1
|
Asbury S, Lai JKY, Rilett KC, Haqqee Z, Darwin BC, Ellegood J, Lerch JP, Foster JA. Host genetics maps to behaviour and brain structure in developmental mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:1. [PMID: 39748372 PMCID: PMC11697848 DOI: 10.1186/s12993-024-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025]
Abstract
Gene-environment interactions in the postnatal period have a long-term impact on neurodevelopment. To effectively assess neurodevelopment in the mouse, we developed a behavioural pipeline that incorporates several validated behavioural tests to measure translationally relevant milestones of behaviour in mice. The behavioral phenotype of 1060 wild type and genetically-modified mice was examined followed by structural brain imaging at 4 weeks of age. The influence of genetics, sex, and early life stress on behaviour and neuroanatomy was determined using traditional statistical and machine learning methods. Analytical results demonstrated that neuroanatomical diversity was primarily associated with genotype whereas behavioural phenotypic diversity was observed to be more susceptible to gene-environment variation. We describe a standardized mouse phenotyping pipeline, termed the Developmental Behavioural Milestones (DBM) Pipeline released alongside the 1000 Mouse Developmental Behavioural Milestones (1000 Mouse DBM) database to institute a novel framework for reproducible interventional neuroscience research.
Collapse
Affiliation(s)
- Sarah Asbury
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jonathan K Y Lai
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Kelly C Rilett
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Zeeshan Haqqee
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Benjamin C Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
- Research Institute at St. Joe's Hamilton, Hamilton, ON, Canada.
- Center for Depression Research and Clinical Care, Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Cording KR, Bateup HS. Altered motor learning and coordination in mouse models of autism spectrum disorder. Front Cell Neurosci 2023; 17:1270489. [PMID: 38026686 PMCID: PMC10663323 DOI: 10.3389/fncel.2023.1270489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with increasing prevalence. Over 1,000 risk genes have now been implicated in ASD, suggesting diverse etiology. However, the diagnostic criteria for the disorder still comprise two major behavioral domains - deficits in social communication and interaction, and the presence of restricted and repetitive patterns of behavior (RRBs). The RRBs associated with ASD include both stereotyped repetitive movements and other motor manifestations including changes in gait, balance, coordination, and motor skill learning. In recent years, the striatum, the primary input center of the basal ganglia, has been implicated in these ASD-associated motor behaviors, due to the striatum's role in action selection, motor learning, and habit formation. Numerous mouse models with mutations in ASD risk genes have been developed and shown to have alterations in ASD-relevant behaviors. One commonly used assay, the accelerating rotarod, allows for assessment of both basic motor coordination and motor skill learning. In this corticostriatal-dependent task, mice walk on a rotating rod that gradually increases in speed. In the extended version of this task, mice engage striatal-dependent learning mechanisms to optimize their motor routine and stay on the rod for longer periods. This review summarizes the findings of studies examining rotarod performance across a range of ASD mouse models, and the resulting implications for the involvement of striatal circuits in ASD-related motor behaviors. While performance in this task is not uniform across mouse models, there is a cohort of models that show increased rotarod performance. A growing number of studies suggest that this increased propensity to learn a fixed motor routine may reflect a common enhancement of corticostriatal drive across a subset of mice with mutations in ASD-risk genes.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
3
|
Bekheet MHY, Mansour LA, Elkaffas RH, Kamel MA, Elmonem MA. Serum matrix metalloproteinase-9 (MMP9) and amyloid-beta protein precursor (APP) as potential biomarkers in children with Fragile-X syndrome: A cross sectional study. Clin Biochem 2023; 121-122:110659. [PMID: 37797798 DOI: 10.1016/j.clinbiochem.2023.110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Fragile-X syndrome(FXS) is a neurological disease caused by abnormal repeats in the 5'untranslated region of the FMR1 gene leading to a defective fragile-X-messenger-ribonucleoprotein-1 (FMRP). Although relatively common in children, it is usually under-diagnosed especially in developing countries where genetic screening is not routinely practiced. So far, FXS lacks a laboratory biomarker that can be used for screening, severity scoring or therapeutic monitoring of potential new treatments. METHODS 110 subjects were recruited; 80 male children with suspected FXS and 30 matched healthy children. We evaluated the clinical utility of serum matrix metalloproteinase-9(MMP9) and amyloid-beta protein precursor(APP) as potential biomarkers for FXS. RESULTS Out of 80 suspected children, 14 had full mutation, 8 had the premutation and 58 children had normal genotypes. No statistically-significant difference was detected between children with different genotypes concerning age of onset(P = 0.658), main clinical presentation(P = 0.388), clinical severity-score(P = 0.799), patient's disease-course(P = 0.719) and intellectual disability(P = 0.351). Both MMP9 and APP showed a statistically significant difference when comparing different genotype subgroups(P = 0.019 and < 0.001, respectively). Clinically, MMP9 levels were highest in children presenting with language defects, while APP was highest in children with neurodevelopmental delay. In receiver operating curve analysis, comparing full and premutation with the normal genotype group, MMP9 has an area-under-the-curve of 0.701(95 % CI 0.557-0.845), while APP was marginally better at 0.763(95 % CI 0.620-0.906). When combined together, elevated MMP9 or APP had excellent sensitivity > 95 % for picking-up FXS cases in the clinical setting. CONCLUSIONS Screening for circulating biomarkers in the absence of FXS genetic diagnosis is justified. Our study is the first to evaluate both MMP9 and APP in FXS suspected children in a clinical setting and to assess their correlation with disease presentation and severity.
Collapse
Affiliation(s)
- Mohamed H Y Bekheet
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lamiaa A Mansour
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha H Elkaffas
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona A Kamel
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
4
|
Abstract
The fragile X-related disorders are an important group of hereditary disorders that are caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene or by mutations in the coding sequence of this gene. Two categories of pathological CGG repeats are associated with these disorders, full mutation alleles and shorter premutation alleles. Individuals with full mutation alleles develop fragile X syndrome, which causes autism and intellectual disability, whereas those with premutation alleles, which have shorter CGG expansions, can develop fragile X-associated tremor/ataxia syndrome, a progressive neurodegenerative disease. Thus, fragile X-related disorders can manifest as neurodegenerative or neurodevelopmental disorders, depending on the size of the repeat expansion. Here, we review mouse models of fragile X-related disorders and discuss how they have informed our understanding of neurodegenerative and neurodevelopmental disorders. We also assess the translational value of these models for developing rational targeted therapies for intellectual disability and autism disorders.
