1
|
Zha X, Zheng G, Skutella T, Kiening K, Unterberg A, Younsi A. Microglia: a promising therapeutic target in spinal cord injury. Neural Regen Res 2025; 20:454-463. [PMID: 38819048 PMCID: PMC11317945 DOI: 10.4103/nrr.nrr-d-23-02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 06/01/2024] Open
Abstract
Microglia are present throughout the central nervous system and are vital in neural repair, nutrition, phagocytosis, immunological regulation, and maintaining neuronal function. In a healthy spinal cord, microglia are accountable for immune surveillance, however, when a spinal cord injury occurs, the microenvironment drastically changes, leading to glial scars and failed axonal regeneration. In this context, microglia vary their gene and protein expression during activation, and proliferation in reaction to the injury, influencing injury responses both favorably and unfavorably. A dynamic and multifaceted injury response is mediated by microglia, which interact directly with neurons, astrocytes, oligodendrocytes, and neural stem/progenitor cells. Despite a clear understanding of their essential nature and origin, the mechanisms of action and new functions of microglia in spinal cord injury require extensive research. This review summarizes current studies on microglial genesis, physiological function, and pathological state, highlights their crucial roles in spinal cord injury, and proposes microglia as a therapeutic target.
Collapse
Affiliation(s)
- Xiaowei Zha
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Guoli Zheng
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Karl Kiening
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Coleman LG. From the dust: extracellular vesicles as regulators of development and neuroregeneration. Neural Regen Res 2024; 19:933-934. [PMID: 37862175 PMCID: PMC10749604 DOI: 10.4103/1673-5374.382243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/27/2023] [Accepted: 07/11/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Leon G. Coleman
- The University of North Carolina at Chapel Hill, School of Medicine, Department of Pharmacology, Bowles Center for Alcohol Studies, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Quan H, Zhang R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front Immunol 2023; 14:1320271. [PMID: 38094292 PMCID: PMC10716326 DOI: 10.3389/fimmu.2023.1320271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Hongxin Quan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| |
Collapse
|
5
|
Rashchupkin IM, Shevela EY, Maksimova AA, Tikhonova MA, Ostanin AA, Chernykh ER. Effect of Differently Polarized Human Macrophages on the SH-SY5Y Cells Damaged by Ischemia and Hypoxia In Vitro. J Immunol Res 2023; 2023:5595949. [PMID: 37692837 PMCID: PMC10484653 DOI: 10.1155/2023/5595949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
Macrophages are the major cells of innate immunity with a wide range of biological effects due to their great plasticity and heterogeneity. Macrophages play a key role in neuroregeneration following nervous tissue injury. However, the neuroregenerative potential of various macrophage phenotypes, including those polarized by efferocytosis, remains unexplored. The aim of this study was to compare the neuroregenerative and neuroprotective activity of soluble factors secreted by variously activated human macrophages on the functions of neural progenitors in an in vitro model of ischemia or ischemia/hypoxia. Macrophages were polarized by interferon-γ (M1), IL-4 (M2a), or interaction with apoptotic cells (M2(LS)). The effect of macrophages conditioned media on the proliferation, differentiation, and survival of SH-SY5Y cells damaged by serum deprivation alone (ischemic conditions) or in combination with CoCl2 (ischemic/hypoxic conditions) was assessed. All studied macrophages stimulated the proliferation and differentiation of SH-SY5Y cells. On day 3, the pro-proliferating effect of M1 and M2 was similar and did not depend on the severity of the damaging effect (ischemia or ischemia/hypoxia), while on day 7 and under ischemic/hypoxic conditions, the effects of M2(LS) exceeded those of M1 and M2a cells. The prodifferentiation effects of macrophages were manifested in both short- and long-term cultures, mainly under ischemic/hypoxic conditions, and were most characteristic of M2(LS) cells. Importantly, the ischemia/hypoxia model was accompanied by the pronounced death of SH-SY5Y cells. Only macrophages with the M2 phenotype demonstrated antiapoptotic activity, and the effect of M2(LS) was higher than that of M2a. The results obtained indicate that human macrophages have neuroprotective and neuroregenerative activity, which is mediated by soluble factors, is most characteristic for macrophages activated by efferocytosis (M2(LS)), and is most prominent under in vitro conditions simulating the combined effect of ischemia/hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Removna Chernykh
- Scientific Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
6
|
Cellular and Molecular Mechanisms Underly the Combined Treatment of Fasudil and Bone Marrow Derived-Neuronal Stem Cells in a Parkinson's Disease Mouse Model. Mol Neurobiol 2023; 60:1826-1835. [PMID: 36580198 DOI: 10.1007/s12035-022-03173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Bone marrow-derived neural stem cells (BM-NSCs) have shed light on novel therapeutic approaches for PD with the potential to halt or even reverse disease progression. Various strategies have been developed to promote therapeutic efficacy via optimizing implanted cells and the microenvironment of transplantation in the central nervous system (CNS). This current study further proved that the combination of fasudil, a Rho-kinase inhibitor, and BM-NSCs exhibited a synergetic effect on restoring neuron loss in the MPTP-PD mice model. It simultaneously unveiled cellular mechanisms underlying synergistic neuron-protection effects of fasudil and BM-NSCs, which included promoting the proliferation, and migration of endogenous NSCs, and contributing to microglia shift into the M2 phenotype. Corresponding molecular mechanisms were observed, including the inhibition of inflammatory responses, the elevation of neurotrophic factors, and the induction of WNT/β-catenin and PI3K/Akt/mTOR signaling pathways. Our study provides evidence for the co-intervention of BM-NSCs and fasudil as a promising therapeutic method with enhanced efficacy in treating neurodegenerative diseases.
