1
|
Fort TD, Azuma MC, Laux DA, Cain ME. Environmental enrichment and sex, but not n-acetylcysteine, alter extended-access amphetamine self-administration and cue-seeking. Behav Brain Res 2025; 476:115261. [PMID: 39313073 PMCID: PMC11513240 DOI: 10.1016/j.bbr.2024.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
There are no approved therapeutics for psychostimulant use and recurrence of psychostimulant use. However, in preclinical rodent models environmental enrichment can decrease psychostimulant self-administration of low unit doses and cue-induced amphetamine seeking. We have previously demonstrated that glutamate-dependent therapeutics are able to alter amphetamine seeking to amphetamine-associated cues only in enriched rats. In the current experiment, we will determine if enrichment can attenuate responding and cue-induced amphetamine seeking during extended access to a high dose of intravenous amphetamine. We will also determine if N-acetylcysteine (NAC), a glutamate dependent therapeutic, can attenuate amphetamine seeking in differentially reared rats. Female and male Sprague-Dawley rats were reared in enriched, isolated, or standard conditions from postnatal day 21-51. Rats were trained to self-administer intravenous amphetamine (0.1 mg/kg/infusion) during twelve 6-hour sessions. During the abstinence period, NAC (100 mg/kg) or saline was administered daily. Following a cue-induced amphetamine-seeking test, astrocyte densities within regions of the medial prefrontal cortex (mPFC) and nucleus accumbens (ACb) were quantified using immunohistochemistry. Environmental enrichment decreased responding for amphetamine and during the cue-induced amphetamine-seeking test. NAC did not attenuate cue-induced amphetamine seeking or alter astrocyte density. Across all groups, female rats self-administered less amphetamine but responded more during cue-induced amphetamine seeking than male rats. While amphetamine increased astrocyte densities within the ACb and mPFC, it did not alter mPFC astrocyte densities in female rats. The results suggest that enrichment can attenuate responding during extended access to a high dose of amphetamine and the associated cues. Sex alters amphetamine-induced changes to astrocyte densities in a regionally specific matter.
Collapse
Affiliation(s)
- Troy D Fort
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS 66506-5302, USA
| | - Miki C Azuma
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS 66506-5302, USA
| | - Dylan A Laux
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS 66506-5302, USA
| | - Mary E Cain
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS 66506-5302, USA.
| |
Collapse
|
2
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Oginga FO, Mpofana T. Understanding the role of early life stress and schizophrenia on anxiety and depressive like outcomes: An experimental study. Behav Brain Res 2024; 470:115053. [PMID: 38768688 DOI: 10.1016/j.bbr.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Adverse experiences due to early life stress (ELS) or parental psychopathology such as schizophrenia (SZ) have a significant implication on individual susceptibility to psychiatric disorders in the future. However, it is not fully understood how ELS affects social-associated behaviors as well as the developing prefrontal cortex (PFC). OBJECTIVE The aim of this study was to investigate the impact of ELS and ketamine induced schizophrenia like symptoms (KSZ) on anhedonia, social behavior and anxiety-like behavior. METHODS Male and female Sprague-Dawley rat pups were allocated randomly into eight experimental groups, namely control, gestational stress (GS), GS+KSZ, maternal separation (MS), MS+KSZ pups, KSZ parents, KSZ parents and Pups and KSZ pups only. ELS was induced by subjecting the pups to GS and MS, while schizophrenia like symptoms was induced through subcutaneous administration of ketamine. Behavioral assessment included sucrose preference test (SPT) and elevated plus maze (EPM), followed by dopamine testing and analysis of astrocyte density. Statistical analysis involved ANOVA and post hoc Tukey tests, revealing significant group differences and yielding insights into behavioral and neurodevelopmental impacts. RESULTS GS, MS, and KSZ (dams) significantly reduced hedonic response and increased anxiety-like responses (p < 0.05). Notably, the presence of normal parental mental health demonstrated a reversal of the observed decline in Glial Fibrillary Acidic Protein-positive astrocytes (GFAP+ astrocytes) (p < 0.05) and a reduction in anxiety levels, implying its potential protective influence on depressive-like symptoms and PFC astrocyte functionality. CONCLUSION The present study provides empirical evidence supporting the hypothesis that exposure to ELS and KSZ on dams have a significant impact on the on development of anxiety and depressive like symptoms in Sprague Dawley rats, while positive parenting has a reversal effect.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; Department of Clinical Medicine, School of Medicine and Health Science, Kabarak University, Nakuru 20157, Kenya.
