1
|
Xiao R, Huang X, Gao S, Duan J, Zhang Y, Zhang M. Microglia in retinal diseases: From pathogenesis towards therapeutic strategies. Biochem Pharmacol 2024; 230:116550. [PMID: 39307318 DOI: 10.1016/j.bcp.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Microglia, a widely dispersed cohort of immune cells in the retina, are intricately involved in a diverse range of pivotal biological processes, including inflammation, vascular development, complement activation, antigen presentation, and phagocytosis. Within the retinal milieu, microglia are crucial for the clearance of dead cells and cellular debris, release of anti-inflammatory agents, and orchestration of vascular network remodeling to maintain homeostasis. In addition, microglia are key mediators of neuroinflammation. Triggered by oxidative stress, elevated intraocular pressure, genetic anomalies, and immune dysregulation, microglia release numerous inflammatory cytokines, contributing to the pathogenesis of various retinal disorders. Recent studies on the ontogeny and broad functions of microglia in the retina have elucidated their characteristics during retinal development, homeostasis, and disease. Furthermore, therapeutic strategies that target microglia and their effector cytokines have been developed and shown positive results for some retinal diseases. Therefore, we systematically review the microglial ontogeny in the retina, elucidate their dual roles in retinal homeostasis and disease pathogenesis, and demonstrate microglia-based targeted therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Ruihan Xiao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Huang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sheng Gao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Duan
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meixia Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Yu M, Zhao S. Functional role of translocator protein and its ligands in ocular diseases (Review). Mol Med Rep 2024; 29:33. [PMID: 38186312 PMCID: PMC10804439 DOI: 10.3892/mmr.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
The 18 kDa translocator protein (TSPO) is an essential outer mitochondrial membrane protein that is responsible for mitochondrial transport, maintenance of mitochondrial homeostasis and normal physiological cell function. The role of TSPO in the pathogenesis of ocular diseases is a growing area of interest. More notably, TSPO exerts positive effects in regulating various pathophysiological processes, such as the inflammatory response, oxidative stress, steroid synthesis and modulation of microglial function, in combination with a variety of specific ligands such as 1‑(2‑chlorophenyl‑N‑methylpropyl)‑3‑isoquinolinecarboxamide, 4'‑chlorodiazepam and XBD173. In the present review, the expression of TSPO in ocular tissues and the functional role of TSPO and its ligands in diverse ocular diseases was discussed.
Collapse
Affiliation(s)
- Mingyi Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
| |
Collapse
|
3
|
β-Adrenoceptor Blockade Moderates Neuroinflammation in Male and Female EAE Rats and Abrogates Sexual Dimorphisms in the Major Neuroinflammatory Pathways by Being More Efficient in Males. Cell Mol Neurobiol 2023; 43:1237-1265. [PMID: 35798933 DOI: 10.1007/s10571-022-01246-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Our previous studies showed more severe experimental autoimmune encephalomyelitis (EAE) in male compared with female adult rats, and moderating effect of propranolol-induced β-adrenoceptor blockade on EAE in females, the effect associated with transcriptional stimulation of Nrf2/HO-1 axis in spinal cord microglia. This study examined putative sexual dimorphism in propranolol action on EAE severity. Propranolol treatment beginning from the onset of clinical EAE mitigated EAE severity in rats of both sexes, but to a greater extent in males exhibiting higher noradrenaline levels and myeloid cell β2-adrenoceptor expression in spinal cord. This correlated with more prominent stimulatory effects of propranolol not only on CX3CL1/CX3CR1/Nrf2/HO-1 cascade, but also on Stat3/Socs3 signaling axis in spinal cord microglia/myeloid cells (mirrored in the decreased Stat3 and the increased Socs3 expression) from male rats compared with their female counterparts. Propranolol diminished the frequency of activated cells among microglia, increased their phagocyting/endocyting capacity, and shifted cytokine secretory profile of microglia/blood-borne myeloid cells towards an anti-inflammatory/neuroprotective phenotype. Additionally, it downregulated the expression of chemokines (CCL2, CCL19/21) driving T-cell/monocyte trafficking into spinal cord. Consequently, in propranolol-treated rats fewer activated CD4+ T cells and IL-17+ T cells, including CD4+IL17+ cells coexpressing IFN-γ/GM-CSF, were recovered from spinal cord of propranolol-treated rats compared with sex-matched saline-injected controls. All the effects of propranolol were more prominent in males. The study as a whole disclosed that sexual dimorphism in multiple molecular mechanisms implicated in EAE development may be responsible for greater severity of EAE in male rats and sexually dimorphic action of substances affecting them. Propranolol moderated EAE severity more effectively in male rats, exhibiting greater spinal cord noradrenaline (NA) levels and myeloid cell β2-adrenoceptor (β2-AR) expression than females. Propranolol affected CX3CR1/Nrf2/HO-1 and Stat3/Socs3 signaling axes in myeloid cells, favored their anti-inflammatory/neuroprotective phenotype and, consequently, reduced Th cell reactivation and differentiation into highly pathogenic IL-17/IFN-γ/GM-CSF-producing cells.
Collapse
|
4
|
Kumari A, Borooah S. The Role of Microglia in Inherited Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:197-205. [PMID: 37440034 DOI: 10.1007/978-3-031-27681-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inherited retinal diseases (IRDs) are a leading cause of irreversible visual loss in the developed world. The primary driver of pathology in IRDs is pathogenic genetic variant. However, there is increasing evidence, from recent studies, for a role of the immune system in disease mechanism, particularly retinal microglia. Microglia are the primary immune cells in the retina and actively contribute to disease pathogenesis when activated locally by phagocytosing photoreceptors, inducing inflammation and signaling infiltration of circulating monocytes. In this article, we discuss the evidence for the contribution of retinal microglia to IRD pathogenesis reported so far using mice model.
Collapse
Affiliation(s)
- Asha Kumari
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Lin B, Youdim MBH. The protective, rescue and therapeutic potential of multi-target iron-chelators for retinitis pigmentosa. Free Radic Biol Med 2021; 174:1-11. [PMID: 34324978 DOI: 10.1016/j.freeradbiomed.2021.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases in which mutations result in the initial loss of night vision, followed by complete blindness. There is currently no effective therapeutic option for RP patients. Given the extremely heterogeneous nature of RP, any causative gene-specific therapy would be practical in a small fraction of patients with RP. Non-gene-specific therapeutics that is applicable to the majority of RP patients regardless of causative mutations may have an enormous impact on RP treatment. Several theories including apoptosis, oxidative stress and neuroinflammation have been proposed as possible underlying mechanisms for photoreceptor death in RP. We have designed and synthesized a series of iron-chelating compounds that possess diverse pharmacological properties and can act in a non-gene-specific manner on multiple pathological features ascribed to Alzheimer's disease, Parkinson's disease and RP. In this review, we discuss the multiple effects of several brain-permeable multi target iron-chelating compounds on photoreceptor degeneration in a mouse model of human RP. Specifically, we focus on the anti-apototic, neuroprotective and neurorescue effects of the compound VK28, M30 and VAR10303 on the histologic and functional preservation of photoreceptors in a mouse model of RP. We consider such drugs as potential therapeutic agents for RP patients.
Collapse
Affiliation(s)
- Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Moussa B H Youdim
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Yang Y, Li X, Chen S, Xiao M, Liu Z, Li J, Cheng Y. Mechanism and therapeutic strategies of depression after myocardial infarction. Psychopharmacology (Berl) 2021; 238:1401-1415. [PMID: 33594503 DOI: 10.1007/s00213-021-05784-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Depression resulted as an important factor associated with the myocardial infarction (MI) prognosis. Patients with MI also have a higher risk for developing depression. Although the issue of depression after MI has become a matter of clinical concern, the molecular mechanism underlying depression after MI remains unclear, whereby several strategies suggested have not got ideal effects, such as selective serotonin reuptake inhibitors. In this review, we summarized and discussed the occurrence mechanism of depression after MI, such as 5-hydroxytryptamine (5-HT) dysfunction, altered hypothalamus-pituitary-adrenal (HPA) axis function, gut microbiota imbalance, exosomal signal transduction, and inflammation. In addition, we offered a succinct overview of treatment, as well as some promising molecules especially from natural products for the treatment of depression after MI.