Collapse
|
7
|
Zou J, Walter TJ, Barnett A, Rohlman A, Crews FT, Coleman LG. Ethanol Induces Secretion of Proinflammatory Extracellular Vesicles That Inhibit Adult Hippocampal Neurogenesis Through G9a/GLP-Epigenetic Signaling. Front Immunol 2022; 13:866073. [PMID: 35634322 PMCID: PMC9136051 DOI: 10.3389/fimmu.2022.866073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) is involved in learning and memory as well as regulation of mood. Binge ethanol reduces AHN, though the mechanism is unknown. Microglia in the neurogenic niche are important regulators of AHN, and ethanol promotes proinflammatory microglia activation. We recently reported that extracellular vesicles (EVs) mediate ethanol-induced inflammatory signaling in microglia. Therefore, we investigated the role of EVs in ethanol-induced loss of adult hippocampal neurogenesis. At rest, microglia promoted neurogenesis through the secretion of pro-neurogenic extracellular vesicles (pn-EVs). Depletion of microglia using colony-stimulating factor 1 receptor (CSFR1) inhibition in vivo or using ex vivo organotypic brain slice cultures (OBSCs) caused a 30% and 56% loss of neurogenesis in the dentate, respectively, as measured by immunohistochemistry for doublecortin (DCX). Likewise, chemogenetic inhibition of microglia using a CD68.hM4di construct caused a 77% loss in OBSC, indicating a pro-neurogenic resting microglial phenotype. EVs from control OBSC were pro-neurogenic (pn-EVs), enhancing neurogenesis when transferred to other naive OBSC and restoring neurogenesis in microglia-depleted cultures. Ethanol inhibited neurogenesis and caused secretion of proinflammatory EVs (EtOH-EVs). EtOH-EVs reduced hippocampal neurogenesis in naïve OBSC by levels similar to ethanol. Neurogenesis involves complex regulation of chromatin structure that could involve EV signaling. Accordingly, EtOH-EVs were found to be enriched with mRNA for the euchromatin histone lysine methyltransferase (Ehm2t/G9a), an enzyme that reduces chromatin accessibility through histone-3 lysine-9 di-methylation (H3K9me2). EtOH-EVs induced G9a and H3K9me2 by 2-fold relative to pn-EVs in naïve OBSCs. Pharmacological inhibition of G9a with either BIX-01294 or UNC0642 prevented loss of neurogenesis caused by both EtOH and EtOH-EVs. Thus, this work finds that proinflammatory EtOH-EVs promote the loss of adult hippocampal neurogenesis through G9a-mediated epigenetic modification of chromatin structure.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - T. Jordan Walter
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Alexandra Barnett
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Aaron Rohlman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Li B, Ning B, Yang F, Guo C. Nerve Growth Factor Promotes Retinal Neurovascular Unit Repair: A Review. Curr Eye Res 2022; 47:1095-1105. [PMID: 35499266 DOI: 10.1080/02713683.2022.2055084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: The purpose of this paper is to investigate how the imbalance of neurogenic factor (NGF) and its precursor (pro-NGF) mediates structural and functional impairment of retinal neurovascular unit (RNVU) that plays a role in retinal degenerative diseases.Methods: A literature search of electronic databases was performed.Results: The pro-apoptotic effect of pro-NGF and the pro-growth effect of NGF are essential for the pathological and physiological activities of RNVU. Studies show that NGF-based treatment of retinal degenerative diseases, including glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, has achieved remarkable efficacy.Conclusions: RNVU plays a complex and multifaceted role in retinal degenerative diseases. The exploration of the differential signaling expression of proNGF-NGF homeostasis under physiological and pathological conditions, and the corresponding pathological processes induced by its regulation, has prompted us to focus on earlier retinal neuroprotective therapeutic strategies to prevent retinal degenerative diseases.