Collapse
Affiliation(s)
- Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| | - R. Frank Kooy
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
5
|
Cogram P, Fernández-Beltrán LC, Casarejos MJ, Sánchez-Yepes S, Rodríguez-Martín E, García-Rubia A, Sánchez-Barrena MJ, Gil C, Martínez A, Mansilla A. The inhibition of NCS-1 binding to Ric8a rescues fragile X syndrome mice model phenotypes. Front Neurosci 2022; 16:1007531. [PMID: 36466176 PMCID: PMC9709425 DOI: 10.3389/fnins.2022.1007531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/26/2022] [Indexed: 01/01/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of function of Fragile X mental retardation protein (FMRP). FXS is one of the leading monogenic causes of intellectual disability (ID) and autism. Although it is caused by the failure of a single gene, FMRP that functions as an RNA binding protein affects a large number of genes secondarily. All these genes represent hundreds of potential targets and different mechanisms that account for multiple pathological features, thereby hampering the search for effective treatments. In this scenario, it seems desirable to reorient therapies toward more general approaches. Neuronal calcium sensor 1 (NCS-1), through its interaction with the guanine-exchange factor Ric8a, regulates the number of synapses and the probability of the release of a neurotransmitter, the two neuronal features that are altered in FXS and other neurodevelopmental disorders. Inhibitors of the NCS-1/Ric8a complex have been shown to be effective in restoring abnormally high synapse numbers as well as improving associative learning in FMRP mutant flies. Here, we demonstrate that phenothiazine FD44, an NCS-1/Ric8a inhibitor, has strong inhibition ability in situ and sufficient bioavailability in the mouse brain. More importantly, administration of FD44 to two different FXS mouse models restores well-known FXS phenotypes, such as hyperactivity, associative learning, aggressive behavior, stereotype, or impaired social approach. It has been suggested that dopamine (DA) may play a relevant role in the behavior and in neurodevelopmental disorders in general. We have measured DA and its metabolites in different brain regions, finding a higher metabolic rate in the limbic area, which is also restored with FD44 treatment. Therefore, in addition to confirming that the NCS-1/Ric8a complex is an excellent therapeutic target, we demonstrate the rescue effect of its inhibitor on the behavior of cognitive and autistic FXS mice and show DA metabolism as a FXS biochemical disease marker.
Collapse
Affiliation(s)
- Patricia Cogram
- Department of Genetics, Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile
- FRAXA-DVI, FRAXA Research Foundation, Santiago, Chile
| | - Luis C. Fernández-Beltrán
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María José Casarejos
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Sonia Sánchez-Yepes
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eulalia Rodríguez-Martín
- Department of Immunology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alfonso García-Rubia
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alicia Mansilla
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Department of Biology Systems, Universidad de Alcala, Madrid, Spain
| |
Collapse
|
6
|
Yang D, Zhao Y, Nie B, An L, Wan X, Wang Y, Wang W, Cai G, Wu S. Progress in magnetic resonance imaging of autism model mice brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1616. [PMID: 35930672 DOI: 10.1002/wcs.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by social disorder and stereotypical behaviors with an increasing incidence. ASD patients are suffering from varying degrees of mental retardation and language development abnormalities. Magnetic resonance imaging (MRI) is a noninvasive imaging technology to detect brain structural and functional dysfunction in vivo, playing an important role in the early diagnosisbasic research of ASD. High-field, small-animal MRI in basic research of autism model mice has provided a new approach to research the pathogenesis, characteristics, and intervention efficacy in autism. This article reviews MRI studies of mouse models of autism over the past 20 years. Reduced gray matter, abnormal connections of brain networks, and abnormal development of white matter fibers have been demonstrated in these studies, which are present in different proportions in the various mouse models. This provides a more macroscopic view for subsequent research on autism model mice. This article is categorized under: Cognitive Biology > Genes and Environment Neuroscience > Computation Neuroscience > Genes, Molecules, and Cells Neuroscience > Development.
Collapse
Affiliation(s)
- Dingding Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Leiting An
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiangdong Wan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
8
|
Porceddu PF, Ciampoli M, Romeo E, Garrone B, Durando L, Milanese C, Di Giorgio FP, Reggiani A. The novel potent GSK3 inhibitor AF3581 reverts fragile X syndrome phenotype. Hum Mol Genet 2021; 31:839-849. [PMID: 34596681 DOI: 10.1093/hmg/ddab251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK3 has been linked to several disease conditions such as Fragile X Syndrome (FXS). Recent evidences demonstrating an increased activity of GSK3 in murine models of FXS, suggest that dysregulation/hyperactivation of the GSK3 path should contribute to FXS development. A likely possibility could be that in FXS there is a functional impairment of the upstream inhibitory input over GSK3 thus making overactive the kinase. Since GSK3 signaling is a central regulatory node for critical neurodevelopmental pathways, understanding the contribution of GSK3 dysregulation to FXS, may provide novel targets for therapeutic interventions for this disease. In this study we used AF3581, a potent GSK3 inhibitor that we recently discovered, in an in vivo FXS mouse model to elucidate the crucial role of GSK3 in specific behavioral patterns (locomotor activity, sensorimotor gating and social behavior) associated with this disease. All the behavioral alterations manifested by Fmr1 knockout mice were reverted after a chronic treatment with our GSK3 inhibitor, confirming the importance of this pathway as a therapeutic target.
Collapse
Affiliation(s)
- Pier Francesca Porceddu
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mariasole Ciampoli
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Elisa Romeo
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Lucia Durando
- Angelini Pharma S.p.A., Viale Amelia 70, 00181 Rome, Italy
| | | | | | - Angelo Reggiani
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
9
|
Mapping the living mouse brain neural architecture: strain-specific patterns of brain structural and functional connectivity. Brain Struct Funct 2021; 226:647-669. [PMID: 33635426 DOI: 10.1007/s00429-020-02190-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Mapping brain structural and functional connectivity (FC) became an essential approach in neuroscience as network properties can underlie behavioral phenotypes. In mouse models, revealing strain-related patterns of brain wiring is crucial, since these animals are used to answer questions related to neurological or neuropsychiatric disorders. C57BL/6 and BALB/cJ strains are two of the primary "genetic backgrounds" for modeling brain disease and testing therapeutic approaches. However, extensive literature describes basal differences in the behavioral, neuroanatomical and neurochemical profiles of the two strains, which raises questions on whether the observed effects are pathology specific or depend on the genetic background of each strain. Here, we performed a systematic comparative exploration of brain structure and function of C57BL/6 and BALB/cJ mice using Magnetic Resonance Imaging (MRI). We combined deformation-based morphometry (DBM), diffusion MRI and high-resolution fiber mapping (hrFM) along with resting-state functional MRI (rs-fMRI) and demonstrated brain-wide differences in the morphology and "connectome" features of the two strains. Essential inter-strain differences were depicted regarding the size and the fiber density (FD) within frontal cortices, along cortico-striatal, thalamic and midbrain pathways as well as genu and splenium of corpus callosum. Structural dissimilarities were accompanied by specific FC patterns, emphasizing strain differences in frontal and basal forebrain functional networks as well as hubness characteristics. Rs-fMRI data further indicated differences of reward-aversion circuitry and default mode network (DMN) patterns. The inter-hemispherical FC showed flexibility and strain-specific adjustment of their patterns in agreement with the structural characteristics.
