1
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024. [PMID: 38778747 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Jin Z, Shen Z, Yan S, Chen G, Yin Y, Zhang Y, Wu X. Electroacupuncture ameliorates gastrointestinal dysfunction by modulating DMV cholinergic efferent signals to drive the vagus nerve in p-MCAO rats. Heliyon 2024; 10:e29426. [PMID: 38638995 PMCID: PMC11024612 DOI: 10.1016/j.heliyon.2024.e29426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Background The use of proton pump inhibitors in the acute phase of cerebral infarction may lead to adverse long-term outcomes, this study aims to explore the potential of electroacupuncture (EA) in replacing omeprazole in exerting post-stroke gastrointestinal protection. Methods A permanent middle cerebral artery infarction model was established using the modified Longa thread occlusion technique. Gastrointestinal motility, gastrointestinal mucosal damage, cerebral infarct volume, and alterations in choline acetyltransferase (ChAT)-positive neurons within the dorsal motor nucleus of the vagus nerve (DMV) were assessed after 7 days of EA at Zusanli (ST36) or omeprazole intervention. To evaluate the role of the vagal nerve in mitigating post-stroke gastrointestinal dysfunction, we employed subdiaphragmatic vagotomy and the ChAT-specific inhibitor α-NETA. Additionally, we utilized methyllycaconitine (MLA), a selective inhibitor of the α7-type nicotinic acetylcholine receptor (α7nAChR), and PNU282987, an agonist, to identify the target of EA. Results EA restored ChAT neurons lost in the DMV, activated the vagus nerve and conferred cerebroprotection while ameliorating gastrointestinal mucosal injury and gastrointestinal motility disorders. In addition, following the administration of the α7nAChR antagonist, the attenuation of gastric mucosal injury and inflammatory factors induced by EA was hindered, although gastrointestinal motility still exhibited improvement. Conclusion EA at ST36 promotes the restoration of cholinergic signaling in the DMV of stroke-afflicted rats, and its excitation of the vagal nerve inhibits gastrointestinal inflammation after stroke via α7nAChR, while improvement in gastrointestinal motility could be mediated by other acetylcholine receptors.
Collapse
Affiliation(s)
- Ziyan Jin
- The First Clinical Medical College, Guangxi Medical University, Guangxi, China
| | - Zihong Shen
- The First Clinical Medical College, Guangxi Medical University, Guangxi, China
| | - Siyang Yan
- The First Clinical Medical College, Guangxi Medical University, Guangxi, China
| | - Guolei Chen
- The First Clinical Medical College, Guangxi Medical University, Guangxi, China
| | - Yalong Yin
- The First Clinical Medical College, Guangxi Medical University, Guangxi, China
| | - You Zhang
- The First Clinical Medical College, Guangxi Medical University, Guangxi, China
| | - Xingui Wu
- The First Clinical Medical College, Guangxi Medical University, Guangxi, China
- The First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| |
Collapse
|
3
|
Hare MT, Carter ME, Swoap SJ. Activation of oxytocinergic neurons enhances torpor in mice. J Comp Physiol B 2024; 194:95-104. [PMID: 38170253 DOI: 10.1007/s00360-023-01528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Mus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset. We hypothesized that oxytocin neurons within the PVN are part of this neural circuit and that activation of oxytocin neurons would deepen and lengthen torpor bouts. We report that activation of oxytocin neurons alone is not sufficient to induce a torpor-like state in the fed mouse, with no significant difference in body temperature or heart rate upon activation of oxytocin neurons. However, we found that activation of oxytocin neurons prior to the onset of daily torpor both deepens and lengthens the subsequent bout, with a 1.7 ± 0.4 °C lower body temperature and a 135 ± 32 min increase in length. We therefore conclude that oxytocin neurons are involved in the neural circuitry controlling daily torpor in the mouse.