Collapse
Affiliation(s)
- Baohua Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Bobiao Ning
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Fan Yang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Chengwei Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
9
|
The secretome of microglia induced by IL-4 of IFN-γ differently regulate proliferation, differentiation and survival of adult neural stem/progenitor cell by targeting the PI3K-Akt pathway. Cytotechnology 2022; 74:407-420. [DOI: 10.1007/s10616-022-00534-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
|
10
|
Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells 2022; 11:cells11050846. [PMID: 35269466 PMCID: PMC8909806 DOI: 10.3390/cells11050846] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects millions of individuals worldwide. Currently, there is no cure, and treatment options to promote neural recovery are limited. An innovative approach to improve outcomes following SCI involves the recruitment of endogenous populations of neural stem cells (NSCs). NSCs can be isolated from the neuroaxis of the central nervous system (CNS), with brain and spinal cord populations sharing common characteristics (as well as regionally distinct phenotypes). Within the spinal cord, a number of NSC sub-populations have been identified which display unique protein expression profiles and proliferation kinetics. Collectively, the potential for NSCs to impact regenerative medicine strategies hinges on their cardinal properties, including self-renewal and multipotency (the ability to generate de novo neurons, astrocytes, and oligodendrocytes). Accordingly, endogenous NSCs could be harnessed to replace lost cells and promote structural repair following SCI. While studies exploring the efficacy of this approach continue to suggest its potential, many questions remain including those related to heterogeneity within the NSC pool, the interaction of NSCs with their environment, and the identification of factors that can enhance their response. We discuss the current state of knowledge regarding populations of endogenous spinal cord NSCs, their niche, and the factors that regulate their behavior. In an attempt to move towards the goal of enhancing neural repair, we highlight approaches that promote NSC activation following injury including the modulation of the microenvironment and parenchymal cells, pharmaceuticals, and applied electrical stimulation.
Collapse
|
11
|
Xu L, Wang J, Ding Y, Wang L, Zhu YJ. Current Knowledge of Microglia in Traumatic Spinal Cord Injury. Front Neurol 2022; 12:796704. [PMID: 35087472 PMCID: PMC8787368 DOI: 10.3389/fneur.2021.796704] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells in the central nervous system (CNS). After traumatic spinal cord injury (SCI), microglia undergo activation, proliferation, and changes in gene and protein expression and morphology, with detrimental and beneficial effects. Activated microglia cause secondary neuronal injury via the production of proinflammatory cytokines, reactive oxygen species, and proteases. However, activated microglia also promote neuronal repair through the secretion of anti-inflammatory growth factors and cytokines. Proinflammatory cytokines increase endothelial permeability, promote A1 astrocyte activation and axonal demyelination, and reduce neural stem/progenitor cells (NSPCs), leading to the exacerbation of neuronal injury. In contrast, anti-inflammatory factors facilitate angiogenesis, reduce reactive astrocytes, and promote axonal remyelination and the propagation of NSPCs, contributing to tissue repair and locomotor recovery. Due to its limited regenerative capacity, the CNS requires beneficial microglia for continuous protection against injury. Understanding and regulating microglial activation status are beneficial to reducing detrimental effects and promoting repair behaviors and to obtain more information on efficient therapies for traumatic SCI. This review discusses microglial activation and the differences between microglia and similar immune cells, microglial interactions with other cells in the spinal cord, and the progress in the development of therapies targeting microglia in SCI.
Collapse
Affiliation(s)
- Lintao Xu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yueming Ding
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Jian Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Yao Z, Chen P, Fan L, Chen P, Zhang X, Yu B. CCL2 is a critical mechano-responsive mediator in crosstalk between osteoblasts and bone mesenchymal stromal cells. FASEB J 2021; 35:e21851. [PMID: 34547121 DOI: 10.1096/fj.202002808rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
It has been known that moderate mechanical loading, like that caused by exercise, promotes bone formation. However, its underlying mechanisms remain elusive. Here we showed that moderate running dramatically improved trabecular bone in mice tibias with an increase in bone volume fraction and trabecular number and a decrease in trabecular pattern factor. Results of immunohistochemical and histochemical staining revealed that moderate running mainly increased the number of osteoblasts but had no effect on osteoclasts. In addition, we observed a dramatic increase in the number of colony forming unit-fibroblast in endosteal bone marrow and the percentage of CD45- Leptin receptor+ (CD45- LepR+ ) endosteal mesenchymal progenitors. Bioinformatics analysis of the transcriptional data from gene expression omnibus (GEO) database identified chemokine c-c-motif ligands (CCL2) as a critical candidate induced by mechanical loading. Interestingly, we found that CCL2 was up-regulated mainly in osteoblastic cells in the tibia of mice after moderate running. Further, we found that mechanical loading up-regulated the expression of CCL2 by activating ERK1/2 pathway, thereby stimulating migration of endosteal progenitors. Finally, neutralizing CCL2 abolished the recruitment of endosteal progenitors and the increased bone formation in mice after 4 weeks running. These results therefore uncover an unknown connection between osteoblasts and endosteal progenitors recruited in the increased bone formation induced by mechanical loading.