Collapse
Affiliation(s)
- Ying Yang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xuping Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Sixuan Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Mingzhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jingyan Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Yuanyuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
7
|
Botto C, Rucli M, Tekinsoy MD, Pulman J, Sahel JA, Dalkara D. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res 2021; 86:100975. [PMID: 34058340 DOI: 10.1016/j.preteyeres.2021.100975] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Inherited and age-related retinal degeneration is the hallmark of a large group of heterogeneous diseases and is the main cause of untreatable blindness today. Genetic factors play a major pathogenic role in retinal degenerations for both monogenic diseases (such as retinitis pigmentosa) and complex diseases with established genetic risk factors (such as age-related macular degeneration). Progress in genotyping techniques and back of the eye imaging are completing our understanding of these diseases and their manifestations in patient populations suffering from retinal degenerations. It is clear that whatever the genetic cause, the majority of vision loss in retinal diseases results from the loss of photoreceptor function. The timing and circumstances surrounding the loss of photoreceptor function determine the adequate therapeutic approach to use for each patient. Among such approaches, gene therapy is rapidly becoming a therapeutic reality applicable in the clinic. This massive move from laboratory work towards clinical application has been propelled by the advances in our understanding of disease genetics and mechanisms, gene delivery vectors, gene editing systems, and compensatory strategies for loss of photoreceptor function. Here, we provide an overview of existing modalities of retinal gene therapy and their relevance based on the needs of patient populations suffering from inherited retinal degenerations.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Marco Rucli
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Müge Defne Tekinsoy
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012, Paris, France; Fondation Ophtalmologique Rothschild, F-75019, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
8
|
Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem 2021; 158:621-639. [PMID: 33608912 DOI: 10.1111/jnc.15327] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
There is growing evidence that excessive microglial phagocytosis of neurons and synapses contributes to multiple brain pathologies. RNA-seq and genome-wide association (GWAS) studies have linked multiple phagocytic genes to neurodegenerative diseases, and knock-out of phagocytic genes has been found to protect against neurodegeneration in animal models, suggesting that excessive microglial phagocytosis contributes to neurodegeneration. Here, we review recent evidence that microglial phagocytosis of live neurons and synapses causes neurodegeneration in animal models of Alzheimer's disease and other tauopathies, Parkinson's disease, frontotemporal dementias, multiple sclerosis, retinal degeneration and neurodegeneration induced by ischaemia, infection or ageing. We also review factors regulating microglial phagocytosis of neurons, including: nucleotides, frackalkine, phosphatidylserine, calreticulin, UDP, CD47, sialylation, complement, galectin-3, Apolipoprotein E, phagocytic receptors, Siglec receptors, cytokines, microglial epigenetics and expression profile. Some of these factors may be potential treatment targets to prevent neurodegeneration mediated by excessive microglial phagocytosis of live neurons and synapses.
Collapse
Affiliation(s)
- Claire A Butler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alma S Popescu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Murenu E, Kostidis S, Lahiri S, Geserich AS, Imhof A, Giera M, Michalakis S. Metabolic Analysis of Vitreous/Lens and Retina in Wild Type and Retinal Degeneration Mice. Int J Mol Sci 2021; 22:ijms22052345. [PMID: 33652907 PMCID: PMC7956175 DOI: 10.3390/ijms22052345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Photoreceptors are the light-sensing cells of the retina and the major cell type affected in most inherited retinal degenerations. Different metabolic pathways sustain their high energetic demand in physiological conditions, particularly aerobic glycolysis. The principal metabolome of the mature retina has been studied, but only limited information is available on metabolic adaptations in response to key developmental events, such as eye opening. Moreover, dynamic metabolic changes due to retinal degeneration are not well understood. Here, we aimed to explore and map the ocular metabolic dynamics induced by eye opening in healthy (wild type) or Pde6b-mutant (retinal degeneration 1, Rd1) mice, in which photoreceptors degenerate shortly after eye opening. To unravel metabolic differences emerging before and after eye opening under physiological and pathophysiological conditions, we performed nuclear magnetic resonance (NMR) spectroscopy-based metabolome analysis of wild type and Rd1 retina and vitreous/lens. We show that eye opening is accompanied by changes in the concentration of selected metabolites in the retina and by alterations in the vitreous/lens composition only in the retinal degeneration context. As such, we identify NAcetylaspartate as a potential novel vitreous/lens marker reflecting progressive retinal degeneration. Thus, our data can help elucidating mechanisms underlying key events in retinal physiology and reveal changes occurring in pathology, while highlighting the importance of the vitreous/lens in the characterization of retinal diseases.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Sarantos Kostidis
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Shibojyoti Lahiri
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Anna S. Geserich
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Axel Imhof
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
- Correspondence: ; Tel.: +49-89-2180-77325
| |
Collapse
|
10
|
Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11101120. [PMID: 32987769 PMCID: PMC7598671 DOI: 10.3390/genes11101120] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness and is characterised by the progressive loss of retinal photoreceptors. However, RP is a highly heterogeneous disease and, while much progress has been made in developing gene replacement and gene editing treatments for RP, it is also necessary to develop treatments that are applicable to all causative mutations. Further understanding of the mechanisms leading to photoreceptor death is essential for the development of these treatments. Recent work has therefore focused on the role of apoptotic and non-apoptotic cell death pathways in RP and the various mechanisms that trigger these pathways in degenerating photoreceptors. In particular, several recent studies have begun to elucidate the role of microglia and innate immune response in the progression of RP. Here, we discuss some of the recent progress in understanding mechanisms of rod and cone photoreceptor death in RP and summarise recent clinical trials targeting these pathways.
Collapse
Affiliation(s)
- Fay Newton
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Correspondence:
| | - Roly Megaw
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh EH3 9HA, UK
| |
Collapse
|
11
|
Wolf A, Herb M, Schramm M, Langmann T. The TSPO-NOX1 axis controls phagocyte-triggered pathological angiogenesis in the eye. Nat Commun 2020; 11:2709. [PMID: 32483169 PMCID: PMC7264151 DOI: 10.1038/s41467-020-16400-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant immune responses including reactive phagocytes are implicated in the etiology of age-related macular degeneration (AMD), a major cause of blindness in the elderly. The translocator protein (18 kDa) (TSPO) is described as a biomarker for reactive gliosis, but its biological functions in retinal diseases remain elusive. Here, we report that tamoxifen-induced conditional deletion of TSPO in resident microglia using Cx3cr1CreERT2:TSPOfl/fl mice or targeting the protein with the synthetic ligand XBD173 prevents reactivity of phagocytes in the laser-induced mouse model of neovascular AMD. Concomitantly, the subsequent neoangiogenesis and vascular leakage are prevented by TSPO knockout or XBD173 treatment. Using different NADPH oxidase-deficient mice, we show that TSPO is a key regulator of NOX1-dependent neurotoxic ROS production in the retina. These data define a distinct role for TSPO in retinal phagocyte reactivity and highlight the protein as a drug target for immunomodulatory and antioxidant therapies for AMD.
