1
|
Sundermann B, Pfleiderer B, McLeod A, Mathys C. Seeing more than the Tip of the Iceberg: Approaches to Subthreshold Effects in Functional Magnetic Resonance Imaging of the Brain. Clin Neuroradiol 2024; 34:531-539. [PMID: 38842737 PMCID: PMC11339104 DOI: 10.1007/s00062-024-01422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
Many functional magnetic resonance imaging (fMRI) studies and presurgical mapping applications rely on mass-univariate inference with subsequent multiple comparison correction. Statistical results are frequently visualized as thresholded statistical maps. This approach has inherent limitations including the risk of drawing overly-selective conclusions based only on selective results passing such thresholds. This article gives an overview of both established and newly emerging scientific approaches to supplement such conventional analyses by incorporating information about subthreshold effects with the aim to improve interpretation of findings or leverage a wider array of information. Topics covered include neuroimaging data visualization, p-value histogram analysis and the related Higher Criticism approach for detecting rare and weak effects. Further examples from multivariate analyses and dedicated Bayesian approaches are provided.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Clinic of Radiology, Medical Faculty, University of Münster, Münster, Germany.
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University of Münster, Münster, Germany
| | - Anke McLeod
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Luo C, Pi X, Zhang Q, Hu N, Xiao Y, Sweeney JA, Bishop JR, Gong Q, Xie D, Lui S. A subtype of schizophrenia patients with altered methylation level of genes related to immune cell activity. Psychol Med 2024; 54:2538-2546. [PMID: 38505948 DOI: 10.1017/s0033291724000667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Epigenetic changes are plausible molecular sources of clinical heterogeneity in schizophrenia. A subgroup of schizophrenia patients with elevated inflammatory or immune-dysregulation has been reported by previous studies. However, little is known about epigenetic changes in genes related to immune activation in never-treated first-episode patients with schizophrenia (FES) and its consistency with that in treated long-term ill (LTS) patients. METHODS In this study, epigenome-wide profiling with a DNA methylation array was applied using blood samples of both FES and LTS patients, as well as their corresponding healthy controls. Non-negative matrix factorization (NMF) and k -means clustering were performed to parse heterogeneity of schizophrenia, and the consistency of subtyping results from two cohorts. was tested. RESULTS This study identified a subtype of patients in FES participants (47.5%) that exhibited widespread methylation level alterations of genes enriched in immune cell activity and a significantly higher proportion of neutrophils. This clustering of FES patients was validated in LTS patients, with high correspondence in epigenetic and clinical features across two cohorts. CONCLUSIONS In summary, this study demonstrated a subtype of schizophrenia patients across both FES and LTS cohorts, defined by widespread alterations in methylation profile of genes related to immune function and distinguishing clinical features. This finding illustrates the promise of novel treatment strategies targeting immune dysregulation for a subpopulation of schizophrenia patients.
Collapse
Affiliation(s)
- Chunyan Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Xuenan Pi
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH 45219, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Dan Xie
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Pfarr JK, Meller T, Brosch K, Stein F, Thomas-Odenthal F, Evermann U, Wroblewski A, Ringwald KG, Hahn T, Meinert S, Winter A, Thiel K, Flinkenflügel K, Jansen A, Krug A, Dannlowski U, Kircher T, Gaser C, Nenadić I. Data-driven multivariate identification of gyrification patterns in a transdiagnostic patient cohort: A cluster analysis approach. Neuroimage 2023; 281:120349. [PMID: 37683808 DOI: 10.1016/j.neuroimage.2023.120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Multivariate data-driven statistical approaches offer the opportunity to study multi-dimensional interdependences between a large set of biological parameters, such as high-dimensional brain imaging data. For gyrification, a putative marker of early neurodevelopment, direct comparisons of patterns among multiple psychiatric disorders and investigations of potential heterogeneity of gyrification within one disorder and a transdiagnostic characterization of neuroanatomical features are lacking. METHODS In this study we used a data-driven, multivariate statistical approach to analyze cortical gyrification in a large cohort of N = 1028 patients with major psychiatric disorders (Major depressive disorder: n = 783, bipolar disorder: n = 129, schizoaffective disorder: n = 44, schizophrenia: n = 72) to identify cluster patterns of gyrification beyond diagnostic categories. RESULTS Cluster analysis applied on gyrification data of 68 brain regions (DK-40 atlas) identified three clusters showing difference in overall (global) gyrification and minor regional variation (regions). Newly, data-driven subgroups are further discriminative in cognition and transdiagnostic disease risk factors. CONCLUSIONS Results indicate that gyrification is associated with transdiagnostic risk factors rather than diagnostic categories and further imply a more global role of gyrification related to mental health than a disorder specific one. Our findings support previous studies highlighting the importance of association cortices involved in psychopathology. Explorative, data-driven approaches like ours can help to elucidate if the brain imaging data on hand and its a priori applied grouping actually has the potential to find meaningful effects or if previous hypotheses about the phenotype as well as its grouping have to be revisited.
