1
|
Arenas-Mosquera D, Cerny N, Cangelosi A, Geoghegan P, Malchiodi E, De Marzi M, Pinto A, Goldstein J. High-fat and high-carbohydrate diets worsen the mouse brain susceptibility to damage produced by enterohemorrhagic Escherichia coli Shiga toxin 2. Heliyon 2024; 10:e39871. [PMID: 39553573 PMCID: PMC11564992 DOI: 10.1016/j.heliyon.2024.e39871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Background Nutrition quality could be one of the reasons why, in the face of a Shiga toxin-producing enterohemorrhagic Escherichia coli outbreak, some patients experience more profound deleterious effects than others, including unfortunate deaths. Thus, the aim of this study was to determine whether high-fat and/or high-carbohydrate diets could negatively modulate the deleterious action of Shiga toxin 2 on ventral anterior and ventral lateral thalamic nuclei and the internal capsule, the neurological centers responsible for motor activity. Methods Mice were fed a regular, high-fat, high-carbohydrate diet or a combination of both previous to the intravenous administration of Shiga toxin 2 or vehicle. Four days after intravenous administration, mice were subjected to behavioral tests and then sacrificed for histological and immunofluorescence assays to determine alterations in the neurovascular unit at the cellular and functional levels. Statistical analysis was performed using one-way analysis of variance followed by Bonferroni post hoc test. The criterion for significance was p = 0.0001 for all experiments. Results The high-fat and the high-carbohydrate diets significantly heightened the deleterious effect of Stx2, while the combination of both diets yielded the worst results, including endothelial glycocalyx and oligodendrocyte alterations, astrocyte and microglial reactivity, neurodegeneration, and motor and sensitivity impairment. Conclusions In view of the results presented here, poor nutrition could negatively influence patients affected by Stx2 at a neurological level. Systemic effects, however, cannot be ruled out.
Collapse
Affiliation(s)
- D. Arenas-Mosquera
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - N. Cerny
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología e Instituto de Estudios de La Inmunidad Humoral (IDEHU), UBA-CONICET, Junín 956 Piso 4, 1113, Ciudad de Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología e Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Paraguay 2155 Piso 12, 1121, Ciudad de Buenos Aires, Argentina
| | - A. Cangelosi
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), "ANLIS, Dr. Carlos G. Malbrán", Avenida Vélez Sarsfield 563, 1282, Ciudad de Buenos Aires, Argentina
| | - P.A. Geoghegan
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), "ANLIS, Dr. Carlos G. Malbrán", Avenida Vélez Sarsfield 563, 1282, Ciudad de Buenos Aires, Argentina
| | - E.L. Malchiodi
- Universidad de Buenos Aires, IDEHU-CONICET, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Junín 956, Piso 4°, 1113, Ciudad de Buenos Aires, Argentina
| | - M. De Marzi
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Ruta 5 y Avenida Constitución (6700) Luján, Buenos Aires, Argentina, Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES)-CONICET, Laboratorio de Inmunología, Ruta 5 y Avenida Constitución (6700) Luján, Buenos Aires, Argentina
| | - A. Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - J. Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Brandt E, Koivisto A, Pereira P, Mustanoja E, Auvinen P, Saari T, Lehtola JM, Hannonen S, Rusanen M, Leinonen V, Scheperjans F, Kärkkäinen V. Gut Microbiome Changes in Patients With Idiopathic Normal Pressure Hydrocephalus. Alzheimer Dis Assoc Disord 2024; 38:133-139. [PMID: 38602449 PMCID: PMC11132091 DOI: 10.1097/wad.0000000000000613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND The gut microbiome is a complex system within the human gastrointestinal tract. The bacteria play a significant role in human health, and some can promote inflammation and pathologic processes through chemical interactions or metabolites. Gut microbiome dysbiosis has been linked to some neurological and other diseases. Here we aimed to examine microbiome differences between patients with a progressive neurological disorder, idiopathic normal pressure hydrocephalus (iNPH), compared with healthy controls (CO). METHODS We recruited 37 neurologically healthy CO and 10 patients with shunted iNPH. We evaluated these participants' cognition using the CERAD-NB test battery and CDR test, and collected a variety of information, including about dietary habits and health. We also collected fecal samples, which were subjected to 16S amplicon sequencing to analyze differences in gut microbiome composition. RESULTS We found that the iNPH group exhibited significantly different abundances of 10 bacterial genera compared with the CO group. The Escherichia/Shigella and Anaeromassilibacillus genera were most remarkably increased. Other increased genera were Butyrivibrio , Duncaniella , and an unidentified genus. The decreased genera were Agathobaculum , Paramuribaculum , Catenibacterium , and 2 unidentified genera. CONCLUSIONS Here we report the first identified microbiome differences in iNPH patients compared with healthy controls.