Collapse
Affiliation(s)
- Zilong Yao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Pengyu Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Liuyi Fan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Peisheng Chen
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
13
|
Kim JH, Park SH, Han J, Ko PW, Kwon D, Suk K. Gliome database: a comprehensive web-based tool to access and analyze glia secretome data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5879255. [PMID: 32743661 PMCID: PMC7396318 DOI: 10.1093/database/baaa057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Glial cells are phenotypically heterogeneous non-neuronal components of the central and peripheral nervous systems. These cells are endowed with diverse functions and molecular machineries to detect and regulate neuronal or their own activities by various secreted mediators, such as proteinaceous factors. In particular, glia-secreted proteins form a basis of a complex network of glia-neuron or glia-glia interactions in health and diseases. In recent years, the analysis and profiling of glial secretomes have raised new expectations for the diagnosis and treatment of neurological disorders due to the vital role of glia in numerous physiological or pathological processes of the nervous system. However, there is no online database of glia-secreted proteins available to facilitate glial research. Here, we developed a user-friendly 'Gliome' database (available at www.gliome.org), a web-based tool to access and analyze glia-secreted proteins. The database provides a vast collection of information on 3293 proteins that are released from glia of multiple species and have been reported to have differential functions under diverse experimental conditions. It contains a web-based interface with the following four key features regarding glia-secreted proteins: (i) fundamental information, such as signal peptide, SecretomeP value, functions and Gene Ontology category; (ii) differential expression patterns under distinct experimental conditions; (iii) disease association; and (iv) interacting proteins. In conclusion, the Gliome database is a comprehensive web-based tool to access and analyze glia-secretome data obtained from diverse experimental settings, whereby it may facilitate the integration of bioinformatics into glial research.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Su-Hyeong Park
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,D&P BIOTECH, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Jin Han
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Dongseop Kwon
- School of Software Convergence, Myongji University, 34 Geobukgol-ro, Seodaemun-gu, Seoul, 03674, Republic of Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| |
Collapse
|
14
|
Nian S, Lo ACY, Mi Y, Ren K, Yang D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. EYE AND VISION 2021; 8:15. [PMID: 33931128 PMCID: PMC8088070 DOI: 10.1186/s40662-021-00239-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR), one of the common complications of diabetes, is the leading cause of visual loss in working-age individuals in many industrialized countries. It has been traditionally regarded as a purely microvascular disease in the retina. However, an increasing number of studies have shown that DR is a complex neurovascular disorder that affects not only vascular structure but also neural tissue of the retina. Deterioration of neural retina could precede microvascular abnormalities in the DR, leading to microvascular changes. Furthermore, disruption of interactions among neurons, vascular cells, glia and local immune cells, which collectively form the neurovascular unit, is considered to be associated with the progression of DR early on in the disease. Therefore, it makes sense to develop new therapeutic strategies to prevent or reverse retinal neurodegeneration, neuroinflammation and impaired cell-cell interactions of the neurovascular unit in early stage DR. Here, we present current perspectives on the pathophysiology of DR as a neurovascular disease, especially at the early stage. Potential novel treatments for preventing or reversing neurovascular injuries in DR are discussed as well.
Collapse
Affiliation(s)
- Shen Nian
- Department of Pathology, Xi'an Medical University, Xi'an, Shaanxi Province, China.
| | - Amy C Y Lo
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yajing Mi
- Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Kai Ren
- Department of Biochemistry and Molecular Biology, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Di Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
15
|
Umbilical cord-derived mesenchymal stromal cells immunomodulate and restore actin dynamics and phagocytosis of LPS-activated microglia via PI3K/Akt/Rho GTPase pathway. Cell Death Discov 2021; 7:46. [PMID: 33723246 PMCID: PMC7961004 DOI: 10.1038/s41420-021-00436-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/20/2021] [Accepted: 02/13/2021] [Indexed: 12/27/2022] Open
Abstract
Microglia are the immune cells in the central nervous system surveying environment and reacting to various injuries. Activated microglia may cause impaired synaptic plasticity, therefore modulating and restoring them to neutral phenotype is crucial to counteract a pro-inflammatory, neurotoxic state. In this study, we focused on elucidating whether human umbilical cord (UC) -derived mesenchymal stromal cells (MSCs) can exert immunomodulatory effect and change the phenotype of activated microglia. Primary culture of microglia was activated by lipopolysaccharide (LPS) and was co-cultured with three lots of MSCs. We investigated immunomodulation, actin dynamics and phagocytic capacity of activated microglia, and examined change of Rho GTPase in microglia as the mechanism. MSCs suppressed the expression of IL-1β and pNFκB in LPS-activated microglia, and conversely elevated the expression of IL-1β in resting-surveying microglia with lot-to-lot variation. Morphological and phagocytotic analyses revealed that LPS stimulation significantly increased active Rho GTPase, Rac1, and Cdc42 levels in the microglia, and their morphology changed to amoeboid in which F-actin spread with ruffle formation. The F-actin spreading persisted after removal of LPS stimulation and reduced phagocytosis. On the other hand, MSC co-culture induced bimodal increase in active Rac1 and Cdc42 levels in LPS-activated microglia. Moreover, extended ruffles of F-actin shrinked and concentrated to form an actin ring, thereby restoring phagocytosis. We confirmed inhibition of the PI3K/Akt pathway attenuated F-actin dynamics and phagocytosis restored by MSCs. Overall, we demonstrated that MSCs immunomodulated microglia with lot-to-lot variation, and changed the phenotype of LPS-activated microglia restoring actin dynamics and phagocytosis by increase of active Rho GTPase.