Collapse
Affiliation(s)
- Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Department of Psychology, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany.
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Germany; Institute for Translational Neuroscience, University of Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Germany
| | | | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany; Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Germany
| | - Axel Krug
- Department of Psychiatry und Psychotherapy, University Hospital Bonn, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University Marburg, Germany
| |
Collapse
|
4
|
Brucar LR, Feczko E, Fair DA, Zilverstand A. Current Approaches in Computational Psychiatry for the Data-Driven Identification of Brain-Based Subtypes. Biol Psychiatry 2023; 93:704-716. [PMID: 36841702 PMCID: PMC10038896 DOI: 10.1016/j.biopsych.2022.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
The ability of our current psychiatric nosology to accurately delineate clinical populations and inform effective treatment plans has reached a critical point with only moderately successful interventions and high relapse rates. These challenges continue to motivate the search for approaches to better stratify clinical populations into more homogeneous delineations, to better inform diagnosis and disease evaluation, and prescribe and develop more precise treatment plans. The promise of brain-based subtyping based on neuroimaging data is that finding subgroups of individuals with a common biological signature will facilitate the development of biologically grounded, targeted treatments. This review provides a snapshot of the current state of the field in empirical brain-based subtyping studies in child, adolescent, and adult psychiatric populations published between 2019 and March 2022. We found that there is vast methodological exploration and a surprising number of new methods being created for the specific purpose of brain-based subtyping. However, this methodological exploration and advancement is not being met with rigorous validation approaches that assess both reproducibility and clinical utility of the discovered brain-based subtypes. We also found evidence for a collaboration crisis, in which methodological exploration and advancements are not clearly grounded in clinical goals. We propose several steps that we believe are crucial to address these shortcomings in the field. We conclude, and agree with the authors of the reviewed studies, that the discovery of biologically grounded subtypes would be a significant advancement for treatment development in psychiatry.
Collapse
Affiliation(s)
- Leyla R Brucar
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota; Institute of Child Development, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota Medical School, Minneapolis, Minnesota.
| |
Collapse
|
5
|
Tejavibulya L, Rolison M, Gao S, Liang Q, Peterson H, Dadashkarimi J, Farruggia MC, Hahn CA, Noble S, Lichenstein SD, Pollatou A, Dufford AJ, Scheinost D. Predicting the future of neuroimaging predictive models in mental health. Mol Psychiatry 2022; 27:3129-3137. [PMID: 35697759 PMCID: PMC9708554 DOI: 10.1038/s41380-022-01635-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022]
Abstract
Predictive modeling using neuroimaging data has the potential to improve our understanding of the neurobiology underlying psychiatric disorders and putatively information interventions. Accordingly, there is a plethora of literature reviewing published studies, the mathematics underlying machine learning, and the best practices for using these approaches. As our knowledge of mental health and machine learning continue to evolve, we instead aim to look forward and "predict" topics that we believe will be important in current and future studies. Some of the most discussed topics in machine learning, such as bias and fairness, the handling of dirty data, and interpretable models, may be less familiar to the broader community using neuroimaging-based predictive modeling in psychiatry. In a similar vein, transdiagnostic research and targeting brain-based features for psychiatric intervention are modern topics in psychiatry that predictive models are well-suited to tackle. In this work, we target an audience who is a researcher familiar with the fundamental procedures of machine learning and who wishes to increase their knowledge of ongoing topics in the field. We aim to accelerate the utility and applications of neuroimaging-based predictive models for psychiatric research by highlighting and considering these topics. Furthermore, though not a focus, these ideas generalize to neuroimaging-based predictive modeling in other clinical neurosciences and predictive modeling with different data types (e.g., digital health data).
Collapse
Affiliation(s)
- Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Javid Dadashkarimi
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Michael C Farruggia
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - C Alice Hahn
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Lei D, Suo X, Qin K, Pinaya WHL, Ai Y, Li W, Kuang W, Lui S, Kemp GJ, Sweeney JA, Gong Q. Magnetization transfer imaging alterations and its diagnostic value in antipsychotic-naïve first-episode schizophrenia. Transl Psychiatry 2022; 12:189. [PMID: 35523792 PMCID: PMC9076920 DOI: 10.1038/s41398-022-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023] Open
Abstract
Magnetization transfer imaging (MTI) may provide more sensitivity and mechanistic understanding of neuropathological changes associated with schizophrenia than volumetric MRI. This study aims to identify brain magnetization transfer ratio (MTR) changes in antipsychotic-naïve first-episode schizophrenia (FES), and to correlate MTR findings with clinical symptom severity. A total of 143 individuals with antipsychotic-naïve FES and 147 healthy controls (HCs) were included and underwent 3.0 T brain MTI between August 2005 and July 2014. Voxelwise analysis was performed to test for MTR differences with family-wise error corrections. Relationships of these differences to symptom severity were assessed using partial correlations. Exploratory analyses using a support vector machine (SVM) classifier were conducted to discriminate FES from HCs using MTR maps. Model performance was examined using a 10-fold stratified cross-validation. Compared with HCs, individuals with FES exhibited higher MTR values in left thalamus, precuneus, cuneus, and paracentral lobule, that were positively correlated with schizophrenia symptom severity [precuneus (r = 0.34, P = 0.0004), cuneus (r = 0.33, P = 0.0006) and paracentral lobule (r = 0.37, P = 0.001)]. Whole-brain MTR maps identified individuals with FES with overall accuracy 75.5% (219 of 290 individuals) based on SVM approach. In antipsychotic-naïve FES, clinically relevant biophysical abnormalities detected by MTI mainly in the left parieto-occipital regions are informative about local brain pathology, and have potential as diagnostic markers.
