditary hearing loss (HHL), and drug-induced hearing loss (DIHL), among others. There are a number of other disorders of hearing loss that may be relatively neglected due to being underrecognized, poorly understood, lacking robust diagnostic criteria or effective treatments. A few examples of these diseases include autoimmune inner ear disease (AIED) and/or autoinflammatory inner ear disease (AID), Meniere's disease (MD), sudden sensorineural hearing loss (SSNHL), and cytomegalovirus (CMV)-related hearing loss (CRHL). Although these diseases may often differ in etiology, there have been recent studies that support the involvement of the SV in the pathogenesis of many of these disorders. We strive to highlight a few prominent examples of these frequently neglected otologic diseases and illustrate the relevance of understanding SV composition, structure and function with regards to these disease processes. In this study, we review the physiology of the SV, lay out the importance of these neglected otologic diseases, highlight the current literature regarding the role of the SV in these disorders, and discuss the current strategies, both approved and investigational, for management of these disorders.
Collapse
Affiliation(s)
- J Dixon Johns
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, USA.
| | - Samuel M Adadey
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, USA; Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Chen P, Wu W, Zhang J, Chen J, Li Y, Sun L, Hou S, Yang J. Pathological mechanisms of connexin26-related hearing loss: Potassium recycling, ATP-calcium signaling, or energy supply? Front Mol Neurosci 2022; 15:976388. [PMID: 36187349 PMCID: PMC9520402 DOI: 10.3389/fnmol.2022.976388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary deafness is one of the most common human birth defects. GJB2 gene mutation is the most genetic etiology. Gap junction protein 26 (connexin26, Cx26) encoded by the GJB2 gene, which is responsible for intercellular substance transfer and signal communication, plays a critical role in hearing acquisition and maintenance. The auditory character of different Connexin26 transgenic mice models can be classified into two types: profound congenital deafness and late-onset progressive hearing loss. Recent studies demonstrated that there are pathological changes including endocochlear potential reduction, active cochlear amplification impairment, cochlear developmental disorders, and so on, in connexin26 deficiency mice. Here, this review summarizes three main hypotheses to explain pathological mechanisms of connexin26-related hearing loss: potassium recycling disruption, adenosine-triphosphate-calcium signaling propagation disruption, and energy supply dysfunction. Elucidating pathological mechanisms underlying connexin26-related hearing loss can help develop new protective and therapeutic strategies for this common deafness. It is worthy of further study on the detailed cellular and molecular upstream mechanisms to modify connexin (channel) function.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenjin Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang,
| |
Collapse
|
15
|
Kociszewska D, Vlajkovic S. Age-Related Hearing Loss: The Link between Inflammaging, Immunosenescence, and Gut Dysbiosis. Int J Mol Sci 2022; 23:7348. [PMID: 35806352 PMCID: PMC9266910 DOI: 10.3390/ijms23137348] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as "inflammaging". Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.
Collapse
Affiliation(s)
| | - Srdjan Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand;
| |
Collapse
|
16
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
17
|
Chen J, Chen P, He B, Gong T, Li Y, Zhang J, Lv J, Mammano F, Hou S, Yang J. Connexin30-Deficiency Causes Mild Hearing Loss With the Reduction of Endocochlear Potential and ATP Release. Front Cell Neurosci 2022; 15:819194. [PMID: 35110999 PMCID: PMC8802669 DOI: 10.3389/fncel.2021.819194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
GJB2 and GJB6 are adjacent genes encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, with overlapping expressions in the inner ear. Both genes are associated with the commonest monogenic hearing disorder, recessive isolated deafness DFNB1. Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that Cx30 knockout mice had severe hearing loss along with a 90% reduction in Cx26, while another Cx30 knockout mouse model showed normal hearing with nearly half of Cx26 preserved. In this study, we used CRISPR/Cas9 technology to establish a new Cx30 knockout mouse model (Cx30−/−), which preserves approximately 70% of Cx26. We found that the 1, 3, and 6-month-old Cx30−/− mice showed mild hearing loss at full frequency. Immunofluorescence and HE staining suggested no significant differences in microstructure of the cochlea between Cx30−/− mice and wild-type mice. However, transmission electron microscopy showed slight cavity-like damage in the stria vascularis of Cx30−/− mice. And Cx30 deficiency reduced the production of endocochlear potential (EP) and the release of ATP, which may have induced hearing loss. Taken together, this study showed that lack of Cx30 can lead to hearing loss with an approximately 30% reduction of Cx26 in the present Cx30 knockout model. Hence, Cx30 may play an important rather than redundant role in hearing development.
Collapse
Affiliation(s)
- Junmin Chen
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyu Gong
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jingrong Lv
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Shule Hou
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou Jun Yang
| |
Collapse
|
18
|
Yu W, Zong S, Du P, Zhou P, Li H, Wang E, Xiao H. Role of the Stria Vascularis in the Pathogenesis of Sensorineural Hearing Loss: A Narrative Review. Front Neurosci 2021; 15:774585. [PMID: 34867173 PMCID: PMC8640081 DOI: 10.3389/fnins.2021.774585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss is a common sensory impairment in humans caused by abnormalities in the inner ear. The stria vascularis is regarded as a major cochlear structure that can independently degenerate and influence the degree of hearing loss. This review summarizes the current literature on the role of the stria vascularis in the pathogenesis of sensorineural hearing loss resulting from different etiologies, focusing on both molecular events and signaling pathways, and further attempts to explore the underlying mechanisms at the cellular and molecular biological levels. In addition, the deficiencies and limitations of this field are discussed. With the rapid progress in scientific technology, new opportunities are arising to fully understand the role of the stria vascularis in the pathogenesis of sensorineural hearing loss, which, in the future, will hopefully lead to the prevention, early diagnosis, and improved treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hejie Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Ion channel-related hereditary hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Bazard P, Pineros J, Frisina RD, Bauer MA, Acosta AA, Paganella LR, Borakiewicz D, Thivierge M, Mannering FL, Zhu X, Ding B. Cochlear Inflammaging in Relation to Ion Channels and Mitochondrial Functions. Cells 2021; 10:2761. [PMID: 34685743 PMCID: PMC8534887 DOI: 10.3390/cells10102761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
The slow accumulation of inflammatory biomarker levels in the body-also known as inflammaging-has been linked to a myriad of age-related diseases. Some of these include neurodegenerative conditions such as Parkinson's disease, obesity, type II diabetes, cardiovascular disease, and many others. Though a direct correlation has not been established, research connecting age-related hearing loss (ARHL)-the number one communication disorder and one of the most prevalent neurodegenerative diseases of our aged population-and inflammaging has gained interest. Research, thus far, has found that inflammatory markers, such as IL-6 and white blood cells, are associated with ARHL in humans and animals. Moreover, studies investigating ion channels and mitochondrial involvement have shown promising relationships between their functions and inflammaging in the cochlea. In this review, we summarize key findings in inflammaging within the auditory system, the involvement of ion channels and mitochondrial functions, and lastly discuss potential treatment options focusing on controlling inflammation as we age.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Jennifer Pineros
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren R. Paganella
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Dominika Borakiewicz
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Mark Thivierge
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Freyda L. Mannering
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
21
|
An L1 retrotransposon insertion-induced deafness mouse model for studying the development and function of the cochlear stria vascularis. Proc Natl Acad Sci U S A 2021; 118:2107933118. [PMID: 34583993 DOI: 10.1073/pnas.2107933118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 01/23/2023] Open
Abstract
Dysregulation of ion and potential homeostasis in the scala media is the most prevalent cause of hearing loss in mammals. However, it is not well understood how the development and function of the stria vascularis regulates this fluid homeostasis in the scala media. From a mouse genetic screen, we characterize a mouse line, named 299, that displays profound hearing impairment. Histology suggests that 299 mutant mice carry a severe, congenital structural defect of the stria vascularis. The in vivo recording of 299 mice using double-barreled electrodes shows that endocochlear potential is abolished and potassium concentration is reduced to ∼20 mM in the scala media, a stark contrast to the +80 mV endocochlear potential and the 150 mM potassium concentration present in healthy control mice. Genomic analysis revealed a roughly 7-kb-long, interspersed nuclear element (LINE-1 or L1) retrotransposon insertion on chromosome 11. Strikingly, the deletion of this L1 retrotransposon insertion from chromosome 11 restored the hearing of 299 mutant mice. In summary, we characterize a mouse model that enables the study of stria vascularis development and fluid homeostasis in the scala media.