| | - Thabisile Mpofana
- Department of Human Physiology, Faculty of Health Sciences North West University, Potchefstroom campus, 11 Hoffman St., Potchefstroom 2531, South Africa
| |
Collapse
|
4
|
Farmer AL, Lewis MH. Reduction of restricted repetitive behavior by environmental enrichment: Potential neurobiological mechanisms. Neurosci Biobehav Rev 2023; 152:105291. [PMID: 37353046 DOI: 10.1016/j.neubiorev.2023.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Restricted repetitive behaviors (RRB) are one of two diagnostic criteria for autism spectrum disorder and common in other neurodevelopmental and psychiatric disorders. The term restricted repetitive behavior refers to a wide variety of inflexible patterns of behavior including stereotypy, self-injury, restricted interests, insistence on sameness, and ritualistic and compulsive behavior. However, despite their prevalence in clinical populations, their underlying causes remain poorly understood hampering the development of effective treatments. Intriguingly, numerous animal studies have demonstrated that these behaviors are reduced by rearing in enriched environments (EE). Understanding the processes responsible for the attenuation of repetitive behaviors by EE should offer insights into potential therapeutic approaches, as well as shed light on the underlying neurobiology of repetitive behaviors. This review summarizes the current knowledge of the relationship between EE and RRB and discusses potential mechanisms for EE's attenuation of RRB based on the broader EE literature. Existing gaps in the literature and future directions are also discussed.
Collapse
Affiliation(s)
- Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Vaquero-Rodríguez A, Ortuzar N, Lafuente JV, Bengoetxea H. Enriched environment as a nonpharmacological neuroprotective strategy. Exp Biol Med (Maywood) 2023; 248:553-560. [PMID: 37309729 PMCID: PMC10350798 DOI: 10.1177/15353702231171915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
The structure and functions of the central nervous system are influenced by environmental stimuli, which also play an important role in brain diseases. Enriched environment (EE) consists of producing modifications in the environment of standard laboratory animals to induce an improvement in their biological conditions. This paradigm promotes transcriptional and translational effects that result in ameliorated motor, sensory, and cognitive stimulation. EE has been shown to enhance experience-dependent cellular plasticity and cognitive performance in animals housed under these conditions compared with animals housed under standard conditions. In addition, several studies claim that EE induces nerve repair by restoring functional activities through morphological, cellular, and molecular adaptations in the brain that have clinical relevance in neurological and psychiatric disorders. In fact, the effects of EE have been studied in different animal models of psychiatric and neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, ischemic brain injury, or traumatic brain injury, delaying the onset and progression of a wide variety of symptoms of these disorders. In this review, we analyze the action of EE focused on diseases of the central nervous system and the translation to humans to develop a bridge to its application.
Collapse
Affiliation(s)
- Andrea Vaquero-Rodríguez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Naiara Ortuzar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - José Vicente Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
6
|
Shixing X, Xueyan H, Yuan R, Wei T, Wei W. Enriched environment can reverse chronic sleep deprivation-induced damage to cellular plasticity in the dentate gyrus of the hippocampus. Transl Neurosci 2023; 14:20220280. [PMID: 36969794 PMCID: PMC10031502 DOI: 10.1515/tnsci-2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
Objective We studied whether enriched environment (EE), a classic epigenetics paradigm, can prevent cellular plasticity damage caused by chronic sleep deprivation (SD). Methods We performed SD in mice by a modified multi-platform method (MMPM). Mice in the SD group were deprived of sleep for 18 h a day. In addition, half of the mice in the chronic SD group were exposed to EE stimuli for 6 h per day. Immunostaining analyzed neurogenesis and neural progenitor cell-differentiated phenotypes in the hippocampal dentate gyrus (DG) region. Result At 13 weeks, compared with the control group, SD severely impaired the proliferation and differentiation of neural stem cells, and EE completely reversed the process. SD can induce gliosis in the mouse hippocampus, and EE can delay the process. Conclusion: Our results suggest that chronic SD may damage the neurogenesis in the DG of the hippocampus. However, enrichment stimulation can reverse the processing by promoting neuronal repair related to neuronal plasticity.