Collapse
Affiliation(s)
- Maia T Hare
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Matthew E Carter
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Steven J Swoap
- Department of Biology, Williams College, Williamstown, MA, 01267, USA.
| |
Collapse
|
4
|
Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24:591-604. [PMID: 37626176 PMCID: PMC10848316 DOI: 10.1038/s41583-023-00729-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Collapse
Affiliation(s)
- Kenny L Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wolfram C Poller
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Muacevic A, Adler JR. Physiological Role of Orexin/Hypocretin in the Human Body in Motivated Behavior: A Comprehensive Review. Cureus 2023; 15:e34009. [PMID: 36814741 PMCID: PMC9939734 DOI: 10.7759/cureus.34009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Neurohormones are neurosecretory materials released by neurosecretory cells that serve both as neuromodulators in the brain and spinal cord and as circulating regulatory hormones. They serve a wide range of functions, including homeostasis, development, and modulation of neuronal and muscle activity. In the hypothalamus, neurohormones called hypocretins are created that were discovered in the late nineties. Orexin receptors (OXRs) have been shown to enhance synaptic signaling in the central nervous system at the cellular level. The orexins improve stimulated neural activity in the hippocampus, which, in turn, aids with spatial memory, learning, and mood. They present themselves as mediators for the hypothalamic functions. They have been shown to regulate sleep-wake cycles, arousal mechanisms, addiction, sympathetic nerve activity (SNA), blood pressure, and thermogenesis. Its role in storing brown adipose tissue has implications for thermal homeostasis. The significant role of orexins is seen in tumorigenesis when orexin A (OrxA) and orexin B (OrxB) induce apoptosis in fast-growing tumor cells. Orexin-null subjects show clinical narcolepsy, indicating that orexins were responsible for keeping them awake. Orexin microinjections in mice brains stimulated increased physical activity, thus possibly countering diet-induced obesity. Physical activity significantly increased plasma orexin-A levels, which facilitated the process of energy homeostasis. The amount of adrenocorticotropic hormone (ACTH) increases in stress conditions, which further facilitates the release of the stress hormone cortisol. No increase in the ACTH hormone is seen in stressed mice administered with orexin receptor 2 (OX2R) antagonists thus showing orexin's role in stress reaction. As a result of linking hypocretin/orexin to various physiological procedures, increased research into the medicinal potential of drugs targeting these receptors is emerging. We summed up in this review the recent advances in our understanding of how orexin and its receptor system play an essential role in clinical and pathological functions. This research summarizes a new area for research in human medicine, providing the possibility of controlling a vast array of physiological functions through intra-cerebroventricular injections of a single neuropeptide.
Collapse
|
6
|
Bigalke JA, Shan Z, Carter JR. Orexin, Sleep, Sympathetic Neural Activity, and Cardiovascular Function. Hypertension 2022; 79:2643-2655. [PMID: 36148653 PMCID: PMC9649879 DOI: 10.1161/hypertensionaha.122.19796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Inadequate sleep duration and quality are associated with reduced cardiovascular health and increased mortality. Experimental evidence points to the sympathetic nervous system as a key mediator in the observed relationship between poor sleep and cardiovascular dysfunction. However, brain mechanisms underpinning the impaired sympathetic function associated with poor sleep remain unclear. Recent evidence suggests the central orexin system, particularly orexins A and B and their receptors, have a key regulatory role for sleep in animal and human models. While orexin system activity has been observed to significantly impact sympathetic regulation in animals, the extension of these findings to humans has been difficult due to an inability to directly assess orexin system activity in humans. However, direct measures of sympathetic activity in populations with narcolepsy and chronic insomnia, 2 sleep disorders associated with deficient and excessive orexin neural activity, have allowed indirect assessment of the relationships between orexin, sleep, and sympathetic regulation. Further, the recent pharmaceutical development of dual orexin receptor antagonists for use in clinical insomnia populations offers an unprecedented opportunity to examine the mechanistic role of orexin in sleep and cardiovascular health in humans. The current review assesses the role of orexin in both sleep and sympathetic regulation from a translational perspective, spanning animal and human studies. The review concludes with future research directions necessary to fully elucidate the mechanistic role for orexin in sleep and sympathetic regulation in humans.