Collapse
Affiliation(s)
- Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50931, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, D-50931, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, D-50931, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931, Cologne, Germany.
| |
Collapse
|
12
|
Chamani S, Bianconi V, Tasbandi A, Pirro M, Barreto GE, Jamialahmadi T, Sahebkar A. Resolution of Inflammation in Neurodegenerative Diseases: The Role of Resolvins. Mediators Inflamm 2020; 2020:3267172. [PMID: 32308554 PMCID: PMC7132591 DOI: 10.1155/2020/3267172] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Acute inflammation has been described as a reactive dynamic process, promoted by the secretion of proinflammatory mediators, including lipid molecules like leukotrienes and prostaglandins, and counterbalanced by proresolving mediators including omega-3 polyunsaturated fatty-acid- (PUFA-) derived molecules. The switch from the initiation to the resolution phase of acute inflammatory response is crucial for tissue homeostasis, whereas the failure to resolve early inflammation by specialized proresolving mediators leads to chronic inflammation and tissue damage. Among PUFA-derived proresolving mediators, different eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derivatives have been described, namely, resolvins (resolution phase interaction products), which exert their anti-inflammatory and immune-regulatory activities through specific G-protein-coupled receptors. In recent years, compelling evidence has shown that impairment of resolution of inflammation is a crucial pathogenic hallmark in different neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. This review summarizes current knowledge on the role of resolvins in resolution of inflammation and highlights available evidence showing the neuroprotective potential of EPA- and DHA-derived resolvins (E-series and D-series resolvins, respectively) in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sajad Chamani
- Birjand University of Medical Sciences, Birjand, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Aida Tasbandi
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Inhibition of LOX-1 prevents inflammation and photoreceptor cell death in retinal degeneration. Int Immunopharmacol 2020; 80:106190. [PMID: 31945611 DOI: 10.1016/j.intimp.2020.106190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE To explore the expression and role of lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in retinal degeneration. METHODS The retinal degeneration of BALB/c mice was induced by light exposure. BV2 cells were activated by LPS stimulation. Retinas or BV2 cells were pretreated with LOX-1 neutralizing antibody or Polyinosinic acid (PolyI) (the inhibitor of LOX-1) before light damage (LD) or LPS stimulation. LOX-1, TNF-α, IL-1β, CCL2 and NF-κB expression were detected in retinas or BV2 cells by real-time RT-PCR, western blot or ELISA. Histological analyses of retinas were performed. Photoreceptor cell death was assessed by TUNEL assay in retinas or by flow cytometry in 661W cells cultured in microglia-conditioned medium. RESULTS Photoreceptor cell death and elevated expression of LOX-1 were induced by LD in retinas of BALB/c mice. LOX-1 neutralizing antibody or PolyI pretreatment significantly reduced the elevated expression of LOX-1, TNF-α, IL-1β, CCL2 and p-NF-κB caused by LD in retinas. Inhibition of LOX-1 by LOX-1 neutralizing antibody or PolyI significantly reduced photoreceptor cell death induced by LD in retinas. Elevated levels of TNF-α, IL-1β and CCL2 caused by LPS were down-regulated by inhibition of LOX-1 in BV2 cells. Inhibition of LOX-1 reduces microglial neurotoxicity on photoreceptors. CONCLUSIONS LOX-1 expression is increased in light induced retinal degeneration, what's more, inhibition of LOX-1 prevents inflammation and photoreceptor cell death in retinal degeneration and reduces microglial neurotoxicity on photoreceptors. Therefore, LOX-1 can be used as a potential therapeutic target for such retinal degeneration diseases.
Collapse
|
14
|
Joseph E, Villalobos-Acosta DMÁ, Torres-Ramos MA, Farfán-García ED, Gómez-López M, Miliar-García Á, Fragoso-Vázquez MJ, García-Marín ID, Correa-Basurto J, Rosales-Hernández MC. Neuroprotective Effects of Apocynin and Galantamine During the Chronic Administration of Scopolamine in an Alzheimer's Disease Model. J Mol Neurosci 2019; 70:180-193. [PMID: 31768942 DOI: 10.1007/s12031-019-01426-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most complicated neurodegenerative diseases, and several hypotheses have been associated with its development and progression, such as those involving glucose hypometabolism, the cholinergic system, calcium imbalance, inflammation, oxidative imbalance, microtubule instability, and the amyloid cascade, several of which are related to oxidative stress (free radical generation), which contributes to neuronal death. Therefore, several efforts have been made to establish a sporadic AD model that takes into account these hypotheses. One model that replicates the increase in amyloid beta (Aβ) and oxidative stress in vivo is the scopolamine model. In the present work, the chronic administration (6 weeks) of scopolamine was used to analyze the neuroprotective effects of apocynin and galantamine. The results showed that scopolamine induced cognitive impairment, which was evaluated 24 h after the final dose was administered. In addition, after scopolamine administration, the Aβ and superoxide anion levels were increased, and NADPH oxidase 2 (NOX2), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa B (NFkB) genes were overexpressed. These effects were not observed when either apocynin or galantamine was administered during the last 3 weeks of scopolamine treatment, and although the results from both molecules were related to lower Aβ production and, consequently, lower superoxide anion production, they were likely realized through different pathways. That is, both apocynin and galantamine diminished NADPH oxidase expression, but their effects on transcription factor expression differed. Moreover, experiments in silico showed that galantamine did not interact with the active site of beta secretase, whereas diapocynin, an apocynin metabolite, interacted with the beta-site APP-cleaving enzyme (BACE1) at the catalytic site.
Collapse
Affiliation(s)
- Eliezer Joseph
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, México
| | - Daniel Miguel Ángel Villalobos-Acosta
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, México
| | - Mónica Adriana Torres-Ramos
- Unidad Periférica de Neurociencias, Facultad de Medicina UNAM, Instituto Nacional de Neurología y Neurocirugía, MVS-SSA, Insurgentes sur 3877, La Fama, Tlalpan, 14269, México City, México
| | - Eunice Dalet Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Modesto Gómez-López
- Laboratorio de biología molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Ángel Miliar-García
- Laboratorio de biología molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Manuel Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, México City, México
| | - Iohanan Daniel García-Marín
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, México.
| |
Collapse
|
15
|
Guadagni V, Biagioni M, Novelli E, Aretini P, Mazzanti CM, Strettoi E. Rescuing cones and daylight vision in retinitis pigmentosa mice. FASEB J 2019; 33:10177-10192. [PMID: 31199887 PMCID: PMC6764477 DOI: 10.1096/fj.201900414r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hallmark of retinitis pigmentosa (RP) is the primary, genetic degeneration of rods followed by secondary loss of cones, caused by still elusive biologic mechanisms. We previously shown that exposure of rd10 mutant mice, modeling autosomal recessive RP, to environmental enrichment (EE), with enhanced motor, sensorial and social stimuli, results into a sensible delay of retinal degeneration and vision loss. Searching for effectors of EE-mediated retinal protection, we performed transcriptome analysis of the retina of rd10 enriched and control mice and found that gene expression at the peaks of rod and cone degeneration is characterized by a strong inflammatory/immune response, which is however measurably lower in enrichment conditions. Treating rd10 mice with dexamethasone during the period of maximum photoreceptors death lowered retinal inflammation and caused a preservation of cones and cone-mediated vision. Our findings indicate a link between retinal inflammation and bystander cone degeneration, reinforcing the notion that cone vision in RP can be preserved using anti-inflammatory approaches.—Guadagni, V., Biagioni, M., Novelli, E., Aretini, P., Mazzanti, C. M., Strettoi, E. Rescuing cones and daylight vision in retinitis pigmentosa mice.