Collapse
Affiliation(s)
- Xue Shixing
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Hou Xueyan
- Department of Medical Imaging, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Ren Yuan
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Tang Wei
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Wang Wei
- Department of Rehabilitation Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
7
|
Haratizadeh S, Ranjbar M, Basiri M, Nozari M. Astrocyte responses to postnatal erythropoietin and nano-erythropoietin treatments in a valproic acid-induced animal model of autism. J Chem Neuroanat 2023; 130:102257. [PMID: 36918074 DOI: 10.1016/j.jchemneu.2023.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Despite ample evidence of the potential protective effects of erythropoietin (EPO) on the developing brain, no study has addressed the effects of postnatal EPO on behaviors and brain tissue of animal models of autism. In the present study, we examined the therapeutic effects of postnatal erythropoietin on stereotypic behaviors and astrocyte responses via glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100B) immunohistochemistry in a valproic acid (VPA) animal model of autism. Also, we compared the effects of EPO with EPO-loaded solid lipid nanoparticles (NEPO) because the blood-brain barrier has limited permeability to EPO. METHODS Pregnant rats received a single dose of VPA (600mg/kg) at gestational day 12.5. EPO (2000U/kg) and EPO-loaded solid lipid nanoparticles (NEPO1000 and 2000U/kg) were injected intraperitoneally from postnatal days 1-5. Repetitive behaviors in male offspring were assessed by a marble burying test. The immune-staining method was performed to evaluate S100B and GFAP-positive cells in the prefrontal cortex and hippocampal CA1 region. RESULTS VPA animal models revealed more repetitive behavior and displayed higher astrogliosis in the prefrontal cortex (PFC) and hippocampus (CA1) regions. The repetitive behaviors were ameliorated relatively in VPA groups with NEPO2000 treatment, and astrogliosis was reduced even when VPA rats were treated with a lower dosage of NEPO. CONCLUSION Our results indicate beneficial effects of postnatal NEPO exposure in the VPA animal model of autism, which proposes it as an early treatment in infants with, or at risk of, autism.
Collapse
Affiliation(s)
- Sara Haratizadeh
- Student Research Committee, Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Xu J, Li Y, Tian B, Liu H, Wu S, Wang W. The effects and mechanism of environmental enrichment on MK-801 induced cognitive impairment in rodents with schizophrenia. Front Cell Neurosci 2022; 16:1024649. [PMID: 36246525 PMCID: PMC9556631 DOI: 10.3389/fncel.2022.1024649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe mental disorder characterized by positive, negative, and cognitive symptoms. Cognitive symptoms are a kind of symptoms with high incidence and great impact on patients. There is no effective treatment in clinical practice. N-methyl-d-aspartic acid (NMDA) receptor hypofunction may be an important cause of cognitive symptoms. MK-801 (also named Dizocilpine), a noncompetitive antagonist of NMDA receptor, is often used to construct a model of NMDA receptor dysfunction. In terms of treatment, environmental enrichment (EE) as an environmental intervention can effectively improve the symptoms of cognitive impairment in rodents. In this paper, we first briefly introduce the background of cognitive symptoms and EE in schizophrenia, and then investigate the manifestations of MK-801 induced cognitive impairment, the improvement of EE on these cognitive impairments based on the MK-801 induced schizophrenia rodent models, and the possible mechanism of EE in improving cognitive symptoms. This article reviews the literature in recent years, which provides an important reference for MK-801 to construct a cognitive symptom model of schizophrenia and the mechanism of EE in improving cognitive symptoms of schizophrenia.
Collapse
|
9
|
Li Y, Qu C, Song H, Li T, Zheng J, Wu L, Yan N, Xu L, Qu C, Zhang J. Enriched environment priors to TET1 hippocampal administration for regulating psychiatric behaviors via glial reactivity in chronic cerebral hypoperfusion models. J Affect Disord 2022; 310:198-212. [PMID: 35461822 DOI: 10.1016/j.jad.2022.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) has been gradually regarded as a common etiologic mechanism for cognitive and psychiatric disturbances. Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) played an important role in adult hippocampal neurogenesis (AHN), neuronal circuits formation, cognition and psychiatric disorders. Enriched environment (EE) showed a beneficial effect on cognition and depression via effectively regulating AHN and glial reactivity. This study aimed to assess which strategy was feasible to improve cognition and psychiatric disturbances by comparing the TET1 hippocampal microinjection and EE in CCH models and to investigate the possible mechanisms. METHOD CCH rats were established via permanent bilateral common carotid artery occlusion (2-VO). Rats were stereotaxically injected with the human catalytic domain of TET1 (hTET1) to overexpress the hTET1 in the hippocampus 10 days before 2-VO. 3 days after 2-VO, rats were subjected to standard environment or EE with free access to food and water. Behavioral tests were used to appraise depression and cognition before sacrifice. Epigenetic molecules, adult neurogenesis, synaptic proteins expression, and glial activation were analyzed using immunofluorescent staining, qRT-PCR and western blot. RESULTS In the present study, we found both EE and genetical treatment with overexpressing hTET1 were sufficient for stimulating AHN. However, promoting ANH could not