Collapse
|
16
|
Lakshman N, Bourget C, Siu R, Bamm VV, Xu W, Harauz G, Morshead CM. Niche-dependent inhibition of neural stem cell proliferation and oligodendrogenesis is mediated by the presence of myelin basic protein. STEM CELLS (DAYTON, OHIO) 2021; 39:776-786. [PMID: 33529418 PMCID: PMC8248327 DOI: 10.1002/stem.3344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Neural stem and progenitor cells (collectively termed neural precursor cells [NPCs]) are found along the ventricular neuraxis extending from the spinal cord to the forebrain in regionally distinct niches comprised of different cell types, architecture, and cell-cell interactions. An understanding of the factors that regulate NPC behavior is critical for developing therapeutics to repair the injured central nervous system. Herein, we demonstrate that myelin basic protein (MBP), the major cytoplasmic protein constituent of the myelin sheath in oligodendrocytes, can regulate NPC behavior. Under physiological conditions, NPCs are not in contact with intracellular MBP; however, upon injury, MBP is released into the neural parenchyma. We reveal that MBP presented in a spinal cord niche is inhibitory to NPC proliferation. This inhibitory effect is regionally distinct as spinal cord NPCs, but not forebrain-derived NPCs, are inhibited by MBP. We performed coculture and conditioned media experiments that reveal the stem cell niche is a key regulator of MBP's inhibitory actions on NPCs. The inhibition is mediated by a heat-labile protein released by spinal cord niche cells, but not forebrain niche cells. However, forebrain NPCs are also inhibited by the spinal cord derived factor as revealed following in vivo infusion of the spinal cord niche-derived conditioned media. Moreover, we show that MBP inhibits oligodendrogenesis from NPCs. Together, these findings highlight the role of MBP and the regionally distinct microenvironment in regulating NPC behavior which has important implications for stem cell-based regenerative strategies.
Collapse
Affiliation(s)
- Nishanth Lakshman
- Department of Surgery, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Clara Bourget
- Department of Surgery, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ricky Siu
- Department of Surgery, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Wenjun Xu
- Department of Surgery, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cindi M Morshead
- Department of Surgery, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
18
|
Wen SJ, Zheng XM, Liu LF, Li NN, Mao HA, Huang L, Yuan QL. Effects of primary microglia and astrocytes on neural stem cells in in vitro and in vivo models of ischemic stroke. Neural Regen Res 2021; 16:1677-1685. [PMID: 33510055 PMCID: PMC8328755 DOI: 10.4103/1673-5374.306093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transplantation of neural stem cells (NSCs) can protect neurons in animal stroke models; however, their low rates of survival and neuronal differentiation limit their clinical application. Glial niches, an important location of neural stem cells, regulate survival, proliferation and differentiation of neural stem cells. However, the effects of activated glial cells on neural stem cells remain unclear. In the present study, we explored the effects of activated astrocytes and microglia on neural stem cells in vitro stroke models. We also investigated the effects of combined transplantation of neural stem cells and glial cells after stroke in rats. In a Transwell co-culture system, primary cultured astrocytes, microglia or mixed glial cells were exposed to glutamate or H2O2 and then seeded in the upper inserts, while primary neural stem cells were seeded in the lower uncoated wells and cultured for 7 days. Our results showed that microglia were conducive to neurosphere formation and had no effects on apoptosis within neurospheres, while astrocytes and mixed glial cells were conducive to neurosphere differentiation and reduced apoptosis within neurospheres, regardless of their pretreatment. In contrast, microglia and astrocytes induced neuronal differentiation of neural stem cells in differentiation medium, regardless of their pretreatment, with an exception of astrocytes pretreated with H2O2. Rat models of ischemic stroke were established by occlusion of the middle cerebral artery. Three days later, 5 × 105 neural stem cells with microglia or astrocytes were injected into the right lateral ventricle. Neural stem cell/astrocyte-treated rats displayed better improvement of neurological deficits than neural stem cell only-treated rats at 4 days after cell transplantation. Moreover, neural stem cell/microglia-, and neural stem cell/astrocyte-treated rats showed a significant decrease in ischemic volume compared with neural stem cell-treated rats. These findings indicate that microglia and astrocytes exert different effects on neural stem cells, and that co-transplantation of neural stem cells and astrocytes is more conducive to the recovery of neurological impairment in rats with ischemic stroke. The study was approved by the Animal Ethics Committee of Tongji University School of Medicine, China (approval No. 2010-TJAA08220401) in 2010.