Collapse
Affiliation(s)
- Jeremy A. Bigalke
- Department of Health and Human Development, Montana State University, Bozeman, Montana
- Department of Psychology, Montana State University, Bozeman, Montana
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Jason R. Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana
- Department of Psychology, Montana State University, Bozeman, Montana
| |
Collapse
|
7
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
8
|
Yu Q, Wu LB, Zhang F, Wei XT, Chen PP, Wang SY, Cai MY, Shu Q, Li LY, Wu ZJ, Cai RL, Hu L. Mechanisms of Electroacupuncture Pretreatment in Alleviating Myocardial Ischemia Reperfusion Injury: Interactions between the Cerebellar Fastigial Nucleus and Lateral Hypothalamic Area. J Acupunct Meridian Stud 2021; 14:207-218. [DOI: 10.51507/j.jams.2021.14.6.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Qing Yu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Hefei, China
| | - Li-bin Wu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Fan Zhang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-tong Wei
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Pian-pian Chen
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Shuai-ya Wang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Mei-yi Cai
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Qi Shu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Liao-yuan Li
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Zi-jian Wu
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Rong-lin Cai
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Hu
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Gao HR, Wu ZJ, Wu SB, Gao HY, Wang J, Zhang JL, Zhou MQ. Roles of central orexinergic system on cardiovascular function and acupuncture on intervention of cardiovascular risk: Orexinergic system mediate the role of acupuncture? Neuropeptides 2021; 87:102132. [PMID: 33636511 DOI: 10.1016/j.npep.2021.102132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Central orexinergic system contributes to the regulation of cardiovascular function. Orexinergic neurons receiving projections of nerve fibers from multiple structures of brain which involved in control and regulation of cardiovascular function locate in hypothalamus, and their axon terminals widely project to various central structures where orexins receptors are expressed. Here, we summarize the present knowledge that describes the influence of central orexinergic system on cardiovascular activity, the relevance of dysfunction in central orexinergic system with hypertension and psychological stress induced cardiovascular reactivity which are serious risk factors for cardiovascular disease and cardiovascular death. We propose that central orexinergic system may be potentially important targets for the prevention of cardiovascular disease and cardiovascular death, and different orexinergic system involved neuronal circuits may be involved in distinct cardiovascular functions. Acupuncture having bidirectional regulatory ability and a much lower incidence of side effects can prevent disease. We review the improvement of acupuncture on hypertension and psychological stress induced cardiovascular reactivity. We think that acupuncture intervenes hypertension and psychological stress induced cardiovascular reactivity to prevent cardiovascular disease and cardiovascular death. We also summarize relation between acupuncture and central orexinergic system. We propose a hypothesis that acupuncture improve hypertension and psychological stress induced cardiovascular reactivity through regulating central orexinergic system. The knowledge is beneficial for the development of potential therapeutic targets and methods to prevent cardiovascular disease and cardiovascular death.
Collapse
Affiliation(s)
- He-Ren Gao
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Zi-Jian Wu
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Sheng-Bing Wu
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - He-Yuan Gao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jie Wang
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jin-Li Zhang
- Anhui Vocational College of Grain Engineering, Hefei, China
| | - Mei-Qi Zhou
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China; Bozhou Institute of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Bozhou, China.