deal with the cognitive dysfunction and depressive-like behaviors in CCH rats. Notably, a healthy local brain environment with elevated BDNF and astrocytes was conducive to improving cognitive dysfunction. Meanwhile, astrocytes were involved in the cognitive regulating process of neurons, presynaptic function and microglia. In general, we held that depressive disturbances were determined by BDNF levels, neuronal and presynaptic function, as well as glial activation containing astrocytes and microglia. To further support this point, we investigated severe depressive symptoms that were strongly correlated with the activation of astroglia and microglia. Importantly, causal mediation analysis showed significant mediation by the presence of reactive glial cells in the relation between neural plasticity and depressive symptoms. Finally, we showed EE performed better than hTET1 treatment for cognitive deficits and depression. EE with less glial reactivity was much more resistant to depression, while hTET1 with more glial activation was more vulnerable to depressive disorders. CONCLUSIONS EE was likely to be superior to TET1 hippocampal administration for cognition and psychiatric behaviors in CCH rats. Furthermore, a healthy local brain environment with elevated BDNF and astrocytes was conducive to improving cognitive dysfunction. More glial activation, and more vulnerable to depressive disorders. These results were important for our understanding of disease mechanisms and provided valuable tools for the overall management of CCH patients.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Chujie Qu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Hao Song
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Tian Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Liyang Wu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Nao Yan
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Linling Xu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
10
|
Lopes-Rocha A, Bezerra TO, Zanotto R, Lages Nascimento I, Rodrigues A, Salum C. The Antioxidant N-Acetyl-L-Cysteine Restores the Behavioral Deficits in a Neurodevelopmental Model of Schizophrenia Through a Mechanism That Involves Nitric Oxide. Front Pharmacol 2022; 13:924955. [PMID: 35903343 PMCID: PMC9315304 DOI: 10.3389/fphar.2022.924955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
The disruption of neurodevelopment is a hypothesis for the emergence of schizophrenia. Some evidence supports the hypothesis that a redox imbalance could account for the developmental impairments associated with schizophrenia. Additionally, there is a deficit in glutathione (GSH), a main antioxidant, in this disorder. The injection of metilazoximetanol acetate (MAM) on the 17th day of gestation in Wistar rats recapitulates the neurodevelopmental and oxidative stress hypothesis of schizophrenia. The offspring of rats exposed to MAM treatment present in early adulthood behavioral and neurochemical deficits consistent with those seen in schizophrenia. The present study investigated if the acute and chronic (250 mg/kg) treatment during adulthood with N-acetyl-L-cysteine (NAC), a GSH precursor, can revert the behavioral deficits [hyperlocomotion, prepulse inhibition (PPI), and social interaction (SI)] in MAM rats and if the NAC-chronic-effects could be canceled by L-arginine (250 mg/kg, i.p, for 5 days), nitric oxide precursor. Analyses of markers involved in the inflammatory response, such as astrocytes (glial fibrillary acid protein, GFAP) and microglia (binding adapter molecule 1, Iba1), and parvalbumin (PV) positive GABAergic, were conducted in the prefrontal cortex [PFC, medial orbital cortex (MO) and prelimbic cortex (PrL)] and dorsal and ventral hippocampus [CA1, CA2, CA3, and dentate gyrus (DG)] in rats under chronic treatment with NAC. MAM rats showed decreased time of SI and increased locomotion, and both acute and chronic NAC treatments were able to recover these behavioral deficits. L-arginine blocked NAC behavioral effects. MAM rats presented increases in GFAP density at PFC and Iba1 at PFC and CA1. NAC increased the density of Iba1 cells at PFC and of PV cells at MO and CA1 of the ventral hippocampus. The results indicate that NAC recovered the behavioral deficits observed in MAM rats through a mechanism involving nitric oxide. Our data suggest an ongoing inflammatory process in MAM rats and support a potential antipsychotic effect of NAC.
Collapse
|
11
|
Aksoy SH, Yurdaışık I, Timurağaoğlu A. Ionizing Radiation Exposure due to Medical Imaging in Hematopoietic Stem Cell Transplant Recipients. ISTANBUL MEDICAL JOURNAL 2022. [DOI: 10.4274/imj.galenos.2022.40771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Lee K, Jang HR. Role of T cells in ischemic acute kidney injury and repair. Korean J Intern Med 2022; 37:534-550. [PMID: 35508946 PMCID: PMC9082442 DOI: 10.3904/kjim.2021.526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Ischemic acute kidney injury (AKI) is a common medical problem with significant mortality and morbidity, affecting a large number of patients globally. Ischemic AKI is associated with intrarenal inflammation as well as systemic inflammation; thus, the innate and adaptive immune systems are implicated in the pathogenesis of ischemic AKI. Among various intrarenal immune cells, T cells play major roles in the injury process and in the repair mechanism affecting AKI to chronic kidney disease transition. Importantly, T cells also participate in distant organ crosstalk during AKI, which affects the overall outcomes. Therefore, targeting T cell-mediated pathways and T cell-based therapies have therapeutic promise for ischemic AKI. Here, we review the major populations of kidney T cells and their roles in ischemic AKI.