Collapse
Affiliation(s)
- Sheng-Jun Wen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi-Min Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Fen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na-Na Li
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-An Mao
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Ishimoto T, Kato Y. Regulation of Neurogenesis by Organic Cation Transporters: Potential Therapeutic Implications. Handb Exp Pharmacol 2021; 266:281-300. [PMID: 33782772 DOI: 10.1007/164_2021_445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurogenesis is the process by which new neurons are generated from neural stem cells (NSCs), which are cells that have the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. The process is essential for homeostatic tissue regeneration and the coordination of neural plasticity throughout life, as neurons cannot regenerate once injured. Therefore, defects in neurogenesis are related to the onset and exacerbation of several neuropsychiatric disorders, and therefore, the regulation of neurogenesis is considered to be a novel strategy for treatment. Neurogenesis is regulated not only by NSCs themselves, but also by the functional microenvironment surrounding the NSCs, known as the "neurogenic niche." The neurogenic niche consists of several types of neural cells, including neurons, glial cells, and vascular cells. To allow communication with these cells, transporters may be involved in the secretion and uptake of substrates that are essential for signal transduction. This chapter will focus on the involvement of polyspecific solute carriers transporting organic cations in the possible regulation of neurogenesis by controlling the concentration of several organic cation substrates in NSCs and the neurogenic niche. The potential therapeutic implications of neurogenesis regulation by these transporters will also be discussed.
Collapse
Affiliation(s)
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
20
|
Vaz AR, Falcão AS, Scarpa E, Semproni C, Brites D. Microglia Susceptibility to Free Bilirubin Is Age-Dependent. Front Pharmacol 2020; 11:1012. [PMID: 32765258 PMCID: PMC7381152 DOI: 10.3389/fphar.2020.01012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Increased concentrations of unconjugated bilirubin (UCB), namely its free fraction (Bf), in neonatal life may cause transient or definitive injury to neurons and glial cells. We demonstrated that UCB damages neurons and glial cells by compromising oligodendrocyte maturation and myelination, and by activating astrocytes and microglia. Immature neurons and astrocytes showed to be especially vulnerable. However, whether microglia susceptibility to UCB is also age-related was never investigated. We developed a microglia culture model in which cells at 2 days in vitro (2DIV) revealed to behave as the neonatal microglia (amoeboid/reactive cells), in contrast with those at 16DIV microglia that performed as aged cells (irresponsive/dormant cells). Here, we aimed to unveil whether UCB-induced toxicity diverged from the young to the long-cultured microglia. Cells were isolated from the cortical brain of 1- to 2-day-old CD1 mice and incubated for 24 h with 50/100 nM Bf levels, which were associated to moderate and severe neonatal hyperbilirubinemia, respectively. These concentrations of Bf induced early apoptosis and amoeboid shape in 2DIV microglia, while caused late apoptosis in 16DIV cells, without altering their morphology. CD11b staining increased in both, but more markedly in 2DIV cells. Likewise, the gene expression of HMGB1, a well-known alarmin, as well as HMGB1 and GLT-1–positive cells, were enhanced as compared to long-maturated microglia. The CX3CR1 reduction in 2DIV microglia was opposed to the 16DIV cells and suggests a preferential Bf-induced sickness response in younger cells. In conformity, increased mitochondrial mass and NO were enhanced in 2DIV cells, but unchanged or reduced, respectively, in the 16DIV microglia. However, 100 nM Bf caused iNOS gene overexpression in 2DIV and 16DIV cells. While only arginase 1/IL-1β gene expression levels increased upon 50/100 nM Bf treatment in long-maturated microglia, MHCII/arginase 1/TNF-α/IL-1β/IL-6 (>10-fold) were upregulated in the 2DIV microglia. Remarkably, enhanced inflammatory-associated microRNAs (miR-155/miR-125b/miR-21/miR-146a) and reduced anti-inflammatory miR-124 were found in young microglia by both Bf concentrations, while remained unchanged (miR/21/miR-125b) or decreased (miR-155/miR-146a/miR-124) in aged cells. Altogether, these findings support the neurodevelopmental susceptibilities to UCB-induced neurotoxicity, the most severe disabilities in premature babies, and the involvement of immune-inflammation neonatal microglia processes in poorer outcomes.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Falcão
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Chronic Diseases Research Centre (CEDOC), Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Eleonora Scarpa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Carlotta Semproni
