1
|
Frankford SA, Marks KL, Feaster TF, Doyle PC, Stepp CE. Symptom Expression Across Voiced Speech Sounds in Adductor Laryngeal Dystonia. J Voice 2025; 39:567.e23-567.e30. [PMID: 36424240 PMCID: PMC10199961 DOI: 10.1016/j.jvoice.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Differential diagnosis for adductor laryngeal dystonia (AdLD) is often carried out by comparing symptom expression during sentences with either all voiced or voiced and voiceless consonants. However, empirical research examining the effects of phonetic context on symptoms is sparse. The purpose of this study was to examine whether symptom probabilities varied across voiced speech segments in an all-voiced sentence, and whether this variability was systematic with respect to phonetic features. METHODS Eighteen speakers with AdLD read aloud a sentence comprised entirely of voiced speech sounds. Speech segment boundaries and AdLD symptoms (phonatory breaks, frequency shifts, and creak) were labeled separately, and speech segments were coded as symptomatic or asymptomatic based on their temporal overlap. Generalized linear mixed effects models with a binomial outcome variable were used to compare the probability of symptom expression across: 1) all speech segments in the sentence, and 2) four speech sound classes (vowels, approximants, nasals, and obstruents). RESULTS Significant symptom variability was found across voiced speech segments in the sentence. Furthermore, the estimated probability of a symptom occurring on vowels and approximants was significantly greater than that of nasals and obstruents. CONCLUSION These results indicate that AdLD symptoms are not uniformly distributed across voiced speech segments with systematic variation across speech sound classes.To explain these findings, future work should investigate how the complex interactions between the vocal tract articulators and glottal configurations may influence symptom expression in this population.
Collapse
|
2
|
de Paiva MAA, de Araújo Lima-Filho LDM, da Silva FTM, Lopes LW. Occurrence of Auditory Impairments in Individuals With Dysphonia: A Scoping Review. J Voice 2024:S0892-1997(24)00404-1. [PMID: 39645483 DOI: 10.1016/j.jvoice.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
AIM To investigate the occurrence of auditory impairments in individuals with dysphonia and to describe the results of behavioral and electrophysiological audiological assessments in this population. STUDY DESIGN A scoping review. METHOD A scoping review following the guidelines of the Joanna Briggs Institute Manual for Evidence Synthesis for Scoping Reviews and PRISMA-ScR. A search was carried out using the electronic databases PubMed, Scielo, and Lilacs, as well as the gray literature via Google Scholar. Using the Rayyan platform, the selection and extraction of data from the studies was carried out independently and blindly by two reviewers, with excellent agreement. The studies included in the review were subjected to extraction of the following information for analysis: authors, year of publication, objective, sample characteristics, dysphonia classification, audiological assessment procedure, and conclusion. RESULTS About 100 studies were found, and 13 eligible studies were included in the analysis. Of the studies included, 92.3% (n = 12) adopted cross-sectional designs, 76.9% (n = 10) investigated auditory functions in individuals with behavioral dysphonia, and 23.1% (n = 3) with organic dysphonia. The samples consisted of children in 53.8% (n = 7) of the studies and adults in 46.2% (n = 6), both with dysphonia. Around 53.80% (n = 7) of the studies included control groups without dysphonia. As for audiological assessment methods, 53.8% (n = 7) used behavioral tests of central auditory processing, 15.4% (n = 2) electrophysiological assessment, and 30.8% (n = 4) a combination of both. CONCLUSION- Individuals with dysphonia, especially of the behavioral type, may have deficits in auditory function. The main impairments refer to central auditory processing, especially in skills involving temporal processing, figure-ground skills, and auditory closure. Electrophysiological assessment does not show any significant differences between individuals with and without behavioral dysphonia. However, the frequency of follow-up response has a potential for greater impairment in this population. In cases of organic dysphonia, small and inconsistent impairments have been found, such as prolonged latencies of auditory potentials.