Collapse
|
22
|
Tasdemir-Yilmaz OE, Druckenbrod NR, Olukoya OO, Dong W, Yung AR, Bastille I, Pazyra-Murphy MF, Sitko AA, Hale EB, Vigneau S, Gimelbrant AA, Kharchenko PV, Goodrich LV, Segal RA. Diversity of developing peripheral glia revealed by single-cell RNA sequencing. Dev Cell 2021; 56:2516-2535.e8. [PMID: 34469751 DOI: 10.1016/j.devcel.2021.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
The peripheral nervous system responds to a wide variety of sensory stimuli, a process that requires great neuronal diversity. These diverse neurons are closely associated with glial cells originating from the neural crest. However, the molecular nature and diversity among peripheral glia are not understood. Here, we used single-cell RNA sequencing to profile developing and mature glia from somatosensory dorsal root ganglia and auditory spiral ganglia. We found that glial precursors (GPs) in these two systems differ in their transcriptional profiles. Despite their unique features, somatosensory and auditory GPs undergo convergent differentiation to generate molecularly uniform myelinating and non-myelinating Schwann cells. By contrast, somatosensory and auditory satellite glial cells retain system-specific features. Lastly, we identified a glial signature gene set, providing new insights into commonalities among glia across the nervous system. This survey of gene expression in peripheral glia constitutes a resource for understanding functions of glia across different sensory modalities.
Collapse
Affiliation(s)
- Ozge E Tasdemir-Yilmaz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Noah R Druckenbrod
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Weixiu Dong
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isle Bastille
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Pazyra-Murphy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Evan B Hale
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sébastien Vigneau
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Taukulis IA, Olszewski RT, Korrapati S, Fernandez KA, Boger ET, Fitzgerald TS, Morell RJ, Cunningham LL, Hoa M. Single-Cell RNA-Seq of Cisplatin-Treated Adult Stria Vascularis Identifies Cell Type-Specific Regulatory Networks and Novel Therapeutic Gene Targets. Front Mol Neurosci 2021; 14:718241. [PMID: 34566577 PMCID: PMC8458580 DOI: 10.3389/fnmol.2021.718241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
The endocochlear potential (EP) generated by the stria vascularis (SV) is necessary for hair cell mechanotransduction in the mammalian cochlea. We sought to create a model of EP dysfunction for the purposes of transcriptional analysis and treatment testing. By administering a single dose of cisplatin, a commonly prescribed cancer treatment drug with ototoxic side effects, to the adult mouse, we acutely disrupt EP generation. By combining these data with single cell RNA-sequencing findings, we identify transcriptional changes induced by cisplatin exposure, and by extension transcriptional changes accompanying EP reduction, in the major cell types of the SV. We use these data to identify gene regulatory networks unique to cisplatin treated SV, as well as the differentially expressed and druggable gene targets within those networks. Our results reconstruct transcriptional responses that occur in gene expression on the cellular level while identifying possible targets for interventions not only in cisplatin ototoxicity but also in EP dysfunction.
Collapse
Affiliation(s)
- Ian A. Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Rafal T. Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Katharine A. Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Erich T. Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Tracy S. Fitzgerald
- Mouse Auditory Testing Core Facility, National Institutes of Health, Bethesda, MD, United States
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Huang TW, Iyer AA, Manalo JM, Woo J, Bosquez Huerta NA, McGovern MM, Schrewe H, Pereira FA, Groves AK, Ohlemiller KK, Deneen B. Glial-Specific Deletion of Med12 Results in Rapid Hearing Loss via Degradation of the Stria Vascularis. J Neurosci 2021; 41:7171-7181. [PMID: 34253626 PMCID: PMC8387121 DOI: 10.1523/jneurosci.0070-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult CNS results in region-specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiologic analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis.SIGNIFICANCE STATEMENT Mutations in Mediator protein complex subunit 12 (Med12) are associated with X-linked intellectual disability syndromes and hearing loss. Using temporal-conditional genetic approaches in CNS glia, we found that loss of Med12 results in severe hearing loss in adult animals through rapid degeneration of the stria vascularis. Our study describes the first animal model that recapitulates hearing loss identified in Med12-related disorders and provides a new system in which to examine the underlying cellular and molecular mechanisms of Med12 function in the adult nervous system.
Collapse
Affiliation(s)
- Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
| | - Amrita A Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas 77030
| | - Jeanne M Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
| | - Navish A Bosquez Huerta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Melissa M McGovern
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Fredrick A Pereira
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030
- Department of Otolaryngology, Baylor College of Medicine, Houston, Texas 77030
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas 77030
| | - Kevin K Ohlemiller
- Department of Otolaryngolgy, Central Institute for the Deaf, Fay and Carl Simons Center for Biology of Hearing and Deafness, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
25
|
Bazard P, Frisina RD, Acosta AA, Dasgupta S, Bauer MA, Zhu X, Ding B. Roles of Key Ion Channels and Transport Proteins in Age-Related Hearing Loss. Int J Mol Sci 2021; 22:6158. [PMID: 34200434 PMCID: PMC8201059 DOI: 10.3390/ijms22116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory system is a fascinating sensory organ that overall, converts sound signals to electrical signals of the nervous system. Initially, sound energy is converted to mechanical energy via amplification processes in the middle ear, followed by transduction of mechanical movements of the oval window into electrochemical signals in the cochlear hair cells, and finally, neural signals travel to the central auditory system, via the auditory division of the 8th cranial nerve. The majority of people above 60 years have some form of age-related hearing loss, also known as presbycusis. However, the biological mechanisms of presbycusis are complex and not yet fully delineated. In the present article, we highlight ion channels and transport proteins, which are integral for the proper functioning of the auditory system, facilitating the diffusion of various ions across auditory structures for signal transduction and processing. Like most other physiological systems, hearing abilities decline with age, hence, it is imperative to fully understand inner ear aging changes, so ion channel functions should be further investigated in the aging cochlea. In this review article, we discuss key various ion channels in the auditory system and how their functions change with age. Understanding the roles of ion channels in auditory processing could enhance the development of potential biotherapies for age-related hearing loss.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Sneha Dasgupta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Nicolson T. Navigating Hereditary Hearing Loss: Pathology of the Inner Ear. Front Cell Neurosci 2021; 15:660812. [PMID: 34093131 PMCID: PMC8172992 DOI: 10.3389/fncel.2021.660812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Inherited forms of deafness account for a sizable portion of hearing loss among children and adult populations. Many patients with sensorineural deficits have pathological manifestations in the peripheral auditory system, the inner ear. Within the hearing organ, the cochlea, most of the genetic forms of hearing loss involve defects in sensory detection and to some extent, signaling to the brain via the auditory cranial nerve. This review focuses on peripheral forms of hereditary hearing loss and how these impairments can be studied in diverse animal models or patient-derived cells with the ultimate goal of using the knowledge gained to understand the underlying biology and treat hearing loss.