Collapse
Affiliation(s)
- Emilia Brandt
- Departments of Neurology
- NeuroCenter, Kuopio University Hospital, Kuopio
| | - Anne Koivisto
- NeuroCenter, Kuopio University Hospital, Kuopio
- Department of Neurosciences, Faculty of Medicine
- Department of Geriatrics, Helsinki University Hospital Helsinki
| | | | - Ella Mustanoja
- Institute of Biotechnology, University of Helsinki, Helsinki Institute of Life Sciences
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki Institute of Life Sciences
| | - Toni Saari
- Institute of Biotechnology, University of Helsinki, Helsinki Institute of Life Sciences
| | - Juha-Matti Lehtola
- Departments of Neurology
- Department of Psychiatry, Turku University Hospital, Turku, Finland
| | - Sanna Hannonen
- Departments of Neurology
- NeuroCenter, Kuopio University Hospital, Kuopio
| | - Minna Rusanen
- Departments of Neurology
- NeuroCenter, Kuopio University Hospital, Kuopio
| | - Ville Leinonen
- Neurosurgery, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland
- NeuroCenter, Kuopio University Hospital, Kuopio
| | - Filip Scheperjans
- Clinicum, University of Helsinki
- Neurology, Helsinki University Hospital, Helsinki
| | - Virve Kärkkäinen
- Neurosurgery, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland
- NeuroCenter, Kuopio University Hospital, Kuopio
| |
Collapse
|
3
|
Li Z, Liang H, Hu Y, Lu L, Zheng C, Fan Y, Wu B, Zou T, Luo X, Zhang X, Zeng Y, Liu Z, Zhou Z, Yue Z, Ren Y, Li Z, Su Q, Xu P. Gut bacterial profiles in Parkinson's disease: A systematic review. CNS Neurosci Ther 2022; 29:140-157. [PMID: 36284437 PMCID: PMC9804059 DOI: 10.1111/cns.13990] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Recent advances have highlighted the relationships between gut dysbiosis and Parkinson's disease (PD). Microbiota transplantation from PD patients to mice can induce increased alpha-synuclein-mediated motor deficits. Human studies have identified differences in the gut microbiota of PD patients compared to healthy controls. We undertook a systematic review to evaluate the available evidence for the involvement of gut bacteria in the etiology of PD. METHODS The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched from inception until June 2021 to identify human case-control studies that investigated relationships between PD and microbiota quantified from feces. We evaluated the resulting studies focusing on bacterial taxa that were different between PD patients and healthy controls. RESULTS Twenty-six studies were found in which 53 microbial families and 98 genera exhibited differences between patients with PD and healthy controls. The genera identified by more than two studies as increased in PD were Bifidobacterium, Alistipes, Christensenella, Enterococcus, Oscillospira, Bilophila, Desulfovibrio, Escherichia/Shigella, and Akkermansia, while Prevotella, Blautia, Faecalibacterium, Fusicatenibacter, and Haemophilus had three or more reports of being lower in PD patients. More than one report demonstrated that Bacteroides, Odoribacter, Parabacteroides, Butyricicoccus, Butyrivibrio, Clostridium, Coprococcus, Lachnospira, Lactobacillus, Megasphaera, Phascolarctobacterium, Roseburia, Ruminococcus, Streptococcus, and Klebsiella were altered in both directions. CONCLUSION Our review shows that the involvement of the gut microbiome in the etiology of PD may involve alterations of short-chain fatty acids (SCFAs)-producing bacteria and an increase in putative gut pathobionts. SCFAs-producing bacteria may vary above or below an "optimal range," causing imbalances. Considering that Bifidobacterium, Lactobacillus, and Akkermansia are beneficial for human health, increased Bifidobacterium and Lactobacillus in the PD gut microbiome may be associated with PD medications, especially COMT inhibitors, while a high level of Akkermansia may be associated with aging.