Collapse
Affiliation(s)
- Maxsuel Alves Avelino de Paiva
- Speech-Language Pathologist, Ph.D. Student of the Graduate Program in Decision Models and Health, Universidade Federal da Paraíba - UFPB, João Pessoa, Brazil
| | - Luiz de Medeiros de Araújo Lima-Filho
- Statistician, Associate Professor at the Department of Statistics, Member of the Graduate Program in Decision Models and Health, Universidade Federal da Paraíba - UFPB, João Pessoa, Brazil
| | - Francisco Tiago Meireles da Silva
- Speech-Language Pathologist, Ph.D. Student of the Graduate Program in Linguistics, Universidade Federal da Paraíba - UFPB, João Pessoa, Brazil
| | - Leonardo Wanderley Lopes
- Speech-Language Pathologist, Full Professor at the Department of Communication Science Disorders, Member of the Graduate Program in Decision Models and Health, Universidade Federal da Paraíba - UFPB, João Pessoa, Brazil.
| |
Collapse
|
3
|
Kshatriya N, Battistella G, Simonyan K. Structural and functional brain alterations in laryngeal dystonia: A coordinate-based activation likelihood estimation meta-analysis. Hum Brain Mapp 2024; 45:e70000. [PMID: 39305101 PMCID: PMC11415616 DOI: 10.1002/hbm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/02/2024] [Indexed: 10/15/2024] Open
Abstract
Laryngeal dystonia (LD) is an isolated, task-specific, focal dystonia characterized by intermittent spasms of laryngeal muscles impairing speech production. Although recent studies have demonstrated neural alterations in LD, the consistency of findings across studies is not well-established, limiting their translational applicability. We conducted a systematic literature search to identify studies reporting stereotactic coordinates of peak structural and functional abnormalities in LD patients compared to healthy controls, followed by a coordinate-based activation likelihood estimation meta-analysis. A total of 21 functional and structural neuroimaging studies, including 31 experiments in 521 LD patients and 448 healthy controls, met the study inclusion criteria. The multimodal meta-analysis of these studies identified abnormalities in the bilateral primary motor cortices, the left inferior parietal lobule and striatum, the right insula, and the supplementary motor area in LD patients compared to healthy controls. The meta-analytical findings reinforce the current view of dystonia as a neural network disorder and consolidate evidence for future investigations probing these targets with new therapies.
Collapse
Affiliation(s)
- Nyah Kshatriya
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMassachusettsUSA
- Program in Speech Hearing Bioscience and TechnologyHarvard UniversityBostonMassachusettsUSA
| | - Giovanni Battistella
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kristina Simonyan
- Department of Otolaryngology‐Head and Neck SurgeryMassachusetts Eye and Ear and Harvard Medical SchoolBostonMassachusettsUSA
- Program in Speech Hearing Bioscience and TechnologyHarvard UniversityBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
4
|
Lee CW, Krüger MT, Akram H, Zrinzo L, Rubin J, Birchall MA, Fishman JM. Central Mechanisms and Pathophysiology of Laryngeal Dystonia: An Up-to-Date Review. J Voice 2024:S0892-1997(24)00217-0. [PMID: 39138040 DOI: 10.1016/j.jvoice.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Laryngeal dystonia (LD), previously termed spasmodic dysphonia, is an isolated focal dystonia that involves involuntary, uncontrolled contractions of the laryngeal muscles during speech. It is a severely disabling condition affecting patients' work and social lives through prevention of normal speech production. Our understanding of the pathophysiology of LD and available therapeutic options are currently limited. The aim of this short review is to provide an up-to-date summary of what is known about the central mechanisms and the pathophysiology of LD. METHODS A systematic review of the literature was performed searching Embase, CINHAL, Medline, and Cochrane with the cover period January 1990-October 2023 with a search strategy (("Laryngeal dystonia" OR "Spasmodic dysphonia") AND ("Central Mechanism" OR "Pathophysiology")). Original studies involving LD patients that discussed central mechanisms and/or pathophysiology of LD were chosen. RESULTS Two hundred twenty-six articles were identified of which 27 articles were included to formulate this systematic review following the screening inclusion and exclusion criteria. LD is a central neurological disorder involving a multiregional altered neural network. Affected neural circuits not only involve the motor control circuit, but also the feedforward, and the feedback circuits of the normal speech production neural network, involving higher-order planning, somatosensory perception and integration regions of the brain. CONCLUSION Speech production is a complex process, and LD is a central neurological disorder involving multiregional neural network connectivity alteration reflecting this. Neuromodulation targeting the central nervous system could therefore be considered and explored as a new potential therapeutic option for LD in the future, and should assist in elucidating the underlying central mechanisms responsible for causing the condition.
