1
|
Manco C, Cortese R, Leoncini M, Plantone D, Gentile G, Luchetti L, Zhang J, Di Donato I, Salvadori E, Poggesi A, Cosottini M, Mascalchi M, Federico A, Dotti MT, Battaglini M, Inzitari D, Pantoni L, De Stefano N. Hippocampal atrophy and white matter lesions characteristics can predict evolution to dementia in patients with vascular mild cognitive impairment. J Neurol Sci 2024; 464:123163. [PMID: 39128160 DOI: 10.1016/j.jns.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Vascular mild cognitive impairment (VMCI) is a transitional condition that may evolve into Vascular Dementia(VaD). Hippocampal volume (HV) is suggested as an early marker for VaD, the role of white matter lesions (WMLs) in neurodegeneration remains debated. OBJECTIVES Evaluate HV and WMLs as predictive markers of VaD in VMCI patients by assessing: (i)baseline differences in HV and WMLs between converters to VaD and non-converters, (ii) predictive power of HV and WMLs for VaD, (iii) associations between HV, WMLs, and cognitive decline, (iv)the role of WMLs on HV. METHODS This longitudinal multicenter study included 110 VMCI subjects (mean age:74.33 ± 6.63 years, 60males/50females) from the VMCI-Tuscany Study database. Subjects underwent brain MRI and cognitive testing, with 2-year follow-up data on VaD progression. HV and WMLs were semi-automatically segmented and measured. ANCOVA assessed group differences, while linear and logistic regression models evaluated predictive power. RESULTS After 2 years, 32/110 VMCI patients progressed to VaD. Converting patients had lower HV(p = 0.015) and higher lesion volumes in the posterior thalamic radiation (p = 0.046), splenium of the corpus callosum (p = 0.016), cingulate gyrus (p = 0.041), and cingulum hippocampus(p = 0.038). HV alone did not fully explain progression (p = 0.059), but combined with WMLs volume, the model was significant (p = 0.035). The best prediction model (p = 0.001) included total HV (p = 0.004) and total WMLs volume of the posterior thalamic radiation (p = 0.005) and cingulate gyrus (p = 0.005), achieving 80% precision, 81% specificity, and 74% sensitivity. Lower HV were linked to poorer performance on the Rey Auditory-Verbal Learning Test delayed recall (RAVLT) and Mini Mental State Examination (MMSE). CONCLUSIONS HV and WMLs are significant predictors of progression from VMCI to VaD. Lower HV correlate with worse cognitive performance on RAVLT and MMSE tests.
Collapse
Affiliation(s)
- Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | | | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | - Ludovico Luchetti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | | | | | - Emilia Salvadori
- Department of Biomedical and Clinical Sciences, University of Milano, Italy
| | - Anna Poggesi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences -"Mario Serio", University of Florence, Florence, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | - Domenico Inzitari
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Leonardo Pantoni
- Department of Biomedical and Clinical Sciences, University of Milano, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Du Y, Zhang S, Qiu Q, Fang Y, Zhao L, Yue L, Wang J, Yan F, Li X. The mediating effect of the amygdala-frontal circuit on the association between depressive symptoms and cognitive function in Alzheimer's disease. Transl Psychiatry 2024; 14:301. [PMID: 39039061 PMCID: PMC11263372 DOI: 10.1038/s41398-024-03026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Depressive symptoms occur commonly in Alzheimer's disease (AD). Although abnormalities in the amygdala-frontal circuit have been linked to emotional dysregulation and cognitive impairment, the neurological basis underlying these associations in AD patients with depressive symptoms (ADD) is unclear. We aimed to investigate the relationship between the amygdala-frontal circuit and depressive symptoms and cognitive function in ADD. We recruited 60 ADD, 60 AD patients without depressive symptoms (ADND), and 60 healthy controls (HC). Functional connectivity (FC) maps of the bilateral amygdala were compared. Fractional anisotropy (FA) of the amygdala-frontal circuit connected by the uncinate fasciculus (UF) was calculated using automated fiber quantification (AFQ). In addition, mediation analysis was performed to explore the effects of the amygdala-frontal circuit on the relationship between depressive symptoms and cognitive function. We found decreased bilateral amygdala FC with the inferior frontal gyrus (IFG) in the ADD group compared to the ADND and HC groups. Moreover, FA in the left frontal UF (nodes 64-97) was significantly lower in the ADD group than ADND group. Notably, amygdala-based FC with IFG and the left frontal UF FA mediated the relationship between depressive symptoms and cognitive function in ADD, with mediating effects ranging between 15 and 18%. Our study is the first to demonstrate the mediating effect of functional and microstructural abnormalities in the amygdala-frontal circuit in ADD. The findings suggest that the amygdala-frontal circuit may underlie emotional dysregulation in ADD, providing potential targets for treatment strategies.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaowei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Ruiz-Rizzo AL, Finke K, Damoiseaux JS, Bartels C, Buerger K, Cosma NC, Dechent P, Dobisch L, Ewers M, Fliessbach K, Frommann I, Glanz W, Goerss D, Hetzer S, Incesoy EI, Janowitz D, Kilimann I, Laske C, van Lent DM, Munk MHJ, Peters O, Priller J, Ramirez A, Rostamzadeh A, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel S, Wagner M, Wiltfang J, Yakupov R, Jessen F, Duezel E, Perneczky R, Rauchmann BS. Fornix fractional anisotropy mediates the association between Mediterranean diet adherence and memory four years later in older adults without dementia. Neurobiol Aging 2024; 136:99-110. [PMID: 38340637 DOI: 10.1016/j.neurobiolaging.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Here, we investigated whether fractional anisotropy (FA) of hippocampus-relevant white-matter tracts mediates the association between baseline Mediterranean diet adherence (MeDiAd) and verbal episodic memory over four years. Participants were healthy older adults with and without subjective cognitive decline and patients with amnestic mild cognitive impairment from the DELCODE cohort study (n = 376; age: 71.47 ± 6.09 years; 48.7 % female). MeDiAd and diffusion data were obtained at baseline. Verbal episodic memory was assessed at baseline and four yearly follow-ups. The associations between baseline MeDiAd and white matter, and verbal episodic memory's mean and rate of change over four years were tested with latent growth curve modeling. Baseline MeDiAd was associated with verbal episodic memory four years later (95 % confidence interval, CI [0.01, 0.32]) but not with its rate of change over this period. Baseline Fornix FA mediated - and, thus, explained - that association (95 % CI [0.002, 0.09]). Fornix FA may be an appropriate response biomarker of Mediterranean diet interventions on verbal memory in older adults.
Collapse
Affiliation(s)
- Adriana L Ruiz-Rizzo
- Department of Neurology, Jena University Hospital, Jena, Germany; Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Munich, Germany.
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Jena, Germany; Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Munich, Germany
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI, USA; Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Nicoleta Carmen Cosma
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Doreen Goerss
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Stefan Hetzer
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, Berlin, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Germany
| | - Daniel Janowitz
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Debora Melo van Lent
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; The Framingham Heart Study, Framingham, MA, USA
| | - Matthias H J Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Germany; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany; School of Medicine, Technical University of Munich; Department of Psychiatry and Psychotherapy, Munich, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK; Institute of Neuroradiology, University Hospital, LMU Munich, Germany
| |
Collapse
|
4
|
Zhong S, Lou J, Ma K, Shu Z, Chen L, Li C, Ye Q, Zhou L, Shen Y, Ye X, Zhang J. Disentangling in-vivo microstructural changes of white and gray matter in mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. Brain Imaging Behav 2023; 17:764-777. [PMID: 37752311 DOI: 10.1007/s11682-023-00805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
The microstructural characteristics of white and gray matter in mild cognitive impairment (MCI) and the early-stage of Alzheimer's disease (AD) remain unclear. This study aimed to systematically identify the microstructural damages of MCI/AD in studies using neurite orientation dispersion and density imaging (NODDI), and explore their correlations with cognitive performance. Multiple databases were searched for eligible studies. The 10 eligible NODDI studies were finally included. Patients with MCI/AD showed overall significant reductions in neurite density index (NDI) of specific white matter structures in bilateral hemispheres (left hemisphere: -0.40 [-0.53, -0.27], P < 0.001; right: -0.33 [-0.47, -0.19], P < 0.001), involving the bilateral superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), the left posterior thalamic radiation (PTR), and the left cingulum. White matter regions exhibited significant increased orientation dispersion index (ODI) (left: 0.25 [0.02, 0.48], P < 0.05; right: 0.27 [0.07, 0.46], P < 0.05), including the left cingulum, the right UF, and the bilateral parahippocampal cingulum (PHC), and PTR. Additionally, the ODI of gray matter showed significant reduction in bilateral hippocampi (left: -0.97 [-1.42, -0.51], P < 0.001; right: -0.90 [-1.35, -0.45], P < 0.001). The cognitive performance in MCI/AD was significantly associated with NDI (r = 0.50, P < 0.001). Our findings highlight the microstructural changes in MCI/AD were characterized by decreased fiber orientation dispersion in the hippocampus, and decreased neurite density and increased fiber orientation dispersion in specific white matter tracts, including the cingulum, UF, and PTR. Moreover, the decreased NDI may indicate the declined cognitive level of MCI/AD patients.
Collapse
Affiliation(s)
- Shuchang Zhong
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjing Lou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ke Ma
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao Li
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qing Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liang Zhou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ye Shen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Hung CC, Chao YP, Lee Y, Huang CW, Huang SH, Chang CC, Cheng CH. Cingulate white matter mediates the effects of fecal Ruminococcus on neuropsychiatric symptoms in patients with amyloid-positive amnestic mild cognitive impairment. BMC Geriatr 2023; 23:720. [PMID: 37936084 PMCID: PMC10631051 DOI: 10.1186/s12877-023-04417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Microbiota-gut-brain axis interacts with one another to regulate brain functions. However, whether the impacts of gut dysbiosis on limbic white matter (WM) tracts contribute to the neuropsychiatric symptoms (NPS) in patients with amyloid-positive amnestic mild cognitive impairment (aMCI+), have not been explored yet. This study aimed to investigate the mediation effects of limbic WM integrity on the association between gut microbiota and NPS in patients with aMCI+. METHODS Twenty patients with aMCI + and 20 healthy controls (HCs) were enrolled. All subjects underwent neuropsychological assessments and their microbial compositions were characterized using 16S rRNA Miseq sequencing technique. Amyloid deposition inspected by positron emission tomography imaging and limbic WM tracts (i.e., fornix, cingulum, and uncinate fasciculus) detected by diffusion tensor imaging were additionally measured in patients with aMCI+. We employed a regression-based mediation analysis using Hayes's PROCESS macro in this study. RESULTS The relative abundance of genera Ruminococcus and Lactococcus was significantly decreased in patients with aMCI + versus HCs. The relative abundance of Ruminococcus was negatively correlated with affective symptom cluster in the aMCI + group. Notably, this association was mediated by WM integrity of the left cingulate gyrus. CONCLUSIONS Our findings suggest Ruminococcus as a potential target for the management of affective impairments in patients with aMCI+.