| |
Collapse
|
10
|
Reis-Silva LL, Barretto-de-Souza L, Benini R, Crestani CC. CRF 1 and CRF 2 receptors in the lateral hypothalamus differently modulate the baroreflex function in unanesthetized rats. Brain Res 2020; 1751:147195. [PMID: 33159974 DOI: 10.1016/j.brainres.2020.147195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
The lateral hypothalamus (LH) is a diencephalic structure that has been considered part of the central circuitry regulating the baroreflex function. However, the local neurochemical mechanisms involved in baroreflex control by this hypothalamic area are poorly understood. Therefore, in the present study we investigated the role of corticotropin-releasing factor (CRF) neurotransmission within the LH acting via local CRF1 and CRF2 receptors in cardiac baroreflex responses in unanesthetized rats. For this, the baroreflex activity was assessed using two approaches: i) the pharmacological approach via intravenous infusion of vasoactive agents, and ii) the sequence analysis technique that evaluates reflex responses during spontaneous arterial pressure variations. The sequence analysis technique indicated that LH treatment with the selective CRF1 receptor antagonist CP376395 decreased the baroreflex effectiveness index, whereas the selective CRF2 receptor antagonist antisauvagine-30 increased the reflex shortening of pulse interval during spontaneous arterial pressure decreases. However, the pharmacological approach did not indicate effect of the bilateral microinjection of either CP376395 or antisauvagine-30 into the LH in the tachycardia evoked by blood pressure decrease or the reflex bradycardia caused by blood pressure increase. Overall, these findings indicate that CRF neurotransmission within the LH controls baroreflex function during a narrow range of physiological arterial pressure variations. Besides, results provide evidence that CRF1 and CRF2 receptors in the LH oppositely modulate the spontaneous baroreflex activity through different mechanisms.
Collapse
Affiliation(s)
- Lilian L Reis-Silva
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Lucas Barretto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
11
|
Brackley AD, Andrade MA, Toney GM. Intermittent hypercapnic hypoxia induces respiratory hypersensitivity to fentanyl accompanied by tonic respiratory depression by endogenous opioids. J Physiol 2020; 598:3239-3257. [PMID: 32415789 PMCID: PMC8162062 DOI: 10.1113/jp280021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sleep apnoea increases susceptibility to opioid-induced respiratory depression (OIRD). Endogenous opioids are implicated as a contributing factor in sleep apnoea. Rats exposed to sleep-phase chronic intermittent hypercapnic hypoxia (CIHH) for 7 days exhibited exaggerated OIRD to systemic fentanyl both while anaesthetized and artificially ventilated and while conscious and breathing spontaneously, implicating heightened CNS inhibitory efficacy of fentanyl. CIHH also induced tonic endogenous opioid suppression of neural inspiration. Sleep-related episodes of hypercapnic hypoxia, as in sleep apnoea, promote hypersensitivity to OIRD, with tonic respiratory depression by endogenous opioids implicated as a potential underlying cause. ABSTRACT Sleep apnoea (SA) increases opioid-induced respiratory depression (OIRD) and lethality. To test the hypothesis that this results from chronic intermittent bouts of hypercapnic hypoxia (CIHH) accompanying SA, we compared OIRD across continuously normoxic control rats and rats exposed to sleep-phase (8 h/day) CIHH for 1 week. OIRD sensitivity was first assessed in anaesthetized (urethane/α-chloralose), vagotomized and artificially ventilated rats by recording phrenic nerve activity (PNA) to index neural inspiration and quantify PNA burst inhibition to graded doses (0, 2, 20, 50 μg kg-1 , i.v.) of the synthetic opioid fentanyl. Fentanyl dose-dependently reduced PNA burst frequency (P = 0.0098-0.0001), while increasing the duration of burst quiescence at 50 μg kg-1 (P < 0.0001, n = 5-6/group/dose). CIHH shifted the fentanyl dose-phrenic burst frequency response curve to the left (P = 0.0163) and increased the duration of burst quiescence (P < 0.0001). During fentanyl recovery, PNA burst width was increased relative to baseline in normoxic and CIHH rats. Systemic naloxone (1 mg kg-1 , i.v.) reversed fentanyl-induced PNA arrest in both groups (P = 0.0002), and increased phrenic burst amplitude above baseline (P = 0.0113) in CIHH rats only. Differential sensitivity to anaesthesia as a cause of CIHH-related OIRD hypersensitivity was excluded by observing in conscious spontaneously breathing rats that fentanyl at 20 μg kg-1 (i.v.), which silenced PNA in anaesthetized rats, differentially increased breathing variability in normoxic versus CIHH rats (P = 0.0427), while significantly reducing breathing frequency (P < 0.0001) and periodicity (P = 0.0003) in CIHH rats only. Findings indicate that CIHH increased OIRD sensitivity, with tonic inspiratory depression by endogenous opioids as a likely contributing cause.