Collapse
Affiliation(s)
- Kyungho Lee
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Ryoun Jang
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
14
|
Shen Z, Cui L, Mou S, Ren L, Yuan Y, Shen X, Li G. Combining S100B and Cytokines as Neuro-Inflammatory Biomarkers for Diagnosing Generalized Anxiety Disorder: A Proof-of-Concept Study Based on Machine Learning. Front Psychiatry 2022; 13:881241. [PMID: 35815053 PMCID: PMC9256955 DOI: 10.3389/fpsyt.2022.881241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION S100 calcium-binding protein B (S100B) is a neurotrophic factor that regulates neuronal growth and plasticity by activating astrocytes and microglia through the production of cytokines involved in Generalized Anxiety Disorder (GAD). However, few studies have combined S100B and cytokines to explore their role as neuro-inflammatory biomarkers in GAD. METHODS Serum S100B and cytokines (IL-1β, IL-2, IL-4, and IL-10) of 108 untreated GAD cases and 123 healthy controls (HC) were determined by enzyme-linked immunosorbent assay (ELISA), while Hamilton Anxiety Rating Scale (HAMA) scores and Hamilton Depression Rating Scale (HAMD) scores were measured to evaluate anxiety and depression severity. This was used to help physicians identify persons having GAD. Machine learning techniques were applied for feature ordering of cytokines and S100B and the classification of persons with GAD and HC. RESULTS The serum S100B, IL-1β, and IL-2 levels of GAD cases were significantly lower than HC (P < 0.001), and the IL-4 level in persons with GAD was significantly higher than HC (P < 0.001). At the same time, IL-10 had no significant difference between the two groups (P = 0.215). The feature ranking distinguishing GAD from HC using machine learning ranked the features in the following order: IL-2, IL-1β, IL-4, S100B, and IL-10. The accuracy of S100B combined with IL-1β, IL-2, IL-4, and IL-10 in distinguishing persons with GAD from HC was 94.47 ± 2.06% using an integrated back propagation neural network based on a bagging algorithm (BPNN-Bagging). CONCLUSION The serum S-100B, IL-1β, and IL-2 levels in persons with GAD were down-regulated while IL-4 was up-regulated. The combination of S100B and cytokines had a good diagnosis value in determining GAD with an accuracy of 94.47%. Machine learning was a very effective method to study neuro-inflammatory biomarkers interacting with each other and mediated by plenty of factors.
Collapse
Affiliation(s)
- Zhongxia Shen
- School of Medicine, Southeast University, Nanjing, China.,Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Lijun Cui
- School of Medicine, Southeast University, Nanjing, China
| | - Shaoqi Mou
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Lie Ren
- School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychiatry, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Xinhua Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Gang Li
- College of Engineering, Zhejiang Normal University, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Zhejiang, China
| |
Collapse
|
15
|
Gignac PM, O'Brien HD, Sanchez J, Vazquez-Sanroman D. Multiscale imaging of the rat brain using an integrated diceCT and histology workflow. Brain Struct Funct 2021; 226:2153-2168. [PMID: 34173869 DOI: 10.1007/s00429-021-02316-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
Advancements in tissue visualization techniques have spurred significant gains in the biomedical sciences by enabling researchers to integrate their datasets across anatomical scales. Of particular import are techniques that enable the interpolation of multiple hierarchical scales in samples taken from the same individuals. In this study, we demonstrate that two-dimensional histology techniques can be employed on neural tissues following three-dimensional diffusible iodine-based contrast-enhanced computed tomography (diceCT) without causing tissue degradation. This represents the first step toward a multiscale pipeline for brain visualization. We studied brains from adolescent male Sprague-Dawley rats, comparing experimental (diceCT-stained then de-stained) to control (without diceCT) brains to examine neural tissues for immunolabeling integrity, compare somata sizes, and distinguish neurons from glial cells within the telencephalon and diencephalon. We hypothesized that if experimental and control samples do not differ significantly in morphological cell analysis, then brain tissues are robust to the chemical, temperature, and radiation environments required for these multiple, successive imaging protocols. Visualizations for experimental brains were first captured via micro-computed tomography scanning of isolated, iodine-infused specimens. Samples were then cleared of iodine, serially sectioned, and prepared again using immunofluorescent, fluorescent, and cresyl violet labeling, followed by imaging with confocal and light microscopy, respectively. Our results show that many neural targets are resilient to diceCT imaging and compatible with downstream histological staining as part of a low-cost, multiscale brain imaging pipeline.