Collapse
Affiliation(s)
- Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| |
Collapse
|
27
|
Lv J, Fu X, Li Y, Hong G, Li P, Lin J, Xun Y, Fang L, Weng W, Yue R, Li GL, Guan B, Li H, Huang Y, Chai R. Deletion of Kcnj16 in Mice Does Not Alter Auditory Function. Front Cell Dev Biol 2021; 9:630361. [PMID: 33693002 PMCID: PMC7937937 DOI: 10.3389/fcell.2021.630361] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 01/13/2023] Open
Abstract
Endolymphatic potential (EP) is the main driving force behind the sensory transduction of hearing, and K+ is the main charge carrier. Kir5.1 is a K+ transporter that plays a significant role in maintaining EP homeostasis, but the expression pattern and role of Kir5.1 (which is encoded by the Kcnj16 gene) in the mouse auditory system has remained unclear. In this study, we found that Kir5.1 was expressed in the mouse cochlea. We checked the inner ear morphology and measured auditory function in Kcnj16–/– mice and found that loss of Kcnj16 did not appear to affect the development of hair cells. There was no significant difference in auditory function between Kcnj16–/– mice and wild-type littermates, although the expression of Kcnma1, Kcnq4, and Kcne1 were significantly decreased in the Kcnj16–/– mice. Additionally, no significant differences were found in the number or distribution of ribbon synapses between the Kcnj16–/– and wild-type mice. In summary, our results suggest that the Kcnj16 gene is not essential for auditory function in mice.
Collapse
Affiliation(s)
- Jun Lv
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yige Li
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Guodong Hong
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Peipei Li
- School of Life Sciences and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jing Lin
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Youfang Xun
- Department of Otolaryngology, Head and Neck Surgery, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lucheng Fang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weibin Weng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyu Yue
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Geng-Lin Li
- Department of Otorhinolaryngology and ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Bing Guan
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yideng Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Otolaryngology-Head and Neck Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Xu C, Ren W, Zhang Y, Zheng F, Zhao H, Shang H, Guo W, Yang S. KIT gene mutation causes deafness and hypopigmentation in Bama miniature pigs. Am J Transl Res 2020; 12:5095-5107. [PMID: 33042408 PMCID: PMC7540160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Waardenburg syndrome (WS) is a common syndromic hearing loss disease. A large group of patients affected by WS were found no mutations in the existed gene panel, indicating that there are still potential genes responsible for WS yet to be detected. In our previous study, we established an autosomal-dominant KIT (OMIM# 164920) mutation (c.2418T>A, p.Asp806Glu) pig pedigree which presented congenital bilateral severe sensorineural hearing loss and hypopigmentation, exact the same as human WS. Histological analysis showed nearly normal structures of the organ of Corti, stria vascularis (SV) and spiral neuron ganglions at E85. Scanning electron microscopy (SEM) exhibited that hair cells started to degenerate at E100, and totally gone at P1. Transmission electron microscope (TEM) showed disorganization of SV and disappearance of intermediate cells. The absence of endocochlear potentials also demonstrated the dysfunction of stria. Our study demonstrated that KIT mutation (c.2418T>A, p.Asp806Glu) interrupted the development of melanocytes in cochlea, which led to SV malformation and dysfunction, resulting in degeneration of hair cells and finally hearing loss. Therefore, KIT was highly supposed to be a newly found gene associated with WS and be added to the WS related gene screening panel clinically.
Collapse
Affiliation(s)
- Cong Xu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical SchoolNo. 28 Fuxing Road, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic DiseasesBeijing 100853, China
- State Key Lab of Hearing Science, Ministry of EducationBeijing 100853, China
- Beijing Key Lab of Hearing Impairment Prevention and TreatmentBeijing 100853, China
| | - Wei Ren
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical SchoolNo. 28 Fuxing Road, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic DiseasesBeijing 100853, China
- State Key Lab of Hearing Science, Ministry of EducationBeijing 100853, China
- Beijing Key Lab of Hearing Impairment Prevention and TreatmentBeijing 100853, China
| | - Yue Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical SchoolNo. 28 Fuxing Road, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic DiseasesBeijing 100853, China
- State Key Lab of Hearing Science, Ministry of EducationBeijing 100853, China
- Beijing Key Lab of Hearing Impairment Prevention and TreatmentBeijing 100853, China
| | - Fanjun Zheng
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical SchoolNo. 28 Fuxing Road, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic DiseasesBeijing 100853, China
- State Key Lab of Hearing Science, Ministry of EducationBeijing 100853, China
- Beijing Key Lab of Hearing Impairment Prevention and TreatmentBeijing 100853, China
| | - Hui Zhao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical SchoolNo. 28 Fuxing Road, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic DiseasesBeijing 100853, China
- State Key Lab of Hearing Science, Ministry of EducationBeijing 100853, China
- Beijing Key Lab of Hearing Impairment Prevention and TreatmentBeijing 100853, China
| | - Haitao Shang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong, China
- Department of Laboratory Animal Science, College of Basic Medical Science, Third Military Medical University (Army Medical University)Chongqing 400038, China
| | - Weiwei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical SchoolNo. 28 Fuxing Road, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic DiseasesBeijing 100853, China
- State Key Lab of Hearing Science, Ministry of EducationBeijing 100853, China
- Beijing Key Lab of Hearing Impairment Prevention and TreatmentBeijing 100853, China
| | - Shiming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical SchoolNo. 28 Fuxing Road, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic DiseasesBeijing 100853, China
- State Key Lab of Hearing Science, Ministry of EducationBeijing 100853, China
- Beijing Key Lab of Hearing Impairment Prevention and TreatmentBeijing 100853, China
| |
Collapse
|
29
|
Lee YY, Kim YJ, Gil ES, Kim H, Jang JH, Choung YH. Type 1 Diabetes Induces Hearing Loss: Functional and Histological Findings in An Akita Mouse Model. Biomedicines 2020; 8:biomedicines8090343. [PMID: 32932780 PMCID: PMC7555388 DOI: 10.3390/biomedicines8090343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
The relationship between type 1 diabetes and hearing loss is not well known, although based on many pathological studies, type 2 diabetes induced hearing loss is associated with microcirculation problems in the inner ear. The purpose of this study was to investigate the correlation between type 1 diabetes and hearing loss through hearing function and immunohistochemical analyses using type 1 diabetic Akita or wild-type (WT) mice. The Akita mice had a significant increase in hearing thresholds, blood glucose, and insulin tolerance compared to WT mice. Histological analysis showed that the loss of cells and damage to mitochondria in the spiral ganglion neurons of Akita mice were significantly increased compared to WT. Also, the stria vascularis showed decreased thickness, loss of intermediate cells, and disturbance in blood capillary shape in the Akita mice. Moreover, a reduction in type I, II, and IV fibrocytes and Na+/K+-ATPase α1 expression in spiral ligament was also observed. Cleaved caspase-3 expression was highly expressed in spiral ganglion neurons. In conclusion, hearing loss in type 1 diabetes is caused not only by ion imbalance and blood flow disorders of cochlear endolymph, but through the degenerative nervous system via apoptosis-mediated cell death.