Collapse
Affiliation(s)
- Zhe Li
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Hongfeng Liang
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yingyu Hu
- Hospital Administration OfficeSouthern Medical UniversityGuangzhouChina
| | - Lin Lu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chunye Zheng
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yuzhen Fan
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Bin Wu
- Genetic Testing LabThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Tao Zou
- Chronic Disease Management OutpatientThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Xiaodong Luo
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Xinchun Zhang
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Yan Zeng
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Ziyan Liu
- The Second Clinical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhicheng Zhou
- The Second Clinical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yi Ren
- Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFloridaUSA
| | - Zhuo Li
- Genetic Testing LabThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Qiaozhen Su
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
| | - Pingyi Xu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Cognitive Deficits Found in a Pro-inflammatory State are Independent of ERK1/2 Signaling in the Murine Brain Hippocampus Treated with Shiga Toxin 2 from Enterohemorrhagic Escherichia coli. Cell Mol Neurobiol 2022:10.1007/s10571-022-01298-1. [PMID: 36227397 DOI: 10.1007/s10571-022-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.
Collapse
|
5
|
Arenas-Mosquera D, Pinto A, Cerny N, Berdasco C, Cangelosi A, Geoghegan PA, Malchiodi EL, De Marzi M, Goldstein J. Cytokines expression from altered motor thalamus and behavior deficits following sublethal administration of Shiga toxin 2a involve the induction of the globotriaosylceramide receptor. Toxicon 2022; 216:115-124. [PMID: 35835234 DOI: 10.1016/j.toxicon.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
Encephalopathy associated with hemolytic uremic syndrome is produced by enterohemorrhagic E. coli (EHEC) infection, which releases the virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS). Neurological compromise is a poor prognosis and mortality factor of the disease, and the thalamus is one of the brain areas most frequently affected. We have previously demonstrated the effectiveness of anti-inflammatory drugs to ameliorate the deleterious effects of these toxins. However, the thalamic production of cytokines involved in pro-inflammatory processes has not yet been acknowledged. The aim of this work attempts to determine whether systemic sublethal Stx2a or co-administration of Stx2a with LPS are able to rise a proinflammatory profile accompanying alterations of the neurovascular unit in anterior and lateral ventral nuclei of the thalamus (VA-VL) and motor behavior in mice. After 4 days of treatment, Stx2a affected the lectin-bound microvasculature distribution while increasing the expression of GFAP in reactive astrocytes and producing aberrant NeuN distribution in degenerative neurons. In addition, increased swimming latency was observed in a motor behavioral test. All these alterations were heightened when Stx2a was co-administered with LPS. The expression of pro-inflammatory cytokines TNFα, INF-γ and IL-2 was detected in VA-VL. All these effects were concomitant with increased expression of the Stx receptor globotriaosylceramide (Gb3), which hints at receptor involvement in the neuroinflammatory process as a key finding of this study. In conclusion, Stx2a to Gb3 may be determinant in triggering a neuroinflammatory event, which may resemble clinical outcomes and should thus be considered in the development of preventive strategies.
Collapse
Affiliation(s)
- David Arenas-Mosquera
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Natacha Cerny
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología e Instituto de Estudios de La Inmunidad Humoral (IDEHU), UBA-CONICET, Junín 956 Piso 4, 1113, Ciudad de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología e Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Paraguay 2155 Piso 12, 1121, Ciudad de Buenos Aires, Argentina
| | - Clara Berdasco
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), "ANLIS, Dr. Carlos G. Malbrán", Avenida Vélez Sarsfield 563, 1282, Ciudad de Buenos Aires, Argentina
| | - Patricia Andrea Geoghegan
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), "ANLIS, Dr. Carlos G. Malbrán", Avenida Vélez Sarsfield 563, 1282, Ciudad de Buenos Aires, Argentina
| | - Emilio Luis Malchiodi
- Universidad de Buenos Aires, IDEHU-CONICET, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Junín 956, Piso 4°, 1113, Ciudad de Buenos Aires, Argentina
| | - Mauricio De Marzi
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Ruta 5 y Avenida Constitución (6700) Luján, Buenos Aires, Argentina; Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES)-CONICET, Laboratorio de Inmunología, Ruta 5 y Avenida Constitución (6700) Luján, Buenos Aires, Argentina
| | - Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Celi AB, Goldstein J, Rosato-Siri MV, Pinto A. Role of Globotriaosylceramide in Physiology and Pathology. Front Mol Biosci 2022; 9:813637. [PMID: 35372499 PMCID: PMC8967256 DOI: 10.3389/fmolb.2022.813637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
At first glance, the biological function of globoside (Gb) clusters appears to be that of glycosphingolipid (GSL) receptors for bacterial toxins that mediate host-pathogen interaction. Indeed, certain bacterial toxin families have been evolutionarily arranged so that they can enter eukaryotic cells through GSL receptors. A closer look reveals this molecular arrangement allocated on a variety of eukaryotic cell membranes, with its role revolving around physiological regulation and pathological processes. What makes Gb such a ubiquitous functional arrangement? Perhaps its peculiarity is underpinned by the molecular structure itself, the nature of Gb-bound ligands, or the intracellular trafficking unleashed by those ligands. Moreover, Gb biological conspicuousness may not lie on intrinsic properties or on its enzymatic synthesis/degradation pathways. The present review traverses these biological aspects, focusing mainly on globotriaosylceramide (Gb3), a GSL molecule present in cell membranes of distinct cell types, and proposes a wrap-up discussion with a phylogenetic view and the physiological and pathological functional alternatives.