Collapse
Affiliation(s)
- Viviana Guadagni
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Pisa, Italy
| | - Martina Biagioni
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Pisa, Italy
| | - Elena Novelli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Pisa, Italy
| | - Paolo Aretini
- Laboratory of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Chiara Maria Mazzanti
- Laboratory of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Enrica Strettoi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Pisa, Italy
| |
Collapse
|
16
|
Massengill MT, Young B, Patel D, Jafri F, Sabogal E, Ash N, Li H, Ildefonso CJ, Lewin AS. Clinically Relevant Outcome Measures for the I307N Rhodopsin Mouse: A Model of Inducible Autosomal Dominant Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:5417-5430. [PMID: 30452595 PMCID: PMC6237214 DOI: 10.1167/iovs.18-25345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose The I307N rhodopsin (Rho) mouse is a light-inducible model of autosomal dominant retinitis pigmentosa (adRP) that may be useful in testing therapies. We investigated the time-course of retinal changes of the I307N Rho mouse with spectral-domain optical coherence tomography (SD-OCT). Methods SD-OCT was performed up to day 30 after light damage; electroretinography (ERG) was employed to evaluate photoreceptor function. We utilized ImageJ to analyze reflectivity of the retina. We used light and electron microscopy to assess retinal organization. We stained synaptophysin and zonula occludins-1 with immunohistochemistry to determine injury to the plexiform layers and retinal pigment epithelium (RPE). We performed lectin staining to evaluate retinal blood vessels. Results Retinal degeneration increased with longer exposures to light. An increase in retinal thickness was detected by SD-OCT on day 1 after light challenge followed by loss of the outer nuclear layer (ONL) by day 8. Degeneration was most severe in the nasal and inferior retina. Hyper-reflectivity on SD-OCT developed as early as 1 day after light exposure. Disorganization of the ONL, condensation of photoreceptor chromatin, disruption of the outer limiting membrane, and disarray of outer segments were associated with the hyper-reflectivity. Retraction of the outer plexiform synapses and resorption of the subretinal detachment contributed to retinal thinning. The RPE remained intact, whereas atrophied major retinal vessels were evident after light damage. Conclusions Our time-course analysis of retinal degeneration in the I307N Rho mouse with SD-OCT and other outcome measures should enable the use of the mouse model in preclinical efficacy studies and mechanistic studies.
Collapse
Affiliation(s)
- Michael T Massengill
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Brianna Young
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Deep Patel
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Farwa Jafri
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Ernesto Sabogal
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Neil Ash
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Hong Li
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Cristhian J Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| |
Collapse
|
17
|
Massengill MT, Ahmed CM, Lewin AS, Ildefonso CJ. Neuroinflammation in Retinitis Pigmentosa, Diabetic Retinopathy, and Age-Related Macular Degeneration: A Minireview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1074:185-191. [PMID: 29721943 DOI: 10.1007/978-3-319-75402-4_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The eye is an immuno-privileged organ. However, certain diseases such as uveitis are intrinsically linked to inflammation. In several retinal degenerative diseases, there is a unique damage at the onset of the disease, but evidence suggests that chronic and low-grade inflammatory processes play an important role in their progression. Studies have identified similar signaling pathways and changes in resident immune cells within the retina among these diseases. Herein, we will discuss some of these studies and propose how understanding this inflammatory response could aid in the development of therapies.
Collapse
Affiliation(s)
- Michael T Massengill
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Chulbul M Ahmed
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Alfred S Lewin
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Cristhian J Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
18
|
Oxidative Stress, Diabetic Retinopathy, and Superoxide Dismutase 3. RETINAL DEGENERATIVE DISEASES 2019; 1185:335-339. [DOI: 10.1007/978-3-030-27378-1_55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Kokona D, Ebneter A, Escher P, Zinkernagel MS. Colony-stimulating factor 1 receptor inhibition prevents disruption of the blood-retina barrier during chronic inflammation. J Neuroinflammation 2018; 15:340. [PMID: 30541565 PMCID: PMC6292111 DOI: 10.1186/s12974-018-1373-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microglia-associated inflammation is closely related to the pathogenesis of various retinal diseases such as uveitis and diabetic retinopathy, which are associated with increased vascular permeability. In this study, we investigated the effect of systemic lipopolysaccharide (LPS) exposure to activation and proliferation of retinal microglia /macrophages. METHODS Balb/c and Cx3cr1gfp/+ mice were challenged with LPS (1 mg/kg) daily for four consecutive days. For microglia depletion, mice were treated with colony-stimulating factor 1 receptor (CSF-1R) inhibitor PLX5622 1 week before the first LPS challenge and until the end of the experiment. In vivo imaging of the retina was performed on days 4 and 7 after the first LPS challenge, using optical coherence tomography and fluorescein angiography. Flow cytometry analysis, retinal whole mount, and retinal sections were used to investigate microglia and macrophage infiltration and proliferation after LPS challenge. Cytokines were analyzed in the blood as well as in the retina. Data analysis was performed using unpaired t tests, repeated measures one-way ANOVA, or ordinary one-way ANOVA followed by Tukey's post hoc analysis. Kruskal-Wallis test followed by Dunn's multiple comparison tests was used for the analysis of non-normally distributed data. RESULTS Repeated LPS challenge led to activation and proliferation of retinal microglia, infiltration of monocyte-derived macrophages into the retina, and breakdown of the blood-retina barrier (BRB) accompanied by accumulation of sub-retinal fluid. Using in vivo imaging, we show that the breakdown of the BRB is highly reproducible but transitory. Acute but not chronic systemic exposure to LPS triggered a robust release of inflammatory mediators in the retina with minimal effects in the blood plasma. Inhibition of the CSF-1R by PLX5622 resulted in depletion of retinal microglia, suppression of cytokine production in the retina, and prevention of BRB breakdown. CONCLUSIONS These findings suggest that microglia/macrophages play an important role in the pathology of retinal disorders characterized by breakdown of the BRB, and suppression of their activation may be a potential therapeutic target for such retinopathies.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland. .,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Abstract
Microglia, the primary resident immune cell type, constitute a key population of glia in the retina. Recent evidence indicates that microglia play significant functional roles in the retina at different life stages. During development, retinal microglia regulate neuronal survival by exerting trophic influences and influencing programmed cell death. During adulthood, ramified microglia in the plexiform layers interact closely with synapses to maintain synaptic structure and function that underlie the retina's electrophysiological response to light. Under pathological conditions, retinal microglia participate in potentiating neurodegeneration in diseases such as glaucoma, retinitis pigmentosa, and age-related neurodegeneration by producing proinflammatory neurotoxic cytokines and removing living neurons via phagocytosis. Modulation of pathogenic microglial activation states and effector mechanisms has been linked to neuroprotection in animal models of retinal diseases. These findings have led to the design of early proof-of-concept clinical trials with microglial modulation as a therapeutic strategy.
