1
|
de Andrés R, Martínez-Blanco E, Díez-Guerra FJ. HDAC4 Inhibits NMDA Receptor-mediated Stimulation of Neurogranin Expression. Mol Neurobiol 2024:10.1007/s12035-024-04598-3. [PMID: 39581920 DOI: 10.1007/s12035-024-04598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
The coordination of neuronal wiring and activity within the central nervous system (CNS) is crucial for cognitive function, particularly in the context of aging and neurological disorders. Neurogranin (Ng), an abundant forebrain protein, modulates calmodulin (CaM) activity and deeply influences synaptic plasticity and neuronal processing. This study investigates the regulatory mechanisms of Ng expression, a critical but underexplored area for combating cognitive impairment. Utilizing both in vitro and in vivo hippocampal models, we show that Ng expression arises during late developmental stages, coinciding with the processes of synaptic maturation and neuronal circuit consolidation. We observed that Ng expression increases in neuronal networks with heightened synaptic activity and identified GluN2B-containing N-methyl-D-aspartate (NMDA) receptors as key drivers of this expression. Additionally, we discovered that nuclear-localized HDAC4 inhibits Ng expression, establishing a regulatory axis that is counteracted by NMDA receptor stimulation. Analysis of the Ng gene promoter activity revealed regulatory elements between the - 2.4 and - 0.85 Kbp region, including a binding site for RE1-Silencing Transcription factor (REST), which may mediate HDAC4's repressive effect on Ng expression. Further analysis of the promoter sequence revealed conserved binding sites for the myocyte enhancer factor-2 (MEF2) transcription factor, a target of HDAC4-mediated transcription regulation. Our findings elucidate the interplay between synaptic activity, NMDAR function, and transcriptional regulation in controlling Ng expression, offering insights into synaptic plasticity mechanisms and potential therapeutic strategies to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Raquel de Andrés
- Laboratory Molecular Basis of Neuronal Plasticity, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Elena Martínez-Blanco
- Laboratory Molecular Basis of Neuronal Plasticity, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - F Javier Díez-Guerra
- Laboratory Molecular Basis of Neuronal Plasticity, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease. Neural Plast 2023; 2023:4637073. [PMID: 36644710 PMCID: PMC9833910 DOI: 10.1155/2023/4637073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 01/06/2023] Open
Abstract
CX3CR1 is a G protein-coupled receptor that is expressed exclusively by microglia within the brain parenchyma. The only known physiological CX3CR1 ligand is the chemokine fractalkine (FKN), which is constitutively expressed in neuronal cell membranes and tonically released by them. Through its key role in microglia-neuron communication, the FKN/CX3CR1 axis regulates microglial state, neuronal survival, synaptic plasticity, and a variety of synaptic functions, as well as neuronal excitability via cytokine release modulation, chemotaxis, and phagocytosis. Thus, the absence of CX3CR1 or any failure in the FKN/CX3CR1 axis has been linked to alterations in different brain functions, including changes in synaptic and network plasticity in structures such as the hippocampus, cortex, brainstem, and spinal cord. Since synaptic plasticity is a basic phenomenon in neural circuit integration and adjustment, here, we will review its modulation by the FKN/CX3CR1 axis in diverse brain circuits and its impact on brain function and adaptation in health and disease.
Collapse
|
3
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
4
|
Cytokines and chemokines modulation of itch. Neuroscience 2022; 495:74-85. [PMID: 35660453 DOI: 10.1016/j.neuroscience.2022.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022]
Abstract
Itch (pruritus) is a common cutaneous symptom widely associated with many skin complaints, and chronic itch can be a severe clinical problem. The onset and perpetuation of itch are linked to cytokines, such as interleukin (IL)-31, IL-4, IL-13, IL-33, thymic stromal lymphopoietin, and tumor necrosis factor-alpha, and chemokines, such as chemokine (C-C motif) ligand 2 and C-X-C motif chemokine ligand 10. This review highlights research that has attempted to determine the attributes of various cytokines and chemokines concerning the development and modulation of itch. Through such research, clinical approaches targeting cytokines and/or chemokines may arise, which may further the development of itch therapeutics.