Collapse
Affiliation(s)
- Allison D Brackley
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229
| |
Collapse
|
12
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension 2020; 76:300-311. [PMID: 32594802 DOI: 10.1161/hypertensionaha.120.14521] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurogenic hypertension is associated with excessive sympathetic nerve activity to the kidneys and portions of the cardiovascular system. Here we examine the brain regions that cause heightened sympathetic nerve activity in animal models of neurogenic hypertension, and we discuss the triggers responsible for the changes in neuronal activity within these regions. We highlight the limitations of the evidence and, whenever possible, we briefly address the pertinence of the findings to human hypertension. The arterial baroreflex reduces arterial blood pressure variability and contributes to the arterial blood pressure set point. This set point can also be elevated by a newly described cerebral blood flow-dependent and astrocyte-mediated sympathetic reflex. Both reflexes converge on the presympathetic neurons of the rostral medulla oblongata, and both are plausible causes of neurogenic hypertension. Sensory afferent dysfunction (reduced baroreceptor activity, increased renal, or carotid body afferent) contributes to many forms of neurogenic hypertension. Neurogenic hypertension can also result from activation of brain nuclei or sensory afferents by excess circulating hormones (leptin, insulin, Ang II [angiotensin II]) or sodium. Leptin raises blood vessel sympathetic nerve activity by activating the carotid bodies and subsets of arcuate neurons. Ang II works in the lamina terminalis and probably throughout the brain stem and hypothalamus. Sodium is sensed primarily in the lamina terminalis. Regardless of its cause, the excess sympathetic nerve activity is mediated to some extent by activation of presympathetic neurons located in the rostral ventrolateral medulla or the paraventricular nucleus of the hypothalamus. Increased activity of the orexinergic neurons also contributes to hypertension in selected models.
Collapse
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Ruth L Stornetta
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - George M P R Souza
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Stephen B G Abbott
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Sciences University, Portland (V.L.B.)
| |
Collapse
|
13
|
Liu X, Gao S, Zhang N, Jin T, Sun X, Luan X, Xu L, Guo F. The orexinergic neural pathway from the lateral hypothalamus to the nucleus accumbens and its regulation of palatable food intake. Neuropeptides 2020; 80:102028. [PMID: 32067750 DOI: 10.1016/j.npep.2020.102028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the orexinergic pathway from the lateral hypothalamus (LHA) to the nucleus accumbens (NAc) and its regulation on the palatable food intake. METHODS Fluorescent gold retrograde tracing combined with fluoro-immunohistochemical staining were used to observe the projection of orexinergic neurons from LHA to NAc. The orexin-A expression in LHA and c-Fos in NAc were studied after electrical stimulation of LHA. The firing rates of neurons were monitored by single-unit extracellular electric discharge recording and the palatable food intake were measured after orexin microinjection in NAc or electrical stimulation of LHA. RESULTS (1) Fluorescent gold retrograde tracing combined with fluoro-immunohistochemical staining showed some orexinergic neural projection from the LHA to the NAc shell. (2) Electrical stimulation of LHA significantly enhanced the expression of orexin-A in LHA and the expression of c-Fos in NAc (P < .05). (3) The results of single-unit extracellular discharge recording showed that the microinjection of orexin in NAc or electrical stimulation of LHA significantly increased the discharge activity of gastric distension responsive neurons in NAc, and the effect could be partly blocked by pretreatment of orexin-A receptor inhibitor SB334867 in NAc (P < .05). (4) Microinjection orexin-A in NAc or electrical stimulation of LHA significantly increased the palatable food intake in rats, and the effect also was partly inhibited by pretreatment of SB334867 in NAc (P < .05). CONCLUSION There is an orexinergic pathway from LHA to NAc, which may have potential regulatory effects on food reward and obesity.