Collapse
|
10
|
Reduced axonal caliber and structural changes in a rat model of Fragile X syndrome with a deletion of a K-Homology domain of Fmr1. Transl Psychiatry 2020; 10:280. [PMID: 32788572 PMCID: PMC7423986 DOI: 10.1038/s41398-020-00943-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that is caused by mutations in the FMR1 gene. Neuroanatomical alterations have been reported in both male and female individuals with FXS, yet the morphological underpinnings of these alterations have not been elucidated. In the current study, we found structural changes in both male and female rats that model FXS, some of which are similarly impaired in both sexes, including the superior colliculus and periaqueductal gray, and others that show sex-specific changes. The splenium of the corpus callosum, for example, was only impaired in males. We also found reduced axonal caliber in the splenium, offering a mechanism for its structural changes. Furthermore, we found that overall, male rats have higher brain-wide diffusion than female rats. Our results provide insight into which brain regions are vulnerable to a loss of Fmr1 expression and reveal an impairment at the level of the axon that could cause structural changes in white matter regions.
Collapse
|
11
|
Maurin T, Melancia F, Jarjat M, Castro L, Costa L, Delhaye S, Khayachi A, Castagnola S, Mota E, Di Giorgio A, Servadio M, Drozd M, Poupon G, Schiavi S, Sardone L, Azoulay S, Ciranna L, Martin S, Vincent P, Trezza V, Bardoni B. Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome. Cereb Cortex 2020; 29:3241-3252. [PMID: 30137253 DOI: 10.1093/cercor/bhy192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in translational regulation of mRNAs that play key roles in synaptic morphology and plasticity. The functional absence of FMRP causes the fragile X syndrome (FXS), the most common form of inherited intellectual disability and the most common monogenic cause of autism. No effective treatment is available for FXS. We recently identified the Phosphodiesterase 2A (Pde2a) mRNA as a prominent target of FMRP. PDE2A enzymatic activity is increased in the brain of Fmr1-KO mice, a recognized model of FXS, leading to decreased levels of cAMP and cGMP. Here, we pharmacologically inhibited PDE2A in Fmr1-KO mice and observed a rescue both of the maturity of dendritic spines and of the exaggerated hippocampal mGluR-dependent long-term depression. Remarkably, PDE2A blockade rescued the social and communicative deficits of both mouse and rat Fmr1-KO animals. Importantly, chronic inhibition of PDE2A in newborn Fmr1-KO mice followed by a washout interval, resulted in the rescue of the altered social behavior observed in adolescent mice. Altogether, these results reveal the key role of PDE2A in the physiopathology of FXS and suggest that its pharmacological inhibition represents a novel therapeutic approach for FXS.
Collapse
Affiliation(s)
- Thomas Maurin
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | | | - Marielle Jarjat
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | - Liliana Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France.,Labex BioPsy, Paris, France
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sébastien Delhaye
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | | | - Sara Castagnola
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | - Elia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France.,Labex BioPsy, Paris, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France
| | | | - Malgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | | | - Sara Schiavi
- Department of Sciences, Università RomaTre, Roma, Italy
| | - Lara Sardone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France
| | - Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France.,Labex BioPsy, Paris, France
| | | | - Barbara Bardoni
- CNRS LIA «Neogenex», Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| |
Collapse
|
12
|
Barnett BR, Casey CP, Torres-Velázquez M, Rowley PA, Yu JPJ. Convergent brain microstructure across multiple genetic models of schizophrenia and autism spectrum disorder: A feasibility study. Magn Reson Imaging 2020; 70:36-42. [PMID: 32298718 PMCID: PMC7685399 DOI: 10.1016/j.mri.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies of psychiatric illness have revealed a broad spectrum of structural and functional perturbations that have been attributed in part to the complex genetic heterogeneity underpinning these disorders. These perturbations have been identified in both preclinical genetic models and in patients when compared to control populations, but recent work has also demonstrated strong evidence for genetic, molecular, and structural convergence of several psychiatric diseases. We explored potential similarities in neural microstructure in preclinical genetic models of ASD (Fmr1, Nrxn1, Pten) and schizophrenia (Disc1 svΔ2) and in age- and sex-matched control animals with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Our findings demonstrate a convergence in brain microstructure across these four genetic models with both tract-based and region-of-interest based analyses, which continues to buttress an emerging understanding of converging neural microstructure in psychiatric disease.
Collapse
Affiliation(s)
- Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cameron P Casey
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
13
|
Shi D, Xu S, Zhuo J, McKenna MC, Gullapalli RP. White Matter Alterations in Fmr1 Knockout Mice during Early Postnatal Brain Development. Dev Neurosci 2020; 41:274-289. [PMID: 32348987 DOI: 10.1159/000506679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 01/20/2023] Open
Abstract
Fragile X syndrome (FXS) is the most commonly inherited form of intellectual disability ascribed to the autism spectrum disorder. Studies with FXS patients have reported altered white matter volume compared to controls. The Fmr1 knockout (KO) mouse, a model for FXS, showed evidence of delayed myelination during postnatal brain development. In this study, we examined several white matter regions in the male Fmr1 KO mouse brain compared to male wild-type (WT) mice at postnatal days (PND) 18, 21, 30, and 60, which coincide with critical stages of myelination and postnatal brain development. White matter volume, T2 relaxation time, and magnetization transfer ratio (MTR) were measured using magnetic resonance imaging and myelin content was determined with histological staining of myelin. Differences in the developmental accumulation of white matter and myelin between Fmr1 KO and WT mice were observed in the corpus callosum, external and internal capsules, cerebral peduncle, and fimbria. Alterations were more predominant in the external and internal capsules and fimbria of Fmr1 KO mice, where the MTR was lower at PND 18, then elevated at PND 30, and again lower at PND 60 compared to the corresponding regions in WT mice. The pattern of changes in MTR were similar to those observed in myelin staining and could be related to the altered protein synthesis that is a hallmark of FXS. While no significant changes in white matter volumes and T2 relaxation time between the Fmr1 KO and WT mice were observed, the altered pattern of myelin staining and MTR, particularly in the external capsule, reflecting the abnormalities associated with myelin content is suggestive of a developmental delay in the white matter of Fmr1 KO mouse brain. These early differences in white matter during critical developmental stages may contribute to altered brain networks in the Fmr1 KO mice.
Collapse
Affiliation(s)
- Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA, .,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA, .,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
14
|
Salcedo-Arellano MJ, Dufour B, McLennan Y, Martinez-Cerdeno V, Hagerman R. Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiol Dis 2020; 136:104740. [PMID: 31927143 PMCID: PMC7027994 DOI: 10.1016/j.nbd.2020.104740] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
This review aims to assemble many years of research and clinical experience in the fields of neurodevelopment and neuroscience to present an up-to-date understanding of the clinical presentation, molecular and brain pathology associated with Fragile X syndrome, a neurodevelopmental condition that develops with the full mutation of the FMR1 gene, located in the q27.3 loci of the X chromosome, and Fragile X-associated tremor/ataxia syndrome a neurodegenerative disease experienced by aging premutation carriers of the FMR1 gene. It is important to understand that these two syndromes have a very distinct clinical and pathological presentation while sharing the same origin: the mutation of the FMR1 gene; revealing the complexity of expansion genetics.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA.