Collapse
Affiliation(s)
- Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.Y.L.); (Y.J.K.); (E.S.G.); (H.K.); (J.H.J.)
| | - Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.Y.L.); (Y.J.K.); (E.S.G.); (H.K.); (J.H.J.)
| | - Eun Sol Gil
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.Y.L.); (Y.J.K.); (E.S.G.); (H.K.); (J.H.J.)
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Hantai Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.Y.L.); (Y.J.K.); (E.S.G.); (H.K.); (J.H.J.)
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.Y.L.); (Y.J.K.); (E.S.G.); (H.K.); (J.H.J.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (Y.Y.L.); (Y.J.K.); (E.S.G.); (H.K.); (J.H.J.)
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5263; Fax: +82-31-219-5264
| |
Collapse
|
30
|
Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020; 394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Congenital hearing loss (HL) affects about 1 in every 500 infants. Among those affected more than half are caused by genetic mutations. According to the cellular sites affected by mutations in the cochlea, deafness genes could be classified into three major groups: those affecting the function of hair cells and synapses, cochlear supporting cells, and cells in the stria vascularis (SV) as well as in the lateral wall. The second and third groups account for more than half of all sensorineural hearing loss (SNHL) cases caused by genetic mutations. Current major treatment options for SNHL patients are hearing aids and cochlear implants (CIs). Hearing aids can only help patients with moderate to severe HL. Resolution of CIs is still improving and these devices are quite expensive especially when lifetime rehabilitation and maintenance costs are included. Tremendous efforts have been made to find novel treatments that are expected to restore hearing with higher-resolution and more natural quality, and to have a significantly lower cost over the lifetime of uses. Gene therapy studies have made impressive progresses in preclinical trials. This review focuses on deafness genes that affect supporting cells and cells in the SV of the cochlea. We will discuss recent progresses and remaining challenges for gene therapies targeting mutations in deafness genes belonging to this category.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA.
| |
Collapse
|
31
|
Zhang J, Wang X, Hou Z, Neng L, Cai J, Zhang Y, Shi X. Suppression of Connexin 43 Leads to Strial Vascular Hyper-Permeability, Decrease in Endocochlear Potential, and Mild Hearing Loss. Front Physiol 2020; 11:974. [PMID: 32922309 PMCID: PMC7457066 DOI: 10.3389/fphys.2020.00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: Connexin 43 (Cx43) is a protein constituent of gap junctions (GJs) in various barrier cells, especially astrocytes and microglia of the blood-brain-barrier (BBB), where it plays an important role in intercellular communication and regulation of the barrier. Despite the importance of Cx43 in other blood barriers, not much attention has been paid to expression and function of Cx43 in the blood-labyrinth-barrier (BLB) of the stria vascularis in the cochlea. Methods: We used multiple research approaches, including immunocytochemical staining, patch-clamp dye loading technique, real-time quantitative reverse transcription (RT)-PCR, western blot, measurement of endocochlear potential (EP) with an electrode through the scala media, and auditory brainstem response to test hearing function. Results: We found Cx43 expressed in vascular endothelial cells (ECs) and perivascular resident macrophages (PVMs) in the stria vascularis of adult C57BL/6 mouse cochleae. In particular, we found Cx43 expressed in foot processes of PVMs at points of contact with the endothelium. Consistent with Cx43 expression in vivo, we also found Cx43 expressed in EC-EC and EC-PVM interfaces in a co-cultured cell line model. Using a patch-clamp dye loading technique, we demonstrated that Alexa Fluor® 568 dye injected into PVMs diffuses to connected neighboring ECs. The functional coupling between the ECs and PVMs is blocked by 18α-Glycyrrhetinic acid (18α-GA), a GJ blocker. Suppression of Cx43 with small interfering RNA (siRNA) in vivo significantly elevated hearing threshold and caused the EP to drop and the blood barrier to become more permeable. In further study, using in vitro primary EC cell line models, we demonstrated that suppression of Cx43 disrupts intercellular tight junctions (TJs) in the EC monolayer and increases endothelial monolayer permeability. Conculsion: Taken together, these findings underscore the importance of Cx43 expression in the normal ear for maintaining BLB integrity, normal EP, and hearing function.
Collapse
Affiliation(s)
- Jinhui Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Xiaohan Wang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Lingling Neng
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jing Cai
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Yunpei Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Xiaorui Shi
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
32
|
Transcript Profiles of Stria Vascularis in Models of Waardenburg Syndrome. Neural Plast 2020; 2020:2908182. [PMID: 32802035 PMCID: PMC7416267 DOI: 10.1155/2020/2908182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Waardenburg syndrome is an uncommon genetic condition characterized by at least some degree of congenital hearing loss and pigmentation deficiencies. However, the genetic pathway affecting the development of stria vascularis is not fully illustrated. Methods The transcript profile of stria vascularis of Waardenburg syndrome was studied using Mitf-M mutant pig and mice models. Therefore, GO analysis was performed to identify the differential gene expression caused by Mitf-M mutation. Results There were 113 genes in tyrosine metabolism, melanin formation, and ion transportations showed significant changes in pig models and 191 genes in mice models. In addition, there were some spice's specific gene changes in the stria vascularis in the mouse and porcine models. The expression of tight junction-associated genes, including Cadm1, Cldn11, Pcdh1, Pcdh19, and Cdh24 genes, were significantly higher in porcine models compared to mouse models. Vascular-related and ion channel-related genes in the stria vascularis were also shown significantly difference between the two species. The expression of Col2a1, Col3a1, Col11a1, and Col11a2 genes were higher, and the expression of Col8a2, Cd34, and Ncam genes were lower in the porcine models compared to mouse models. Conclusions Our data suggests that there is a significant difference on the gene expression and function between these two models.
Collapse
|
33
|
Morán-Zendejas R, Delgado-Ramírez M, Xu J, Valdés-Abadía B, Aréchiga-Figueroa IA, Cui M, Rodríguez-Menchaca AA. In vitro and in silico characterization of the inhibition of Kir4.1 channels by aminoglycoside antibiotics. Br J Pharmacol 2020; 177:4548-4560. [PMID: 32726456 DOI: 10.1111/bph.15214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Aminoglycoside antibiotics are positively charged molecules that are known to inhibit several ion channels. In this study, we have shown that aminoglycosides also inhibit the activity of Kir4.1 channels. Aminoglycosides inhibit Kir4.1 channels by a pore-blocking mechanism, plugging the central vestibule of the channel. EXPERIMENTAL APPROACH Patch-clamp recordings were made in HEK-293 cells transiently expressing Kir4.1 channels to analyse the effects of gentamicin, neomycin and kanamycin. In silico modelling followed by mutagenesis were realized to identify the residues critical for aminoglycosides binding to Kir4.1. KEY RESULTS Aminoglycoside antibiotics block Kir4.1 channels in a concentration- and voltage-dependent manner, getting access to the protein from the intracellular side of the plasma membrane. Aminoglycosides block Ki4.1 with a rank order of potency as follows: gentamicin ˃ neomycin ˃ kanamycin. The residues T128 and principally E158, facing the central cavity of Kir4.1, are important structural determinants for aminoglycosides binding to the channel, as determined by our in silico modelling and confirmed by mutagenesis experiments. CONCLUSION AND IMPLICATIONS Kir4.1 channels are also target of aminoglycoside antibiotics, which could affect potassium transport in several tissues.