Collapse
Affiliation(s)
- Ana Beatriz Celi
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Rosato-Siri
- Departamento de Física Médica/Instituto de Nanociencia y Nanotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Alipio Pinto
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Alipio Pinto,
| |
Collapse
|
7
|
Henrique IDM, Sacerdoti F, Ferreira RL, Henrique C, Amaral MM, Piazza RMF, Luz D. Therapeutic Antibodies Against Shiga Toxins: Trends and Perspectives. Front Cell Infect Microbiol 2022; 12:825856. [PMID: 35223548 PMCID: PMC8866733 DOI: 10.3389/fcimb.2022.825856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.
Collapse
Affiliation(s)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| |
Collapse
|
8
|
Goldstein J, Nuñez-Goluboay K, Pinto A. Therapeutic Strategies to Protect the Central Nervous System against Shiga Toxin from Enterohemorrhagic Escherichia coli. Curr Neuropharmacol 2021; 19:24-44. [PMID: 32077828 PMCID: PMC7903495 DOI: 10.2174/1570159x18666200220143001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.
Collapse
Affiliation(s)
- Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Krista Nuñez-Goluboay
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| |
Collapse
|
9
|
Pradhan S, Karve SS, Weiss AA, Hawkins J, Poling HM, Helmrath MA, Wells JM, McCauley HA. Tissue Responses to Shiga Toxin in Human Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2020; 10:171-190. [PMID: 32145469 PMCID: PMC7240222 DOI: 10.1016/j.jcmgh.2020.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Shiga toxin (Stx)-producing Escherichia coli (eg, O157:H7) infection produces bloody diarrhea, while Stx inhibits protein synthesis and causes the life-threatening systemic complication of hemolytic uremic syndrome. The murine intestinal tract is resistant to O157:H7 and Stx, and human cells in culture fail to model the complex tissue responses to intestinal injury. We used genetically identical, human stem cell-derived intestinal tissues of varying complexity to study Stx toxicity in vitro and in vivo. METHODS In vitro susceptibility to apical or basolateral exposure to Stx was assessed using human intestinal organoids (HIOs) derived from embryonic stem cells, or enteroids derived from multipotent intestinal stem cells. HIOs contain a lumen, with a single layer of differentiated epithelium surrounded by mesenchymal cells. Enteroids only contain epithelium. In vivo susceptibility was assessed using HIOs, with or without an enteric nervous system, transplanted into mice. RESULTS Stx induced necrosis and apoptotic death in both epithelial and mesenchymal cells. Responses that require protein synthesis (cellular proliferation and wound repair) also were observed. Epithelial barrier function was maintained even after epithelial cell death was seen, and apical to basolateral translocation of Stx was seen. Tissue cross-talk, in which mesenchymal cell damage caused epithelial cell damage, was observed. Stx induced mesenchymal expression of the epithelial marker E-cadherin, the initial step in mesenchymal-epithelial transition. In vivo responses of HIO transplants injected with Stx mirrored those seen in vitro. CONCLUSIONS Intestinal tissue responses to protein synthesis inhibition by Stx are complex. Organoid models allow for an unprecedented examination of human tissue responses to a deadly toxin.