Collapse
Affiliation(s)
- Sean M. Silverman
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| |
Collapse
|
21
|
Berkowitz BA, Podolsky RH, Berri AM, Dernay K, Graffice E, Shafie-Khorassani F, Roberts R. Dark Rearing Does Not Prevent Rod Oxidative Stress In Vivo in Pde6brd10 Mice. Invest Ophthalmol Vis Sci 2018; 59:1659-1665. [PMID: 29625492 PMCID: PMC5868999 DOI: 10.1167/iovs.17-22734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose In cyclic light-reared Pde6brd10 mice, rod cell oxidative stress contributes to the degenerative phenotype. Dark rearing Pde6brd10 mice slows but does not prevent atrophy. This suggests that outer retinal oxidative stress occurs in Pde6brd10 mice independent of light exposure, a hypothesis tested in this study. Methods Mouse strains Pde6brd10 and C57Bl/6 (wild type) were dark reared until postnatal day (P) 23 (P23) or P30. In subgroups of dark-reared mice, (1) layer-specific excessive free radical production (i.e., an oxidative stress biomarker) in vivo via QUEnch-assiSTed magnetic resonance imaging (QUEST MRI) was indicated by a significant reduction in the greater-than-normal spin-lattice relaxation rate R1 (1/T1) with methylene blue, (2) superoxide production was measured ex vivo in whole retina (lucigenin), and (3) retinal layer spacing and thickness were assessed in vivo (optical coherence tomography, MRI). Results In P23 male Pde6brd10 mice, only the outer superior retina showed oxidative stress in vivo, as measured by QUEST MRI; a lucigenin assay confirmed supernormal superoxide production. In contrast, at P30, no evidence for retinal oxidative stress was observed. In P23 female Pde6brd10 mice, no retinal oxidative stress was apparent; however, at P30, oxidative stress was observed in superior inner and outer nuclear layers. Male and female Pde6brd10 mice at P23 had normal retinal thicknesses, whereas at P30, modest thinning was noted in inferior and superior retina. Conclusions We confirmed that outer retinal oxidative stress occurs in male and female dark-reared Pde6brd10 mice. Male and female Pde6brd10 mice demonstrated similar degrees of retinal thinning, but with unexpectedly distinct spatial and temporal retinal oxidative stress patterns.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Emma Graffice
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fatema Shafie-Khorassani
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
22
|
Santiago AR, Boia R, Aires ID, Ambrósio AF, Fernandes R. Sweet Stress: Coping With Vascular Dysfunction in Diabetic Retinopathy. Front Physiol 2018; 9:820. [PMID: 30057551 PMCID: PMC6053590 DOI: 10.3389/fphys.2018.00820] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress plays key roles in the pathogenesis of retinal diseases, such as diabetic retinopathy. Reactive oxygen species (ROS) are increased in the retina in diabetes and the antioxidant defense system is also compromised. Increased ROS stimulate the release of pro-inflammatory cytokines, promoting a chronic low-grade inflammation involving various signaling pathways. An excessive production of ROS can lead to retinal endothelial cell injury, increased microvascular permeability, and recruitment of inflammatory cells at the site of inflammation. Recent studies have started unraveling the complex crosstalk between retinal endothelial cells and neuroglial cells or leukocytes, via both cell-to-cell contact and secretion of cytokines. This crosstalk is essential for the maintenance of the integrity of retinal vascular structure. Under diabetic conditions, an aberrant interaction between endothelial cells and other resident cells of the retina or invading inflammatory cells takes place in the retina. Impairment in the secretion and flow of molecular signals between different cells can compromise the retinal vascular architecture and trigger angiogenesis. In this review, the synergistic contributions of redox-inflammatory processes for endothelial dysfunction in diabetic retinopathy will be examined, with particular attention paid to endothelial cell communication with other retinal cells.
Collapse
Affiliation(s)
- Ana R Santiago
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Inês D Aires
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Genetic Rescue Reverses Microglial Activation in Preclinical Models of Retinitis Pigmentosa. Mol Ther 2018; 26:1953-1964. [PMID: 30001913 DOI: 10.1016/j.ymthe.2018.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Microglia cells (MGCs) play a key role in scavenging pathogens and phagocytosing cellular debris in the central nervous system and retina. Their activation, however, contributes to the progression of multiple degenerative diseases. Given the potential damage created by MGCs, it is important to better understand their mechanism of activation. Here, we explored the role of MGCs in the context of retinitis pigmentosa (RP) by using four independent preclinical mouse models. For therapeutic modeling, tamoxifen-inducible CreER was introduced to explore changes in MGCs when RP progression halted. The phenotypes of the MGCs were observed using live optical coherence tomography, live autofluorescence, and immunohistochemistry. We found that, regardless of genetic background, MGCs were activated in neurodegenerative conditions and migrated beyond the layers where they are typically found to the inner and outer segments, where degeneration was ongoing. Genetic rescue not only halted degeneration but also deactivated MGCs, regardless of whether the intervention occurred at the early, middle, or late stage of the disease. These findings suggest that halting long-term disease progression may be more successful by downregulating MGC activity while co-administering the therapeutic intervention.
Collapse
|
24
|
Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Mol Neurobiol 2018; 56:1637-1652. [PMID: 29911255 DOI: 10.1007/s12035-018-1192-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/08/2018] [Indexed: 12/24/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.
Collapse
|
25
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 692] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
26
|
McMurtrey JJ, Tso MOM. A review of the immunologic findings observed in retinitis pigmentosa. Surv Ophthalmol 2018; 63:769-781. [PMID: 29551596 DOI: 10.1016/j.survophthal.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
Most patients suffering from retinitis pigmentosa (RP) inherit the disorder; however, the immune-pathologic features associated with this disease have yet to be extensively studied. Six reports correlate antiretinal immune activity with vision deterioration in RP patients. Some of these patients have sporadic RP that occurs in excess of expected gene segregation during inheritance. The hypothesis that a primary immune-mediated disease process occurs in this sporadic group is supported by significant associations of RP with autoimmune endocrinopathies and other immune-related conditions or factors; however, no immunologic difference regarding RP family history is reported in the peripheral blood studies of RP patients. Twenty-one percent to 51% of RP patients display antiretinal antibodies, whereas 19-58% have antiretinal lymphocyte reactivity to retinal extract, and 60-85% have activated T cells. Mutations in animal models of RP have been shown to cause endoplasmic reticulum stress that may initiate immunopathology for genetic RP, but oxidative stress also encourages immune cytotoxicity. In addition, necrotic cell death is evident, which promotes inflammatory conditions. We review mechanisms and evidence for an occult inflammation in genetic RP and examine reports of efficacy in retarding RP progression with anti-inflammatory agents in clinical trials.
Collapse
Affiliation(s)
- John J McMurtrey
- The Wilmer Ophthalmological Institute, The Johns Hopkins University and Hospital, Baltimore, Maryland, USA.
| | - Mark O M Tso
- The Wilmer Ophthalmological Institute, The Johns Hopkins University and Hospital, Baltimore, Maryland, USA
| |
Collapse
|
27
|
He X, Sun D, Chen S, Xu H. Activation of liver X receptor delayed the retinal degeneration of rd1 mice through modulation of the immunological function of glia. Oncotarget 2018; 8:32068-32082. [PMID: 28404878 PMCID: PMC5458269 DOI: 10.18632/oncotarget.16643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Retinal degeneration (RD), including retinitis pigmentosa (RP), is an inherited eye disease characterized by progressive degeneration of photoreceptors. Recently, immune cells, including microglia, Müller cells and astrocytes, in degenerative retina are demonstrated to play key roles in the development of RD and can be used as potential therapeutic targets. Liver X receptors (LXRs) are important immuno-inflammatory response transcription factors that have been reported to be a new potential therapeutic drug target for neurodegenerative diseases. However, the potential therapeutic utility of LXRs for RP has not been evaluated. In the present study, Pde6β (rd1) mice received intraperitoneal injections of T0901317 (T0, 50 mg/kg/d) or vehicle (2% DMSO) for 7 days with age-matched C57/BL6 mice as controls. The effect of T0 was examined by quantitating photoreceptor apoptosis, microglial density and the expression of inflammatory mediators; the underlying mechanisms were then explored with a microarray assay. T0 markedly delayed apoptosis of the photoreceptors, partially through suppressing the activation of microglia and the gliosis of Müller cells, and decreased the expression levels of IL-6, iNOS, COX-2 and ENG in rd1 mice; as a result, the visual function of T0-treated rd1 mice measured with electroretinograms (ERG) was preserved for a longer time than that of vehicle-treated rd1 mice. The microarray assay showed that the Janus kinase/Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway was significantly affected in the retina of rd1 mice with T0 treatment. Our data suggested that T0 modulated the immunologic function of glia cells in the degenerative retina through the JAK3/STAT pathway and delayed the apoptosis of photoreceptors.