Collapse
Affiliation(s)
- Rita Morán-Zendejas
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Belkis Valdés-Abadía
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
34
|
Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A. Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier. Sci Transl Med 2020; 11:11/482/eaao0935. [PMID: 30842313 DOI: 10.1126/scitranslmed.aao0935] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/01/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Permanent hearing loss affects more than 5% of the world's population, yet there are no nondevice therapies that can protect or restore hearing. Delivery of therapeutics to the cochlea and vestibular system of the inner ear is complicated by their inaccessible location. Drug delivery to the inner ear via the vasculature is an attractive noninvasive strategy, yet the blood-labyrinth barrier at the luminal surface of inner ear capillaries restricts entry of most blood-borne compounds into inner ear tissues. Here, we compare the blood-labyrinth barrier to the blood-brain barrier, discuss invasive intratympanic and intracochlear drug delivery methods, and evaluate noninvasive strategies for drug delivery to the inner ear.
Collapse
Affiliation(s)
- Sophie Nyberg
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S Steyger
- Oregon Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada. .,Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
35
|
Abstract
In children with normal hearing, inflammatory disorders caused by infections of the middle ear (otitis media) are the most common ear illnesses. Many of older adults experience some level of hearing loss. Several factors can lead to either a partial loss or the total inability to hear (deafness) including exposure to noise, a hereditary predisposition, chronic infections, traumas, medications, and aging.
Collapse
|
36
|
Korrapati S, Taukulis I, Olszewski R, Pyle M, Gu S, Singh R, Griffiths C, Martin D, Boger E, Morell RJ, Hoa M. Single Cell and Single Nucleus RNA-Seq Reveal Cellular Heterogeneity and Homeostatic Regulatory Networks in Adult Mouse Stria Vascularis. Front Mol Neurosci 2019; 12:316. [PMID: 31920542 PMCID: PMC6933021 DOI: 10.3389/fnmol.2019.00316] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell mechanotransduction and hearing. While channels belonging to SV cell types are known to play crucial roles in EP generation, relatively little is known about gene regulatory networks that underlie the ability of the SV to generate and maintain the EP. Using single cell and single nucleus RNA-sequencing, we identify and validate known and rare cell populations in the SV. Furthermore, we establish a basis for understanding molecular mechanisms underlying SV function by identifying potential gene regulatory networks as well as druggable gene targets. Finally, we associate known deafness genes with adult SV cell types. This work establishes a basis for dissecting the genetic mechanisms underlying the role of the SV in hearing and will serve as a basis for designing therapeutic approaches to hearing loss related to SV dysfunction.
Collapse
Affiliation(s)
- Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Ian Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Madeline Pyle
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Riya Singh
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Carla Griffiths
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Zhang H, Zhu L, Wang F, Wang R, Hong Y, Chen Y, Zhu B, Gao Y, Luo H, Zhang X, Sun H, Zhou Y, Yao Y, Wang X. Novel KCNJ10 Compound Heterozygous Mutations Causing EAST/SeSAME-Like Syndrome Compromise Potassium Channel Function. Front Genet 2019; 10:912. [PMID: 31781151 PMCID: PMC6856220 DOI: 10.3389/fgene.2019.00912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Inwardly rectifying K+ channel 4.1 (Kir4.1), encoded by KCNJ10, is a member of the inwardly rectifying potassium channel family. In the brain, Kir4.1 is predominant in astrocytic glia and accounts for the spatial buffering of K+ released by neurons during action potential propagation. A number of studies have shown that mutations in KCNJ10 are associated with SeSAME/EAST syndrome, which is characterized by seizures, ataxia, sensorineural deafness, and electrolyte imbalance. Herein, we identified two siblings presenting with seizures and motor delays in one outbred kindred. Customized targeted-exome sequencing showed that both affected siblings are compound heterozygous for two KCNJ10 missense mutations (NM_002241.4: c.601G > A: p.A201T and c.626T > C: p.I209T). Prediction tools suggested that both amino acid substitutions were deleterious or disease causing. Further functional studies showed that Chinese hamster ovary (CHO) cells expressing either A201T and/or I209T Kir4.1 channels exhibited lower K+ currents, indicating compromised Kir4.1 biological function. Intriguingly, the A201T but not I209T mutation decreased total and cell surface Kir4.1 levels. Kir4.1 channels with the A201T mutation were unstable and degraded through lysosomal pathway. In conclusion, these data indicated that both A201T and I209T mutations disrupt Kir4.1 activity and are the cause of SeSAME/EAST-like syndrome in the siblings.
Collapse
Affiliation(s)
- Hongfeng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Zhu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Fengpeng Wang
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Xiamen, China
| | - Ruimin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yujuan Hong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yangqin Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Zhu
- Departments of Neurosurgery, Dongfang Affliated Hospital of Xiamen University, Xiamen, China
| | - Yue Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Yao
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Xiamen, China.,Department of Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Xin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
Lin X, Li G, Zhang Y, Zhao J, Lu J, Gao Y, Liu H, Li GL, Yang T, Song L, Wu H. Hearing consequences in Gjb2 knock-in mice: implications for human p.V37I mutation. Aging (Albany NY) 2019; 11:7416-7441. [PMID: 31562289 PMCID: PMC6782001 DOI: 10.18632/aging.102246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
Human p.V37I mutation of GJB2 gene was strongly correlated with late-onset progressive hearing loss, especially among East Asia populations. We generated a knock-in mouse model based on human p.V37I variant (c.109G>A) that recapitulated the human phenotype. Cochlear pathology revealed no significant hair cell loss, stria vascularis atrophy or spiral ganglion neuron loss, but a significant change in the length of gap junction plaques, which may have contributed to the observed mild endocochlear potential (EP) drop in homozygous mice lasting lifetime. The cochlear amplification in homozygous mice was compromised, but outer hair cells' function remained unchanged, indicating that the reduced amplification was EP- rather than prestin-generated. In addition to ABR threshold elevation, ABR wave I latencies were also prolonged in aged homozygous animals. We found in homozygous IHCs a significant increase in ICa but no change in Ca2+ efficiency in triggering exocytosis. Environmental insults such as noise exposure, middle ear injection of KCl solution and systemic application of furosemide all exacerbated the pathological phenotype in homozygous mice. We conclude that this Gjb2 mutation-induced hearing loss results from 1) reduced cochlear amplifier caused by lowered EP, 2) IHCs excitotoxicity associated with potassium accumulation around hair cells, and 3) progression induced by environmental insults.