Collapse
Affiliation(s)
- Chang Woo Lee
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Dorset NHS Foundation Trust, Poole, UK.
| | - Marie T Krüger
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK; Department of Neurosurgery, University Medical Centre, Freiburg, Germany
| | - Harith Akram
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Ludvic Zrinzo
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - John Rubin
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| | - Martin A Birchall
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| | - Jonathan M Fishman
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
5
|
Ehrlich SK, Battistella G, Simonyan K. Temporal Signature of Task-Specificity in Isolated Focal Laryngeal Dystonia. Mov Disord 2023; 38:1925-1935. [PMID: 37489600 PMCID: PMC10615685 DOI: 10.1002/mds.29557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Laryngeal dystonia (LD) is focal task-specific dystonia, predominantly affecting speech but not whispering or emotional vocalizations. Prior neuroimaging studies identified brain regions forming a dystonic neural network and contributing to LD pathophysiology. However, the underlying temporal dynamics of these alterations and their contribution to the task-specificity of LD remain largely unknown. The objective of the study was to identify the temporal-spatial signature of altered cortical oscillations associated with LD pathophysiology. METHODS We used high-density 128-electrode electroencephalography (EEG) recordings during symptomatic speaking and two asymptomatic tasks, whispering and writing, in 24 LD patients and 22 healthy individuals to investigate the spectral dynamics, spatial localization, and interregional effective connectivity of aberrant cortical oscillations within the dystonic neural network, as well as their relationship with LD symptomatology. RESULTS Symptomatic speaking in LD patients was characterized by significantly increased gamma synchronization in the middle/superior frontal gyri, primary somatosensory cortex, and superior parietal lobule, establishing the altered prefrontal-parietal loop. Hyperfunctional connectivity from the left middle frontal gyrus to the right superior parietal lobule was significantly correlated with the age of onset and the duration of LD symptoms. Asymptomatic whisper in LD patients had not no statistically significant changes in any frequency band, whereas asymptomatic writing was characterized by significantly decreased synchronization of beta-band power localized in the right superior frontal gyrus. CONCLUSION Task-specific oscillatory activity of prefrontal-parietal circuitry is likely one of the underlying mechanisms of aberrant heteromodal integration of information processing and transfer within the neural network leading to dystonic motor output. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stefan K. Ehrlich
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
| | - Giovanni Battistella
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
- Department of Neurology - Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
6
|
Young VN, Kidane J, Gochman GE, Bracken DJ, Ma Y, Rosen CA. Abnormal Laryngopharyngeal Sensation in Adductor Laryngeal Dystonia Compared to Healthy Controls. Laryngoscope 2023; 133:2271-2278. [PMID: 36271910 DOI: 10.1002/lary.30462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Laryngeal sensory abnormality has been implicated as a component of adductor laryngeal dystonia (AdLD). The study objective was to assess laryngopharyngeal sensation in AdLD utilizing a calibrated, tactile aesthesiometer to deliver differential stimuli to lateral pyriform sinus (LPS), aryepiglottic fold (AEF), and false vocal fold (FVF). METHODS Patients with known Botox-responsive AdLD underwent sensory testing using a previously-validated methodology involving calibrated tactile stimuli (6-0, 5-0, 4.5-0, 4-0 nylon monofilaments). Laryngeal adductor reflex (LAR) and participant-rated perceptual strength of stimulI were evaluated. Responses were compared to normative controls (n = 33). Two-samples, Mann-Whitney and Fisher exact tests compared mean strength ratings and LAR between AdLD and control groups. Mixed-effects logistic regression and linear models assessed association of filament size, stimulus site, age, sex, and LD status on LAR and perceptual strength rating respectively. RESULTS Thirteen AdLD patients (nine women, mean age 60+/-15 years) completed testing. Average LAR response rates were higher amongst all filament sizes in AdLD versus controls at LPS (56.3% vs. 35.7%) and AEF (96.1% vs. 70.2%) with comparable rates at FVF (90.2% vs. 91.7%). AdLD had 3.3 times the odds of observed LAR compared to controls (p = 0.005), but differences in subjective detection of stimuli, perceptual strength ratings, and cough/gag rates were insignificant on multivariate modeling (p > 0.05). CONCLUSIONS This is the first study to objectively assess laryngopharyngeal sensation in AdLD. Findings demonstrated increased laryngopharyngeal sensation in AdLD compared to controls. The identification of increased laryngeal hypersensitivity in these patients may improve understanding of AdLD pathophysiology and identify future targets for intervention. LEVEL OF EVIDENCE 2 Laryngoscope, 133:2271-2278, 2023.