Collapse
Affiliation(s)
- Chun-Che Hung
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Road, 333, Taoyuan, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yejin Lee
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Chi-Wei Huang
- Department of Neurology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung university College of Medicine, No. 123 Ta-Pei Rd., Niau-Sung Dist, 833, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung university College of Medicine, No. 123 Ta-Pei Rd., Niau-Sung Dist, 833, Kaohsiung, Taiwan.
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Road, 333, Taoyuan, Taiwan.
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
6
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
7
|
Zhou Y, Wei L, Gao S, Wang J, Hu Z. Characterization of diffusion magnetic resonance imaging revealing relationships between white matter disconnection and behavioral disturbances in mild cognitive impairment: a systematic review. Front Neurosci 2023; 17:1209378. [PMID: 37360170 PMCID: PMC10285107 DOI: 10.3389/fnins.2023.1209378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
White matter disconnection is the primary cause of cognition and affection abnormality in mild cognitive impairment (MCI). Adequate understanding of behavioral disturbances, such as cognition and affection abnormality in MCI, can help to intervene and slow down the progression of Alzheimer's disease (AD) promptly. Diffusion MRI is a non-invasive and effective technique for studying white matter microstructure. This review searched the relevant papers published from 2010 to 2022. Sixty-nine studies using diffusion MRI for white matter disconnections associated with behavioral disturbances in MCI were screened. Fibers connected to the hippocampus and temporal lobe were associated with cognition decline in MCI. Fibers connected to the thalamus were associated with both cognition and affection abnormality. This review summarized the correspondence between white matter disconnections and behavioral disturbances such as cognition and affection, which provides a theoretical basis for the future diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Yu Zhou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Lan Wei
- Business School, The University of Sydney, Sydney, NSW, Australia
| | - Song Gao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jun Wang
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Liu Y, Liu D, Liu M, Li K, Shi Q, Wang C, Pan Z, Zhou L. The microstructural abnormalities of cingulum was related to patients with mild cognitive impairment: a diffusion kurtosis imaging study. Neurol Sci 2023; 44:171-180. [PMID: 36169754 PMCID: PMC9816220 DOI: 10.1007/s10072-022-06408-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Our study aimed to investigate the correlations between microstructural changes of cingulum and patients with mild cognitive impairment (MCI) by diffusion kurtosis imaging (DKI) technique. METHOD A total of 104 patients with cerebral small vessel diseases (cSVD) were retrospectively enrolled in this study. According to Montreal Cognitive Assessment Scale (MoCA) scores, these patients were divided into MCI group (n = 59) and non-MCI group (n = 45). The general clinical data was collected and analyzed. The regions of interests (ROIs) were selected for investigation in cingulum. The values of DKI parameters were measured in each ROI and compared between the two groups, the correlations between DKI parameters and MoCA scores were examined. RESULTS Compared to non-MCI group, MCI patients had more severe white matter hyperintensities (WMHs) (P = 0.038) and lower MoCA scores (P < 0.01). MCI patients showed significantly decreased fractional anisotropy (FA), axial kurtosis (AK), mean kurtosis (MK), radial kurtosis (RK), and kurtosis fractional anisotropy (KFA) in the left cingulum in the cingulated cortex (CgC) region (all P < 0.0125). In the left CgC region, FA, AK, MK, RK, and KFA were positively correlated with MoCA scores (r = 0.348, 0.409, 0.310, 0.441, 0.422, all P < 0.001). Meanwhile, FA, AK, MK, RK, and KFA were also positively correlated with MoCA scores (r = 0.338, 0.352, 0.289, 0.380, 0.370, all P < 0.001) in the right CgC region. CONCLUSION DKI technique could be used to explore the microstructural changes of cingulum in MCI patients and DKI-derived parameters might be feasible to evaluate MCI patients.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Dongtao Liu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| | - Mingyong Liu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| | - Kun Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qinglei Shi
- MR Scientific Marketing, Diagnosis Imaging, Siemens Healthineers China, Beijing, China
| | - Chenlong Wang
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Zhenyu Pan
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lichun Zhou
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5, Jingyuan Road, Beijing, China
| |
Collapse
|
9
|
Tan Z, Garduño BM, Aburto PF, Chen L, Ha N, Cogram P, Holmes TC, Xu X. Cognitively impaired aged Octodon degus recapitulate major neuropathological features of sporadic Alzheimer's disease. Acta Neuropathol Commun 2022; 10:182. [PMID: 36529803 PMCID: PMC9761982 DOI: 10.1186/s40478-022-01481-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The long-lived Chilean rodent (Octodon degus) has been reported to show spontaneous age-dependent neuropathology and cognitive impairments similar to those observed in human AD. However, the handful of published papers on degus of differing genetic backgrounds yield inconsistent findings about sporadic AD-like pathological features, with notably differing results between lab in-bred degus versus outbred degus. This motivates more extensive characterization of spontaneously occurring AD-like pathology and behavior in degus. In the present study, we show AD-like neuropathological markers in the form of amyloid deposits and tau abnormalities in a cognitively impaired subset of aged outbred degus. Compared to the aged degus that show normal burrowing behavior, the age-matched degus with burrowing behavior deficits correlatively exhibit detectable human AD-like Aβ deposits and tau neuropathology, along with neuroinflammatory markers that include enhanced microglial activation and higher numbers of reactive astrocytes in the brain. This subset of cognitively impaired aged degus also exhibits cerebral amyloid angiopathy and tauopathy. We find robust neurodegenerative features in behaviorally deficient aged degus, including hippocampal neuronal loss, altered parvalbumin and perineuronal net staining in the cortex, and increased c-Fos neuronal activation in the cortex that is consistent with the neural circuit hyperactivity reported in human AD patients. By focusing on the subset of aged degus that show AD-like behavioral deficits and correlative neuropathology, our findings establish outbred degus as a natural model of sporadic AD and demonstrate the potential importance of wild-type outbred genetic backgrounds for AD pathogenesis.
Collapse
Affiliation(s)
- Zhiqun Tan
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - B Maximiliano Garduño
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Pedro Fernández Aburto
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lujia Chen
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Nicole Ha
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Patricia Cogram
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Department Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
10
|
von Schnehen A, Hobeika L, Huvent-Grelle D, Samson S. Sensorimotor Synchronization in Healthy Aging and Neurocognitive Disorders. Front Psychol 2022; 13:838511. [PMID: 35369160 PMCID: PMC8970308 DOI: 10.3389/fpsyg.2022.838511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor synchronization (SMS), the coordination of physical actions in time with a rhythmic sequence, is a skill that is necessary not only for keeping the beat when making music, but in a wide variety of interpersonal contexts. Being able to attend to temporal regularities in the environment is a prerequisite for event prediction, which lies at the heart of many cognitive and social operations. It is therefore of value to assess and potentially stimulate SMS abilities, particularly in aging and neurocognitive disorders (NCDs), to understand intra-individual communication in the later stages of life, and to devise effective music-based interventions. While a bulk of research exists about SMS and movement-based interventions in Parkinson's disease, a lot less is known about other types of neurodegenerative disorders, such as Alzheimer's disease, vascular dementia, or frontotemporal dementia. In this review, we outline the brain and cognitive mechanisms involved in SMS with auditory stimuli, and how they might be subject to change in healthy and pathological aging. Globally, SMS with isochronous sounds is a relatively well-preserved skill in old adulthood and in patients with NCDs. At the same time, natural tapping speed decreases with age. Furthermore, especially when synchronizing to sequences at slow tempi, regularity and precision might be lower in older adults, and even more so in people with NCDs, presumably due to the fact that this process relies on attention and working memory resources that depend on the prefrontal cortex and parietal areas. Finally, we point out that the effect of the severity and etiology of NCDs on sensorimotor abilities is still unclear: More research is needed with moderate and severe NCD, comparing different etiologies, and using complex auditory signals, such as music.
Collapse
Affiliation(s)
- Andres von Schnehen
- Université de Lille, ULR 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, Lille, France
| | - Lise Hobeika
- Université de Lille, ULR 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, Lille, France.,Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Séverine Samson
- Université de Lille, ULR 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, Lille, France.,Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Epilepsy Unit, AP-HP, GHU Pitié-Salpêtrière-Charles Foix, Paris, France
| |
Collapse
|
11
|
Andersson P, Li X, Persson J. The association between control of interference and white-matter integrity: A cross-sectional and longitudinal investigation. Neurobiol Aging 2022; 114:49-60. [DOI: 10.1016/j.neurobiolaging.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
|
12
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Emotion Processing Dysfunction in Alzheimer's Disease: An Overview of Behavioral Findings, Systems Neural Correlates, and Underlying Neural Biology. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082834. [PMID: 35357236 PMCID: PMC9212074 DOI: 10.1177/15333175221082834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We described behavioral studies to highlight emotional processing deficits in Alzheimer's disease (AD). The findings suggest prominent deficit in recognizing negative emotions, pronounced effect of positive emotion on enhancing memory, and a critical role of cognitive deficits in manifesting emotional processing dysfunction in AD. We reviewed imaging studies to highlight morphometric and functional markers of hippocampal circuit dysfunction in emotional processing deficits. Despite amygdala reactivity to emotional stimuli, hippocampal dysfunction conduces to deficits in emotional memory. Finally, the reviewed studies implicating major neurotransmitter systems in anxiety and depression in AD supported altered cholinergic and noradrenergic signaling in AD emotional disorders. Overall, the studies showed altered emotions early in the course of illness and suggest the need of multimodal imaging for further investigations. Particularly, longitudinal studies with multiple behavioral paradigms translatable between preclinical and clinical models would provide data to elucidate the time course and underlying neurobiology of emotion processing dysfunction in AD.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H. Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Feng F, Huang W, Meng Q, Hao W, Yao H, Zhou B, Guo Y, Zhao C, An N, Wang L, Huang X, Zhang X, Shu N. Altered Volume and Structural Connectivity of the Hippocampus in Alzheimer's Disease and Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:705030. [PMID: 34675796 PMCID: PMC8524052 DOI: 10.3389/fnagi.2021.705030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Hippocampal atrophy is a characteristic of Alzheimer’s disease (AD). However, alterations in structural connectivity (number of connecting fibers) between the hippocampus and whole brain regions due to hippocampal atrophy remain largely unknown in AD and its prodromal stage, amnestic mild cognitive impairment (aMCI). Methods: We collected high-resolution structural MRI (sMRI) and diffusion tensor imaging (DTI) data from 36 AD patients, 30 aMCI patients, and 41 normal control (NC) subjects. First, the volume and structural connectivity of the bilateral hippocampi were compared among the three groups. Second, correlations between volume and structural connectivity in the ipsilateral hippocampus were further analyzed. Finally, classification ability by hippocampal volume, its structural connectivity, and their combination were evaluated. Results: Although the volume and structural connectivity of the bilateral hippocampi were decreased in patients with AD and aMCI, only hippocampal volume correlated with neuropsychological test scores. However, positive correlations between hippocampal volume and ipsilateral structural connectivity were displayed in patients with AD and aMCI. Furthermore, classification accuracy (ACC) was higher in AD vs. aMCI and aMCI vs. NC by the combination of hippocampal volume and structural connectivity than by a single parameter. The highest values of the area under the receiver operating characteristic (ROC) curve (AUC) in every two groups were all obtained by combining hippocampal volume and structural connectivity. Conclusions: Our results showed that the combination of hippocampal volume and structural connectivity (number of connecting fibers) is a new perspective for the discrimination of AD and aMCI.