| | - Brett Dufour
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Yingratana McLennan
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
15
|
Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, Lugo JN. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res 2019; 157:106193. [PMID: 31520894 PMCID: PMC6823160 DOI: 10.1016/j.eplepsyres.2019.106193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and a significant genetic contributor to Autism spectrum disorder. In addition to autistic-like phenotypes, individuals with FXS are subject to developing numerous comorbidities, one of the most prevalent being seizures. In the present study, we investigated how a single early-life seizure superimposed on a genetic condition impacts the autistic-like behavioral phenotype of the mouse. We induced status epilepticus (SE) on postnatal day (PD) 10 in Fmr1 wild type (WT) and knockout (KO) mice. We then tested the mice in a battery of behavioral tests during adulthood (PD90) to examine the long-term impact of an early-life seizure. Our findings replicated prior work that reported a single instance of SE results in behavioral deficits, including increases in repetitive behavior, enhanced hippocampal-dependent learning, and reduced sociability and prepulse inhibition (p < 0.05). We also observed genotypic differences characteristic of the FXS phenotype in Fmr1 KO mice, such as enhanced prepulse inhibition and repetitive behavior, hyperactivity, and reduced startle responses (p < 0.05). Superimposing a seizure on deletion of Fmr1 significantly impacted repetitive behavior in a nosepoke task. Specifically, a single early-life seizure increased consecutive nose poking behavior in the task in WT mice (p < 0.05), yet seizures did not exacerbate the elevated stereotypy observed in Fmr1 KO mice (p > 0.05). Overall, these findings help to elucidate how seizures in a critical period of development can impact long-term behavioral manifestations caused by underlying gene mutations in Fmr1. Utilizing double-hit models, such as superimposing seizures on the Fmr1 mutation, can help to enhance our understanding of comorbidities in disease models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth TX, 76107, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - James T Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
16
|
Yi SY, Barnett BR, Yu JPJ. Preclinical neuroimaging of gene-environment interactions in psychiatric disease. Br J Radiol 2019; 92:20180885. [PMID: 30982323 PMCID: PMC6732909 DOI: 10.1259/bjr.20180885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/21/2019] [Accepted: 03/13/2019] [Indexed: 01/30/2023] Open
Abstract
Psychiatric disease is one of the leading causes of disability worldwide. Despite the global burden and need for accurate diagnosis and treatment of mental illness, psychiatric diagnosis remains largely based on patient-reported symptoms, allowing for immense symptomatic heterogeneity within a single disease. In renewed efforts towards improved diagnostic specificity and subsequent evaluation of treatment response, a greater understanding of the underlying of the neuropathology and neurobiology of neuropsychiatric disease is needed. However, dissecting these mechanisms of neuropsychiatric illness in clinical populations are problematic with numerous experimental hurdles limiting hypothesis-driven studies including genetic confounds, variable life experiences, different environmental exposures, therapeutic histories, as well as the inability to investigate deeper molecular changes in vivo . Preclinical models, where many of these confounding factors can be controlled, can serve as a crucial experimental bridge for studying the neurobiological origins of mental illness. Furthermore, although behavioral studies and molecular studies are relatively common in these model systems, focused neuroimaging studies are very rare and represent an opportunity to link the molecular changes in psychiatric illness with advanced quantitative neuroimaging studies. In this review, we present an overview of well-validated genetic and environmental models of psychiatric illness, discuss gene-environment interactions, and examine the potential role of neuroimaging towards understanding genetic, environmental, and gene-environmental contributions to psychiatric illness.
Collapse
Affiliation(s)
- Sue Y. Yi
- Neuroscience Training Program, University of Wisconsin–Madison, Wisconsin Institutes for Medical Research, Madison, USA
| | - Brian R. Barnett
- Neuroscience Training Program, University of Wisconsin–Madison, Wisconsin Institutes for Medical Research, Madison, USA
| | | |
Collapse
|
17
|
Large-scale neuroanatomical study uncovers 198 gene associations in mouse brain morphogenesis. Nat Commun 2019; 10:3465. [PMID: 31371714 PMCID: PMC6671969 DOI: 10.1038/s41467-019-11431-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/13/2019] [Indexed: 01/03/2023] Open
Abstract
Brain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here we analyze 118 neuroanatomical parameters in 1,566 mutant mouse lines and identify 198 genes whose disruptions yield NeuroAnatomical Phenotypes (NAPs), mostly affecting structures implicated in brain connectivity. Groups of functionally similar NAP genes participate in pathways involving the cytoskeleton, the cell cycle and the synapse, display distinct fetal and postnatal brain expression dynamics and importantly, their disruption can yield convergent phenotypic patterns. 17% of human unique orthologues of mouse NAP genes are known loci for cognitive dysfunction. The remaining 83% constitute a vast pool of genes newly implicated in brain architecture, providing the largest study of mouse NAP genes and pathways. This offers a complementary resource to human genetic studies and predict that many more genes could be involved in mammalian brain morphogenesis. Brain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here, authors analyzed 118 neuroanatomical parameters in 1,566 mutant mouse lines to identify 198 genes whose disruptions yield neuroanatomical phenotypes
Collapse
|
18
|
Julca DM, Diaz J, Berger S, Leon E. MAP1B related syndrome: Case presentation and review of literature. Am J Med Genet A 2019; 179:1703-1708. [PMID: 31317654 DOI: 10.1002/ajmg.a.61280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 01/10/2023]
Abstract
The microtubule-associated protein 1B (MAP1B) gene serves an important role in axonal growth and brain development. Its expression is known to be elevated in regions that retain high brain plasticity and is regulated by the fragile X mental retardation protein. MAP1B mutations have recently been associated with a phenotype including periventricular nodular heterotopia (PVNH), intellectual disability (ID), seizures, and dysmorphic features. We describe a child presenting with global developmental delays, ID, microcephaly, short stature, seizures, dysmorphic features, and prenatal alcohol exposure with a de novo nonsense MAP1B mutation (c.2035G>T, p.Glu679X) detected on whole exome sequencing (WES). His brain MRI showed PVNH and dysgenesis of the corpus callosum. While significant prenatal alcohol exposure could have modified his phenotype, we believe that this patient presents with features that cannot be explained by fetal alcohol exposure alone. This is the first case report that describes dysmorphic features associated with MAP1B mutations in detail along with supporting pictures and review of previous reported phenotypes. This case not only highlights the value of WES as a screening tool for unrecognized syndromes, but also supports the need for a better description of the phenotype associated with newly detected genetic syndromes by molecular screening.