Collapse
Affiliation(s)
- VyVy N Young
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Joseph Kidane
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Grant E Gochman
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - David J Bracken
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Yue Ma
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Clark A Rosen
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Frankford SA, O'Flynn LC, Simonyan K. Sensory processing in the auditory and olfactory domains is normal in laryngeal dystonia. J Neurol 2023; 270:2184-2190. [PMID: 36640203 DOI: 10.1007/s00415-023-11562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Abnormal sensory discriminatory processing has been implicated as an endophenotypic marker of isolated dystonia. However, the extent of alterations across the different sensory domains and their commonality in different forms of dystonia are unclear. Based on the previous findings of abnormal temporal but not spatial discrimination in patients with laryngeal dystonia, we investigated sensory processing in the auditory and olfactory domains as potentially additional contributors to the disorder pathophysiology. We tested auditory temporal discrimination and olfactory function, including odor identification, threshold, and discrimination, in 102 laryngeal dystonia patients and 44 healthy controls, using dichotically presented pure tones and the extended Sniffin' Sticks smell test protocol, respectively. Statistical significance was assessed using analysis of variance with non-parametric bootstrapping. Patients had a lower mean auditory temporal discrimination threshold, with abnormal values found in three patients. Hyposmia was found in 64 patients and anosmia in 2 patients. However, there were no statistically significant differences in either auditory temporal discrimination threshold or olfactory identification, threshold, and discrimination between the groups. A significant positive relationship was found between olfactory threshold and disorder severity based on the Burke-Fahn-Marsden dystonia rating scale. Our findings demonstrate that, contrary to altered visual temporal discrimination, auditory temporal discrimination and olfactory function are likely not candidate endophenotypic markers of laryngeal dystonia.
Collapse
Affiliation(s)
- Saul A Frankford
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 243 Charles Street, Suite 421, Boston, MA, 02114, USA
| | - Lena C O'Flynn
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 243 Charles Street, Suite 421, Boston, MA, 02114, USA
- Program in Speech Hearing Bioscience and Technology, Harvard University, 260 Longwood Avenue, Boston, MA, 02115, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 243 Charles Street, Suite 421, Boston, MA, 02114, USA.