Collapse
Affiliation(s)
- Feng Feng
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Qingqing Meng
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Weijun Hao
- Department of Healthcare, Bureau of Guard, General Office of the Communist Party of China, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yan'e Guo
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Cui Zhao
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Geriatrics, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ningyu An
- Department of Radiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Luning Wang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xi Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
He F, Zhang Y, Wu X, Li Y, Zhao J, Fang P, Fan L, Li C, Liu T, Wang J. Early Microstructure Changes of White Matter Fiber Bundles in Patients with Amnestic Mild Cognitive Impairment Predicts Progression of Mild Cognitive Impairment to Alzheimer's Disease. J Alzheimers Dis 2021; 84:179-192. [PMID: 34487042 DOI: 10.3233/jad-210495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Amnestic mild cognitive impairment (aMCI) is the transitional stage between normal aging and Alzheimer's disease (AD). Some aMCI patients will progress into AD eventually, whereas others will not. If the trajectory of aMCI can be predicted, it would enable early diagnosis and early therapy of AD. OBJECTIVE To explore the development trajectory of aMCI patients, we used diffusion tensor imaging to analyze the white matter microstructure changes of patients with different trajectories of aMCI. METHODS We included three groups of subjects:1) aMCI patients who convert to AD (MCI-P); 2) aMCI patients who remain in MCI status (MCI-S); 3) normal controls (NC). We analyzed the fractional anisotropy and mean diffusion rate of brain regions, and we adopted logistic binomial regression model to predicate the development trajectory of aMCI. RESULTS The fraction anisotropy value is significantly reduced, the mean diffusivity value is significantly increased in the two aMCI patient groups, and the MCI-P patients presented greater changes. Significant changes are mainly located in the cingulum, fornix, hippocampus, and uncinate fasciculus. These changed brain regions significantly correlated with the patient's Mini-Mental State Examination scores. CONCLUSION The study predicted the disease trajectory of different types of aMCI patients based on the characteristic values of the above-mentioned brain regions. The prediction accuracy rate can reach 90.2%, and the microstructure characteristics of the right cingulate band and the right hippocampus may have potential clinical application value to predict the disease trajectory.
Collapse
Affiliation(s)
- Fangmei He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P.R. China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P.R. China
| | - Yuchen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P.R. China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P.R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P.R. China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P.R. China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P.R. China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P.R. China
| | - Peng Fang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, Shaanxi, P.R. China
| | - Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P.R. China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P.R. China
| | - Chenxi Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P.R. China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P.R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P.R. China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P.R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.,National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P.R. China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P.R. China
| | | |
Collapse
|
15
|
Age-related differences in structural and functional prefrontal networks during a logical reasoning task. Brain Imaging Behav 2021; 15:1085-1102. [PMID: 32556885 DOI: 10.1007/s11682-020-00315-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In logical reasoning, difficulties in inhibition of currently-held beliefs may lead to unwarranted conclusions, known as belief bias. Aging is associated with difficulties in inhibitory control, which may lead to deficits in inhibition of currently-held beliefs. No study to date, however, has investigated the underlying neural substrates of age-related differences in logical reasoning and the impact of belief load. The aim of the present study was to delineate age differences in brain activity during a syllogistic logical reasoning task while the believability load of logical inferences was manipulated. Twenty-nine, healthy, younger and thirty, healthy, older adults (males and females) completed a functional magnetic resonance imaging experiment in which they were asked to determine the logical validity of conclusions. Unlike younger adults, older adults engaged a large-scale network including anterior cingulate cortex and inferior frontal gyrus during conclusion stage. Our functional connectivity results suggest that while older adults engaged the anterior cingulate network to overcome their intuitive responses for believable inferences, the inferior frontal gyrus network contributed to higher control over responses during both believable and unbelievable conditions. Our functional results were further supported by structure-function-behavior analyses indicating the importance of cingulum bundle and uncinate fasciculus integrity in rejection of believable statements. These novel findings lend evidence for age-related differences in belief bias, with potentially important implications for decision making where currently-held beliefs and given assumptions are in conflict.
Collapse
|
16
|
Bazydlo A, Zammit M, Wu M, Dean D, Johnson S, Tudorascu D, Cohen A, Cody K, Ances B, Laymon C, Klunk W, Zaman S, Handen B, Alexander A, Christian B, Hartley S. White matter microstructure associations with episodic memory in adults with Down syndrome: a tract-based spatial statistics study. J Neurodev Disord 2021; 13:17. [PMID: 33879062 PMCID: PMC8059162 DOI: 10.1186/s11689-021-09366-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Nearly all persons with Down syndrome will show pathology of Alzheimer's disease in their 40s. There is a critical need for studies to identify early biomarkers of these various pathological changes of Alzheimer's disease in the Down syndrome population and understand the relationship of these biomarkers to cognitive symptoms in order to inform clinical trials. Although Alzheimer's disease is often considered a disease of gray matter, white matter degeneration has been documented during the preclinical stage of Alzheimer's disease. The current study examined the association between diffusion tensor imaging (DTI) measures of white matter microstructure and episodic memory performance in 52 adults with Down syndrome. METHODS Seventy (N = 70) participants (M = 40.13, SD = 7.77 years) received baseline scans as part of the Neurodegeneration in Aging Down Syndrome (NiAD) study at two imaging facilities (36 at the University of Wisconsin-Madison [UW-Madison] and 34 at the University of Pittsburgh Medical Center [UPMC]). All participants had genetically confirmed trisomy 21. Fifty-two (N = 52) participants remained after QC. The DTI measures, fractional anisotropy (FA) and mean diffusivity (MD), were calculated for each participant. A combined measure of episodic memory was generated by summing the z-scores of (1) Free and Cued Recall test and (2) Rivermead Behavioural Memory Test for Children Picture Recognition. The DTI data were projected onto a population-derived FA skeleton and tract-based spatial statistics analysis was conducted using the FSL tool PALM to calculate Pearson's r values between FA and MD with episodic memory. RESULTS A positive correlation of episodic memory with FA and a negative correlation of episodic memory and MD in the major association white matter tracts were observed. Results were significant (p < 0.05) after correction for chronological age, imaging site, and premorbid cognitive ability. CONCLUSION These findings suggest that white matter degeneration may be implicated in early episodic memory declines prior to the onset of dementia in adults with Down syndrome. Further, our findings suggest a coupling of episodic memory and white matter microstructure independent of chronological age.
Collapse
Affiliation(s)
- Austin Bazydlo
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Matthew Zammit
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Wu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Douglas Dean
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling Johnson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana Tudorascu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ann Cohen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Karly Cody
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Beau Ances
- Washington University of St. Louis, St. Louis, MO, USA
| | - Charles Laymon
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William Klunk
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Cambridge, UK
| | - Benjamin Handen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew Alexander
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Bradley Christian
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sigan Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Tarumi T, Tomoto T, Repshas J, Wang C, Hynan LS, Cullum CM, Zhu DC, Zhang R. Midlife aerobic exercise and brain structural integrity: Associations with age and cardiorespiratory fitness. Neuroimage 2021; 225:117512. [PMID: 33130274 PMCID: PMC8743271 DOI: 10.1016/j.neuroimage.2020.117512] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Lower midlife physical activity is associated with higher risk of neurodegenerative disease in late life. However, it remains unknown whether physical exercise and fitness are associated with brain structural integrity during midlife. The purpose of this study was to compare brain structures between middle-aged aerobically trained adults (MA), middle-aged sedentary (MS), and young sedentary (YS) adults. Thirty MA (54±4 years), 30 MS (54±4 years), and 30 YS (32±6 years) participants (50% women) underwent measurements of brain volume, cortical thickness, and white matter (WM) fiber integrity using MRI. MA participants had aerobic training for 24.8±9.6 years and the highest cardiorespiratory fitness level (i.e., peak oxygen uptake: VO2peak) among all groups. Global WM integrity, as assessed with fractional anisotropy (FA) from diffusion tensor imaging, was lower in the MS compared with the YS group. However, global FA in the MA group was significantly higher than that in the MS group (P<0.05) and at a similar level to the YS group. Furthermore, tract-based spatial statistical analysis demonstrated that FA in the anterior, superior, and limbic WM tracts (e.g., the genu of the corpus callosum, superior longitudinal fasciculus, uncinate fasciculus) was higher in the MA compared with MS groups, and positively associated with VO2peak, independently from age and sex. From cortical thickness analysis, MS and MA participants showed thinner prefrontal and parieto-temporal areas than the YS group. On the other hand, the MA group exhibited thicker precentral, postcentral, pericalcarine, and lateral occipital cortices than the MS and YS groups. But, the insula and right superior frontal gyrus showed thinner cortical thickness in the MA compared with the MS groups. Collectively, these findings suggest that midlife aerobic exercise is associated with higher WM integrity and greater primary motor and somatosensory cortical thickness.
Collapse
Affiliation(s)
- Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave, Dallas, TX 75231, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave, Dallas, TX 75231, USA
| | - Justin Repshas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave, Dallas, TX 75231, USA
| | - Ciwen Wang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave, Dallas, TX 75231, USA
| | - Linda S Hynan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, 220 Trowbridge Rd, East Lansing, MI 48824, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave, Dallas, TX 75231, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Lin YH, Dhanaraj V, Mackenzie AE, Young IM, Tanglay O, Briggs RG, Chakraborty AR, Hormovas J, Fonseka RD, Kim SJ, Yeung JT, Teo C, Sughrue ME. Anatomy and White Matter Connections of the Parahippocampal Gyrus. World Neurosurg 2021; 148:e218-e226. [PMID: 33412321 DOI: 10.1016/j.wneu.2020.12.136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The parahippocampal gyrus is understood to have a role in high cognitive functions including memory encoding and retrieval and visuospatial processing. A detailed understanding of the exact location and nature of associated white tracts could significantly improve postoperative morbidity related to declining capacity. Through diffusion tensor imaging-based fiber tracking validated by gross anatomic dissection as ground truth, we have characterized these connections based on relationships to other well-known structures. METHODS Diffusion imaging from the Human Connectome Project for 10 healthy adult controls was used for tractography analysis. We evaluated the parahippocampal gyrus as a whole based on connectivity with other regions. All parahippocampal gyrus tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes. RESULTS We identified 2 connections of the parahippocampal gyrus: inferior longitudinal fasciculus and cingulum. Lateralization of the cingulum was detected (P < 0.05). CONCLUSIONS The parahippocampal gyrus is an important center for memory processing. Subtle differences in executive functioning following surgery for limbic tumors may be better understood in the context of the fiber-bundle anatomy highlighted by this study.