Collapse
Affiliation(s)
- Diana M Julca
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia
| | - Jullianne Diaz
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia
| | - Seth Berger
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia
| | - Eyby Leon
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
19
|
Cogram P, Deacon RMJ, Warner-Schmidt JL, von Schimmelmann MJ, Abrahams BS, During MJ. Gaboxadol Normalizes Behavioral Abnormalities in a Mouse Model of Fragile X Syndrome. Front Behav Neurosci 2019; 13:141. [PMID: 31293404 PMCID: PMC6603241 DOI: 10.3389/fnbeh.2019.00141] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS. Deficits in GABA machinery have been observed in a mouse model of FXS, including a loss of tonic inhibition in the amygdala, which is mediated by extrasynaptic GABAA receptors. Humans with FXS also show reduced GABAA receptor availability. Here, we sought to evaluate the potential of gaboxadol (also called OV101 and THIP), a selective and potent agonist for delta-subunit-containing extrasynaptic GABAA receptors (dSEGA), as a therapeutic agent for FXS by assessing its ability to normalize aberrant behaviors in a relatively uncharacterized mouse model of FXS (Fmr1 KO2 mice). Four behavioral domains (hyperactivity, anxiety, aggression, and repetitive behaviors) were probed using a battery of behavioral assays. The results showed that Fmr1 KO2 mice were hyperactive, had abnormal anxiety-like behavior, were more irritable and aggressive, and had an increased frequency of repetitive behaviors compared to wild-type (WT) littermates, which are all behavioral deficits reminiscent of individuals with FXS. Treatment with gaboxadol normalized all of the aberrant behaviors observed in Fmr1 KO2 mice back to WT levels, providing evidence of its potential benefit for treating FXS. We show that the potentiation of extrasynaptic GABA receptors alone, by gaboxadol, is sufficient to normalize numerous behavioral deficits in the FXS model using endpoints that are directly translatable to the clinical presentation of FXS. Taken together, these data support the future evaluation of gaboxadol in individuals with FXS, particularly with regard to symptoms of hyperactivity, anxiety, irritability, aggression, and repetitive behaviors.
Collapse
Affiliation(s)
- Patricia Cogram
- FRAXA-DVI, FRAXA Research Foundation, Boston, MA, United States.,Centre for Systems Biotechnology, Biomedicine Division, Fraunhofer-Gesellschaft, Santiago, Chile.,GEN.DDI Limited, London, United Kingdom.,Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | - Robert M J Deacon
- FRAXA-DVI, FRAXA Research Foundation, Boston, MA, United States.,Centre for Systems Biotechnology, Biomedicine Division, Fraunhofer-Gesellschaft, Santiago, Chile.,GEN.DDI Limited, London, United Kingdom.,Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | | | | | - Brett S Abrahams
- Ovid Therapeutics, New York, NY, United States.,Department of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Matthew J During
- Ovid Therapeutics, New York, NY, United States.,Department of Neurological Surgery and Molecular Virology, Immunology and Medical Genetics, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
20
|
Lee FHF, Lai TKY, Su P, Liu F. Altered cortical Cytoarchitecture in the Fmr1 knockout mouse. Mol Brain 2019; 12:56. [PMID: 31200759 PMCID: PMC6570929 DOI: 10.1186/s13041-019-0478-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by silencing of the FMR1 gene and subsequent loss of its protein product, fragile X retardation protein (FMRP). One of the most robust neuropathological findings in post-mortem human FXS and Fmr1 KO mice is the abnormal increase in dendritic spine densities, with the majority of spines showing an elongated immature morphology. However, the exact mechanisms of how FMRP can regulate dendritic spine development are still unclear. Abnormal dendritic spines can result from disturbances of multiple factors during neurodevelopment, such as alterations in neuron numbers, position and glial cells. In this study, we undertook a comprehensive histological analysis of the cerebral cortex in Fmr1 KO mice. They displayed significantly fewer neuron and PV-interneuron numbers, along with altered cortical lamination patterns. In terms of glial cells, Fmr1 KO mice exhibited an increase in Olig2-oligodendrocytes, which corresponded to the abnormally higher myelin expression in the corpus callosum. Iba1-microglia were significantly reduced but GFAP-astrocyte numbers and intensity were elevated. Using primary astrocytes derived from KO mice, we further demonstrated the presence of astrogliosis characterized by an increase in GFAP expression and astrocyte hypertrophy. Our findings provide important information on the cortical architecture of Fmr1 KO mice, and insights towards possible mechanisms associated with FXS.
Collapse
Affiliation(s)
- Frankie H F Lee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Terence K Y Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, M5T 1R8, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
21
|
Zafarullah M, Tassone F. Molecular Biomarkers in Fragile X Syndrome. Brain Sci 2019; 9:E96. [PMID: 31035599 PMCID: PMC6562871 DOI: 10.3390/brainsci9050096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability (ID) and a known monogenic cause of autism spectrum disorder (ASD). It is a trinucleotide repeat disorder, in which more than 200 CGG repeats in the 5' untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene causes methylation of the promoter with consequent silencing of the gene, ultimately leading to the loss of the encoded fragile X mental retardation 1 protein, FMRP. FMRP is an RNA binding protein that plays a primary role as a repressor of translation of various mRNAs, many of which are involved in the maintenance and development of neuronal synaptic function and plasticity. In addition to intellectual disability, patients with FXS face several behavioral challenges, including anxiety, hyperactivity, seizures, repetitive behavior, and problems with executive and language performance. Currently, there is no cure or approved medication for the treatment of the underlying causes of FXS, but in the past few years, our knowledge about the proteins and pathways that are dysregulated by the loss of FMRP has increased, leading to clinical trials and to the path of developing molecular biomarkers for identifying potential targets for therapies. In this paper, we review candidate molecular biomarkers that have been identified in preclinical studies in the FXS mouse animal model and are now under validation for human applications or have already made their way to clinical trials.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|
22
|
Abnormal repetitive behaviors in zebrafish and their relevance to human brain disorders. Behav Brain Res 2019; 367:101-110. [PMID: 30926483 DOI: 10.1016/j.bbr.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/01/2023]
Abstract
Abnormal repetitive behaviors (ARBs) are a prominent symptom of numerous human brain disorders and are commonly seen in rodent models as well. While rodent studies of ARBs continue to dominate the field, mounting evidence suggests that zebrafish (Danio rerio) also display ARB-like phenotypes and may therefore be a novel model organism for ARB research. In addition to clear practical research advantages as a model species, zebrafish share high genetic and physiological homology to humans and rodents, including multiple ARB-related genes and robust behaviors relevant to ARB. Here, we discuss a wide spectrum of stereotypic repetitive behaviors in zebrafish, data on their genetic and pharmacological modulation, and the overall translational relevance of fish ARBs to modeling human brain disorders. Overall, the zebrafish is rapidly emerging as a new promising model to study ARBs and their underlying mechanisms.
Collapse
|
23
|
Angelakos CC, Tudor JC, Ferri SL, Jongens TA, Abel T. Home-cage hypoactivity in mouse genetic models of autism spectrum disorder. Neurobiol Learn Mem 2019; 165:107000. [PMID: 30797034 DOI: 10.1016/j.nlm.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/28/2018] [Accepted: 02/19/2019] [Indexed: 11/16/2022]
Abstract
Genome-wide association and whole exome sequencing studies from Autism Spectrum Disorder (ASD) patient populations have implicated numerous risk factor genes whose mutation or deletion results in significantly increased incidence of ASD. Behavioral studies of monogenic mutant mouse models of ASD-associated genes have been useful for identifying aberrant neural circuitry. However, behavioral results often differ from lab to lab, and studies incorporating both males and females are often not performed despite the significant sex-bias of ASD. In this study, we sought to investigate the simple, passive behavior of home-cage activity monitoring across multiple 24-h days in four different monogenic mouse models of ASD: Shank3b-/-, Cntnap2-/-, Pcdh10+/-, and Fmr1 knockout mice. Relative to sex-matched wildtype (WT) littermates, we discovered significant home-cage hypoactivity, particularly in the dark (active) phase of the light/dark cycle, in male mice of all four ASD-associated transgenic models. For Cntnap2-/- and Pcdh10+/- mice, these activity alterations were sex-specific, as female mice did not exhibit home-cage activity differences relative to sex-matched WT controls. These home-cage hypoactivity alterations differ from activity findings previously reported using short-term activity measurements in a novel open field. Despite circadian problems reported in human ASD patients, none of the mouse models studied had alterations in free-running circadian period. Together, these findings highlight a shared phenotype across several monogenic mouse models of ASD, outline the importance of methodology on behavioral interpretation, and in some genetic lines parallel the male-enhanced phenotypic presentation observed in human ASDs.