Collapse
Affiliation(s)
- Xin Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Jingjing Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Geng-Lin Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| |
Collapse
|
39
|
Liu T, Li G, Noble KV, Li Y, Barth JL, Schulte BA, Lang H. Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea. Neurobiol Aging 2019; 80:210-222. [PMID: 31220650 PMCID: PMC6679794 DOI: 10.1016/j.neurobiolaging.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 11/18/2022]
Abstract
Age-related hearing loss (or presbyacusis) is a progressive pathophysiological process. This study addressed the hypothesis that degeneration/dysfunction of multiple nonsensory cell types contributes to presbyacusis by evaluating tissues obtained from young and aged CBA/CaJ mouse ears and human temporal bones. Ultrastructural examination and transcriptomic analysis of mouse cochleas revealed age-dependent pathophysiological alterations in 3 types of neural crest-derived cells, namely intermediate cells in the stria vascularis, outer sulcus cells in the cochlear lateral wall, and satellite cells in the spiral ganglion. A significant decline in immunoreactivity for Kir4.1, an inwardly rectifying potassium channel, was seen in strial intermediate cells and outer sulcus cells in the ears of older mice. Age-dependent alterations in Kir4.1 immunostaining also were observed in satellite cells ensheathing spiral ganglion neurons. Expression alterations of Kir4.1 were observed in these same cell populations in the aged human cochlea. These results suggest that degeneration/dysfunction of neural crest-derived cells maybe an important contributing factor to both metabolic and neural forms of presbyacusis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Gang Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology, Tinnitus and Hyperacusis Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Yongxi Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jeremy L Barth
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
40
|
Kelly JJ, Abitbol JM, Hulme S, Press ER, Laird DW, Allman BL. The connexin 30 A88V mutant reduces cochlear gap junction expression and confers long-term protection against hearing loss. J Cell Sci 2019; 132:jcs.224097. [PMID: 30559251 DOI: 10.1242/jcs.224097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations in the genes that encode the gap junction proteins connexin 26 (Cx26, encoded by GJB2) and Cx30 (GJB6) are the leading cause of hereditary hearing loss. That said, the Cx30 p.Ala88Val (A88V) mutant causes Clouston syndrome, but not hearing loss. Here, we report that the Cx30-A88V mutant, despite being toxic to inner ear-derived HEI-OC1 cells, conferred remarkable long-term protection against age-related high frequency hearing loss in Cx30A88V/A88V mice. During early development, there were no overt structural differences in the cochlea between genotypes, including a normal complement of hair cells; however, the supporting cell Cx30 gap junction plaques in mutant mice were reduced in size. In adulthood, Cx30A88V/A88V mutant mice had a reduction of cochlear Cx30 mRNA and protein, yet a full complement of hair cells. Conversely, the age-related high frequency hearing loss in Cx30+/+ and Cx30+/A88V mice was due to extensive loss of outer hair cells. Our data suggest that the Cx30-A88V mutant confers long-term hearing protection and prevention of hair cell death, possibly via a feedback mechanism that leads to the reduction of total Cx30 gap junction expression in the cochlea.
Collapse
Affiliation(s)
- John J Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julia M Abitbol
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Stephanie Hulme
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Eric R Press
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
41
|
Liu B, Cao W, Li J, Liu J. Lysosomal exocytosis of ATP is coupled to P2Y 2 receptor in marginal cells in the stria vascular in neonatal rats. Cell Calcium 2018; 76:62-71. [PMID: 30273839 DOI: 10.1016/j.ceca.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/09/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023]
Abstract
Adenosine triphosphate (ATP) is stored as lysosomal vesicles in marginal cells of the stria vascular in neonatal rats, but the mechanisms of ATP release are unclear. Primary cultures of marginal cells from 1-day-old Sprague-Dawley rats were established. P2Y2 receptor and inositol 1,4,5-trisphosphate (IP3) receptor were immunolabelled in marginal cells of the stria vascular. We found that 30 μM ATP and 30 μM uridine triphosphate (UTP) evoked comparable significant increases in the intracellular Ca2+ concentration ([Ca2+]i) in the absence of extracellular Ca2+, whereas the response was suppressed by 100 μM suramin, 10 μM 1-(6-(17β-3-methoxyester-1,3,5(10)-trien-17-yl)amino)-hexyl)-1H-pyrrole-2,5-dione(U-73122), 100 μM 2-aminoethoxydiphenyl borate (2-APB) and 5 μM thapsigargin (TG), thus indicating that ATP coupled with the P2Y2R-PLC-IP3 pathway to evoke Ca2+ release from the endoplasmic reticulum (ER). Incubation with 200 μM Gly-Phe-β-naphthylamide (GPN) selectively disrupted lysosomes and caused significant increases in [Ca2+]I; this effect was partly inhibited by P2Y2R-PLC-IP3 pathway antagonists. After pre-treatment with 5 μM TG, [Ca2+]i was significantly lower than that after treatment with P2Y2R-PLC-IP3 pathway antagonists under the same conditions, thus indicating that lysosomal Ca2+ triggers Ca2+ release from ER Ca2+ stores. Baseline [Ca2+]i declined after treatment with the Ca2+ chelator 50 μM bis-(aminophenolxy) ethane-N,N,N',N'-tetra-acetic acid acetoxyme-thyl ester (BAPTA-AM) and 4 IU/ml apyrase. 30 μM ATP decrease of the number of quinacrine-positive vesicles via lysosome exocytosis, whereas the number of lysosomes did not change. However, lysosome exocytosis was significantly suppressed by pre-treatment with 5 μM vacuolin-1. Release of ATP and β-hexosaminidase both increased after treatment with 200 μM GPN and 5 μM TG, but decreased after incubation with 50 μM BAPTA-AM, 4 IU/ml apyrase and 5 μM vacuolin-1. We suggest that ATP triggers Ca2+ release from the ER, thereby contributing to secretion of lysosomal ATP via lysosomal exocytosis. Lysosomal stored Ca2+ triggers Ca2+ release from the ER directly though the IP3 receptors, and lysosomal ATP evokes Ca2+ signals indirectly via the P2Y2R-PLC-IP3 pathway.
Collapse
Affiliation(s)
- Bin Liu
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wanxin Cao
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiping Li
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
42
|
Genome-wide DNA methylation analysis of human peripheral blood reveals susceptibility loci of diabetes-related hearing loss. J Hum Genet 2018; 63:1241-1250. [PMID: 30209346 DOI: 10.1038/s10038-018-0507-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 11/08/2022]
Abstract
Diabetes-related hearing loss (DRHL) is a complication of diabetes mellitus that is drawing more attention currently. DNA methylation has a critical role in the pathogenesis of type 2 diabetes mellitus (T2DM) and its complications. Therefore, we investigated the genome-wide DNA methylation of peripheral blood of T2DM patients with/without hearing loss in order to explore the susceptibility loci of DRHL. Between DRHL group and control group, 113 gene sites were identified to be differentially methylated regions (DMRs). Among 38 DMRs with whole samples, the classification accuracy is up to 90%. With alignment to T2DM susceptibility genes and deafness genes published, KCNJ11 was found to be the only overlapped gene. The DNA methylation level of KCNJ11 was associated with stroke (t = 2.595, p < 0.05), but not with diabetic nephropathy and diabetic retinopathy. The detective rate of distortion product otoacoustic emissions (DPOAE) from low to high frequencies (0.7-6 kHz) on the right ear was significantly correlated with the methylation level of KCNJ11. The auditory brainstem response (ABR) threshold on the right ear was also correlated (r = 0.678, p < 0.05). This DNA methylation profile indicates the susceptibility loci of DRHL. The potassium metabolism may have a critical role in the hearing loss caused by hyperglycemia.