Collapse
Affiliation(s)
- Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Alana E Mackenzie
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | | | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Arpan R Chakraborty
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Sihyong J Kim
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Jacky T Yeung
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
19
|
Fattah M, Raman MM, Reiss AL, Green T. PTPN11 Mutations in the Ras-MAPK Signaling Pathway Affect Human White Matter Microstructure. Cereb Cortex 2020; 31:1489-1499. [PMID: 33119062 DOI: 10.1093/cercor/bhaa299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
We examined whether PTPN11 mutations affect the white matter connectivity of the developing human brain. Germline activating mutations to the PTPN11 gene cause overactivation of the Ras-Mitogen-Activated Protein Kinase pathway. Activating mutations cause Noonan syndrome (NS), a developmental disorder associated with hyperactivity and cognitive weakness in attention, executive function, and memory. In mouse models of NS, PTPN11 mutations cause reduced axon myelination and white matter formation, while the effects of PTPN11 mutations on human white matter are largely unknown. For the first time, we assessed 17 children with NS (9 females, mean age, 8.68 ± 2.39) and 17 age- and sex-matched controls (9 female, mean age, 8.71 ± 2.40) using diffusion brain imaging for white matter connectivity and structural magnetic resonance imaging to characterize brain morphology. Children with NS showed widespread reductions in fractional anisotropy (FA; 82 613 voxels, t = 1.49, P < 0.05) and increases in radial diffusivity (RD; 94 044 voxels, t = 1.22, P < 0.05), denoting decreased white matter connectivity. In NS, the FA of the posterior thalamic radiation correlated positively with inhibition performance, whereas connectivity in the genu of the corpus callosum was inversely associated with auditory attention performance. Additionally, we observed negative and positive correlations, respectively, between memory and the cingulum hippocampus, and memory and the cingulum cingulate gyrus. These findings elucidate the neural mechanism underpinning the NS cognitive phenotype, and may serve as a brain-based biomarker.
Collapse
Affiliation(s)
- Mustafa Fattah
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mira M Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Chen H, Sheng X, Qin R, Luo C, Li M, Liu R, Zhang B, Xu Y, Zhao H, Bai F. Aberrant White Matter Microstructure as a Potential Diagnostic Marker in Alzheimer's Disease by Automated Fiber Quantification. Front Neurosci 2020; 14:570123. [PMID: 33071742 PMCID: PMC7541946 DOI: 10.3389/fnins.2020.570123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Neuroimaging evidence has suggested white matter microstructure are heavily affected in Alzheimer's disease (AD). However, whether white matter dysfunction is localized at the specific regions of fiber tracts and whether they would be a potential biomarker for AD remain unclear. By automated fiber quantification (AFQ), we applied diffusion tensor images from 25 healthy controls (HC), 24 amnestic mild cognitive impairment (aMCI) patients and 18 AD patients to create tract profiles along 16 major white matter fibers. We compared diffusion metrics [Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR)] between groups. To assess the diagnostic value, we applied a random forest (RF) classifier, a type of machine learning method. In the global tract level, we found that aMCI and AD patients showed higher MD, DA, and DR values in some fiber tracts mostly in the left hemisphere compared to HC. In the point-wise level, widespread disruption were distributed on specific locations of different tracts. The point-wise MD measurements presented the best classification performance with respect to differentiating AD from HC. The two most important variables were localized in the prefrontal potion of left uncinate fasciculus and anterior thalamic radiation. In addition, the point-wise DA in the posterior component of the left cingulum cingulate displayed the most robust discriminative ability to identify AD from aMCI. Our findings provide evidence that white matter abnormalities based on the AFQ method could be as a diagnostic biomarker in AD.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaoning Sheng
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengchun Li
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
21
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Abstract
Abstract. MoCA is a short cognitive screening tool. We examined the relationship of MoCA performance to white matter integrity, gray matter volume, and surface-based measurements at normal aging in a study in which older and younger cognitively unaffected subjects participated. The sample was split according to MoCA performance, and the data were analyzed using a general linear model (Age × MoCA). We found effects in the expected direction for all methods. The main effects on age and performance as well as interactions occurred for regions associated with aging, pathological and nonpathological. Older low-performing subjects showed structural deficits compared to older high-performing subjects. Therefore, the global index of cognitive status reflects relevant features of the brain structure.
Collapse
Affiliation(s)
- Gebhard Sammer
- Cognitive NeuroScience at the Centre for Psychiatry, University of Gießen, Germany
- Department of Psychology, University of Gießen, Germany
- Bender Institute of Neuroimaging, University of Gießen, Germany
| | - Eva Lenz
- Cognitive NeuroScience at the Centre for Psychiatry, University of Gießen, Germany
| |
Collapse
|
23
|
Episodic memory decline in Parkinson' s disease: relation with white matter hyperintense lesions and influence of quantification method. Brain Imaging Behav 2019; 13:810-818. [PMID: 29948903 PMCID: PMC6538581 DOI: 10.1007/s11682-018-9909-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The relation of white matter hyperintense lesions to episodic memory impairment in patients with Parkinson's disease (PD) is still controversial. We aimed at evaluating the relation between white matter hyperintense lesions and episodic memory decline in patients with PD. In this multicentric prospective study, twenty-one normal controls, 15 PD patients without mild cognitive impairment (MCI) and 13 PD patients with MCI were selected to conduct a clinico-radiological correlation analysis. Performance during episodic memory testing, age-related white matter changes score, total manual and automated white matter hyperintense lesions volume and lobar white matter hyperintense lesions volumes were compared between groups using the Kruskal-Wallis and Wilcoxon signed-rank tests, and correlations were assessed using the Spearman test. MCI PD patients had impaired free recall. They also had higher total, left prefrontal and left temporal white matter hyperintense lesions volumes than normal controls. Free recall performance was negatively correlated with the total white matter hyperintense lesions volume, either manually or automatically delineated, but not with the age-related white matter changes score. Using automated segmentation, both the left prefrontal and temporal white matter hyperintense lesions volumes were negatively correlated with the free recall performance. Early episodic memory impairment in MCI PD patients may be related to white matter hyperintense lesions, mainly in the prefrontal and temporal lobes. This relation is influenced by the method used for white matter hyperintense lesions quantification. Automated volumetry allows for detecting those changes.
Collapse
|
24
|
Shukla D, Mandal PK, Tripathi M, Vishwakarma G, Mishra R, Sandal K. Quantitation of in vivo brain glutathione conformers in cingulate cortex among age-matched control, MCI, and AD patients using MEGA-PRESS. Hum Brain Mapp 2019; 41:194-217. [PMID: 31584232 PMCID: PMC7268069 DOI: 10.1002/hbm.24799] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) plays an important role in Alzheimer's disease (AD) and glutathione (GSH) mitigates this effect by maintaining redox-imbalance and free-radical neutralization. Quantified brain GSH concentration provides distinct information about OS among age-matched normal control (NC), mild cognitive impairment (MCI) and AD patients. We report alterations of in vivo GSH conformers, along with the choline, creatine, and N-acetylaspartate levels in the cingulate cortex (CC) containing anterior (ACC) and posterior (PCC) regions of 64 (27 NC, 19 MCI, and 18 AD) participants using MEscher-GArwood-Point-RESolved spectroscopy sequence. Result indicated, tissue corrected GSH depletion in PCC among MCI (p = .001) and AD (p = .028) and in ACC among MCI (p = .194) and AD (p = .025) as compared to NC. Effects of the group, region, and group × region on GSH with age and gender as covariates were analyzed using a generalized linear model with Bonferroni correction for multiple comparisons. A significant effect of group with GSH depletion in AD and MCI was observed as compared to NC. Receiver operator characteristic (ROC) analysis of GSH level in CC differentiated between MCI and NC groups with an accuracy of 82.8% and 73.5% between AD and NC groups. Multivariate ROC analysis for the combined effect of the GSH alteration in both ACC and PCC regions provided improved diagnostic accuracy of 86.6% for NC to MCI conversion and 76.4% for NC to AD conversion. We conclude that only closed GSH conformer depletion in the ACC and PCC regions is critical and constitute a potential biomarker for AD.
Collapse
Affiliation(s)
- Deepika Shukla
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Pravat Kumar Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, Indian Spinal Injuries Centre, New Delhi, India
| | - Ritwick Mishra
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Kanika Sandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
25
|
Lo Buono V, Palmeri R, Corallo F, Allone C, Pria D, Bramanti P, Marino S. Diffusion tensor imaging of white matter degeneration in early stage of Alzheimer's disease: a review. Int J Neurosci 2019; 130:243-250. [PMID: 31549530 DOI: 10.1080/00207454.2019.1667798] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Object: Alzheimer's disease is a progressive, irreversible neurodegenerative disorder associated with brain alterations. Diffusion tensor imaging (DTI) has contributed to identify degeneration in white matter cortical microstructural that can be considered an early and specific biomarker for Alzheimer's disease. This review aimed to provide a summary of DTI studies on white matter damage in Alzheimer's disease.Methods: On PubMed, Web of Science and Scopus databases, we reviewed the studies that used DTI for assessing fractional anisotropy in neurofiber tracts involved in Alzheimer's Disease progression: fornix, the cingulum, uncinate fasciculus, superior and inferior longitudinal fasciculus and corpus callosum. We included nine studies that met search criteria.Results: The results showed decreased fractional anisotropy value in mild cognitive impairment (MCI) patients. White matter diffusivity changes were associated with the progression of Alzheimer's disease.Conclusion: Microstructural alterations of the limbic and cortico-cortical tracts could be potential biomarkers for early diagnosis in preclinical disease phase.
Collapse
Affiliation(s)
| | | | | | | | - Deborah Pria
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| |
Collapse
|
26
|
Zhang Y, Chao FL, Zhang L, Jiang L, Zhou CN, Chen LM, Lu W, Jiang R, Tang Y. Quantitative study of the capillaries within the white matter of the Tg2576 mouse model of Alzheimer's disease. Brain Behav 2019; 9:e01268. [PMID: 30900389 PMCID: PMC6456816 DOI: 10.1002/brb3.1268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION To quantitatively investigate the capillaries within the white matter of Tg2576 Alzheimer's disease (AD) transgenic mice during the early stage. METHODS In the current study, 10-month-old male Tg2576 AD mice were used as the early-stage AD group and age-matched nontransgenic littermate mice were used as the wild-type group. Then, the Morris water maze was used to examine the spatial learning and memory abilities of the mice in both groups, and unbiased stereological methods were used to accurately quantify the volume of white matter and the parameters of the capillaries within the white matter, such as the total length, total volume, and total surface area of capillaries. RESULTS The Morris water maze performance of the Tg2576 group was worse than that of the wild-type group, while the white matter volume did not significantly differ between the wild-type group and the Tg2576 group. The total length, total volume, and total surface area of the capillaries within the white matter of the Tg2576 group were significantly decreased compared to those of the wild-type group. CONCLUSIONS The current study provide structural basis for understanding the pathological changes of the early stage of AD and cognitive decline in AD might be associated with changes in the white matter capillaries. Capillaries within the white matter might, thus, serve as a valid target for the prevention and treatment of early-stage AD.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Chun-Ni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin-Mu Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Wei Lu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Revealing the Hippocampal Connectome through Super-Resolution 1150-Direction Diffusion MRI. Sci Rep 2019; 9:2418. [PMID: 30787303 PMCID: PMC6382767 DOI: 10.1038/s41598-018-37905-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022] Open
Abstract
The hippocampus is a key component of emotional and memory circuits and is broadly connected throughout the brain. We tracked the whole-brain connections of white matter fibres from the hippocampus using ultra-high angular resolution diffusion MRI in both a single 1150-direction dataset and a large normal cohort (n = 94; 391-directions). Using a connectomic approach, we identified six dominant pathways in terms of strength, length and anatomy, and characterised them by their age and gender variation. The strongest individual connection was to the ipsilateral thalamus. There was a strong age dependence of hippocampal connectivity to medial occipital regions. Overall, our results concur with preclinical and ex-vivo data, confirming that meaningful in vivo characterisation of hippocampal connections is possible in an individual. Our findings extend the collective knowledge of hippocampal anatomy, highlighting the importance of the spinal-limbic pathway and the striking lack of hippocampal connectivity with motor and sensory cortices.