- Program in Speech Hearing Bioscience and Technology, Harvard University, 260 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Yao D, O'Flynn LC, Simonyan K. DystoniaBoTXNet: Novel Neural Network Biomarker of Botulinum Toxin Efficacy in Isolated Dystonia. Ann Neurol 2023; 93:460-471. [PMID: 36440757 DOI: 10.1002/ana.26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Isolated dystonia is characterized by abnormal, often painful, postures and repetitive movements due to sustained or intermittent involuntary muscle contractions. Botulinum toxin (BoTX) injections into the affected muscles are the first line of therapy. However, there are no objective predictive markers or standardized tests of BoTX efficacy that can be utilized for appropriate candidate selection prior to treatment initiation. METHODS We developed a deep learning algorithm, DystoniaBoTXNet, which uses a 3D convolutional neural network architecture and raw structural brain magnetic resonance images (MRIs) to automatically discover and test a neural network biomarker of BoTX efficacy in 284 patients with 4 different forms of focal dystonia, including laryngeal dystonia, blepharospasm, cervical dystonia, and writer's cramp. RESULTS DystoniaBoTXNet identified clusters in superior parietal lobule, inferior and middle frontal gyri, middle orbital gyrus, inferior temporal gyrus, corpus callosum, inferior fronto-occipital fasciculus, and anterior thalamic radiation as components of the treatment biomarker. These regions are known to contribute to both dystonia pathophysiology across a broad clinical spectrum of disorder and the central effects of botulinum toxin treatment. Based on its biomarker, DystoniaBoTXNet achieved an overall accuracy of 96.3%, with 100% sensitivity and 86.1% specificity, in predicting BoTX efficacy in patients with isolated dystonia. The algorithmic decision was computed in 19.2 seconds per case. INTERPRETATION DystoniaBoTXNet and its treatment biomarker have a high translational potential as an objective, accurate, generalizable, fast, and cost-effective algorithmic platform for enhancing clinical decision making for BoTX treatment in patients with isolated dystonia. ANN NEUROL 2023;93:460-471.
Collapse
Affiliation(s)
- Dongren Yao
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA
| | - Lena C O'Flynn
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA.,Program in Speech Hearing Bioscience and Technology, Harvard University, Boston, MA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA.,Program in Speech Hearing Bioscience and Technology, Harvard University, Boston, MA.,Department of Neurology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
9
|
Doll-Lee J, Lee A, Mantel T, Haslinger B, Altenmüller E. Embouchure Dystonia as a Network Disease. ADVANCES IN NEUROBIOLOGY 2023; 31:45-59. [PMID: 37338695 DOI: 10.1007/978-3-031-26220-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
While the pathophysiology of embouchure dystonia, a sub-entity of musician's dystonia, is still not fully understood, recent research has shown that it involves alterations of several brain functions and networks. Maladaptive plasticity in sensorimotor integration, sensory perception, and deficient inhibitory mechanisms at cortical, subcortical, and spinal level seem to contribute to its pathophysiology. Furthermore, functional systems of the basal ganglia and the cerebellum are involved, clearly pointing toward a network disorder. We therefore propose a novel network model, based on electrophysiological and recent neuroimaging studies highlighting embouchure dystonia.
Collapse
Affiliation(s)
- Johanna Doll-Lee
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | - André Lee
- Institute of Music Physiology and Musician's Medicine, Hannover University of Music, Drama and Media, Hannover, Germany.
- Department of Neurology, Klinikum rechts der Isar Technische Universität München, Munich, Germany.
| | - Tobias Mantel
- Department of Neurology, Klinikum rechts der Isar Technische Universität München, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar Technische Universität München, Munich, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician's Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| |
Collapse
|
10
|
Battistella G, Simonyan K. Clinical Implications of Dystonia as a Neural Network Disorder. ADVANCES IN NEUROBIOLOGY 2023; 31:223-240. [PMID: 37338705 DOI: 10.1007/978-3-031-26220-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Isolated dystonia is a neurological disorder of diverse etiology, multifactorial pathophysiology, and wide spectrum of clinical presentations. We review the recent neuroimaging advances that led to the conceptualization of dystonia as a neural network disorder and discuss how current knowledge is shaping the identification of biomarkers of dystonia and the development of novel pharmacological therapies.