Collapse
Affiliation(s)
- Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Haley D O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Jimena Sanchez
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Dolores Vazquez-Sanroman
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA.
| |
Collapse
|
16
|
Xie K, Wang Z, Qi L, Zhao X, Wang Y, Qu J, Xu P, Huang L, Zhang W, Yang Y, Wang X, Shi P. Profiling MicroRNAs with Associated Spatial Dynamics in Acute Tissue Slices. ACS NANO 2021; 15:4881-4892. [PMID: 33719400 DOI: 10.1021/acsnano.0c09676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are suggested to play important roles in the pathogenesis and progress of human diseases with heterogeneous regulation in different types of cells. However, limited technique is available for profiling miRNAs with both expression and spatial dynamics. Here, we describe a platform for multiplexed in situ miRNA profiling in acute tissue slices. The technique uses diamond nanoneedles functionalized with RNA-binding proteins to directly isolate targeted miRNAs from the cytosol of a large population of cells to achieve a quasi-single-cell analysis for a tissue sample. In addition to a quantitative evaluation of the expression level of particular miRNAs, the technique also provides the relative spatial dynamics of the cellular miRNAs in associated cell populations, which was demonstrated to be useful in analyzing the susceptibility and spatial reorganization of different types of cells in the tissues from normal or diseased animals. As a proof-of-concept, in MK-801-induced schizophrenia model, we found that astrocytes, instead of neurons, are more heterogeneously affected in the hippocampus of rats that underwent repeated injection of MK-801, showing an expression fingerprint related to differentially down-regulated miRNA-135a and miRNA-143; the associated astrocyte subpopulation is also more spatially dispersed in the hippocampus, suggesting an astrocyte dysregulation in the induced schizophrenia animals.
Collapse
Affiliation(s)
- Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Zixun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Lin Qi
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Xi Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Jin Qu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Ping Xu
- Department of Respiratory and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, China 518036
| | - Linfeng Huang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu China 215300
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China 518000
| | - Yang Yang
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Xin Wang
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong SAR China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China 518000
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China 518000
| |
Collapse
|
17
|
Tahamtan M, Kohlmeier KA, Faatehi M, Basiri M, Shabani M. Electrophysiological and inflammatory changes of CA1 area in male rats exposed to acute kidney injury: Neuroprotective effects of erythropoietin. Brain Res Bull 2021; 171:25-34. [PMID: 33722647 DOI: 10.1016/j.brainresbull.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
The high mortality rate associated with acute kidney injury (AKI) is commonly due to progressive, inflammatory multiple organ dysfunction, which often involves neurological complications. The AKI-stimulated mechanisms leading to brain dysfunction are not well understood, which hinders development of new therapeutic avenues to minimize AKI-mediated neural effects. The hippocampal CA1 area is a particularly vulnerable region during AKI but the electrophysiological and inflammatory mechanisms involved in this vulnerability remain largely unknown. Here, we used immunohistochemistry to quantitatively investigate the number of astrocytes expressing glial fibrillary acidic protein (GFAP) as an indicator of inflammation, and whole cell patch clamp to evaluate electrophysiological changes in CA1 at different time points following induction of bilateral renal ischemia (BRI) in male Wistar rats. Further we evaluated the effectiveness of erythropoietin (EPO, 1000 U/kg i.p.) in mitigating BRI-associated changes. Plasma concentrations of blood urea nitrogen (BUN) were significantly enhanced at 24 h, 72 h and 1 week, and creatinine (Cr) was increased at 24 h after reperfusion, which were changes reduced by EPO. BRI led to an increase in CA1 GFAP-positive cells 24 h and 72 h, but not 1 week, after reperfusion, and EPO reversed this effect of BRI at 24 h. Additionally, BRI caused an increase in the peak amplitude and coefficient of variation of CA1 pyramidal neuronal action potentials, which were changes not seen in presence of EPO. When taken together, altered neuronal electrophysiological properties and astrogliosis could contribute to the neurological complications induced by AKI, and EPO offers hope as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mahdiyeh Faatehi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
18
|