Collapse
Affiliation(s)
- Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45227, USA
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, WC2R 2LS, UK
| | - Yuan Ai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3GE, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45227, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China.
| |
Collapse
|
7
|
|
8
|
Abstract
Our current diagnostic methods for treatment planning in Psychiatry and Neurodevelopmental Disabilities leave room for improvement, and null results in clinical trials in these fields may be a result of insufficient tools for patient stratification. Great hope has been placed in novel technologies to improve clinical and trial outcomes, but we have yet to see a substantial change in clinical practice. As we examine attempts at biomarker validation within these fields, we find that it may be the diagnoses themselves that fall short. We now need to improve neuropsychiatric nosologies with a focus on validity based not solely on behavioral features, but on a synthesis that includes genetic and biological data as well. The eventual goal is diagnostic biomarkers and diagnoses themselves based on distinct mechanisms, but such an understanding of the causal relationship across levels of analysis is likely to be elusive for some time. Rather, we propose an approach in the near-term that deconstructs diagnosis into a series of independent, empiric and clinically relevant associations among a single, defined patient group, a single biomarker, a single intervention and a single clinical outcome. Incremental study across patient groups, interventions, outcomes and modalities will lead to a more interdigitated network of knowledge, and correlations in metrics across levels of analysis will eventually give way to the causal understanding that will allow for mechanistically based diagnoses.
Collapse
|
9
|
Li F, Sun H, Biswal BB, Sweeney JA, Gong Q. Artificial intelligence applications in psychoradiology. PSYCHORADIOLOGY 2021; 1:94-107. [PMID: 37881257 PMCID: PMC10594695 DOI: 10.1093/psyrad/kkab009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
One important challenge in psychiatric research is to translate findings from brain imaging research studies that identified brain alterations in patient groups into an accurate diagnosis at an early stage of illness, prediction of prognosis before treatment, and guidance for selection of effective treatments that target patient-relevant pathophysiological features. This is the primary aim of the field of Psychoradiology. Using databases collected from large samples at multiple centers, sophisticated artificial intelligence (AI) algorithms may be used to develop clinically useful image analysis pipelines that can help physicians diagnose, predict, and make treatment decisions. In this review, we selectively summarize psychoradiological research using magnetic resonance imaging of the brain to explore the neural mechanism of psychiatric disorders, and outline progress and the path forward for the combination of psychoradiology and AI for complementing clinical examinations in patients with psychiatric disorders, as well as limitations in the application of AI that should be considered in future translational research.
Collapse
Affiliation(s)
- Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provience, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provience, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provience, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
10
|
Prefrontal resting-state connectivity and antidepressant response: no associations in the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci 2021; 271:123-134. [PMID: 32880057 DOI: 10.1007/s00406-020-01187-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
Functional and structural MRI of prefrontal cortex (PFC) may provide putative biomarkers for predicting the treatment response to transcranial direct current stimulation (tDCS) in depression. A recent MRI study from ELECT-TDCS (Escitalopram versus Electrical Direct-Current Theror Depression Study) showed that depression improvement after tDCS was associated with gray matter volumes of PFC subregions. Based thereon, we investigated whether antidepressant effects of tDCS are similarly associated with baseline resting-state functional connectivity (rsFC). A subgroup of 51 patients underwent baseline rsFC-MRI. All patients of ELECT-TDCS were randomized to three treatment arms for 10 weeks (anodal-left, cathodal-right PFC tDCS plus placebo medication; escitalopram 10 mg/day for 3 weeks and 20 mg/day thereafter plus sham tDCS; and placebo medication plus sham tDCS). RsFC was calculated for various PFC regions and analyzed in relation to the individual antidepressant response. There was no significant association between baseline PFC connectivity of essential structural regions, nor any other PFC regions (after correction for multiple comparisons) and patients' individual antidepressant response. This study did not reveal an association between antidepressants effects of tDCS and baseline rsFC, unlike the gray matter volume findings. Thus, the antidepressant effects of tDCS may be differentially related to structural and functional MRI measurements.
Collapse
|