Collapse
Affiliation(s)
- Xiaoning Liu
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tingting Jin
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiangrong Sun
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiao Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Luo Xu
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Iyer SH, Aggarwal A, Warren TJ, Hallgren J, Abel PW, Simeone TA, Simeone KA. Progressive cardiorespiratory dysfunction in Kv1.1 knockout mice may provide temporal biomarkers of pending sudden unexpected death in epilepsy (SUDEP): The contribution of orexin. Epilepsia 2020; 61:572-588. [PMID: 32030748 DOI: 10.1111/epi.16434] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Immediately preceding sudden unexpected death in epilepsy (SUDEP), patients experienced a final generalized tonic-clonic seizure (GTCS), rapid ventilation, apnea, bradycardia, terminal apnea, and asystole. Whether a progressive pathophysiology develops and increases risk of SUDEP remains unknown. Here, we determined (a) heart rate, respiratory rate, and blood oxygen saturation (SaO2 ) in low-risk and high-risk knockout (KO) mice; and (b) whether blocking receptors for orexin, a cardiorespiratory neuromodulator, influences cardiorespiratory function mice or longevity in high-risk KO mice. METHODS Heart rate and SaO2 were determined noninvasively with ECGenie and pulse oximetry. Respiration was determined with noninvasive airway mechanics technology. The role of orexin was determined within subject following acute treatment with a dual orexin receptor antagonist (DORA, 100 mg/kg). The number of orexin neurons in the lateral hypothalamus was determined with immunohistochemistry. RESULTS Intermittent bradycardia was more prevalent in high-risk KO mice, an effect that may be the result of increased parasympathetic drive. High-risk KO mice had more orexin neurons in the lateral hypothalamus. Blocking of orexin receptors differentially influenced heart rate in KO, but not wild-type (WT) mice. When DORA administration increased heart rate, it also decreased heart rate variability, breathing frequency, and/or hypopnea-apnea. Blocking orexin receptors prevented the methacholine (MCh)-induced increase in breathing frequency in KO mice and reduced MCh-induced seizures, via a direct or indirect mechanism. DORA improved oxygen saturation in KO mice with intermittent hypoxia. Daily administration of DORA to high-risk KO mice increased longevity. SIGNIFICANCE High-risk KO mice have a unique cardiorespiratory phenotype that is characterized by progressive changes in five interdependent endpoints. Blocking of orexin receptors attenuates some of these endpoints and increases longevity, supporting the notion that windows of opportunity for intervention exist in this preclinical SUDEP model.
Collapse
Affiliation(s)
- Shruthi H Iyer
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ankita Aggarwal
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ted J Warren
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Jodi Hallgren
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Timothy A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Kristina A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
15
|
Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci 2019; 30:107-164. [PMID: 30543520 DOI: 10.1515/revneuro-2017-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.