Collapse
|
28
|
Vipin A, Ng KK, Ji F, Shim HY, Lim JKW, Pasternak O, Zhou JH. Amyloid burden accelerates white matter degradation in cognitively normal elderly individuals. Hum Brain Mapp 2019; 40:2065-2075. [PMID: 30604903 DOI: 10.1002/hbm.24507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Alterations in parietal and temporal white matter microstructure derived from diffusion tensor imaging occur in preclinical and clinical Alzheimer's disease. Amyloid beta (Aβ) deposition and such white matter alterations are two pathological hallmarks of Alzheimer's disease. However, the relationship between these pathologies is not yet understood, partly since conventional diffusion MRI methods cannot distinguish between cellular and extracellular processes. Thus, we studied Aβ-associated longitudinal diffusion MRI changes in Aβ-positive (N = 21) and Aβ-negative (N = 51) cognitively normal elderly obtained from the Alzheimer's Disease Neuroimaging Initiative dataset using linear mixed models. Aβ-positivity was based on Alzheimer's Disease Neuroimaging Initiative amyloid-PET recommendations using a standardized uptake value ratio cut-off of 1.11. We used free-water imaging to distinguish cellular and extracellular changes. We found that Aβ-positive subjects had increased baseline right uncinate fasciculus free-water fraction (FW), associated with worse baseline Alzheimer's disease assessment scale scores. Furthermore, Aβ-positive subjects showed faster decrease in fractional anisotropy (FW-corrected) in the right uncinate fasciculus and faster age-dependent right inferior longitudinal fasciculus FW increases over time. Right inferior longitudinal fasciculus FW increases were associated with greater memory decline. Importantly, these results remained significant after controlling for gray and white matter volume and hippocampal volume. This is the first study to illustrate the influence of Aβ burden on early longitudinal (in addition to baseline) white matter changes in cognitively normal elderly individuals at-risk of Alzheimer's disease, thus underscoring the importance of longitudinal studies in assessing microstructural alterations in individuals at risk of Alzheimer's disease prior to symptoms onset.
Collapse
Affiliation(s)
- Ashwati Vipin
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Kwun Kei Ng
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Fang Ji
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Hee Youn Shim
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Joseph K W Lim
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juan Helen Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioural Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore.,Clinical Imaging Research Centre, the Agency for Science, Technology and Research and National University of Singapore, Singapore
| | | |
Collapse
|
29
|
Carment L, Abdellatif A, Lafuente-Lafuente C, Pariel S, Maier MA, Belmin J, Lindberg PG. Manual Dexterity and Aging: A Pilot Study Disentangling Sensorimotor From Cognitive Decline. Front Neurol 2018; 9:910. [PMID: 30420830 PMCID: PMC6215834 DOI: 10.3389/fneur.2018.00910] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Manual dexterity measures can be useful for early detection of age-related functional decline and for prediction of cognitive decline. However, what aspects of sensorimotor function to assess remains unclear. Manual dexterity markers should be able to separate impairments related to cognitive decline from those related to healthy aging. In this pilot study, we aimed to compare manual dexterity components in patients diagnosed with cognitive decline (mean age: 84 years, N = 11) and in age comparable cognitively intact elderly subjects (mean age: 78 years, N = 11). In order to separate impairments due to healthy aging from deficits due to cognitive decline we also included two groups of healthy young adults (mean age: 26 years, N = 10) and middle-aged adults (mean age: 41 years, N = 8). A comprehensive quantitative evaluation of manual dexterity was performed using three tasks: (i) visuomotor force tracking, (ii) isochronous single finger tapping with auditory cues, and (iii) visuomotor multi-finger tapping. Results showed a highly significant increase in force tracking error with increasing age. Subjects with cognitive decline had increased finger tapping variability and reduced ability to select the correct tapping fingers in the multi-finger tapping task compared to cognitively intact elderly subjects. Cognitively intact elderly subjects and those with cognitive decline had prolonged force release and reduced independence of finger movements compared to young adults and middle-aged adults. The findings suggest two different patterns of impaired manual dexterity: one related to cognitive decline and another related to healthy aging. Manual dexterity tasks requiring updating of performance, in accordance with (temporal or spatial) task rules maintained in short-term memory, are particularly affected in cognitive decline. Conversely, tasks requiring online matching of motor output to sensory cues were affected by age, not by cognitive status. Remarkably, no motor impairments were detected in patients with cognitive decline using clinical scales of hand function. The findings may have consequences for the development of manual dexterity markers of cognitive decline.
Collapse
Affiliation(s)
- Loic Carment
- Inserm U894, Université Paris Descartes, Paris, France
| | - Abir Abdellatif
- Plateforme de Recherche Clinique en Gériatrie, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Carmelo Lafuente-Lafuente
- Service de Gériatrie à orientation Cardiologique et Neurologique, Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Sylvie Pariel
- Département de soins ambulatoires, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Marc A Maier
- FR3636 CNRS, Université Paris Descartes, Paris, France.,Department of Life Sciences, Université Paris Diderot, Paris, France
| | - Joël Belmin
- Service de Gériatrie à orientation Cardiologique et Neurologique, Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | | |
Collapse
|
30
|
Ishii R, Canuet L, Aoki Y, Hata M, Iwase M, Ikeda S, Nishida K, Ikeda M. Healthy and Pathological Brain Aging: From the Perspective of Oscillations, Functional Connectivity, and Signal Complexity. Neuropsychobiology 2018; 75:151-161. [PMID: 29466802 DOI: 10.1159/000486870] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/14/2018] [Indexed: 12/24/2022]
Abstract
Healthy aging is associated with impairment in cognitive information processing. Several neuroimaging methods such as functional magnetic resonance imaging, positron emission tomography and near-infrared spectroscopy have been used to explore healthy and pathological aging by relying on hemodynamic or metabolic changes that occur in response to brain activity. Since electroencephalography (EEG) and magnetoencephalography (MEG) are able to measure neural activity directly with a high temporal resolution of milliseconds, these neurophysiological techniques are particularly important to investigate the dynamics of brain activity underlying neurocognitive aging. It is well known that age is a major risk factor for Alzheimer's disease (AD), and that synaptic dysfunction represents an early sign of this disease associated with hallmark neuropathological findings. However, the neurophysiological mechanisms underlying AD are not fully elucidated. This review addresses healthy and pathological brain aging from a neurophysiological perspective, focusing on oscillatory activity changes during the resting state, event-related potentials and stimulus-induced oscillatory responses during cognitive or motor tasks, functional connectivity between brain regions, and changes in signal complexity. We also highlight the accumulating evidence on age-related EEG/MEG changes and biological markers of brain neurodegeneration, including genetic factors, structural abnormalities on magnetic resonance images, and the biochemical changes associated with Aβ deposition and tau pathology.
Collapse
Affiliation(s)
- Ryouhei Ishii
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Palliative Care, Ashiya Municipal Hospital, Ashiya, Japan
| | - Leonides Canuet
- Department of Cognitive, Social and Organizational Psychology, La Laguna University, Tenerife, Spain
| | - Yasunori Aoki
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Psychiatry, Nissay Hospital, Osaka, Japan
| | - Masahiro Hata
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shunichiro Ikeda
- Department of Psychiatry, Kansai Medical University, Moriguchi, Japan
| | - Keiichiro Nishida
- Department of Psychiatry, Kansai Medical University, Moriguchi, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
31
|
Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev 2018; 92:104-127. [PMID: 29753752 PMCID: PMC6090091 DOI: 10.1016/j.neubiorev.2018.05.008] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
The cingulum bundle is a prominent white matter tract that interconnects frontal, parietal, and medial temporal sites, while also linking subcortical nuclei to the cingulate gyrus. Despite its apparent continuity, the cingulum's composition continually changes as fibres join and leave the bundle. To help understand its complex structure, this review begins with detailed, comparative descriptions of the multiple connections comprising the cingulum bundle. Next, the impact of cingulum bundle damage in rats, monkeys, and humans is analysed. Despite causing extensive anatomical disconnections, cingulum bundle lesions typically produce only mild deficits, highlighting the importance of parallel pathways and the distributed nature of its various functions. Meanwhile, non-invasive imaging implicates the cingulum bundle in executive control, emotion, pain (dorsal cingulum), and episodic memory (parahippocampal cingulum), while clinical studies reveal cingulum abnormalities in numerous conditions, including schizophrenia, depression, post-traumatic stress disorder, obsessive compulsive disorder, autism spectrum disorder, Mild Cognitive Impairment, and Alzheimer's disease. Understanding the seemingly diverse contributions of the cingulum will require better ways of isolating pathways within this highly complex tract.
Collapse
Affiliation(s)
- Emma J Bubb
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK
| | | | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
32
|
Bayram E, Caldwell JZK, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:395-413. [PMID: 30229130 PMCID: PMC6140335 DOI: 10.1016/j.trci.2018.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is caused by a cascade of changes to brain integrity. Neuroimaging biomarkers are important in diagnosis and monitoring the effects of interventions. As memory impairments are among the first symptoms of AD, the relationship between imaging findings and memory deficits is important in biomarker research. The most established magnetic resonance imaging (MRI) finding is hippocampal atrophy, which is related to memory decline and currently used as a diagnostic criterion for AD. While the medial temporal lobes are impacted early by the spread of neurofibrillary tangles, other networks and regional changes can be found quite early in the progression. Atrophy in several frontal and parietal regions, cortical thinning, and white matter alterations correlate with memory deficits in early AD. Changes in activation and connectivity have been detected by functional MRI (fMRI). Task-based fMRI studies have revealed medial temporal lobe hypoactivation, parietal hyperactivation, and frontal hyperactivation in AD during memory tasks, and activation patterns of these regions are also altered in preclinical and prodromal AD. Resting state fMRI has revealed alterations in default mode network activity related to memory in early AD. These studies are limited in part due to the historic inclusion of patients who had suspected AD but likely did not have the disorder. Modern biomarkers allow for more diagnostic certainty, allowing better understanding of neuroimaging markers in true AD, even in the preclinical stage. Larger patient cohorts, comparison of candidate imaging biomarkers to more established biomarkers, and inclusion of more detailed neuropsychological batteries to assess multiple aspects of memory are needed to better understand the memory deficit in AD and help develop new biomarkers. This article reviews MRI findings related to episodic memory impairments in AD and introduces a new study with multimodal imaging and comprehensive neuropsychiatric evaluation to overcome current limitations.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jessica Z K Caldwell
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
33
|
Sun J, Zhou H, Bai F, Zhang Z, Ren Q. Remyelination: A Potential Therapeutic Strategy for Alzheimer's Disease? J Alzheimers Dis 2018; 58:597-612. [PMID: 28453483 DOI: 10.3233/jad-170036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is a lipid-rich multilamellar membrane that wraps around long segments of neuronal axons and it increases the conduction of action potentials, transports the necessary trophic support to the neuronal axons, and reduces the energy consumed by the neuronal axons. Together with axons, myelin is a prerequisite for the higher functions of the central nervous system and complex forms of network integration. Myelin impairments have been suggested to lead to neuronal dysfunction and cognitive decline. Accumulating evidence, including brain imaging and postmortem and genetic association studies, has implicated myelin impairments in Alzheimer's disease (AD). Increasing data link myelin impairments with amyloid-β (Aβ) plaques and tau hyperphosphorylation, which are both present in patients with AD. Moreover, aging and apolipoprotein E (ApoE) may be involved in the myelin impairments observed in patients with AD. Decreased neuronal activity, increased Aβ levels, and inflammation further damage myelin in patients with AD. Furthermore, treatments that promote myelination contribute to the recovery of neuronal function and improve cognition. Therefore, strategies targeting myelin impairment may provide therapeutic opportunities for patients with AD.