Collapse
Affiliation(s)
- Christopher C Angelakos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, United States
| | - Sarah L Ferri
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Thomas A Jongens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
24
|
Rowley PA, Guerrero-Gonzalez J, Alexander AL, Yu JPJ. Convergent microstructural brain changes across genetic models of autism spectrum disorder-A pilot study. Psychiatry Res Neuroimaging 2019; 283:83-91. [PMID: 30557783 PMCID: PMC6398946 DOI: 10.1016/j.pscychresns.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Autism spectrum disorder (ASD) is a complex and genetically heterogeneous neuropsychiatric disease affecting as many as 1 in 68 children. Large scale genetic sequencing of individuals along the autism spectrum has uncovered several genetic risk factors for ASD; however, understanding how, and to what extent, individual genes contribute to the overall disease phenotype remains unclear. Neuroimaging studies of ASD have revealed a wide spectrum of structural and functional perturbations that are thought to reflect, in part, the complex genetic heterogeneity underpinning ASD. These perturbations, in both preclinical models and clinical patients, were identified in preclinical genetic models and ASD patients when compared to control populations; however, few studies have directly explored intrinsic differences between the models themselves. To better understand the degree and extent to which individual genes associated with ASD differ in their contribution to global measures of white matter microstructure, diffusion tensor imaging (DTI) was acquired from three novel rat genetic models of ASD (Fmr1, Nrxn1, and Pten) and DTI parameters of fractional anisotropy, mean, axial, and radial diffusivity were measured. Subsequent whole-brain voxel-wise analysis comparing each genetic model to each other (Fmr1:Nrxn1; Fmr1:Pten; Nrxn1:Pten) identified no significant differences in any comparison for all diffusion parameters assessed (FA, AD, MD, RD).
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jose Guerrero-Gonzalez
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Andrew L Alexander
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Psychiatry, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706 USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705 USA.
| |
Collapse
|
25
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
26
|
Walters GB, Gustafsson O, Sveinbjornsson G, Eiriksdottir VK, Agustsdottir AB, Jonsdottir GA, Steinberg S, Gunnarsson AF, Magnusson MI, Unnsteinsdottir U, Lee AL, Jonasdottir A, Sigurdsson A, Jonasdottir A, Skuladottir A, Jonsson L, Nawaz MS, Sulem P, Frigge M, Ingason A, Love A, Norddhal GL, Zervas M, Gudbjartsson DF, Ulfarsson MO, Saemundsen E, Stefansson H, Stefansson K. MAP1B mutations cause intellectual disability and extensive white matter deficit. Nat Commun 2018; 9:3456. [PMID: 30150678 PMCID: PMC6110722 DOI: 10.1038/s41467-018-05595-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
Discovery of coding variants in genes that confer risk of neurodevelopmental disorders is an important step towards understanding the pathophysiology of these disorders. Whole-genome sequencing of 31,463 Icelanders uncovers a frameshift variant (E712KfsTer10) in microtubule-associated protein 1B (MAP1B) that associates with ID/low IQ in a large pedigree (genome-wide corrected P = 0.022). Additional stop-gain variants in MAP1B (E1032Ter and R1664Ter) validate the association with ID and IQ. Carriers have 24% less white matter (WM) volume (β = −2.1SD, P = 5.1 × 10−8), 47% less corpus callosum (CC) volume (β = −2.4SD, P = 5.5 × 10−10) and lower brain-wide fractional anisotropy (P = 6.7 × 10−4). In summary, we show that loss of MAP1B function affects general cognitive ability through a profound, brain-wide WM deficit with likely disordered or compromised axons. Intellectual disability (ID) is characterized by an intelligence quotient of below 70 and impaired adaptive skills. Here, analyzing whole genome sequences from 31,463 Icelanders, Walters et al. identify variants in MAP1B associated with ID and extensive brain-wide white matter deficits.
Collapse
Affiliation(s)
- G Bragi Walters
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | | | | | | | | | | | | | | | | | | | - Amy L Lee
- deCODE genetics/Amgen, Reykjavik, 101, Iceland
| | | | | | | | | | - Lina Jonsson
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Muhammad S Nawaz
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | | | - Mike Frigge
- deCODE genetics/Amgen, Reykjavik, 101, Iceland
| | | | - Askell Love
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.,Department of Radiology, Landspitali University Hospital, Fossvogur, Reykjavik, 108, Iceland
| | | | - Mark Zervas
- deCODE genetics/Amgen, Reykjavik, 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Magnus O Ulfarsson
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, 101, Iceland
| | - Evald Saemundsen
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.,The State Diagnostic and Counselling Centre, Kopavogur, 200, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, 101, Iceland. .,Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.
| |
Collapse
|
27
|
Faundez V, De Toma I, Bardoni B, Bartesaghi R, Nizetic D, de la Torre R, Cohen Kadosh R, Herault Y, Dierssen M, Potier MC. Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. Eur Neuropsychopharmacol 2018; 28:675-690. [PMID: 29887288 DOI: 10.1016/j.euroneuro.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Ongoing treatments for genetic developmental disorders of the central nervous system are mostly symptomatic and do not correct the genetic cause. Recent identification of common mechanisms between diseases has suggested that new therapeutic targets could be applied across intellectual disabilities with potential disease-modifying properties. The European Down syndrome and other genetic developmental disorders (DSG2D) network joined basic and clinical scientists to foster this research and carry out clinical trials. Here we discuss common mechanisms between several intellectual disabilities from genetic origin including Down's and Fragile X syndromes: i) how to model these complex diseases using neuronal cells and brain organoids derived from induced pluripotent stem cells; ii) how to integrate genomic, proteomic and interactome data to help defining common mechanisms and boundaries between diseases; iii) how to target common pathways for designing clinical trials and assessing their efficacy; iv) how to bring new neuro-therapies, such as noninvasive brain stimulations and cognitive training to clinical research. The basic and translational research efforts of the last years have utterly transformed our understanding of the molecular pathology of these diseases but much is left to be done to bring them to newborn babies and children to improve their quality of life.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Ilario De Toma
- Cellular and Systems Neurobiology, Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red CIBERER, Spain
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| | - Renata Bartesaghi
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Barts and The London School of Medicine, Queen Mary University of London, United Kingdom
| | - Rafael de la Torre
- Integrated Pharmacology and Neurosciences Systems Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; CIBEROBN, Madrid, Spain
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red CIBERER, Spain.