Collapse
|
5
|
Ferro A, Auguste YSS, Cheadle L. Microglia, Cytokines, and Neural Activity: Unexpected Interactions in Brain Development and Function. Front Immunol 2021; 12:703527. [PMID: 34276699 PMCID: PMC8281303 DOI: 10.3389/fimmu.2021.703527] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/01/2022] Open
Abstract
Intercellular signaling molecules such as cytokines and their receptors enable immune cells to communicate with one another and their surrounding microenvironments. Emerging evidence suggests that the same signaling pathways that regulate inflammatory responses to injury and disease outside of the brain also play powerful roles in brain development, plasticity, and function. These observations raise the question of how the same signaling molecules can play such distinct roles in peripheral tissues compared to the central nervous system, a system previously thought to be largely protected from inflammatory signaling. Here, we review evidence that the specialized roles of immune signaling molecules such as cytokines in the brain are to a large extent shaped by neural activity, a key feature of the brain that reflects active communication between neurons at synapses. We discuss the known mechanisms through which microglia, the resident immune cells of the brain, respond to increases and decreases in activity by engaging classical inflammatory signaling cascades to assemble, remodel, and eliminate synapses across the lifespan. We integrate evidence from (1) in vivo imaging studies of microglia-neuron interactions, (2) developmental studies across multiple neural circuits, and (3) molecular studies of activity-dependent gene expression in microglia and neurons to highlight the specific roles of activity in defining immune pathway function in the brain. Given that the repurposing of signaling pathways across different tissues may be an important evolutionary strategy to overcome the limited size of the genome, understanding how cytokine function is established and maintained in the brain could lead to key insights into neurological health and disease.
Collapse
Affiliation(s)
| | | | - Lucas Cheadle
- Neuroscience Department, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
6
|
Yoshino Y, Roy B, Dwivedi Y. Differential and unique patterns of synaptic miRNA expression in dorsolateral prefrontal cortex of depressed subjects. Neuropsychopharmacology 2021; 46:900-910. [PMID: 32919404 PMCID: PMC8115313 DOI: 10.1038/s41386-020-00861-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Altered synaptic plasticity is often associated with major depressive disorder (MDD). Disease-associated changes in synaptic functions are tightly correlated with altered microRNA (miRNA) expression. Here, we examined the role of miRNAs and their functioning at the synapse in MDD by examining miRNA processing machinery at synapse and sequencing miRNAs and analyzing their functions in synaptic and total tissue fractions obtained from dorsolateral prefrontal cortex (dlPFC) of 15 MDD and 15 matched non-psychiatric control subjects. A total of 333 miRNAs were reliably detected in the total tissue fraction. Multiple testing following the Benjamini-Hochberg false discovery rate [FDR] showed that 18 miRNAs were significantly altered (1 downregulated 4 up and 13 downregulated; p < 0.05) in MDD subjects. Out of 351 miRNAs reliably expressed in the synaptic fraction, 24 were uniquely expressed at synapse. In addition, 8 miRNAs (miR-215-5p, miR-192-5p, miR-202-5p, miR-19b-3p, miR-423-5p, miR-219a-2-3p; miR-511-5p, miR-483-5p showed significant (FDR corrected; p < 0.05) differential regulation in the synaptic fraction from dlPFC of MDD subjects. In vitro transfection studies and gene ontology revealed involvement of these altered miRNAs in synaptic plasticity, nervous system development, and neurogenesis. A shift in expression ratios (synaptic vs. total fraction) of miR-19b-3p, miR-376c-3p, miR-455-3p, and miR-337-3p were also noted in the MDD group. Moreover, an inverse relationship between the expression of precursor (pre-miR-19b-1, pre-miR-199a-1 and pre-miR-199a-2) and mature (miR-19b-3p, miR-199a-3p) miRNAs was found. Although not significantly, several miRNA processing enzymes (DROSHA [95%], DICER [17%], TARBP2 [38%]) showed increased expression patterns in MDD subjects. Our findings provide new insights into the understanding of the regulation of miRNAs at the synapse and their possible roles in MDD pathogenesis.
Collapse
Affiliation(s)
- Yuta Yoshino
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Bhaskar Roy
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Kaiser N, Pätz C, Brachtendorf S, Eilers J, Bechmann I. Undisturbed climbing fiber pruning in the cerebellar cortex of CX 3 CR1-deficient mice. Glia 2020; 68:2316-2329. [PMID: 32488990 DOI: 10.1002/glia.23842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 11/11/2022]
Abstract
Pruning, the elimination of excess synapses is a phenomenon of fundamental importance for correct wiring of the central nervous system. The establishment of the cerebellar climbing fiber (CF)-to-Purkinje cell (PC) synapse provides a suitable model to study pruning and pruning-relevant processes during early postnatal development. Until now, the role of microglia in pruning remains under intense investigation. Here, we analyzed migration of microglia into the cerebellar cortex during early postnatal development and their possible contribution to the elimination of CF-to-PC synapses. Microglia enrich in the PC layer at pruning-relevant time points giving rise to the possibility that microglia are actively involved in synaptic pruning. We investigated the contribution of microglial fractalkine (CX3 CR1) signaling during postnatal development using genetic ablation of the CX3 CR1 receptor and an in-depth histological analysis of the cerebellar cortex. We found an aberrant migration of microglia into the granule and the molecular layer. By electrophysiological analysis, we show that defective fractalkine signaling and the associated migration deficits neither affect the pruning of excess CFs nor the development of functional parallel fiber and inhibitory synapses with PCs. These findings indicate that CX3 CR1 signaling is not mandatory for correct cerebellar circuit formation. MAIN POINTS: Ablation of CX3 CR1 results in a transient migration defect in cerebellar microglia. CX3 CR1 is not required for functional pruning of cerebellar climbing fibers. Functional inhibitory and parallel fiber synapse development with Purkinje cells is undisturbed in CX3 CR1-deficient mice.