Collapse
|
34
|
Fan LY, Lai YM, Chen TF, Hsu YC, Chen PY, Huang KZ, Cheng TW, Tseng WYI, Hua MS, Chen YF, Chiu MJ. Diminution of context association memory structure in subjects with subjective cognitive decline. Hum Brain Mapp 2018. [PMID: 29516634 DOI: 10.1002/hbm.24022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Alzheimer's disease (AD) progresses insidiously from the preclinical stage to dementia. While people with subjective cognitive decline (SCD) have normal cognitive performance, some may be in the preclinical stage of AD. Neurofibrillary tangles appear first in the transentorhinal cortex, followed by the entorhinal cortex in the clinically silent stage of AD. We expected the earliest changes in subjects with SCD to occur in medial temporal subfields other than the hippocampal proper. These selective structural changes would affect specific memory subcomponents. We used the Family Picture subtest of the Wechsler Memory Scale-III, which was modified to separately compute character, activity, and location subscores for episodic memory subcomponents. We recruited 43 subjects with SCD, 44 subjects with amnesic mild cognitive impairment, and 34 normal controls. MRI was used to assess cortical thickness, subcortical gray matter volume, and fractional anisotropy. The results demonstrated that SCD subjects showed significant cortical atrophy in their bilateral parahippocampus and perirhinal and the left entorhinal cortices but not in their hippocampal regions. SCD subjects also exhibited significantly decreased mean fractional anisotropy in their bilateral uncinate fasciculi. The diminution of cortical thickness over the mesial temporal subfields corresponded to brain areas with early tangle deposition, and early degradation of the uncinate fasciculus was in accordance with the retrogenesis hypothesis. The parahippocampus and perirhinal cortex contribute mainly to context association memory while the entorhinal cortex, along with the uncinate fasciculus, contributes to content-related contextual memory. We proposed that context association and related memory structures are vulnerable in the SCD stage.
Collapse
Affiliation(s)
- Ling-Yun Fan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Mei Lai
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center for Clinical Psychology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chin Hsu
- Graduate Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pin-Yu Chen
- Graduate Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Zhou Huang
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Wen Cheng
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Isaac Tseng
- Graduate Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mau-Sun Hua
- Department of Psychology, Asia University, Taichung, Taiwan.,Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Wang Z, Dai Z, Shu H, Liu D, Guo Q, He Y, Zhang Z. Cortical Thickness and Microstructural White Matter Changes Detect Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2018; 56:415-428. [PMID: 27911306 DOI: 10.3233/jad-160724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Both the apolipoprotein E (APOE) ɛ4 allele and amnestic mild cognitive impairment (aMCI) are considered to be risk factors for Alzheimer's disease (AD). The primary aim of this study was to determine whether the aMCI-related abnormality in gray matter (GM) cortical thickness and white matter (WM) tracts integrity would be modified by the APOE genotype. A total of 146 older adults, including 64 aMCI patients (28 ɛ4 carriers and 36 non-carriers) and 82 healthy controls (39 ɛ4 carriers and 43 non-carriers), underwent a standardized clinical interview, neuropsychological battery assessment, and multi-modal brain magnetic resonance imaging scans. Compared with control subjects, the patients with aMCI showed significantly reduced cortical thickness bilaterally in the parahippocampal gyrus and disrupted WM integrity in the limbic tracts (e.g., increased mean diffusivity in the right parahippocampal cingulum and bilateral uncinate fasciculus). However, no significant main effects of the APOE genotype and diagnosis-by-genotype interaction on GM thickness and WM integrity were observed. Further, diffusivity measures of the limbic WM tracts were significantly correlated with the parahippocampal atrophy in aMCI. Importantly, the parahippocampal thickness and diffusivity measures of the limbic WM tracts were significantly correlated with the cognitive performance (i.e., episodic memory Z score) in patients with aMCI. These results demonstrate that WM microstructural disruptions in the limbic tracts are present at the early stage of AD in an APOE-independent manner; and this degeneration may occur progressively, in parallel with parahippocampal atrophy, and may specifically contribute to early initial impairment in episodic memory.
Collapse
Affiliation(s)
- Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Duan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qihao Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Praet J, Manyakov NV, Muchene L, Mai Z, Terzopoulos V, de Backer S, Torremans A, Guns PJ, Van De Casteele T, Bottelbergs A, Van Broeck B, Sijbers J, Smeets D, Shkedy Z, Bijnens L, Pemberton DJ, Schmidt ME, Van der Linden A, Verhoye M. Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid-β-induced pathology. ALZHEIMERS RESEARCH & THERAPY 2018; 10:1. [PMID: 29370870 PMCID: PMC6389136 DOI: 10.1186/s13195-017-0329-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly population. In this study, we used the APP/PS1 transgenic mouse model to explore the feasibility of using diffusion kurtosis imaging (DKI) as a tool for the early detection of microstructural changes in the brain due to amyloid-β (Aβ) plaque deposition. METHODS We longitudinally acquired DKI data of wild-type (WT) and APP/PS1 mice at 2, 4, 6 and 8 months of age, after which these mice were sacrificed for histological examination. Three additional cohorts of mice were also included at 2, 4 and 6 months of age to allow voxel-based co-registration between diffusion tensor and diffusion kurtosis metrics and immunohistochemistry. RESULTS Changes were observed in diffusion tensor (DT) and diffusion kurtosis (DK) metrics in many of the 23 regions of interest that were analysed. Mean and axial kurtosis were greatly increased owing to Aβ-induced pathological changes in the motor cortex of APP/PS1 mice at 4, 6 and 8 months of age. Additionally, fractional anisotropy (FA) was decreased in APP/PS1 mice at these respective ages. Linear discriminant analysis of the motor cortex data indicated that combining diffusion tensor and diffusion kurtosis metrics permits improved separation of WT from APP/PS1 mice compared with either diffusion tensor or diffusion kurtosis metrics alone. We observed that mean kurtosis and FA are the critical metrics for a correct genotype classification. Furthermore, using a newly developed platform to co-register the in vivo diffusion-weighted magnetic resonance imaging with multiple 3D histological stacks, we found high correlations between DK metrics and anti-Aβ (clone 4G8) antibody, glial fibrillary acidic protein, ionised calcium-binding adapter molecule 1 and myelin basic protein immunohistochemistry. Finally, we observed reduced FA in the septal nuclei of APP/PS1 mice at all ages investigated. The latter was at least partially also observed by voxel-based statistical parametric mapping, which showed significantly reduced FA in the septal nuclei, as well as in the corpus callosum, of 8-month-old APP/PS1 mice compared with WT mice. CONCLUSIONS Our results indicate that DKI metrics hold tremendous potential for the early detection and longitudinal follow-up of Aβ-induced pathology.
Collapse
Affiliation(s)
- Jelle Praet
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium
| | | | - Leacky Muchene
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Zhenhua Mai
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Icometrix R&D, Leuven, Belgium
| | - Vasilis Terzopoulos
- Icometrix R&D, Leuven, Belgium.,Institute for Biological and Medical Imaging, Technische Universität München, Munich, Germany
| | | | | | - Pieter-Jan Guns
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Expert Group Antwerp Molecular Imaging (EGAMI), University of Antwerp, Antwerp, Belgium
| | | | | | | | - Jan Sijbers
- imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Dirk Smeets
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Icometrix R&D, Leuven, Belgium
| | - Ziv Shkedy
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Luc Bijnens
- Janssen Research and Development, Beerse, Belgium
| | | | | | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.
| |
Collapse
|
37
|
Ghazi Sherbaf F, Mohajer B, Ashraf-Ganjouei A, Mojtahed Zadeh M, Javinani A, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Serum Insulin-Like Growth Factor-1 in Parkinson's Disease; Study of Cerebrospinal Fluid Biomarkers and White Matter Microstructure. Front Endocrinol (Lausanne) 2018; 9:608. [PMID: 30450079 PMCID: PMC6224341 DOI: 10.3389/fendo.2018.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/24/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Growing evidence shows that impaired signaling of Insulin-like Growth Factor-1 (IGF-1) is associated with neurodegenerative disorders, such as Parkinson's disease (PD). However, there is still controversy regarding its proinflammatory or neuroprotective function. In an attempt to elucidate the contribution of IGF-1 in PD, we aimed to discover the relation between serum IGF-1 levels in drug-naïve early PD patients and cerebrospinal fluid (CSF) biomarkers as well as microstructural changes in brain white matter. Methods: The association between quartiles of serum IGF-1 levels and CSF biomarkers (α-synuclein, dopamine, amyloid-β1-42, total tau, and phosphorylated tau) was investigated using adjusted regression models in 404 drug-naïve early PD patients with only mild motor manifestations and 188 age- and sex-matched healthy controls (HC) enrolled in the Parkinson's Progression Markers Initiative (PPMI). By using region of interest analysis and connectometry approach, we tracked the white matter microstructural integrity and diffusivity patterns in a subgroup of study participants with available diffusion MRI data to investigate the association between subcomponents of neural pathways with serum IGF-1 levels. Results: PD patients had higher levels of IGF-1 compared to HC, although not statistically significant (mean difference: 3.60, P = 0.44). However, after adjustment for possible confounders and correction for False Discovery Rate (FDR), IGF-1 was negatively correlated with CSF α-synuclein, total and phosphorylated tau levels only in PD subjects. The imaging analysis proved a significant negative correlation (FDR corrected P-value = 0.013) between continuous levels of serum IGF-1 in patients with PD and the connectivity, but not integrity, in following fibers while controlling for age, sex, body mass index, depressive symptoms, education years, cognitive status and disease duration: middle cerebellar peduncle, cingulum, genu and splenium of the corpus callosum. No significant association was found between brain white matter microstructral measures or CSF markers of healthy controls and levels of IGF-1. Conclusion: Altered connectivity in specific white matter structures, mainly involved in cognitive and motor deterioration, in association with higher serum IGF-1 levels might propose IGF-1 as a potential associate of worse outcome in response to higher burden of α-synucleinopathy and tauopathy in PD.