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France.
| |
Collapse
|
28
|
Yee Y, Fernandes DJ, French L, Ellegood J, Cahill LS, Vousden DA, Spencer Noakes L, Scholz J, van Eede MC, Nieman BJ, Sled JG, Lerch JP. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity. Neuroimage 2018; 179:357-372. [PMID: 29782994 DOI: 10.1016/j.neuroimage.2018.05.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/13/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
Abstract
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance.
Collapse
Affiliation(s)
- Yohan Yee
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Darren J Fernandes
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leon French
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dulcie A Vousden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jan Scholz
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthijs C van Eede
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Copping NA, Christian SGB, Ritter DJ, Islam MS, Buscher N, Zolkowska D, Pride MC, Berg EL, LaSalle JM, Ellegood J, Lerch JP, Reiter LT, Silverman JL, Dindot SV. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Hum Mol Genet 2017; 26:3995-4010. [PMID: 29016856 PMCID: PMC5886211 DOI: 10.1093/hmg/ddx289] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 01/07/2023] Open
Abstract
Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features. Dup15q syndrome is one of the most common and penetrant chromosomal abnormalities observed in individuals with autism spectrum disorder (ASD). Although ∼40 genes are located in the 15q11.2-q13.3 region, overexpression of the ubiquitin-protein E3A ligase (UBE3A) gene is thought to be the predominant molecular cause of the phenotypes observed in Dup15q syndrome. The UBE3A gene demonstrates maternal-specific expression in neurons and loss of maternal UBE3A causes Angelman syndrome, a neurodevelopmental disorder with some overlapping neurological features to Dup15q. To directly test the hypothesis that overexpression of UBE3A is an important underlying molecular cause of neurodevelopmental dysfunction, we developed and characterized a mouse overexpressing Ube3a isoform 2 in excitatory neurons. Ube3a isoform 2 is conserved between mouse and human and known to play key roles in neuronal function. Transgenic mice overexpressing Ube3a isoform 2 in excitatory forebrain neurons exhibited increased anxiety-like behaviors, learning impairments, and reduced seizure thresholds. However, these transgenic mice displayed normal social approach, social interactions, and repetitive motor stereotypies that are relevant to ASD. Reduced forebrain, hippocampus, striatum, amygdala, and cortical volume were also observed. Altogether, these findings show neuronal overexpression of Ube3a isoform 2 causes phenotypes translatable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nycole A Copping
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Dylan J Ritter
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Texas A&M, College Station, TX, USA
| | - M Saharul Islam
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Nathalie Buscher
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Dorota Zolkowska
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Michael C Pride
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Elizabeth L Berg
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Janine M LaSalle
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Jacob Ellegood
- The Hospital for Sick Children, Mouse Imaging Centre, Toronto, ON, Canada
| | - Jason P Lerch
- The Hospital for Sick Children, Mouse Imaging Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lawrence T Reiter
- Departments of Neurology, Pediatrics and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jill L Silverman
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | | |
Collapse
|
30
|
Rogers TD, Anacker AMJ, Kerr TM, Forsberg CG, Wang J, Zhang B, Veenstra-VanderWeele J. Effects of a social stimulus on gene expression in a mouse model of fragile X syndrome. Mol Autism 2017. [PMID: 28649315 PMCID: PMC5481916 DOI: 10.1186/s13229-017-0148-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND People with fragile X syndrome (FXS) often have deficits in social behavior, and a substantial portion meet criteria for autism spectrum disorder. Though the genetic cause of FXS is known to be due to the silencing of FMR1, and the Fmr1 null mouse model representing this lesion has been extensively studied, the contributions of this gene and its protein product, FMRP, to social behavior are not well understood. METHODS Fmr1 null mice and wildtype littermates were exposed to a social or non-social stimulus. In one experiment, subjects were assessed for expression of the inducible transcription factor c-Fos in response to the stimulus, to detect brain regions with social-specific activity. In a separate experiment, tissue was taken from those brain regions showing differential activity, and RNA sequencing was performed. RESULTS Immunohistochemistry revealed a significantly greater number of c-Fos-positive cells in the lateral amygdala and medial amygdala in the brains of mice exposed to a social stimulus, compared to a non-social stimulus. In the prelimbic cortex, there was no significant effect of social stimulus; although the number of c-Fos-positive cells was lower in the social condition compared to the non-social condition, and negatively correlated with c-Fos in the amygdala. RNA sequencing revealed differentially expressed genes enriched for molecules known to interact with FMRP and also for autism-related genes identified in the Simons Foundation Autism Research Initiative gene database. Ingenuity Pathway Analysis detected enrichment of differentially expressed genes in networks and pathways related to neuronal development, intracellular signaling, and inflammatory response. CONCLUSIONS Using the Fmr1 null mouse model of fragile X syndrome, we have identified brain regions, gene networks, and molecular pathways responsive to a social stimulus. These findings, and future experiments following up on the role of specific gene networks, may shed light on the neural mechanisms underlying dysregulated social behaviors in fragile X syndrome and more broadly.