Collapse
Affiliation(s)
- Suman Pradhan
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio
| | - Sayali S Karve
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio
| | - Alison A Weiss
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio.
| | | | | | | | - James M Wells
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Heather A McCauley
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
10
|
Berdasco C, Duhalde Vega M, Rosato-Siri MV, Goldstein J. Environmental Cues Modulate Microglial Cell Behavior Upon Shiga Toxin 2 From Enterohemorrhagic Escherichia coli Exposure. Front Cell Infect Microbiol 2020; 9:442. [PMID: 31970091 PMCID: PMC6960108 DOI: 10.3389/fcimb.2019.00442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Shiga toxin (Stx) produced by enterohemorrhagic E. coli produces hemolytic uremic syndrome and encephalopathies in patients, which can lead to either reversible or permanent neurological abnormalities, or even fatal cases depending on the degree of intoxication. It has been observed that the inflammatory component plays a decisive role in the severity of the disease. Therefore, the objective of this work was to evaluate the behavior of microglial cell primary cultures upon Stx2 exposure and heat shock or lipopolysaccharide challenges, as cues which modulate cellular environments, mimicking fever and inflammation states, respectively. In these contexts, activated microglial cells incorporated Stx2, increased their metabolism, phagocytic capacity, and pro-inflammatory profile. Stx2 uptake was associated to receptor globotriaosylceramide (Gb3)-pathway. Gb3 had three clearly distinguishable distribution patterns which varied according to different contexts. In addition, toxin uptake exhibited both a Gb3-dependent and a Gb3-independent binding depending on those contexts. Altogether, these results suggest a fundamental role for microglial cells in pro-inflammatory processes in encephalopathies due to Stx2 intoxication and highlight the impact of environmental cues.
Collapse
Affiliation(s)
- Clara Berdasco
- Laboratorio de Neurofisiopatología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Houssay", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maite Duhalde Vega
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Victoria Rosato-Siri
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Houssay", Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
12
|
Berdasco C, Pinto A, Calabró V, Arenas D, Cangelosi A, Geoghegan P, Evelson P, Goldstein J. Shiga toxin 2 from enterohemorrhagic Escherichia coli induces reactive glial cells and neurovascular disarrangements including edema and lipid peroxidation in the murine brain hippocampus. J Biomed Sci 2019; 26:16. [PMID: 30732602 PMCID: PMC6366040 DOI: 10.1186/s12929-019-0509-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Shiga toxin 2 from enterohemorrhagic Escherichia coli is the etiologic agent of bloody diarrhea, hemolytic uremic syndrome and derived encephalopathies that may result to death in patients. Being a Gram negative bacterium, lipopolysaccharide is also released. Particularly, the hippocampus has been found affected in patients intoxicated with Shiga toxin 2. In the current work, the deleterious effects of Shiga toxin 2 and lipopolysaccharide are investigated in detail in hippocampal cells for the first time in a translational murine model, providing conclusive evidences on how these toxins may damage in the observed clinic cases. METHODS Male NIH mice (25 g) were injected intravenously with saline solution, lipopolysaccharide, Shiga toxin 2 or a combination of Shiga toxin 2 with lipopolysaccharide. Brain water content assay was made to determine brain edema. Another set of animals were intracardially perfused with a fixative solution and their brains were subjected to immunofluorescence with lectins to determine the microvasculature profile, and anti-GFAP, anti-NeuN, anti-MBP and anti-Iba1 to study reactive astrocytes, neuronal damage, myelin dysarrangements and microglial state respectively. Finally, the Thiobarbituric Acid Reactive Substances Assay was made to determine lipid peroxidation. In all assays, statistical significance was performed using the One-way analysis of variance followed by Bonferroni post hoc test. RESULTS Systemic sublethal administration of Shiga toxin 2 increased the expressions of astrocytic GFAP and microglial Iba1, and decreased the expressions of endothelial glycocalyx, NeuN neurons from CA1 pyramidal layer and oligodendrocytic MBP myelin sheath from the fimbria of the hippocampus. In addition, increased interstitial fluids and Thiobarbituric Acid Reactive Substances-derived lipid peroxidation were also found. The observed outcomes were enhanced when sublethal administration of Shiga toxin 2 was co-administered together with lipopolysaccharide. CONCLUSION Systemic sublethal administration of Shiga toxin 2 produced a deterioration of the cells that integrate the vascular unit displaying astrocytic and microglial reactive profiles, while edema and lipid peroxidation were also observed. The contribution of lipopolysaccharide to pathogenicity caused by Shiga toxin 2 resulted to enhance the observed hippocampal damage.