Collapse
Affiliation(s)
- Giovanni Battistella
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Yeung W, Richards AL, Novakovic D. Botulinum Neurotoxin Therapy in the Clinical Management of Laryngeal Dystonia. Toxins (Basel) 2022; 14:toxins14120844. [PMID: 36548741 PMCID: PMC9784062 DOI: 10.3390/toxins14120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Laryngeal dystonia (LD), or spasmodic dysphonia (SD), is a chronic, task-specific, focal movement disorder affecting the larynx. It interferes primarily with the essential functions of phonation and speech. LD affects patients' ability to communicate effectively and significantly diminishes their quality of life. Botulinum neurotoxin was first used as a therapeutic agent in the treatment of LD four decades ago and remains the standard of care for the treatment of LD. This article provides an overview of the clinical application of botulinum neurotoxin in the management of LD, focusing on the classification for this disorder, its pathophysiology, clinical assessment and diagnosis, the role of laryngeal electromyography and a summary of therapeutic injection techniques, including a comprehensive description of various procedural approaches, recommendations for injection sites and dosage considerations.
Collapse
Affiliation(s)
- Winnie Yeung
- Voice Research Laboratory, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Otolaryngology, The Canterbury Hospital, Campsie, NSW 2194, Australia
- Correspondence:
| | - Amanda L. Richards
- Department of Otolaryngology, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Daniel Novakovic
- Voice Research Laboratory, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Otolaryngology, The Canterbury Hospital, Campsie, NSW 2194, Australia
| |
Collapse
|
12
|
Russillo MC, Sorrentino C, Scarpa A, Vinciguerra C, Cicarelli G, Cuoco S, Gagliardi M, Talarico M, Procopio R, Quattrone A, Barone P, Pellecchia MT. A novel phenotype in an Italian family with a rare progranulin mutation. J Neurol 2022; 269:6170-6177. [PMID: 35859258 PMCID: PMC9553792 DOI: 10.1007/s00415-022-11285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Progranulin (PGRN) is a secreted glycoprotein encoded in humans by the GRN gene, located on chromosome 17q21. Several nonsense and missense pathogenetic GRN mutations have been described. OBJECTIVE We herein describe two sisters carrying a rare GRN mutation with extremely different clinical features and family history of dementia and behavioral disorders, with a novel presentation with stridor and dysphonia. METHODS Patients underwent a multidimensional assessment including neurological and neuropsychological evaluation, structural and functional imaging, and genetic screening. RESULTS The younger sister presented at the age of 64 with inspiratory stridor, dysphonia and exercise-induced dyspnea. Transnasal fiberoptic laryngoscopy showed bilateral adduction of the vocal cords at rest and paradoxical further adduction of the vocal cords during forced inspiration, suggesting the hypothesis of an adductor laryngeal dystonia. The older sister presented at the age of 63 with a rapidly progressive corticobasal syndrome. The only clinical feature common to both sisters was a dysexecutive syndrome. The c.893G > A mutation in exon 9 of GRN was found in heterozygosis in both sisters, causing a missense Arginine to Histidine substitution in position 298 of the protein (p.R298H). CONCLUSIONS Our report supports the pathogenicity of the GRN p.R298H mutation, which is first detected in two members from the same family, showing an extremely different phenotypes. Moreover, we report the first case of an FTD-associated mutation presenting with inspiratory stridor and dysphonia linked to adductor laryngeal dystonia, thus expanding the clinical spectrum of GRN-related disorders.
Collapse
Affiliation(s)
- Maria Claudia Russillo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Cristiano Sorrentino
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Alfonso Scarpa
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Claudia Vinciguerra
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | | | - Sofia Cuoco
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Monica Gagliardi
- Institute for Biomedical Research and Innovation, National Research Council, Cosenza, Italy
| | - Mariagrazia Talarico
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Radha Procopio
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Paolo Barone
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Maria Teresa Pellecchia
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Odontology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.