Collapse
Affiliation(s)
- Xiao He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Dayu Sun
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| |
Collapse
|
28
|
Zeng HL, Shi JM. The role of microglia in the progression of glaucomatous neurodegeneration- a review. Int J Ophthalmol 2018; 11:143-149. [PMID: 29376003 DOI: 10.18240/ijo.2018.01.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a serious leading cause of irreversible blindness worldwide. Reducing intraocular pressure (IOP) does not always stop glaucomatous neurodegeneration and the optic nerve may continue to be damaged in the normal IOP. Microglial activity has been recognized to play essential roles in pathogenesis of the central nervous system (CNS) as well as retinal ganglion cell (RGC) survival. The relationship between the neurodegeneration and the microglia cells in glaucoma is very complicated and still remains unclear. In the present review, we summarize the recent studies of mechanisms of microglia in glaucoma neurodegeneration, which might provide new ways to treat glaucoma.
Collapse
Affiliation(s)
- Hui-Lan Zeng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jing-Ming Shi
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
29
|
Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond) 2017; 131:2865-2883. [DOI: 10.1042/cs20171246] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
For many years, oxidative stress arising from the ubiquitous production of reactive oxygen species (ROS) has been implicated in the pathogenesis of various eye diseases. While emerging research has provided some evidence of the important physiological role of ROS in normal cell function, disease may arise where the concentration of ROS exceeds and overwhelms the body’s natural defence against them. Additionally, ROS may induce genomic aberrations which affect cellular homoeostasis and may result in disease. This literature review examines the current evidence for the role of oxidative stress in important ocular diseases with a view to identifying potential therapeutic targets for future study. The need is particularly pressing in developing treatments for conditions which remain notoriously difficult to treat, including glaucoma, diabetic retinopathy and age-related macular degeneration.
Collapse
|
30
|
Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, Cheng B, Liu X, He C. Microglia Polarization with M1/M2 Phenotype Changes in rd1 Mouse Model of Retinal Degeneration. Front Neuroanat 2017; 11:77. [PMID: 28928639 PMCID: PMC5591873 DOI: 10.3389/fnana.2017.00077] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/21/2017] [Indexed: 01/28/2023] Open
Abstract
Microglia activation is recognized as the hallmark of neuroinflammation. However, the activation profile and phenotype changes of microglia during the process of retinal degeneration are poorly understood. This study aimed to elucidate the time-spatial pattern of microglia distribution and characterize the polarized phenotype of activated microglia during retinal neuroinflammation and degeneration in rd1 (Pde6βrd1/rd1) mice, the classic model of inherited retinal degeneration. Retinae of rd1 mice at different postnatal days (P7, P14, P21, P28, P56, and P180) were prepared for further analysis. We found most CD11b+ or IBA1+ microglia expressed Ki-67 and CD68 in rd1 mice and these cells migrated toward the layer of degenerative photoreceptors at the rapid rods degeneration phase from P14 to P28. These microglia exhibited typical ameboid activated shape with round bodies and scarce dendrites, while at late phase at P180, they displayed resting ramified morphology with elongated dendrites. Flow cytometry revealed that the percentage of CD86+CD206- M1 microglia increased markedly in rd1 retinae, however, no significant change was observed in CD206+CD86- M2 microglia. Interestingly, CD86+CD206+ microglia, an intermediate state between the two extremes of M1 and M2, increased markedly at the rapid rods degeneration phase. The immunofluorescence images revealed that microglia in rd1 mice highly expressed M1 markers including CD16/32, CD86, and CD40. In addition, increased expression of pro-inflammatory cytokines (TNF-α, IL-6, and CCL2) was observed in rd1 mice. Our findings unfolded a panorama for the first time that microglia conducted distinctive behaviors with the progression of retinal degeneration in rd1 mice. Microglia is activated and particularly polarized to a pro-inflammatory M1 phenotype at the rapid rods degenerative phase, suggesting that the involvement of M1 microglia in the retinal neuroinflammation and degeneration. Most microglia adopted an intermediate polarization “M1½” state in rd1, revealing that microglia orchestrated a complicated continuous spectrum in degenerative retina.
Collapse
Affiliation(s)
- Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Zijing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Xiaowei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Xiaowei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Lingli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Mei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Bing Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
31
|
Song H, Vijayasarathy C, Zeng Y, Marangoni D, Bush RA, Wu Z, Sieving PA. NADPH Oxidase Contributes to Photoreceptor Degeneration in Constitutively Active RAC1 Mice. Invest Ophthalmol Vis Sci 2017; 57:2864-75. [PMID: 27233035 PMCID: PMC5113981 DOI: 10.1167/iovs.15-18974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose The active form of small GTPase RAC1 is required for activation of NADPH oxidase (NOX), which in turn generates reactive oxygen species (ROS) in nonphagocytic cells. We explored whether NOX-induced oxidative stress contributes to rod degeneration in retinas expressing constitutively active (CA) RAC1. Methods Transgenic (Tg)–CA-RAC1 mice were given apocynin (10 mg/kg, intraperitoneal), a NOX inhibitor, or vehicle daily for up to 13 weeks. Superoxide production and oxidative damage were assessed by dihydroethidium staining and by protein carbonyls and malondialdehyde levels, respectively. Outer nuclear layer (ONL) cells were counted and electroretinogram (ERG) amplitudes measured in Tg-CA-RAC1 mice. Outer nuclear layer cells were counted in wild-type (WT) mice after transfer of CA-Rac1 gene by subretinal injection of AAV8-pOpsin-CA Rac1-GFP. Results Transgenic-CA-RAC1 retinas had significantly fewer photoreceptor cells and more apoptotic ONL cells than WT controls from postnatal week (Pw) 3 to Pw13. Superoxide accumulation and protein and lipid oxidation were increased in Tg-CA-RAC1 retinas and were reduced in mice treated with apocynin. Apocynin reduced the loss of photoreceptors and increased the rod ERG a- and b-wave amplitudes when compared with vehicle-injected transgenic controls. Photoreceptor loss was also observed in regions of adult WT retina transduced with AAV8-pOpsin-CA Rac1-GFP but not in neighboring regions that were not transduced or in AAV8-pOpsin-GFP–transduced retinas. Conclusions Constitutively active RAC1 promotes photoreceptor cell death by oxidative damage that occurs, at least partially, through NOX-induced ROS. Reactive oxygen species are likely involved in multiple forms of retinal degenerations, and our results support investigating RAC1 inhibition as a therapeutic approach that targets this disease pathway.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Camasamudram Vijayasarathy
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Dario Marangoni
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States 3National Eye Institute, National Institutes of Heal
| |
Collapse
|
32
|
Fractalkine-CX3CR1 signaling is critical for progesterone-mediated neuroprotection in the retina. Sci Rep 2017; 7:43067. [PMID: 28216676 PMCID: PMC5316933 DOI: 10.1038/srep43067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022] Open
Abstract
Retinitis pigmentosa (RP) encompasses a group of retinal diseases resulting in photoreceptor loss and blindness. We have previously shown in the rd10 mouse model of RP, that rd10 microglia drive degeneration of viable neurons. Norgestrel, a progesterone analogue, primes viable neurons against potential microglial damage. In the current study we wished to investigate this neuroprotective effect further. We were particularly interested in the role of fractalkine-CX3CR1 signaling, previously shown to mediate photoreceptor-microglia crosstalk and promote survival in the rd10 retina. Norgestrel upregulates fractalkine-CX3CR1 signaling in the rd10 retina, coinciding with photoreceptor survival. We show that Norgestrel-treated photoreceptor-like cells, 661Ws, and C57 explants modulate rd10 microglial activity in co-culture, resulting in increased photoreceptor survival. Assessment of Norgestrel's neuroprotective effects when fractalkine was knocked-down in 661 W cells and release of fractalkine was reduced in rd10 explants confirms a crucial role for fractalkine-CX3CR1 signaling in Norgestrel-mediated neuroprotection. To further understand the role of fractalkine in neuroprotection, we assessed the release of 40 cytokines in fractalkine-treated rd10 microglia and explants. In both cases, treatment with fractalkine reduced a variety of pro-inflammatory cytokines. These findings further our understanding of Norgestrel's neuroprotective properties, capable of modulating harmful microglial activity indirectly through photoreceptors, leading to increased neuroprotection.