Collapse
Affiliation(s)
- Inge Steuer
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
| | - Pierre A Guertin
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
16
|
Drissi NM, Warntjes M, Wessén A, Szakacs A, Darin N, Hallböök T, Landtblom AM, Gauffin H, Engström M. Structural anomaly in the reticular formation in narcolepsy type 1, suggesting lower levels of neuromelanin. NEUROIMAGE-CLINICAL 2019; 23:101875. [PMID: 31174102 PMCID: PMC6551567 DOI: 10.1016/j.nicl.2019.101875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/04/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate structural changes in the brain stem of adolescents with narcolepsy, a disorder characterized by excessive daytime sleepiness, fragmented night-time sleep, and cataplexy. For this purpose, we used quantitative magnetic resonance imaging to obtain R1 and R2 relaxation rates, proton density, and myelin maps in adolescents with narcolepsy (n = 14) and healthy controls (n = 14). We also acquired resting state functional magnetic resonance imaging (fMRI) for brainstem connectivity analysis. We found a significantly lower R2 in the rostral reticular formation near the superior cerebellar peduncle in narcolepsy patients, family wise error corrected p = .010. Narcolepsy patients had a mean R2 value of 1.17 s-1 whereas healthy controls had a mean R2 of 1.31 s-1, which was a large effect size with Cohen d = 4.14. We did not observe any significant differences in R1 relaxation, proton density, or myelin content. The sensitivity of R2 to metal ions in tissue and the transition metal ion chelating property of neuromelanin indicate that the R2 deviant area is one of the neuromelanin containing nuclei of the brain stem. The close proximity and its demonstrated involvement in sleep-maintenance, specifically through orexin projections from the hypothalamus regulating sleep stability, as well as the results from the connectivity analysis, suggest that the observed deviant area could be the locus coeruleus or other neuromelanin containing nuclei in the proximity of the superior cerebellar peduncle. Hypothetically, the R2 differences described in this paper could be due to lower levels of neuromelanin in this area of narcolepsy patients.
Collapse
Affiliation(s)
- Natasha Morales Drissi
- Department of Medical and Health Sciences (IMH), Linköping University, 581 83 Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden
| | - Marcel Warntjes
- Department of Medical and Health Sciences (IMH), Linköping University, 581 83 Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden
| | | | - Attila Szakacs
- Department of Pediatrics, Queen Silvia Children's Hospital, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, 416 50 Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, Queen Silvia Children's Hospital, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, 416 50 Gothenburg, Sweden
| | - Tove Hallböök
- Department of Pediatrics, Queen Silvia Children's Hospital, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, 416 50 Gothenburg, Sweden
| | - Anne-Marie Landtblom
- Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden; Department of Clinical and Experimental Medicine (IKE), Linköping University, 581 83 Linköping, Sweden; Department of Neuroscience, Uppsala University, 752 36 Uppsala, Sweden
| | - Helena Gauffin
- Department of Clinical and Experimental Medicine (IKE), Linköping University, 581 83 Linköping, Sweden
| | - Maria Engström
- Department of Medical and Health Sciences (IMH), Linköping University, 581 83 Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
17
|
Aiba I, Noebels JL. Adrenergic agonist induces rhythmic firing in quiescent cardiac preganglionic neurons in nucleus ambiguous via activation of intrinsic membrane excitability. J Neurophysiol 2019; 121:1266-1278. [PMID: 30699052 PMCID: PMC6485744 DOI: 10.1152/jn.00761.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cholinergic vagal nerves projecting from neurons in the brain stem nucleus ambiguus (NAm) play a predominant role in cardiac parasympathetic pacemaking control. Central adrenergic signaling modulates the tone of this vagal output; however, the exact excitability mechanisms are not fully understood. We investigated responses of NAm neurons to adrenergic agonists using in vitro mouse brain stem slices. Preganglionic NAm neurons were identified by ChAT-tdTomato fluorescence in young adult transgenic mice, and their cardiac projection was confirmed by retrograde dye tracing. Juxtacellular recordings detected sparse or absent spontaneous action potentials (AP) in NAm neurons. However, bath application of epinephrine or norepinephrine strongly and reversibly activated most NAm neurons regardless of their basal firing rate. Epinephrine was more potent than norepinephrine, and this activation largely depends on α1-adrenoceptors. Interestingly, adrenergic activation of NAm neurons does not require an ionotropic synaptic mechanism, because postsynaptic excitatory or inhibitory receptor blockade did not occlude the excitatory effect, and bath-applied adrenergic agonists did not alter excitatory or inhibitory synaptic transmission. Instead, adrenergic agonists significantly elevated intrinsic membrane excitability to facilitate generation of recurrent action potentials. T-type calcium current and hyperpolarization-activated current are involved