Collapse
Affiliation(s)
- Tiffany D Rogers
- Department of Psychiatry, Vanderbilt University, 7158 MRBIII, 465 21st Avenue South, Nashville, TN 37232 USA.,Department of Psychology, Middle Tennessee State University, 355 Jones Hall, 624 Old Main Circle, Murfreesboro, TN 37132 USA
| | - Allison M J Anacker
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, 1051 Riverside Dr, Unit 78, New York, NY 10032 USA
| | - Travis M Kerr
- The University of Tennessee Health Science Center College of Medicine, 910 Madison Ave, Suite 1002, Memphis, TN 38163 USA
| | - C Gunnar Forsberg
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jing Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030 USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030 USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, 1051 Riverside Dr, Unit 78, New York, NY 10032 USA
| |
Collapse
|
31
|
Hodges SL, Nolan SO, Reynolds CD, Lugo JN. Spectral and temporal properties of calls reveal deficits in ultrasonic vocalizations of adult Fmr1 knockout mice. Behav Brain Res 2017; 332:50-58. [PMID: 28552599 DOI: 10.1016/j.bbr.2017.05.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
The Fmr1 knockout (KO) mouse has commonly been used to investigate communication impairments, one of the key diagnostic symptoms observed in Fragile X syndrome (FXS) and Autism spectrum disorder (ASD). Many studies have found alterations in ultrasonic vocalizations (USVs) in neonatal Fmr1 KO mice, however, there is limited research investigating whether these deficits continue into adulthood. In the present study, we examine differences in female urine-induced ultrasonic vocalizations, scent marking behavior, odor discrimination, and open field activity in adult male Fmr1 KO and wildtype (WT) mice. Overall, we found extensive alterations between genotypes in both spectral and temporal properties of ultrasonic vocalizations. There was no difference in the average number of calls emitted by both genotypes, however, Fmr1 KO mice emitted calls of a higher frequency, decreased amplitude, and shorter duration than WT mice. Spectrographic analyses revealed statistically significant differences between genotypes in the types of calls emitted. Contrastingly, we found no differences in scent marking behavior, a form of social communication, or in odor discrimination and activity levels of the mice. The results corroborate previous studies emphasizing the importance of qualitative differences observed in vocalization behavior of Fmr1 KO mice, rather than quantitative measurements such as number of calls emitted. Overall, the study confirms the presence of abnormalities in vocalization behavior in adult Fmr1 KO mice that we believe are consistent with communication deficits seen in the syndrome.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
32
|
Gerván P, Soltész P, Filep O, Berencsi A, Kovács I. Posterior-Anterior Brain Maturation Reflected in Perceptual, Motor and Cognitive Performance. Front Psychol 2017; 8:674. [PMID: 28512442 PMCID: PMC5411422 DOI: 10.3389/fpsyg.2017.00674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
Based on several postmortem morphometric and in vivo imaging studies it has been postulated that brain maturation roughly follows a caudal to rostral direction. In this study, we linked this maturational pattern to psychological function employing a series of well-established behavioral tasks. We addressed three distinct functions and brain regions with a perceptual (contour integration, CI), motor (finger tapping, FT), and executive control (Navon global–local) task. Our purpose was to investigate basic visual integration functions relying on primary visual cortex (V1) in CI; motor coordination function related to primary motor cortex (M1) in FT, and the executive control component, switching, related to the dorsolateral prefrontal region of the brain in the Navon task. 122 volunteer subjects were recruited to participate in this study between the ages of 10 and 20 (females n = 63, males n = 59). Employing conventional statistical methods, we found that 10 and 12 year olds are performing significantly weaker than 20 year olds in all three tasks. In the CI and Navon global–local tasks, even 14 years old perform poorer than adults. We have also investigated the developmental trajectories by fitting sigmoid curves on our data streams. The analysis of the developmental trajectories of the three tasks showed a posterior to anterior pattern in the emergence of the developmental functions with the earliest development in the visual CI task (V1), followed by motor development in the FT task (M1), and cognitive development as measured in the Navon global–local task (DLPC) being the slowest. Gender difference was also present in FT task showing an earlier maturation for girls in the motor domain.
Collapse
Affiliation(s)
- Patrícia Gerván
- Department of General Psychology, Institute of Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary.,Laboratory for Psychological Research, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Péter Soltész
- Laboratory for Psychological Research, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Orsolya Filep
- Laboratory for Psychological Research, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Andrea Berencsi
- Laboratory for Psychological Research, Pázmány Péter Catholic UniversityBudapest, Hungary.,Bárczi Gusztáv Faculty of Special Education, Institute for Methodology of Special Education and Rehabilitation, Eötvös Loránd UniversityBudapest, Hungary
| | - Ilona Kovács
- Department of General Psychology, Institute of Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary.,Laboratory for Psychological Research, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
33
|
Zorio DAR, Jackson CM, Liu Y, Rubel EW, Wang Y. Cellular distribution of the fragile X mental retardation protein in the mouse brain. J Comp Neurol 2017; 525:818-849. [PMID: 27539535 PMCID: PMC5558202 DOI: 10.1002/cne.24100] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/07/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known. In this study we used FMR1 knockout and isogenic wildtype mice to systematically map the distribution of FMRP expression in the entire mouse brain. Using immunocytochemistry and cellular quantification analyses, we identified a large number of prominent cell groups expressing high levels of FMRP at the subcortical levels, in particular sensory and motor neurons in the brainstem and thalamus. In contrast, many cell groups in the midbrain and hypothalamus exhibit low FMRP levels. More important, we describe differential patterns of FMRP distribution in both cortical and subcortical brain regions. Almost all major brain areas contain high and low levels of FMRP cell groups adjacent to each other or between layers of the same cortical areas. These differential patterns indicate that FMRP expression appears to be specific to individual neuronal cell groups instead of being associated with all neurons in distinct brain regions, as previously considered. Taken together, these findings support the notion of FMRP differential neuronal regulation and strongly implicate the contribution of fundamental sensory and motor processing at subcortical levels to FXS pathology. J. Comp. Neurol. 525:818-849, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A. R. Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Christine M. Jackson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Box 357923, Seattle, WA 98195, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
34
|
Bardoni B, Capovilla M, Lalli E. Modeling Fragile X syndrome in neurogenesis: An unexpected phenotype and a novel tool for future therapies. NEUROGENESIS 2017; 4:e1270384. [PMID: 28203608 DOI: 10.1080/23262133.2016.1270384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
FMRP is an RNA-binding protein involved in synaptic translation. Its absence causes a form of intellectual disability, the Fragile X syndrome (FXS). Small neuroanatomical abnormalities, present both in human and mouse FMRP-deficient brains, suggest a subtle critical role of this protein in neurogenesis. Stable depletion of FMRP has been obtained in a mouse embryonic stem cell line Fmr1 (shFmr1 ES) that does not display morphological alterations, but an abnormal expression of a subset of genes mainly involved in neuronal differentiation and maturation. Inducing the differentiation of shFmr1 ES cells into the neuronal lineage results in an accelerated generation of neural progenitors and neurons during the first steps of neurogenesis. This transient phenotype is due to an elevated level of the Amyloid Precursor Protein (APP), whose mRNA is a target of FMRP. APP is processed by the BACE-1 enzyme, producing the β-amyloid (Aβ) peptide accelerating neurogenesis by activating the expression of Ascll. Inhibition of the BACE-1 enzyme rescues the phenotype of shFmr1 ES cells. Here we discuss the importance of the shFmr1 ES line not only to understand the physiopathology of FXS but also as a tool to screen biomolecules for new FXS therapies.
Collapse
Affiliation(s)
- Barbara Bardoni
- Université Côte d'Azur, Nice, France; CNRS UMR7275, Institut of Molecular and Cellular Pharmacology, Valbonne, France; CNRS LIA « NEOGENEX », Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, Nice, France; UMR 1355-7254 INRA/CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Enzo Lalli
- Université Côte d'Azur, Nice, France; CNRS UMR7275, Institut of Molecular and Cellular Pharmacology, Valbonne, France; CNRS LIA « NEOGENEX », Valbonne, France
| |
Collapse
|
35
|
Khalfallah O, Jarjat M, Davidovic L, Nottet N, Cestèle S, Mantegazza M, Bardoni B. Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis. Stem Cells 2016; 35:374-385. [PMID: 27664080 DOI: 10.1002/stem.2505] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/07/2016] [Accepted: 08/30/2016] [Indexed: 01/14/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.
Collapse
Affiliation(s)
- Olfa Khalfallah
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Nicolas Nottet
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Sandrine Cestèle
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Massimo Mantegazza
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| |
Collapse
|
36
|
Ma Y, Tian S, He S, Chen Q, Wang Z, Xiao X, Fu L, Lei X. The mechanism of action of FXR1P-related miR-19b-3p in SH-SY5Y. Gene 2016; 588:62-8. [DOI: 10.1016/j.gene.2016.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/19/2016] [Indexed: 11/28/2022]
|