Collapse
|
43
|
Celmina M, Micule I, Inashkina I, Audere M, Kuske S, Pereca J, Stavusis J, Pelnena D, Strautmanis J. EAST/SeSAME syndrome: Review of the literature and introduction of four new Latvian patients. Clin Genet 2018; 95:63-78. [PMID: 29722015 DOI: 10.1111/cge.13374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
Abstract
EAST (Epilepsy, Ataxia, Sensorineural deafness, Tubulopathy) or SeSAME (Seizures, Sensorineural deafness, Ataxia, Mental retardation, and Electrolyte imbalance) syndrome is a rare autosomal recessive syndrome first described in 2009 independently by Bockenhauer and Scholl. It is caused by mutations in KCNJ10, which encodes Kir4.1, an inwardly rectifying K+ channel found in the brain, inner ear, kidney and eye. To date, 16 mutations and at least 28 patients have been reported. In this paper, we review mutations causing EAST/SeSAME syndrome, clinical manifestations in detail, and efficacy of treatment in previously reported patients. We also report a new Latvian kindred with 4 patients. In contrast to the majority of previous reports, we found a progressive course of the disorder in terms of hearing impairment and neurologic deficit. The treatment is based on antiepileptic drugs, electrolyte replacement, hearing aids and mobility devices. Future research should concentrate on recognizing the lesions in the central nervous system to evaluate new potential diagnostic criteria and on formally evaluating intellectual disability.
Collapse
Affiliation(s)
- M Celmina
- Clinic for Pediatrics, Children's Clinical University Hospital, Riga, Latvia.,Faculty of Continuing Education, University of Latvia, Riga, Latvia
| | - I Micule
- Clinic for Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital, Riga, Latvia
| | - I Inashkina
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - M Audere
- ENT Department, Children's Clinical University Hospital, Riga, Latvia
| | - S Kuske
- Latvian Children's Hearing Center, Riga, Latvia
| | - J Pereca
- Emergency Department, Royal Infirmary of Edinburg, Edinburgh, United Kingdom
| | - J Stavusis
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - D Pelnena
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - J Strautmanis
- Clinic for Pediatric Neurology and Neurosurgery, Children's Clinical University Hospital, Riga, Latvia
| |
Collapse
|
44
|
Knockout of Pannexin-1 Induces Hearing Loss. Int J Mol Sci 2018; 19:ijms19051332. [PMID: 29710868 PMCID: PMC5983795 DOI: 10.3390/ijms19051332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
Mutations of gap junction connexin genes induce a high incidence of nonsyndromic hearing loss. Pannexin genes also encode gap junctional proteins in vertebrates. Recent studies demonstrated that Pannexin-1 (Panx1) deficiency in mice and mutation in humans are also associated with hearing loss. So far, several Panx1 knockout (KO) mouse lines were established. In general, these Panx1 KO mouse lines demonstrate consistent phenotypes in most aspects, including hearing loss. However, a recent study reported that a Panx1 KO mouse line, which was created by Genentech Inc., had no hearing loss as measured by the auditory brainstem response (ABR) threshold at low-frequency range (<24 kHz). Here, we used multiple auditory function tests and re-examined hearing function in the Genentech Panx1 (Gen-Panx1) KO mouse. We found that ABR thresholds in the Gen-Panx1 KO mouse were significantly increased, in particular, in the high-frequency region. Moreover, consistent with the increase in ABR threshold, distortion product otoacoustic emission (DPOAE) and cochlear microphonics (CM), which reflect active cochlear amplification and auditory receptor current, respectively, were significantly reduced. These data demonstrated that the Gen-Panx1 KO mouse has hearing loss and further confirmed that Panx1 deficiency can cause deafness.
Collapse
|
45
|
Watabe T, Xu M, Watanabe M, Nabekura J, Higuchi T, Hori K, Sato MP, Nin F, Hibino H, Ogawa K, Masuda M, Tanaka KF. Time-controllable Nkcc1 knockdown replicates reversible hearing loss in postnatal mice. Sci Rep 2017; 7:13605. [PMID: 29051615 PMCID: PMC5648887 DOI: 10.1038/s41598-017-13997-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022] Open
Abstract
Identification of the causal effects of specific proteins on recurrent and partially reversible hearing loss has been difficult because of the lack of an animal model that provides reversible gene knockdown. We have developed the transgenic mouse line Actin-tTS::Nkcc1 tetO/tetO for manipulatable expression of the cochlear K+ circulation protein, NKCC1. Nkcc1 transcription was blocked by the binding of a tetracycline-dependent transcriptional silencer to the tetracycline operator sequences inserted upstream of the Nkcc1 translation initiation site. Administration of the tetracycline derivative doxycycline reversibly regulated Nkcc1 knockdown. Progeny from pregnant/lactating mothers fed doxycycline-free chow from embryonic day 0 showed strong suppression of Nkcc1 expression (~90% downregulation) and Nkcc1 null phenotypes at postnatal day 35 (P35). P35 transgenic mice from mothers fed doxycycline-free chow starting at P0 (delivery) showed weaker suppression of Nkcc1 expression (~70% downregulation) and less hearing loss with mild cochlear structural changes. Treatment of these mice at P35 with doxycycline for 2 weeks reactivated Nkcc1 transcription to control levels and improved hearing level at high frequency; i.e., these doxycycline-treated mice exhibited partially reversible hearing loss. Thus, development of the Actin-tTS::Nkcc1 tetO/tetO transgenic mouse line provides a mouse model for the study of variable hearing loss through reversible knockdown of Nkcc1.
Collapse
Affiliation(s)
- Takahisa Watabe
- Department of Otolaryngology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ming Xu
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka, 431-3192, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Taiga Higuchi
- Department of Molecular Physiology, Niigata University School of Medicine, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Karin Hori
- Department of Molecular Physiology, Niigata University School of Medicine, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Mitsuo P Sato
- Department of Molecular Physiology, Niigata University School of Medicine, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
- Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masatsugu Masuda
- Department of Otolaryngology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Otolaryngology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan.
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
46
|
Mei L, Chen J, Zong L, Zhu Y, Liang C, Jones RO, Zhao HB. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiol Dis 2017; 108:195-203. [PMID: 28823936 DOI: 10.1016/j.nbd.2017.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/12/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022] Open
Abstract
Digenic Connexin26 (Cx26, GJB2) and Cx30 (GJB6) heterozygous mutations are the second most frequent cause of recessive deafness in humans. However, the underlying deafness mechanism remains unclear. In this study, we created different double Cx26 and Cx30 heterozygous (Cx26+/-/Cx30+/-) mouse models to investigate the underlying pathological changes and deafness mechanism. We found that double Cx26+/-/Cx30+/- heterozygous mice had hearing loss. Endocochlear potential (EP), which is a driving force for hair cells producing auditory receptor current, was reduced. However, unlike Cx26 homozygous knockout (Cx26-/-) mice, the cochlea in Cx26+/-/Cx30+/- mice displayed normal development and had no apparent hair cell degeneration. Gap junctions (GJs) in the cochlea form two independent networks: the epithelial cell GJ network in the organ of Corti and the connective tissue GJ network in the cochlear lateral wall. We further found that double heterozygous deletion of Cx26 and Cx30 in the epithelial cells did not reduce EP and had normal hearing, suggesting that Cx26+/-/Cx30+/- may mainly impair gap junctional functions in the cochlear lateral wall and lead to EP reduction and hearing loss. Most of Cx26 and Cx30 in the cochlear lateral wall co-expressed in the same gap junctional plaques. Moreover, sole Cx26+/- or Cx30+/- heterozygous mice had no hearing loss. These data further suggest that digenic Cx26 and Cx30 mutations may impair heterozygous coupling of Cx26 and Cx30 in the cochlear lateral wall to reduce EP, thereby leading to hearing loss.