in this excitation pattern, although not required for spontaneous AP induction by epinephrine. In contrast, pharmacological blockade of persistent sodium current significantly inhibited the adrenergic effects. Our results demonstrate that central adrenergic signaling enhances the intrinsic excitability of NAm neurons and that persistent sodium current is required for this effect. This central balancing mechanism may counteract excessive peripheral cardiac excitation during increased sympathetic tone. NEW & NOTEWORTHY Cardiac preganglionic cholinergic neurons in the nucleus ambiguus (NAm) are responsible for slowing cardiac pacemaking. This study identified that adrenergic agonists can induce rhythmic action potentials in otherwise quiescent cholinergic NAm preganglionic neurons in brain stem slice preparation. The modulatory influence of adrenaline on central parasympathetic outflow may contribute to both physiological and deleterious cardiovascular regulation.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurology, Baylor College of Medicine , Houston, Texas
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
18
|
Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2018; 1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Orexin-expressing neurons are located exclusively in the lateral hypothalamic and perifornical areas and exhibit complex connectivity. The intricate wiring pattern is evident from a diverse function for orexin neurons in regulating many physiological processes and behaviors including sleep, metabolism, circadian cycles, anxiety, and reward. Nevertheless, the precise synaptic and circuitry-level mechanisms mediating these processes remain enigmatic, partially due to the wide spread connectivity of the orexin system, complex neurochemistry of orexin neurons, and previous lack of suitable tools to address its complexity. Here we summarize recent advances, focusing on synaptic regulatory mechanisms in the orexin neurocircuitry, including both the synaptic inputs to orexin neurons as well as their downstream targets in the brain. A clear and detailed elucidation of these mechanisms will likely provide novel insight into how dysfunction in orexin-mediated signaling leads to human disease and may ultimately be treated with more precise strategies.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Vincent R Mirabella
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
19
|
Bastianini S, Silvani A. Clinical implications of basic research. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18789327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Abstract
Purpose of Review The aim of this review was to summarize collected data on the role of orexin and orexin neurons in the control of sleep and blood pressure. Recent Findings Although orexins (hypocretins) have been known for only 20 years, an impressive amount of data is now available regarding their physiological role. Hypothalamic orexin neurons are responsible for the control of food intake and energy expenditure, motivation, circadian rhythm of sleep and wake, memory, cognitive functions, and the cardiovascular system. Multiple studies show that orexinergic stimulation results in increased blood pressure and heart rate and that this effect may be efficiently attenuated by orexinergic antagonism. Increased activity of orexinergic neurons is also observed in animal models of hypertension. Summary Pharmacological intervention in the orexinergic system is now one of the therapeutic possibilities in insomnia. Although the role of orexin in the control of blood pressure is well described, we are still lacking clinical evidence that this is a possibility for a new approach in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-235, Gdansk, Poland.
| | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-235, Gdansk, Poland
| | - Eemil Partinen
- Department of Neurology, University of Helsinki, Helsinki, Finland
- Vitalmed Helsinki Sleep Clinic, Helsinki, Finland
| |
Collapse
|
21
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Neural mechanism for hypothalamic-mediated autonomic responses to light during migraine. Proc Natl Acad Sci U S A 2017; 114:E5683-E5692. [PMID: 28652355 DOI: 10.1073/pnas.1708361114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Migraineurs avoid light because it intensifies their headache. However, this is not the only reason for their aversion to light. Studying migraineurs and control subjects, we found that lights triggered more changes in autonomic functions and negative emotions during, rather than in the absence of, migraine or in control subjects, and that the association between light and positive emotions was stronger in control subjects than migraineurs. Seeking to define a neuroanatomical substrate for these findings, we showed that, in rats, axons of retinal ganglion cells converge on hypothalamic neurons that project directly to nuclei in the brainstem and spinal cord that regulate parasympathetic and sympathetic functions and contain dopamine, histamine, orexin, melanin-concentrating hormone, oxytocin, and vasopressin. Although the rat studies define frameworks for conceptualizing how light triggers the symptoms described by patients, the human studies suggest that the aversive nature of light is more complex than its association with headache intensification.
Collapse
|