Collapse
|
33
|
Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS One 2016; 11:e0165197. [PMID: 27814376 PMCID: PMC5096718 DOI: 10.1371/journal.pone.0165197] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/08/2016] [Indexed: 01/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is a degenerative disease leading to photoreceptor cell loss. Mouse models of RP, such as the rd10 mouse (B6.CXBl-Pde6brd10/J), have enhanced our understanding of the disease, allowing for development of potential therapeutics. In 2011, our group first demonstrated that the synthetic progesterone analogue ‘Norgestrel’ is neuroprotective in two mouse models of retinal degeneration, including the rd10 mouse. We have since elucidated several mechanisms by which Norgestrel protects stressed photoreceptors, such as upregulating growth factors. This study consequently aimed to further characterize Norgestrel’s neuroprotective effects. Specifically, we sought to investigate the role that microglia might play; for microglial-derived inflammation has been shown to potentiate neurodegeneration. Dams of post-natal day (P) 10 rd10 pups were given a Norgestrel-supplemented diet (80mg/kg). Upon weaning, pups remained on Norgestrel. Tissue was harvested from P15-P50 rd10 mice on control or Norgestrel-supplemented diet. Norgestrel-diet administration provided significant retinal protection out to P40 in rd10 mice. Alterations in microglial activity coincided with significant protection, implicating microglial changes in Norgestrel-induced neuroprotection. Utilizing primary cultures of retinal microglia and 661W photoreceptor-like cells, we show that rd10 microglia drive neuronal cell death. We reveal a novel role of Norgestrel, acting directly on microglia to reduce pro-inflammatory activation and prevent neuronal cell death. Norgestrel effectively suppresses cytokine, chemokine and danger-associated molecular pattern molecule (DAMP) expression in the rd10 retina. Remarkably, Norgestrel upregulates fractalkine-CX3CR1 signaling 1 000-fold at the RNA level, in the rd10 mouse. Fractalkine-CX3CR1 signaling has been shown to protect neurons by regulating retinal microglial activation and migration. Ultimately, these results present Norgestrel as a promising treatment for RP, with dual actions as a neuroprotective and anti-inflammatory agent in the retina.
Collapse
|
34
|
Guadagni V, Cerri C, Piano I, Novelli E, Gargini C, Fiorentini C, Caleo M, Strettoi E. The bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa. Sci Rep 2016; 6:35919. [PMID: 27775019 PMCID: PMC5075935 DOI: 10.1038/srep35919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited pathologies characterized by progressive photoreceptor degeneration. In rodent models of RP, expression of defective genes and retinal degeneration usually manifest during the first weeks of postnatal life, making it difficult to distinguish consequences of primary genetic defects from abnormalities in retinal development. Moreover, mouse eyes are small and not always adequate to test pharmacological and surgical treatments. An inducible paradigm of retinal degeneration potentially extensible to large animals is therefore desirable. Starting from the serendipitous observation that intraocular injections of a Rho GTPase activator, the bacterial toxin Cytotoxic Necrotizing Factor 1 (CNF1), lead to retinal degeneration, we implemented an inducible model recapitulating most of the key features of Retinitis Pigmentosa. The model also unmasks an intrinsic vulnerability of photoreceptors to the mechanism of CNF1 action, indicating still unexplored molecular pathways potentially leading to the death of these cells in inherited forms of retinal degeneration.
Collapse
Affiliation(s)
- Viviana Guadagni
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Chiara Cerri
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy.,Accademia dei Lincei, Rome, 00165, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, 56126, Italy
| | - Elena Novelli
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa, Pisa, 56126, Italy
| | | | - Matteo Caleo
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| |
Collapse
|
35
|
Nakatake S, Murakami Y, Ikeda Y, Morioka N, Tachibana T, Fujiwara K, Yoshida N, Notomi S, Hisatomi T, Yoshida S, Ishibashi T, Nakabeppu Y, Sonoda KH. MUTYH promotes oxidative microglial activation and inherited retinal degeneration. JCI Insight 2016; 1:e87781. [PMID: 27699246 DOI: 10.1172/jci.insight.87781] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog-mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress.
Collapse
Affiliation(s)
- Shunji Nakatake
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Noriko Morioka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Takashi Tachibana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Akita University, Hondo, Akita, Japan
| | - Noriko Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| |
Collapse
|
36
|
Histopathological and ophthalmoscopic evaluation of apocynin on experimental proliferative vitreoretinopathy in rabbit eyes. Int Ophthalmol 2016; 37:599-605. [PMID: 27495951 DOI: 10.1007/s10792-016-0318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to evaluate the effect of apocynin (APO) on the development of proliferative vitreoretinopathy (PVR). New Zealand-type male rabbits were randomly grouped into three as follows: (1) Sham group rabbits which were applied intraperitoneal (i.p.) vehicle without PVR; (2) PVR group rabbits where PVR was created and an i.p. vehicle was administered for 21 successive days; (3) PVR + APO group rabbits where PVR was created and i.p. APO was administered for 21 successive days. Fundus examination was conducted with an indirect ophthalmoscope before starting the experiments and at each visit afterwards. At the end of the work, the rabbits were sacrificed under high-dose anesthesia and then eye tissues were taken for histopathological analyses. In the PVR + APO group, histopathologic and ophthalmoscopic examination revealed significant decrease in PVR formation. As the result, it has been observed that APO at least partially inhibits PVR formation.
Collapse
|
37
|
Friend or Foe? Resident Microglia vs Bone Marrow-Derived Microglia and Their Roles in the Retinal Degeneration. Mol Neurobiol 2016; 54:4094-4112. [PMID: 27318678 DOI: 10.1007/s12035-016-9960-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023]
Abstract
Microglia are immune cells in the central nervous system (CNS) that originate from the yolk sac in an embryo. The renewal of the microglia pool in the adult eye consists of two components. In addition to the self-proliferation of resident cells, microglia in the CNS also derive from the bone marrow (BM). BM-derived cells pass through the blood-brain barrier (BBB) or blood-retina barrier (BRB) and differentiate into microglia under specific conditions which involves a complex mechanism. Recent studies have widely investigated the role of resident microglia and BM-derived microglia in the retinal degenerative disease. Both two cell types play dual roles and share many similar functions. However, resident microglia tend to polarize to the M1 phenotype which is pro-inflammatory and neurotoxic, whereas BM-derived microglia mainly polarize to the neuroprotective M2 phenotype in retinal degeneration. The molecular mechanism that underlines the invasion of peripheral cells has led to extensive discussions. In addition to the BBB and BRB disruption, many signaling pathways are involved in this process. Based on these studies, we discuss the roles of these two types of microglia in retinal degeneration disease and the potential clinical application of BM-derived microglia, which may benefit future therapies.