Collapse
Affiliation(s)
| | - Bahram Mohajer
- Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Javinani
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Shirin Shandiz
- Department of Medical Physics, Zahedan University of Medical Sciences, Zahedan, Iran
- *Correspondence: Mehdi Shirin Shandiz
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Mohammad Hadi Aarabi
| |
Collapse
|
38
|
Yu J, Lam CLM, Lee TMC. White matter microstructural abnormalities in amnestic mild cognitive impairment: A meta-analysis of whole-brain and ROI-based studies. Neurosci Biobehav Rev 2017; 83:405-416. [PMID: 29092777 DOI: 10.1016/j.neubiorev.2017.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022]
Abstract
Studies that examined white matter (WM) alterations in amnestic mild cognitive impairment (aMCI) abound. This timely meta-analysis aims to synthesize the results of these studies. Seventy-seven studies (totalNaMCI=1844) were included. Fourteen region-of-interest-based (ROI-based) (k≥8;NaMCI≥284 per ROI) and two activation likelihood estimation (ALE) meta-analyses (fractional anisotropy [FA]: k=15;NaMCI=463; mean diffusivity [MD]: k=8;NaMCI=193) were carried out. Among the many significant ROI-related findings, reliable FA and MD alterations in the fornix, uncinate fasciculus, and parahippocampal cingulum were observed in aMCI. Larger effects were observed in MD relative to FA. The ALE meta-analysis revealed a significant FA decrease among aMCI subjects in the posterior corona radiata. These results provide robust evidence of the presence of WM abnormalities in aMCI. Our findings also highlight the importance of carrying out both ROI-based and whole-brain-based research to obtain a complete picture of WM microstructural alterations associated with the condition..
Collapse
Affiliation(s)
- Junhong Yu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
| | - Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
39
|
Svärd D, Nilsson M, Lampinen B, Lätt J, Sundgren PC, Stomrud E, Minthon L, Hansson O, van Westen D. The effect of white matter hyperintensities on statistical analysis of diffusion tensor imaging in cognitively healthy elderly and prodromal Alzheimer's disease. PLoS One 2017; 12:e0185239. [PMID: 28934374 PMCID: PMC5608410 DOI: 10.1371/journal.pone.0185239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/09/2017] [Indexed: 11/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) has been used to study microstructural white matter alterations in a variety of conditions including normal aging and Alzheimer's disease (AD). White matter hyperintensities (WMH) are common in cognitively healthy elderly as well as in AD and exhibit elevated mean diffusivity (MD) and reduced fractional anisotropy (FA). However, the effect of WMH on statistical analysis of DTI estimates has not been thoroughly studied. In the present study we address this in two ways. First, we investigate the effect of WMH on MD and FA in the dorsal and ventral cingulum, the superior longitudinal fasciculus, and the corticospinal tract, by comparing two matched groups of cognitively healthy elderly (n = 21 + 21) with unequal WMH load. Second, we assess the effects of adjusting for WMH load when comparing MD and FA in prodromal AD subjects (n = 83) to cognitively healthy elderly (n = 132) in the abovementioned white matter tracts. Results showed the WMH in cognitively healthy elderly to have a generally large effect on DTI estimates (Cohen’s d = 0.63 to 1.27 for significant differences in MD and −1.06 to −0.69 for FA). These effect sizes were comparable to those of various neurological and psychiatric diseases (Cohen’s d = 0.57 to 2.20 for differences in MD and −1.76 to −0.61 for FA). Adjusting for WMH when comparing DTI estimates in prodromal AD subjects to cognitively healthy elderly improved the explanatory power as well as the outcome of the analysis, indicating that some of the differences in MD and FA were largely driven by unequal WMH load between the groups rather than alterations in normal-appearing white matter (NAWM). Thus, our findings suggest that if the purpose of a study is to compare alterations in NAWM between two groups using DTI it may be necessary to adjust the statistical analysis for WMH.
Collapse
Affiliation(s)
- Daniel Svärd
- Diagnostic Radiology, Lund University, Lund, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- * E-mail:
| | - Markus Nilsson
- Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Björn Lampinen
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Jimmy Lätt
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Pia C. Sundgren
- Diagnostic Radiology, Lund University, Lund, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research, Lund University, Malmoö, Sweden
| | | | - Oskar Hansson
- Clinical Memory Research, Lund University, Malmoö, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Lund University, Lund, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
40
|
Vallet GT, Hudon C, Bier N, Macoir J, Versace R, Simard M. A SEMantic and EPisodic Memory Test (SEMEP) Developed within the Embodied Cognition Framework: Application to Normal Aging, Alzheimer's Disease and Semantic Dementia. Front Psychol 2017; 8:1493. [PMID: 28955261 PMCID: PMC5601419 DOI: 10.3389/fpsyg.2017.01493] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 08/18/2017] [Indexed: 11/13/2022] Open
Abstract
Embodiment has highlighted the importance of sensory-motor components in cognition. Perception and memory are thus very tightly bound together, and episodic and semantic memories should rely on the same grounded memory traces. Reduced perception should then directly reduce the ability to encode and retrieve an episodic memory, as in normal aging. Multimodal integration deficits, as in Alzheimer's disease, should lead to more severe episodic memory impairment. The present study introduces a new memory test developed to take into account these assumptions. The SEMEP (SEMantic-Episodic) memory test proposes to assess conjointly semantic and episodic knowledge across multiple tasks: semantic matching, naming, free recall, and recognition. The performance of young adults is compared to healthy elderly adults (HE), patients with Alzheimer's disease (AD), and patients with semantic dementia (SD). The results show specific patterns of performance between the groups. HE commit memory errors only for presented but not to be remembered items. AD patients present the worst episodic memory performance associated with intrusion errors (recall or recognition of items never presented). They were the only group to not benefit from a visual isolation (addition of a yellow background), a method known to increase the distinctiveness of the memory traces. Finally, SD patients suffer from the most severe semantic impairment. To conclude, confusion errors are common across all the elderly groups, whereas AD was the only group to exhibit regular intrusion errors and SD patients to show severe semantic impairment.
Collapse
Affiliation(s)
- Guillaume T. Vallet
- Centre de Recherche de l'IUGM, Université de MontréalMontreal, QC, Canada
- Département de Psychologie, Université de MontréalMontreal, QC, Canada
- Laboratoire de Psychologie Sociale et Cognitive, Centre National de la Recherche Scientifique, Université Clermont AuvergneClermont-Ferrand, France
| | - Carol Hudon
- Département de Psychologie, Université LavalQuebec, QC, Canada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de QuébecQuebec, QC, Canada
| | - Nathalie Bier
- Centre de Recherche de l'IUGM, Université de MontréalMontreal, QC, Canada
- Département de Réadaptation, Université LavalQuebec, QC, Canada
| | - Joël Macoir
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de QuébecQuebec, QC, Canada
- Département de Réadaptation, Université LavalQuebec, QC, Canada
| | | | - Martine Simard
- Département de Psychologie, Université LavalQuebec, QC, Canada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de QuébecQuebec, QC, Canada
| |
Collapse
|
41
|
Tang SX, Feng QL, Wang GH, Duan S, Shan BC, Dai JP. Diffusion characteristics of the fornix in patients with Alzheimer's disease. Psychiatry Res Neuroimaging 2017; 265:72-76. [PMID: 28017479 DOI: 10.1016/j.pscychresns.2016.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 02/05/2023]
Abstract
White matter degradation is a major part of the pathogenesis of Alzheimer's disease (AD). The fornix is the predominant outflow tract from the hippocampus, and alterations to its microstructure in patients with AD are still being explored. Diffusion tensor imaging (DTI) is an in vivo neuroimaging technique that can provide unique information about alterations in tissue microstructure, which can indicate underlying neurobiological process at the microstructural level. In this prospective study, DTI was used to assess and analyze the microstructural features of the fornix in subjects with AD (n = 17), mild cognitive impairment (MCI; n = 12) and healthy controls (n = 17). DTI was performed using Explore DTI software and the FSL package. Within the fornix, patients with AD showed decreased fractional anisotropy values and length of fiber tracts of the fornix relative to healthy controls, but higher mean diffusivity values. MCI subjects showed a trend towards elevated mean diffusivity values in the fornix. The data suggest that DTI provides supporting information on the microstructural alteration of the fornix in patients with AD, and that these diffusion characteristics of the fornix may be helpful for the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Shou Xian Tang
- Neuroimaging center, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University,6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Qing Liang Feng
- Department of Radiology, Linyi Central Hospital, 17 Kangfu Lu Linyi Shandong, 276400, China
| | - Gui Hong Wang
- Center for Neurodegenerative Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Shaofeng Duan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Ci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ping Dai
- Neuroimaging center, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University,6 Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
42
|
Zhang Y, Chao FL, Zhou CN, Jiang L, Zhang L, Chen LM, Luo YM, Xiao Q, Tang Y. Effects of exercise on capillaries in the white matter of transgenic AD mice. Oncotarget 2017; 8:65860-65875. [PMID: 29029478 PMCID: PMC5630378 DOI: 10.18632/oncotarget.19505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer’s disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin-Mu Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
43
|
Burzynska AZ, Jiao Y, Knecht AM, Fanning J, Awick EA, Chen T, Gothe N, Voss MW, McAuley E, Kramer AF. White Matter Integrity Declined Over 6-Months, but Dance Intervention Improved Integrity of the Fornix of Older Adults. Front Aging Neurosci 2017; 9:59. [PMID: 28360853 PMCID: PMC5352690 DOI: 10.3389/fnagi.2017.00059] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Degeneration of cerebral white matter (WM), or structural disconnection, is one of the major neural mechanisms driving age-related decline in cognitive functions, such as processing speed. Past cross-sectional studies have demonstrated beneficial effects of greater cardiorespiratory fitness, physical activity, cognitive training, social engagement, and nutrition on cognitive functioning and brain health in aging. Here, we collected diffusion magnetic resonance (MRI) imaging data from 174 older (age 60–79) adults to study the effects of 6-months lifestyle interventions on WM integrity. Healthy but low-active participants were randomized into Dance, Walking, Walking + Nutrition, and Active Control (stretching and toning) intervention groups (NCT01472744 on ClinicalTrials.gov). Only in the fornix there was a time × intervention group interaction of change in WM integrity: integrity declined over 6 months in all groups but increased in the Dance group. Integrity in the fornix at baseline was associated with better processing speed, however, change in fornix integrity did not correlate with change in processing speed. Next, we observed a decline in WM integrity across the majority of brain regions in all participants, regardless of the intervention group. This suggests that the aging of the brain is detectable on the scale of 6-months, which highlights the urgency of finding effective interventions to slow down this process. Magnitude of WM decline increased with age and decline in prefrontal WM was of lesser magnitude in older adults spending less time sedentary and more engaging in moderate-to-vigorous physical activity. In addition, our findings support the anterior-to-posterior gradient of greater-to-lesser decline, but only in the in the corpus callosum. Together, our findings suggest that combining physical, cognitive, and social engagement (dance) may help maintain or improve WM health and more physically active lifestyle is associated with slower WM decline. This study emphasizes the importance of a physically active and socially engaging lifestyle among aging adults.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- Department of Human Development and Family Studies, Molecular, Cellular and Integrative Neurosciences, Colorado State UniversityFort Collins, CO, USA; The Beckman Institute for Advanced Science and Technology at the University of IllinoisUrbana, IL, USA
| | - Yuqin Jiao
- Department of Human Development and Family Studies, Molecular, Cellular and Integrative Neurosciences, Colorado State University Fort Collins, CO, USA
| | - Anya M Knecht
- The Beckman Institute for Advanced Science and Technology at the University of Illinois Urbana, IL, USA
| | - Jason Fanning
- Department of Kinesiology and Community Health, University of Illinois Urbana, IL, USA
| | - Elizabeth A Awick
- Department of Kinesiology and Community Health, University of Illinois Urbana, IL, USA
| | - Tammy Chen
- The Beckman Institute for Advanced Science and Technology at the University of Illinois Urbana, IL, USA
| | - Neha Gothe
- Division of Kinesiology, Health and Sport Studies, Wayne State University Detroit, MI, USA
| | - Michelle W Voss
- Psychological and Brain Sciences, University of Iowa Iowa City, IO, USA
| | - Edward McAuley
- Department of Kinesiology and Community Health, University of Illinois Urbana, IL, USA
| | - Arthur F Kramer
- The Beckman Institute for Advanced Science and Technology at the University of IllinoisUrbana, IL, USA; Senior Vice Provost for Research and Graduate Education, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
44
|
Papma JM, Smits M, de Groot M, Mattace Raso FU, van der Lugt A, Vrooman HA, Niessen WJ, Koudstaal PJ, van Swieten JC, van der Veen FM, Prins ND. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment. Eur Radiol 2017; 27:3716-3724. [PMID: 28289940 PMCID: PMC5544779 DOI: 10.1007/s00330-017-4768-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/10/2017] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
Abstract
Objectives Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer’s disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). Method MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. Results We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Conclusions Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. Key Points • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI. Electronic supplementary material The online version of this article (doi:10.1007/s00330-017-4768-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janne M Papma
- Department of Neurology, Erasmus MC - University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Marion Smits
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marius de Groot
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Francesco U Mattace Raso
- Department of Geriatrics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henri A Vrooman
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wiro J Niessen
- Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC - University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus MC - University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | | | - Niels D Prins
- Alzheimer Center, Department of Neurology, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Toepper M. Dissociating Normal Aging from Alzheimer's Disease: A View from Cognitive Neuroscience. J Alzheimers Dis 2017; 57:331-352. [PMID: 28269778 PMCID: PMC5366251 DOI: 10.3233/jad-161099] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Both normal aging and Alzheimer's disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity.