Collapse
Affiliation(s)
- Nicole Kaiser
- Institute for Anatomy, University of Leipzig, Leipzig, Germany
| | - Christina Pätz
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Simone Brachtendorf
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Ingo Bechmann
- Institute for Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Janach GMS, Reetz O, Döhne N, Stadler K, Grosser S, Byvaltcev E, Bräuer AU, Strauss U. Interferon-γ acutely augments inhibition of neocortical layer 5 pyramidal neurons. J Neuroinflammation 2020; 17:69. [PMID: 32087716 PMCID: PMC7035745 DOI: 10.1186/s12974-020-1722-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interferon-γ (IFN-γ, a type II IFN) is present in the central nervous system (CNS) under various conditions. Evidence is emerging that, in addition to its immunological role, IFN-γ modulates neuronal morphology, function, and development in several brain regions. Previously, we have shown that raising levels of IFN-β (a type I IFN) lead to increased neuronal excitability of neocortical layer 5 pyramidal neurons. Because of shared non-canonical signaling pathways of both cytokines, we hypothesized a similar neocortical role of acutely applied IFN-γ. METHODS We used semi-quantitative RT-PCR, immunoblotting, and immunohistochemistry to analyze neuronal expression of IFN-γ receptors and performed whole-cell patch-clamp recordings in layer 5 pyramidal neurons to investigate sub- and suprathreshold excitability, properties of hyperpolarization-activated cyclic nucleotide-gated current (Ih), and inhibitory neurotransmission under the influence of acutely applied IFN-γ. RESULTS We show that IFN-γ receptors are present in the membrane of rat's neocortical layer 5 pyramidal neurons. As expected from this and the putative overlap in IFN type I and II alternative signaling pathways, IFN-γ diminished Ih, mirroring the effect of type I IFNs, suggesting a likewise activation of protein kinase C (PKC). In contrast, IFN-γ did neither alter subthreshold nor suprathreshold neuronal excitability, pointing to augmented inhibitory transmission by IFN-γ. Indeed, IFN-γ increased electrically evoked inhibitory postsynaptic currents (IPSCs) on neocortical layer 5 pyramidal neurons. Furthermore, amplitudes of spontaneous IPSCs and miniature IPSCs were elevated by IFN-γ, whereas their frequency remained unchanged. CONCLUSIONS The expression of IFN-γ receptors on layer 5 neocortical pyramidal neurons together with the acute augmentation of inhibition in the neocortex by direct application of IFN-γ highlights an additional interaction between the CNS and immune system. Our results strengthen our understanding of the role of IFN-γ in neocortical neurotransmission and emphasize its impact beyond its immunological properties, particularly in the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gabriel M S Janach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Olivia Reetz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Noah Döhne
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Konstantin Stadler
- Industrial Ecology Programme, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Sabine Grosser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Egor Byvaltcev
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Anja U Bräuer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
9
|
Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proc Natl Acad Sci U S A 2019; 117:1742-1752. [PMID: 31892541 DOI: 10.1073/pnas.1914742117] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microglial activation plays a central role in poststroke inflammation and causes secondary neuronal damage; however, it also contributes in debris clearance and chronic recovery. Microglial pro- and antiinflammatory responses (or so-called M1-M2 phenotypes) coexist and antagonize each other throughout the disease progress. As a result of this balance, poststroke immune responses alter stroke outcomes. Our previous study found microglial expression of interferon regulatory factor 5 (IRF5) and IRF4 was related to pro- and antiinflammatory responses, respectively. In the present study, we genetically modified the IRF5 and IRF4 signaling to explore their roles in stroke. Both in vitro and in vivo assays were utilized; IRF5 or IRF4 small interfering RNA (siRNA), lentivirus, and conditional knockout (CKO) techniques were employed to modulate IRF5 or IRF4 expression in microglia. We used a transient middle cerebral artery occlusion model to induce stroke and examined both acute and chronic stroke outcomes. Poststroke inflammation was evaluated with flow cytometry, RT-PCR, MultiPlex, and immunofluorescence staining. An oscillating pattern of the IRF5-IRF4 regulatory axis function was revealed. Down-regulation of IRF5 signaling by siRNA or CKO resulted in increased IRF4 expression, enhanced M2 activation, quenched proinflammatory responses, and improved stroke outcomes, whereas down-regulation of IRF4 led to increased IRF5 expression, enhanced M1 activation, exacerbated proinflammatory responses, and worse functional recovery. Up-regulation of IRF4 or IRF5 by lentivirus induced similar results. We conclude that the IRF5-IRF4 regulatory axis is a key determinant in microglial activation. The IRF5-IRF4 regulatory axis is a potential therapeutic target for neuroinflammation and ischemic stroke.
Collapse
|