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Mecha M, Yanguas-Casás N, Feliú A, Mestre L, Carrillo-Salinas FJ, Riecken K, Gomez-Nicola D, Guaza C. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation 2020; 17:88. [PMID: 32192522 PMCID: PMC7081569 DOI: 10.1186/s12974-020-01734-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background The participation of microglia in CNS development and homeostasis indicate that these cells are pivotal for the regeneration that occurs after demyelination. The clearance of myelin debris and the inflammatory-dependent activation of local oligodendrocyte progenitor cells in a demyelinated lesion is dependent on the activation of M2c microglia, which display both phagocytic and healing functions. Emerging interest has been raised about the role of Wnt/β-catenin signaling in oligodendrogenesis and myelination. Besides, cytokines and growth factors released by microglia can control the survival, proliferation, migration, and differentiation of neural stem cells (NSCs), contributing to remyelination through the oligodendrocyte specification of this adult neurogenic niche. Methods TMEV-IDD model was used to study the contribution of dorsal SVZ stem cells to newly born oligodendrocytes in the corpus callosum following demyelination by (i) en-face dorsal SVZ preparations; (ii) immunohistochemistry; and (iii) cellular tracking. By RT-PCR, we analyzed the expression of Wnt proteins in demyelinated and remyelinating corpus callosum. Using in vitro approaches with microglia cultures and embryonic NSCs, we studied the role of purified myelin, Wnt proteins, and polarized microglia-conditioned medium to NSC proliferation and differentiation. One-way ANOVA followed by Bonferroni’s post-hoc test, or a Student’s t test were used to establish statistical significance. Results The demyelination caused by TMEV infection is paralleled by an increase in B1 cells and pinwheels in the dorsal SVZ, resulting in the mobilization of SVZ proliferative progenitors and their differentiation into mature oligodendrocytes. Demyelination decreased the gene expression of Wnt5a and Wnt7a, which was restored during remyelination. In vitro approaches show that Wnt3a enhances NSC proliferation, while Wnt7a and myelin debris promotes oligodendrogenesis from NSCs. As phagocytic M2c microglia secrete Wnt 7a, their conditioned media was found to induce Wnt/β-Catenin signaling in NSCs promoting an oligodendroglial fate. Conclusions We define here the contribution of microglia to Wnt production depending on their activation state, with M1 microglia secreting the Wnt5a protein and M2c microglia secreting Wnt7a. Collectively, our data reveal the role of reparative microglia in NSC oligodendrogenesis with the involvement of Wnt7a.
Collapse
Affiliation(s)
- Miriam Mecha
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.
| | - Natalia Yanguas-Casás
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.,Present address: Grupo de Investigación en Linfomas, Instituto Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Majadahonda, Madrid, Spain
| | - Ana Feliú
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | - Leyre Mestre
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | | | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Carmen Guaza
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.
| |
Collapse
|
22
|
Aurelian L, Balan I. GABA AR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Psychopharmacology (Berl) 2019; 236:3023-3043. [PMID: 31030249 DOI: 10.1007/s00213-019-05220-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands and are increasingly recognized for their impact on homeostasis and its dysregulation in the nervous system. TLR signaling participates in brain injury and addiction, but its role in the alcohol-seeking behavior, which initiates alcohol drinking, is still poorly understood. In this review, we discuss our findings designed to elucidate the potential contribution of the activated TLR4 signal located in neurons, on impulsivity and the predisposition to initiate alcohol drinking (binge drinking). RESULTS Our findings indicate that the TLR4 signal is innately activated in neurons from alcohol-preferring subjects, identifying a genetic contribution to the regulation of impulsivity and the alcohol-seeking propensity. Signal activation is through the non-canonical, previously unknown, binding of TLR4 to the α2 subunit of the γ-aminobutyric 2 acid A receptor (GABAAR α2). Activation is sustained by the stress hormone corticotrophin-releasing factor (CRF) and additional still poorly recognized ligand/scaffold proteins. Focus is on the effect of TLR4 signal activation on the balance between pro- and anti-inflammatory chemokines [chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-X3-C motif) ligand 1 (CX3CL1)] and its effect on binge drinking. CONCLUSION The results are discussed within the context of current findings on the distinct activation and functions of TLR signals located in neurons, as opposed to immune cells. They indicate that the balance between pro- and anti-inflammatory TLR4 signaling plays a major role in binge drinking. These findings have major impact on future basic and translational research, including the development of potential therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Stanford University School of Medicine OFDD, Stanford, CA, 94305, USA.
| | - Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
23
|
Sierra A, Denes A. Editorial for the Special Issue: Microglia-Neuron interactions in health and disease - novel perspectives for translational research. Neuroscience 2019; 405:1-2. [PMID: 30731154 DOI: 10.1016/j.neuroscience.2019.01.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain; University of the Basque Country UPV/EHU, Barrio Sarriena s/n, Leioa, 48940, Spain; Ikerbasque Foundation, Maria Diaz de Haro 3, Bilbao, 48013, Bizkaia, Spain.
| | - Adam Denes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony U. 43, Budapest 1083, Hungary.
| |
Collapse
|
24
|
Kreisel T, Wolf B, Keshet E, Licht T. Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. Glia 2018; 67:594-618. [DOI: 10.1002/glia.23505] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Tirzah Kreisel
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC); The Hebrew University; Jerusalem Israel
| | - Brachi Wolf
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| | - Tamar Licht
- Department of Developmental Biology and Cancer Research; Hadassah Medical School, The Hebrew University; Jerusalem Israel
| |
Collapse
|
25
|
Zhang L, Zhang J, You Z. Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. Front Cell Neurosci 2018; 12:306. [PMID: 30459555 PMCID: PMC6232769 DOI: 10.3389/fncel.2018.00306] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a common emotional cognitive disorder that seriously affects people’s physical and mental health and their quality of life. Due to its clinical and etiological heterogeneity, the molecular mechanisms underpinning MDD are complex and they are not fully understood. In addition, the effects of traditional drug therapy are not ideal. However, postmortem and animal studies have shown that overactivated microglia can inhibit neurogenesis in the hippocampus and induce depressive-like behaviors. Nonetheless, the molecular mechanisms by which microglia regulate nerve regeneration and determine depressive-like behaviors remain unclear. As the immune cells of the central nervous system (CNS), microglia could influence neurogenesis through the M1 and M2 subtypes, and these may promote depressive-like behaviors. Microglia may be divided into four main states or phenotypes. Under stress, microglial cells are induced into the M1 type, releasing inflammatory factors and causing neuroinflammatory responses. After the inflammation fades away, microglia shift into the alternative activated M2 phenotypes that play a role in neuroprotection. These activated M2 subtypes consist of M2a, M2b and M2c and their functions are different in the CNS. In this article, we mainly introduce the relationship between microglia and MDD. Importantly, this article elucidates a plausible mechanism by which microglia regulate inflammation and neurogenesis in ameliorating MDD. This could provide a reliable basis for the treatment of MDD in the future.
Collapse
Affiliation(s)
- Lijuan Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinqiang Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zili You
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Vay SU, Flitsch LJ, Rabenstein M, Rogall R, Blaschke S, Kleinhaus J, Reinert N, Bach A, Fink GR, Schroeter M, Rueger MA. The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation 2018; 15:226. [PMID: 30103769 PMCID: PMC6090672 DOI: 10.1186/s12974-018-1261-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Microglia—the resident immune cells of the brain—are activated after brain lesions, e.g., cerebral ischemia, and polarize towards a classic “M1” pro-inflammatory or an alternative “M2” anti-inflammatory phenotype following characteristic temporo-spatial patterns, contributing either to secondary tissue damage or to regenerative responses. They closely interact with endogenous neural stem cells (NSCs) residing in distinct niches of the adult brain. The current study aimed at elucidating the dynamics of microglia polarization and their differential effects on NSC function. Results Primary rat microglia in vitro were polarized towards a M1 phenotype by LPS, or to a M2 phenotype by IL4, while simultaneous exposure to LPS plus IL4 resulted in a hybrid phenotype expressing both M1- and M2-characteristic markers. M2 microglia migrated less but exhibit higher phagocytic activity than M1 microglia. Defined mediators switched microglia from one polarization state to the other, a process more effective when transforming M2 microglia towards M1 than vice versa. Polarized microglia had differential effects on the differentiation potential of NSCs in vitro and in vivo, with M1 microglia promoting astrocytogenesis, while M2 microglia supported neurogenesis. Regardless of their polarization, microglia inhibited NSC proliferation, increased NSC migration, and accelerated NSC differentiation. Conclusion Overall, this study shed light on the complex conditions governing microglia polarization and the effects of differentially polarized microglia on critical functions of NSCs in vitro and in vivo. Refining the understanding of microglia activation and their modulatory effects on NSCs is likely to facilitate the development of innovative therapeutic concepts supporting the innate regenerative capacity of the brain. Electronic supplementary material The online version of this article (10.1186/s12974-018-1261-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Ulrike Vay
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.
| | - Lea Jessica Flitsch
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Monika Rabenstein
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Rebecca Rogall
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Stefan Blaschke
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Judith Kleinhaus
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Noémie Reinert
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Annika Bach
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|