Collapse
Affiliation(s)
- Max Toepper
- Department of Psychiatry and Psychotherapy Bethel, Research Division, Evangelisches Krankenhaus Bielefeld (EvKB), Bielefeld, Germany
- Department of Psychiatry and Psychotherapy Bethel, Department of Geriatric Psychiatry, Evangelisches Krankenhaus Bielefeld (EvKB), Bielefeld, Germany
| |
Collapse
|
46
|
Lancaster MA, Seidenberg M, Smith JC, Nielson KA, Woodard JL, Durgerian S, Rao SM. Diffusion Tensor Imaging Predictors of Episodic Memory Decline in Healthy Elders at Genetic Risk for Alzheimer's Disease. J Int Neuropsychol Soc 2016; 22:1005-1015. [PMID: 27903333 PMCID: PMC5916766 DOI: 10.1017/s1355617716000904] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES White matter (WM) integrity within the mesial temporal lobe (MTL) is important for episodic memory (EM) functioning. The current study investigated the ability of diffusion tensor imaging (DTI) in MTL WM tracts to predict 3-year changes in EM performance in healthy elders at disproportionately higher genetic risk for Alzheimer's disease (AD). METHODS Fifty-one cognitively intact elders (52% with family history (FH) of dementia and 33% possessing an Apolipoprotein E ε4 allelle) were administered the Rey Auditory Verbal Learning Test (RAVLT) at study entry and at 3-year follow-up. DTI scanning, conducted at study entry, examined fractional anisotropy and mean, radial and axial diffusion within three MTL WM tracts: uncinate fasciculus (UNC), cingulate-hippocampal (CHG), and fornix-stria terminalis (FxS). Correlations were performed between residualized change scores computed from RAVLT trials 1-5, immediate recall, and delayed recall scores and baseline DTI measures; MTL gray matter (GM) and WM volumes; demographics; and AD genetic and metabolic risk factors. RESULTS Higher MTL mean and axial diffusivity at baseline significantly predicted 3-year changes in EM, whereas baseline MTL GM and WM volumes, FH, and metabolic risk factors did not. Both ε4 status and DTI correlated with change in immediate recall. CONCLUSIONS Longitudinal EM changes in cognitively intact, healthy elders can be predicted by disruption of the MTL WM microstructure. These results are derived from a sample with a disproportionately higher genetic risk for AD, suggesting that the observed WM disruption in MTL pathways may be related to early neuropathological changes associated with the preclinical stage of AD. (JINS, 2016, 22, 1005-1015).
Collapse
Affiliation(s)
- Melissa A. Lancaster
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Michael Seidenberg
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Kristy A. Nielson
- Department of Psychology, Marquette University, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John L. Woodard
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Sally Durgerian
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stephen M. Rao
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
47
|
Badea A, Kane L, Anderson RJ, Qi Y, Foster M, Cofer GP, Medvitz N, Buckley AF, Badea AK, Wetsel WC, Colton CA. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage 2016; 142:498-511. [PMID: 27521741 DOI: 10.1016/j.neuroimage.2016.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA.
| | - Lauren Kane
- Trinity College of Arts & Sciences, Duke University, Durham, NC 27710, USA
| | - Robert J Anderson
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Mark Foster
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Neil Medvitz
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Anne F Buckley
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Andreas K Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carol A Colton
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
48
|
Huang SF, Liu CK, Chang CC, Su CY. Sensitivity and specificity of executive function tests for Alzheimer's disease. APPLIED NEUROPSYCHOLOGY-ADULT 2016; 24:493-504. [PMID: 27420924 DOI: 10.1080/23279095.2016.1204301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Decline in executive function (EF) occurs early in Alzheimer's disease (AD) and can interfere with daily functioning. Unfortunately, little is known about the relative ability of traditional EF tests to detect these cognitive changes. Given that timely diagnosis and intervention are essential to improving functional outcome in this population, our aim was to identify the specific EF measures that best differentiated mild dementia from normal aging. Thirty-one patients with mild AD and 31 controls were administered 7 EF tests. Findings indicated significant between-group differences on all measures except Wisconsin Card Sorting Test. The remaining 6 tests displayed fair to good accuracy discriminating between AD cases and controls. Only category fluency and Tower of London test remained in the final regression model that yielded the highest AUC of 0.90, which was not statistically different from that of either test alone. Overall, most of the tests employed were valid for assessing mild EF disturbances. Specifically, the two measures can be used in isolation for quick screening or in combination to facilitate a more in-depth evaluation of EF performance. This study contributes to clinical field by testifying to the validity of various EF tests to identify AD-related compromises in this cognitive domain.
Collapse
Affiliation(s)
- Shu-Fen Huang
- a Department of Rehabilitation Medicine, Ministry of Health and Welfare Pingtung Hospital , Pingtung , Taiwan
| | - Ching-Kuan Liu
- b Department of Neurology, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Chiung-Chih Chang
- c Department of Neurology, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung , Taiwan
| | - Chwen-Yng Su
- d Occupational Therapy, Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
49
|
Knight MJ, McCann B, Tsivos D, Dillon S, Coulthard E, Kauppinen RA. Quantitative T2 mapping of white matter: applications for ageing and cognitive decline. Phys Med Biol 2016; 61:5587-605. [PMID: 27384985 PMCID: PMC5390949 DOI: 10.1088/0031-9155/61/15/5587] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In MRI, the coherence lifetime T2 is sensitive to the magnetic environment imposed by tissue microstructure and biochemistry in vivo. Here we explore the possibility that the use of T2 relaxometry may provide information complementary to that provided by diffusion tensor imaging (DTI) in ageing of healthy controls (HC), Alzheimer’s disease (AD) and mild cognitive impairment (MCI). T2 and diffusion MRI metrics were quantified in HC and patients with MCI and mild AD using multi-echo MRI and DTI. We used tract-based spatial statistics (TBSS) to evaluate quantitative MRI parameters in white matter (WM). A prolonged T2 in WM was associated with AD, and able to distinguish AD from MCI, and AD from HC. Shorter WM T2 was associated with better cognition and younger age in general. In no case was a reduction in T2 associated with poorer cognition. We also applied principal component analysis, showing that WM volume changes independently of T2, MRI diffusion indices and cognitive performance indices. Our data add to the evidence that age-related and AD-related decline in cognition is in part attributable to WM tissue state, and much less to WM quantity. These observations suggest that WM is involved in AD pathology, and that T2 relaxometry is a potential imaging modality for detecting and characterising WM in cognitive decline and dementia.
Collapse
Affiliation(s)
- Michael J Knight
- School of Experimental Psychology, 12a Priory Road, University of Bristol, Bristol, BS8 1TU, UK
| | | | | | | | | | | |
Collapse
|
50
|
Dowell NG, Evans SL, Tofts PS, King SL, Tabet N, Rusted JM. Structural and resting-state MRI detects regional brain differences in young and mid-age healthy APOE-e4 carriers compared with non-APOE-e4 carriers. NMR IN BIOMEDICINE 2016; 29:614-624. [PMID: 26929040 DOI: 10.1002/nbm.3502] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
The presence of the e4 allele of the apolipoprotein E (APOE) gene is the best-known genetic risk factor for Alzheimer's disease. In this study, we investigated the link between functional and behavioural differences and regional brain volume and cortical thickness differences in those who carry the e4 allele (e4+) and those who only carry the e3 allele (e3/e3). We studied these genotype populations in two age groups: a young group (average age, 21 years) and a mid-age group (average age, 50 years). High-resolution T1 -weighted MRI scans were analysed with Freesurfer to measure regional white matter brain volume and cortical thickness differences between genotype groups at each age. These data were correlated with behavioural findings in the same cohort. Resting-state MRI was also conducted to identify differences in underlying brain functional connectivity. We found that there was a positive correlation between the thickness of the parahippocampal cortex in young e4+ individuals and performance on an episodic memory task. Young e4+ individuals also showed a positive correlation between white matter volume in the left anterior cingulate and performance on a covert attention task. At mid-age, e4+ individuals had structural differences relative to e3/e3 individuals in these areas: the parahippocampal cortex was thicker and white matter volume in the left anterior cingulate was greater than in e3/e3 individuals. We discuss the possibility that an over-engagement with these regions by e4+ individuals in youth may have a neurogenic effect that is observable later in life. The cuneus appears to be an important region for APOE-driven differences in the brain, with greater functional connectivity among young e3/e3 individuals and greater white matter volume in young e4+ individuals.
Collapse
Affiliation(s)
| | - Simon L Evans
- School of Psychology, University of Sussex, Brighton, UK
| | - Paul S Tofts
- Brighton and Sussex Medical School, Brighton, UK
| | - Sarah L King
- School of Psychology, University of Sussex, Brighton, UK
| | - Naji Tabet
- Brighton and Sussex Medical School, Brighton, UK
| | | |
Collapse
|