Collapse
Affiliation(s)
- Ling Mei
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA; Department of Otolaryngology, Xinhua Hospital, Shanghai Jiao Tong University Medical School, Shanghai 200092, PR China
| | - Jin Chen
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA; Department of Otolaryngology, Tongji Hospital, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Liang Zong
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA; Department of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, PR China
| | - Yan Zhu
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Chun Liang
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Raleigh O Jones
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
47
|
Meehan DT, Delimont D, Dufek B, Zallocchi M, Phillips G, Gratton MA, Cosgrove D. Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hear Res 2016; 341:100-108. [PMID: 27553900 PMCID: PMC5086449 DOI: 10.1016/j.heares.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/21/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
Alport syndrome, a type IV collagen disorder, manifests as glomerular disease associated with hearing loss with thickening of the glomerular and strial capillary basement membranes (SCBMs). We have identified a role for endothelin-1 (ET-1) activation of endothelin A receptors (ETARs) in glomerular pathogenesis. Here we explore whether ET-1 plays a role in strial pathology. Wild type (WT) and Alport mice were treated with the ETAR antagonist, sitaxentan. The stria vascularis was analyzed for SCBM thickness and for extracellular matrix (ECM) proteins. Additional WT and Alport mice were exposed to noise or hypoxia and the stria analyzed for hypoxia-related and ECM genes. A strial marginal cell line cultured under hypoxic conditions, or stimulated with ET-1 was analyzed for expression of hypoxia-related and ECM transcripts. Noise exposure resulted in significantly elevated ABR thresholds in Alport mice relative to wild type littermates. Alport stria showed elevated expression of collagen α1(IV), laminin α2, and laminin α5 proteins relative to WT. SCBM thickening and elevated ECM protein expression was ameliorated by ETAR blockade. Stria from normoxic Alport mice and hypoxic WT mice showed upregulation of hypoxia-related, ECM, and ET-1 transcripts. Both ET-1 stimulation and hypoxia up-regulated ECM transcripts in cultured marginal cells. We conclude that ET-1 mediated activation of ETARs on strial marginal cells results in elevated expression of ECM genes and thickening of the SCBMs in Alport mice. SCBM thickening results in hypoxic stress further elevating ECM and ET-1 gene expression, exacerbating strial pathology.
Collapse
Affiliation(s)
| | | | - Brianna Dufek
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | | | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, NE, USA; University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
48
|
Molecular bases of K + secretory cells in the inner ear: shared and distinct features between birds and mammals. Sci Rep 2016; 6:34203. [PMID: 27680950 PMCID: PMC5041087 DOI: 10.1038/srep34203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/08/2016] [Indexed: 11/08/2022] Open
Abstract
In the cochlea, mammals maintain a uniquely high endolymphatic potential (EP), which is not observed in other vertebrate groups. However, a high [K+] is always present in the inner ear endolymph. Here, we show that Kir4.1, which is required in the mammalian stria vascularis to generate the highly positive EP, is absent in the functionally equivalent avian tegmentum vasculosum. In contrast, the molecular repertoire required for K+ secretion, specifically NKCC1, KCNQ1, KCNE1, BSND and CLC-K, is shared between the tegmentum vasculosum, the vestibular dark cells and the marginal cells of the stria vascularis. We further show that in barn owls, the tegmentum vasculosum is enlarged and a higher EP (~+34 mV) maintained, compared to other birds. Our data suggest that both the tegmentum vasculosum and the stratified stria vascularis evolved from an ancestral vestibular epithelium that already featured the major cell types of the auditory epithelia. Genetic recruitment of Kir4.1 specifically to strial melanocytes was then a crucial step in mammalian evolution enabling an increase in the cochlear EP. An increased EP may be related to high-frequency hearing, as this is a hallmark of barn owls among birds and mammals among amniotes.
Collapse
|
49
|
Abdelhadi O, Iancu D, Tekman M, Stanescu H, Bockenhauer D, Kleta R. Founder mutation in KCNJ10 in Pakistani patients with EAST syndrome. Mol Genet Genomic Med 2016; 4:521-6. [PMID: 27652280 PMCID: PMC5023937 DOI: 10.1002/mgg3.227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 11/11/2022] Open
Abstract
Background EAST syndrome is an autosomal recessive disorder caused by loss‐of‐function mutations in the gene KCNJ10. Among the 14 pathogenic mutations described so far, the p.R65P mutation stands out as the most frequent one and is particularly associated with patients of Pakistani origin. As a result we aimed to establish the existence of a potential founder effect in the Pakistani population. Methods To this end, we genotyped 12 patients from seven families and we compared disease haplotypes with ethnically matched control chromosomes. This haplotype was used together with demographic data for Pakistan to estimate the age of this founder mutation. Results We identified a small homozygous 0.694 Mb region around the KCNJ10 p.R65P mutation that had identical haplotypes in all of the patients which were completely absent in the control sample. Based on current demographic data and knowledge about disease frequency, we estimate that this particular p.R65P mutation arose 20 generations (about 500 years) ago. Conclusion By knowing the prevalent mutation in a given population more efficient diagnostics can be performed and the families can benefit from specific counseling.
Collapse
Affiliation(s)
- Ola Abdelhadi
- Centre for Nephrology University College London London UK
| | - Daniela Iancu
- Centre for Nephrology University College London London UK
| | - Mehmet Tekman
- Centre for Nephrology University College London London UK
| | - Horia Stanescu
- Centre for Nephrology University College London London UK
| | | | - Robert Kleta
- Centre for Nephrology University College London London UK
| |
Collapse
|
50
|
Abdelhadi O, Iancu D, Stanescu H, Kleta R, Bockenhauer D. EAST syndrome: Clinical, pathophysiological, and genetic aspects of mutations in KCNJ10. Rare Dis 2016; 4:e1195043. [PMID: 27500072 PMCID: PMC4961265 DOI: 10.1080/21675511.2016.1195043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/02/2016] [Accepted: 05/24/2016] [Indexed: 11/04/2022] Open
Abstract
EAST syndrome is a recently described autosomal recessive disorder secondary to mutations in KCNJ10 (Kir4.1), a gene encoding a potassium channel expressed in the brain, eye, ear and kidney. This condition is characterized by 4 cardinal features; Epilepsy, Ataxia, Sensorineural deafness, and (a renal salt-wasting) Tubulopathy, hence the acronym EAST syndrome. Here we review reported clinical manifestations, in particular the neurological signs and symptoms which typically have the most impact on the quality of life of patients. In addition we review the pathophysiology and genetic aspects of the disease. So far 14 different KCNJ10 mutations have been published which either directly affect channel function or may lead to mislocalisation. Investigations of the pathophysiology may provide clues to potential treatments.
Collapse
Affiliation(s)
- Ola Abdelhadi
- Center for Nephrology, University College London, London, UK
| | - Daniela Iancu
- Center for Nephrology, University College London, London, UK
| | - Horia Stanescu
- Center for Nephrology, University College London, London, UK
| | - Robert Kleta
- Center for Nephrology, University College London, London, UK
| | | |
Collapse
|