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Manavis J, Hannan AJ, Baune BT. Duration of Environmental Enrichment Determines Astrocyte Number and Cervical Lymph Node T Lymphocyte Proportions but Not the Microglial Number in Middle-Aged C57BL/6 Mice. Front Cell Neurosci 2020; 14:57. [PMID: 32256319 PMCID: PMC7094170 DOI: 10.3389/fncel.2020.00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment (EE) has been shown to modulate behavior and immunity. We recently reported that both short and long-term EE enhance baseline locomotion and alleviate depressive-like behavior, but only long-term EE affects locomotion adversely in a threatening environment and enhances anxiety-like behavior in middle-age mice. We have now investigated whether the observed changes in behavior after short- and long-term EE were associated with underlying immune changes. Hence, at the end of behavioral testing, mice were sacrificed, and brains and cervical lymph nodes were collected to investigate the differential effects of the duration of EE (short- and long-term) on the number of immunopositive glial cells in the dentate gyrus, CA1, CA2, and CA3 regions of the hippocampus and proportions of T cell subsets in the cervical lymph nodes using immunohistochemistry and flow cytometry, respectively. EE, regardless of duration, caused an increase in microglia number within the dentate gyrus, CA1 and CA3 hippocampal regions, but only long-term EE increased astrocytes number within the dentate gyrus and CA3 hippocampal regions. A significantly higher proportion of CD8+ naive T cells was observed after long-term EE vs. short-term EE. No significant differences were observed in the proportion of central memory and effector memory T cells or early activated CD25+ cells between any of the test groups. Our results suggest that EE, irrespective of duration, enhances the numbers of microglia, but long-term EE is required to modify astrocyte number and peripheral T cell proportions in middle-aged mice. Our findings provide new insights into the therapeutic effects of EE on various brain disorders, which may be at least partly mediated by glial and neuroimmune modulation.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - Julie Morgan
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - Magdalene C Jawahar
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - Frances Corrigan
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia
| | - Emily J Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.,School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Catherine Toben
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - Jim Manavis
- Faculty of Health, Centre for Neurological Diseases, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Bernhard T Baune
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Dahmardeh N, Shabani M, Basiri M, Kalantaripour TP, Asadi-Shekaari M. Functional Antagonism of Sphingosine-1-Phosphate Receptor 1 Prevents Harmaline-Induced Ultrastructural Alterations and Caspase-3 Mediated Apoptosis. Malays J Med Sci 2019; 26:28-38. [PMID: 31496891 PMCID: PMC6719891 DOI: 10.21315/mjms2019.26.4.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background There is a meaningful necessity for a targeted therapy of essential tremor (ET), as medications have not been developed specifically for ET. For nearly a century, many drugs have been applied in the treatment of tremor but the drug treatment of ET remains still unknown. Some potential therapeutic factors such fingolimod (FTY720) can be effectively used to treat ET in animals. In the present research, the effect of FTY720, the immunomodulatory sphingosine 1-phosphate (S1P) analog, on degeneration of cerebellar and olivary neurons induced by harmaline in male rats was investigated. Methods The animals were allotted into control dimethyl sulfoxide (DMSO), saline + harmaline [30 mg/kg, intraperitoneally, (i.p.)], harmaline + FTY720 (1 mg/kg, i.p, 1 h and 24 h before harmaline injection) groups (n = 10). The cerebellum and inferior olive nucleus (ION) were studied for neuronal degeneration using immunohistochemistry (IHC) and ultrastructural study by transmission electron microscopy (TEM) techniques. Results Harmaline caused neuronal cell loss, caspase-3 mediated apoptosis, astrocytosis and ultrastructural changes in cerebellar Purkinje cells and inferior olive neurons. FTY720 exhibited neuroprotective effects on cerebellar Purkinje cells and inferior olivary neurons. Conclusion These results suggest that FTY720 has potential efficacy for prevention of ET neurodegeneration and astrocytosis induced by harmaline in male rats.
Collapse
Affiliation(s)
- Narjes Dahmardeh
- Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Taj Pari Kalantaripour
- Department of Physiology, School of Medicine, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Short-Term Exposure to Enriched Environment in Adult Rats Restores MK-801-Induced Cognitive Deficits and GABAergic Interneuron Immunoreactivity Loss. Mol Neurobiol 2019; 55:26-41. [PMID: 28822057 DOI: 10.1007/s12035-017-0715-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Perinatal injections of N-methyl-D-aspartate (NMDA) receptor antagonist in rodents emulate some cognitive impairments and neurochemical alterations, such as decreased GABAergic (gamma aminobutyric acid) interneuron immunoreactivity, also found in schizophrenia. These features are pervasive, and developing neuroprotective or neurorestorative strategies is of special interest. In this work, we aimed to investigate if a short exposure to enriched environment (EE) in early adulthood (P55-P73) was an effective strategy to improve cognitive dysfunction and to restore interneuron expression in medial prefrontal cortex (mPFC) and hippocampus (HPC). For that purpose, we administered MK-801 intraperitoneally to Long Evans rats from postnatal days 10 to 20. Twenty-four hours after the last injection, MK-801 produced a transient decrease in spontaneous motor activity and exploration, but those abnormalities were absent at P24 and P55. The open field test on P73 manifested that EE reduced anxiety-like behavior. In addition, MK-801-treated rats showed cognitive impairment in novel object recognition test that was reversed by EE. We quantified different interneuron populations based on their calcium-binding protein expression (parvalbumin, calretinin, and calbindin), glutamic acid decarboxylase 67, and neuronal nuclei-positive cells by means of unbiased stereology and found that EE enhanced interneuron immunoreactivity up to normal values in MK-801-treated rats. Our results demonstrate that a timely intervention with EE is a powerful tool to reverse long-lasting changes in cognition and neurochemical markers of interneurons in an animal model of schizophrenia.