Collapse
Affiliation(s)
- Clara Berdasco
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ‘‘Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 piso 7, 1121 Buenos Aires, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ‘‘Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 piso 7, 1121 Buenos Aires, Argentina
| | - Valeria Calabró
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - David Arenas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ‘‘Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 piso 7, 1121 Buenos Aires, Argentina
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia Geoghegan
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
| | - Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ‘‘Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 piso 7, 1121 Buenos Aires, Argentina
| |
Collapse
|
13
|
Anti-inflammatory agents reduce microglial response, demyelinating process and neuronal toxin uptake in a model of encephalopathy produced by Shiga Toxin 2. Int J Med Microbiol 2018; 308:1036-1042. [PMID: 30314914 DOI: 10.1016/j.ijmm.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 11/20/2022] Open
Abstract
Infections by Enterohemorrhagic Escherichia coli may cause in addition to hemolytic uremic syndrome neurological disorders which may lead to fatal outcomes in patients. The brain striatum is usually affected during this outcome. The aim of this study was to determine in this area the role of the microglia in pro-inflammatory events that may occur during Shiga toxin 2 intoxication and consequently to this, whether oligodendrocytes were being affected. In the present paper we demonstrated that anti-inflammatory treatments reduced deleterious effects in brain striatal cells exposed to Shiga toxin 2 and LPS. While dexamethasone treatment decreased microglial activation and recovered myelin integrity in the mice striatum, etanercept treatment decreased neuronal uptake of Stx2 in rat striatal neurons, improving the affected area from toxin-derived injury. In conclusion, microglial activation is related to pro-inflammatory events that may deteriorate the brain function during intoxication with Stx2 and LPS. Consequently, the role of anti-inflammatory agents in the treatment of EHEC-derived encephalopathy should be studied in clinical trials.
Collapse
|
14
|
Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krüger A, Rojas-Lopez M. Recent Advances in Shiga Toxin-Producing Escherichia coli Research in Latin America. Microorganisms 2018; 6:microorganisms6040100. [PMID: 30274180 PMCID: PMC6313304 DOI: 10.3390/microorganisms6040100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Escherichia coli are known to be a common cause of diarrheal disease and a frequently occurring bacterial infection in children and adults in Latin America. Despite the effort to combat diarrheal infections, the south of the American continent remains a hot spot for infections and sequelae associated with the acquisition of one category of pathogenic E. coli, the Shiga toxin-producing E. coli (STEC). This review will focus on an overview of the prevalence of different STEC serotypes in human, animals and food products, focusing on recent reports from Latin America outlining the recent research progress achieved in this region to combat disease and endemicity in affected countries and to improve understanding on emerging serotypes and their virulence factors. Furthermore, this review will highlight the progress done in vaccine development and treatment and will also discuss the effort of the Latin American investigators to respond to the thread of STEC infections by establishing a multidisciplinary network of experts that are addressing STEC-associated animal, human and environmental health issues, while trying to reduce human disease. Regardless of the significant scientific contributions to understand and combat STEC infections worldwide, many significant challenges still exist and this review has focus in the Latin American efforts as an example of what can be accomplished when multiple groups have a common goal.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maria M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Leticia Bentancor
- Laboratory of Genetic Engineering and Molecular Biology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires 1876, Argentina.
| | - Lucia Galli
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata 1900, Argentina.
| | - Jorge Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Alejandra Krüger
- Centro de Investigación Veterinaria de Tandil (CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Tandil 7000, Argentina.
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Hall G, Kurosawa S, Stearns-Kurosawa DJ. Shiga Toxin Therapeutics: Beyond Neutralization. Toxins (Basel) 2017; 9:toxins9090291. [PMID: 28925976 PMCID: PMC5618224 DOI: 10.3390/toxins9090291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Ribotoxic Shiga toxins are the primary cause of hemolytic uremic syndrome (HUS) in patients infected with Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), a pathogen class responsible for epidemic outbreaks of gastrointestinal disease around the globe. HUS is a leading cause of pediatric renal failure in otherwise healthy children, resulting in a mortality rate of 10% and a chronic morbidity rate near 25%. There are currently no available therapeutics to prevent or treat HUS in STEC patients despite decades of work elucidating the mechanisms of Shiga toxicity in sensitive cells. The preclinical development of toxin-targeted HUS therapies has been hindered by the sporadic, geographically dispersed nature of STEC outbreaks with HUS cases and the limited financial incentive for the commercial development of therapies for an acute disease with an inconsistent patient population. The following review considers potential therapeutic targeting of the downstream cellular impacts of Shiga toxicity, which include the unfolded protein response (UPR) and the ribotoxic stress response (RSR). Outcomes of the UPR and RSR are relevant to other diseases with large global incidence and prevalence rates, thus reducing barriers to the development of commercial drugs that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Gregory Hall
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|