Collapse
|
38
|
Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, Fariss RN, Wong WT. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia 2016; 64:1479-91. [PMID: 27314452 PMCID: PMC4958518 DOI: 10.1002/glia.23016] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation‐bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis and proinflammatory factor production, however mechanisms regulating these contributions are not well‐defined. In this study, we investigate the role of CX3CR1, a microglia‐specific receptor, in regulating microglia‐mediated degeneration using the well‐established rd10 mouse model of RP. We found that in CX3CR1‐deficient (CX3CR1GFP/GFP) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1‐sufficient (CX3CR1GFP/+) rd10 littermates. CX3CR1‐deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at‐risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1‐CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1‐CX3CR1 signaling is a molecular mechanism capable of modulating microglial‐mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479–1491
Collapse
Affiliation(s)
- Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yikui Zhang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Shaimar R Gonzalez
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Berkowitz BA, Lewin AS, Biswal MR, Bredell BX, Davis C, Roberts R. MRI of Retinal Free Radical Production With Laminar Resolution In Vivo. Invest Ophthalmol Vis Sci 2016; 57:577-85. [PMID: 26886890 PMCID: PMC4771178 DOI: 10.1167/iovs.15-18972] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Recent studies have suggested the hypothesis that quench-assisted 1/T1 magnetic resonance imaging (MRI) measures free radical production with laminar resolution in vivo without the need of a contrast agent. Here, we test this hypothesis further by examining the spatial and detection sensitivity of quench-assisted 1/T1 MRI to strain, age, or retinal cell layer-specific genetic manipulations. Methods We studied: adult wild-type mice; mice at postnatal day 7 (P7); cre dependent retinal pigment epithelium (RPE)-specific MnSOD knockout mice; doxycycline-treated Sod2flox/flox mice lacking the cre transgene; and α-transducin knockout (Gnat1−/−) mice on a C57Bl/6 background. Transretinal 1/T1 profiles were mapped in vivo in the dark without or with antioxidant treatment, or followed by light exposure. We calibrated profiles spatially using optical coherence tomography. Results Dark-adapted RPE-specific MnSOD knockout mice had greater than normal 1/T1 in the RPE and outer nuclear layers that was corrected to wild-type levels by antioxidant treatment. Dark and light Gnat1−/− mice also had greater than normal outer retinal 1/T1 values. In adult wild-type mice, dark values of 1/T1 in the ellipsoid region and in the outer segment were suppressed by 13 minutes of light. By 29 minutes of light, 1/T1 reduction extended to the outer nuclear layer. Gnat1−/− mice demonstrated a faster light-evoked suppression of 1/T1 values in the outer retina. In P7 mice, transretinal 1/T1 profiles were the same in dark and light. Conclusions Quench-assisted MRI has the laminar resolution and detection sensitivity to evaluate normal and pathologic production of free radicals in vivo.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States
| | - Manas R Biswal
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States
| | - Bryce X Bredell
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christopher Davis
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
40
|
Li Z, Zeng Y, Chen X, Li Q, Wu W, Xue L, Xu H, Yin ZQ. Neural stem cells transplanted to the subretinal space of rd1 mice delay retinal degeneration by suppressing microglia activation. Cytotherapy 2016; 18:771-84. [DOI: 10.1016/j.jcyt.2016.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
|
41
|
Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 2016; 7:1179-97. [PMID: 26139610 PMCID: PMC4568951 DOI: 10.15252/emmm.201505298] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.
Collapse
Affiliation(s)
- Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Parth Shah
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Parkhurst
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wen-Biao Gan
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Natoli R, Rutar M, Lu YZ, Chu-Tan JA, Chen Y, Saxena K, Madigan M, Valter K, Provis JM. The Role of Pyruvate in Protecting 661W Photoreceptor-Like Cells Against Light-Induced Cell Death. Curr Eye Res 2016; 41:1473-1481. [DOI: 10.3109/02713683.2016.1139725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Riccardo Natoli
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Matt Rutar
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yen-Zhen Lu
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Joshua A. Chu-Tan
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yuwei Chen
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Kartik Saxena
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michele Madigan
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, Australia
- The Save Sight Institute, University of Sydney, Sydney, Australia
| | - Krisztina Valter
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Jan M. Provis
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| |
Collapse
|
43
|
Devarajan G, Niven J, Forrester JV, Crane IJ. Retinal Pigment Epithelial Cell Apoptosis is Influenced by a Combination of Macrophages and Soluble Mediators Present in Age-Related Macular Degeneration. Curr Eye Res 2016; 41:1235-44. [DOI: 10.3109/02713683.2015.1109129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gayathri Devarajan
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Aberdeen, Scotland, UK
| | - Jennifer Niven
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Aberdeen, Scotland, UK
| | - John V. Forrester
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Aberdeen, Scotland, UK
| | - Isabel J. Crane
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Aberdeen, Scotland, UK
| |
Collapse
|
44
|
Berkowitz BA, Bissig D, Roberts R. MRI of rod cell compartment-specific function in disease and treatment in vivo. Prog Retin Eye Res 2015; 51:90-106. [PMID: 26344734 DOI: 10.1016/j.preteyeres.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Rod cell oxidative stress is a major pathogenic factor in retinal disease, such as diabetic retinopathy (DR) and retinitis pigmentosa (RP). Personalized, non-destructive, and targeted treatment for these diseases remains elusive since current imaging methods cannot analytically measure treatment efficacy against rod cell compartment-specific oxidative stress in vivo. Over the last decade, novel MRI-based approaches that address this technology gap have been developed. This review summarizes progress in the development of MRI since 2006 that enables earlier evaluation of the impact of disease on rod cell compartment-specific function and the efficacy of anti-oxidant treatment than is currently possible with other methods. Most of the new assays of rod cell compartment-specific function are based on endogenous contrast mechanisms, and this is expected to facilitate their translation into patients with DR and RP, and other oxidative stress-based retinal diseases.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA; Dept. Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - David Bissig
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robin Roberts
- Dept. Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
45
|
Brown GC, Vilalta A. How microglia kill neurons. Brain Res 2015; 1628:288-297. [PMID: 26341532 DOI: 10.1016/j.brainres.2015.08.031] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
46
|
Ail D, Rüfenacht V, Caprara C, Samardzija M, Kast B, Grimm C. Increased expression of the proton-sensing G protein-coupled receptor Gpr65 during retinal degeneration. Neuroscience 2015; 301:496-507. [DOI: 10.1016/j.neuroscience.2015.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 11/16/2022]
|
47
|
Adalimumab Reduces Photoreceptor Cell Death in A Mouse Model of Retinal Degeneration. Sci Rep 2015; 5:11764. [PMID: 26170250 PMCID: PMC4501000 DOI: 10.1038/srep11764] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/02/2015] [Indexed: 12/29/2022] Open
Abstract
Growing evidence suggests that inflammation is involved in the progression of retinitis pigmentosa (RP) both in patients and in animal models. The aim of this study was to investigate the effect of Adalimumab, a monoclonal anti-TNFα antibody, on retinal degeneration in a murine model of human autosomal recessive RP, the rd10 mice at postnatal day (P) 18. In our housing conditions, rd10 retinas were seriously damaged at P18. Adalimumab reduced photoreceptor cell death, as determined by scoring the number of TUNEL-positive cells. In addition, nuclear poly (ADP) ribose (PAR) content, an indirect measure of PAR polymerase (PARP) activity, was also reduced after treatment. The blockade of TNFα ameliorated reactive gliosis, as visualized by decreased GFAP and IBA1 immunolabelling (Müller cell and microglial markers, respectively) and decreased up-regulation of TNFα gene expression. Adalimumab also improved antioxidant response by restoring total antioxidant capacity and superoxide dismutase activity. Finally, we observed that Adalimumab normalized energetic and metabolic pattern in rd10 mouse retinas. Our study suggests that the TNFα blockade could be a successful therapeutic approach to increase photoreceptor survival during the progression of RP. Further studies are needed to characterize its effect along the progression of the disease.
Collapse
|
48
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 517] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
49
|
Reichenbach A, Bringmann A. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2015; 104:194-211. [PMID: 25998275 DOI: 10.1016/j.neuropharm.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023]
Abstract
Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Sang A, Yang X, Chen H, Qin B, Zhu M, Dai M, Zhu R, Liu X. Upregulation of SYF2 Relates to Retinal Ganglion Cell Apoptosis and Retinal Glia Cell Proliferation After Light-Induced Retinal Damage. J Mol Neurosci 2015; 56:480-90. [DOI: 10.1007/s12031-015-0534-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
|