Collapse
|
21
|
Faatehi M, Basiri M, Nezhadi A, Shabani M, Masoumi-Ardakani Y, Soltani Z, Nozari M. Early enriched environment prevents cognitive impairment in an animal model of schizophrenia induced by MK-801: Role of hippocampal BDNF. Brain Res 2019; 1711:115-119. [DOI: 10.1016/j.brainres.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/25/2018] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
22
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
23
|
Shepherd A, Zhang TD, Zeleznikow-Johnston AM, Hannan AJ, Burrows EL. Transgenic Mouse Models as Tools for Understanding How Increased Cognitive and Physical Stimulation Can Improve Cognition in Alzheimer's Disease. Brain Plast 2018; 4:127-150. [PMID: 30564551 PMCID: PMC6296266 DOI: 10.3233/bpl-180076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cognitive decline appears as a core feature of dementia, of which the most prevalent form, Alzheimer's disease (AD) affects more than 45 million people worldwide. There is no cure, and therapeutic options remain limited. A number of modifiable lifestyle factors have been identified that contribute to cognitive decline in dementia. Sedentary lifestyle has emerged as a major modifier and accordingly, boosting mental and physical activity may represent a method to prevent decline in dementia. Beneficial effects of increased physical activity on cognition have been reported in healthy adults, showing potential to harness exercise and cognitive stimulation as a therapy in dementia. 'Brain training' (cognitive stimulation) has also been investigated as an intervention protecting against cognitive decline with normal aging. Consequently, the utility of exercise regimes and/or cognitive stimulation to improve cognition in dementia in clinical populations has been a major area of study. However, these therapies are in their infancy and efficacy is unclear. Investigations utilising animal models, where dose and timing of treatment can be tightly controlled, have provided many mechanistic insights. Genetically engineered mouse models are powerful tools to investigate mechanisms underlying cognitive decline, and also how environmental manipulations can alter both cognitive outcomes and pathology. A myriad of effects following physical activity and housing in enriched environments have been reported in transgenic mice expressing Alzheimer's disease-associated mutations. In this review, we comprehensively evaluate all studies applying environmental enrichment and/or increased physical exercise to transgenic mouse models of Alzheimer's disease. It is unclear whether interventions must be applied before first onset of cognitive deficits to be effective. In order to determine the importance of timing of interventions, we specifically scrutinised studies exposing transgenic mice to exercise and environmental enrichment before and after first report of cognitive impairment. We discuss the strengths and weaknesses of these preclinical studies and suggest approaches for enhancing rigor and using mechanistic insights to inform future therapeutic interventions.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy D Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Sun L, Min L, Zhou H, Li M, Shao F, Wang W. Adolescent social isolation affects schizophrenia-like behavior and astrocyte biomarkers in the PFC of adult rats. Behav Brain Res 2017; 333:258-266. [DOI: 10.1016/j.bbr.2017.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
25
|
Arai MD, Zhan B, Maruyama A, Matsui-Harada A, Horinouchi K, Komai S. Enriched environment and Mash1 transfection affect neural stem cell differentiation after transplantation into the adult somatosensory cortex. J Neurol Sci 2017; 373:73-80. [PMID: 28131232 DOI: 10.1016/j.jns.2016.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/10/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022]
Abstract
Neural stem cell (NSC) transplantation is a promising therapeutic modality for various nervous-system disorders; however, poor survival and differentiation of the transplanted NSCs limit their therapeutic efficacy. This study elucidated the effect of additive rehabilitative therapy with enriched environment (EE) and of achaete-scute homolog 1 (Mash1) and neurogenin2 (Ngn2) transduction on the fate of NSCs (P28-P35) transplanted into the primary somatosensory cortex (PSC) of mice. NSCs transplanted into the PSC differentiated into neurons and astrocytes and exhibited typical excitatory and synaptic response in mice housed in standard cages or in the EE. After EE exposure, significantly enhanced differentiation of transplanted NSCs into neuronal nuclear antigen-positive neurons was observed, whereas marked inhibition of the differentiation of transplanted NSCs into astrocytes was noted. Additionally, the proportion of GAD+ cells among GFP+/NeuN+ cells decreased following EE exposure. Furthermore, Mash1-transduced NSCs exhibited significantly enhanced populations of glutamic acid decarboxylase-negative neurons, whereas Ngn2-transduced NPCs did not.
Collapse
Affiliation(s)
- Mitsunori D Arai
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Bo Zhan
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Atsuko Maruyama
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Akiko Matsui-Harada
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Horinouchi
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shoji Komai
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|