| |
Collapse
|
13
|
O'Flynn LC, Simonyan K. Short- and Long-term Central Action of Botulinum Neurotoxin Treatment in Laryngeal Dystonia. Neurology 2022; 99:e1178-e1190. [PMID: 35764404 PMCID: PMC9536744 DOI: 10.1212/wnl.0000000000200850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Laryngeal dystonia (LD) is isolated task-specific focal dystonia selectively impairing speech production. The first choice of LD treatment is botulinum neurotoxin (BoNT) injections into the affected laryngeal muscles. However, whether BoNT has a lasting therapeutic effect on disorder pathophysiology is unknown. We investigated short-term and long-term effects of BoNT treatment on brain function in patients with LD. METHODS A total of 161 participants were included in the functional MRI study. Statistical analyses examined central BoNT effects in patients with LD who were stratified based on the effectiveness and duration of treatment. RESULTS Patients with LD who were treated and benefited from BoNT injections had reduced activity in the left precuneus compared with BoNT-naive and treatment nonbenefiting patients. In addition, BoNT-treated patients with adductor LD had decreased activity in the right thalamus, whereas BoNT-treated abductor patients with LD had reduced activity in the left inferior frontal cortex. No statistically significant differences in brain activity were found between patients with shorter (1-5 years) and longer (13-28 years) treatment durations. However, patients with intermediate treatment duration of 6-12 years showed reduced activity in the right cerebellum compared with patients with both shorter and longer treatment durations and reduced activity in the right prefrontal cortex compared with patients with shorter treatment duration. DISCUSSION Our findings suggest that the left precuneus is the site of short-term BoNT central action in patients with LD, whereas the prefrontal-cerebellar axis is engaged in the BoNT response in patients with intermediate treatment duration of 6-12 years. Involvement of these structures points to indirect action of BoNT treatment on the dystonic sensorimotor network through modulation of motor sequence planning and coordination.
Collapse
Affiliation(s)
- Lena C O'Flynn
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston
| | - Kristina Simonyan
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston.
| |
Collapse
|
14
|
Naik AG, Ezana D, Cannard G, Mitchell N, Tomaras M, Meystedt JC, Sayce L, Charles D, Hacker ML. Exploring the presence of multiple abnormal non-motor features in patients with cervical dystonia. J Clin Neurosci 2021; 94:315-320. [PMID: 34863456 DOI: 10.1016/j.jocn.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 10/24/2021] [Indexed: 11/27/2022]
Abstract
This study's aim was to investigate prevalence of four non-motor symptoms in patients with cervical dystonia and healthy controls to explore whether the presence of multiple non-motor features is associated with cervical dystonia diagnosis. Fifteen patients with cervical dystonia and 15 healthy controls underwent non-invasive testing of spatial discrimination threshold, temporal discrimination threshold, vibration-induced illusion of movement, and kinesthesia. All spatial discrimination threshold, temporal discrimination threshold, and vibration-induced illusion of movement measures were converted to standardized Z scores with scores >2.0 considered abnormal. Any incorrect kinesthesia response was considered abnormal. Prevalence of each abnormal non-motor feature was compared between groups using a chi-squared test. A higher proportion of patients with cervical dystonia had abnormal spatial discrimination threshold (p = 0.01) and abnormal kinesthesia (p = 0.03) scores compared to healthy control subjects. There were no significant differences between the proportion of patients with cervical dystonia versus healthy controls for abnormal temporal discrimination threshold (p = 0.07) or abnormal vibration-induced illusion of movement (p = 0.14). Forty-seven percent of patients with cervical dystonia (7/15) demonstrated one abnormal non-motor feature, 20% (3/15) displayed two abnormal features, and 13% (2/15) displayed three abnormal features. Kinesthesia was the only non-motor feature identified as abnormal in the control group (20%, 3/15). All four tests demonstrated high specificity (80-100%) and low-moderate sensitivity (13-60%). These findings suggest that non-motor feature testing, specifically for spatial discrimination threshold and kinesthesia, could be a highly specific diagnostic tool to inform cervical dystonia diagnosis. Further investigation is needed to confirm these findings.
Collapse
Affiliation(s)
- Aaditi G Naik
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA; Pritzker School of Medicine, University of Chicago, 924 E. 57(th) St, Chicago, IL 60637, USA.
| | - David Ezana
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA.
| | - Grace Cannard
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA; Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA.
| | - Nia Mitchell
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA.
| | - Miranda Tomaras
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA.
| | - Jacqueline C Meystedt
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA.
| | - Lea Sayce
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA; Department of Communication Science and Disorders, University of Pittsburgh School of Health and Rehabilitation Sciences, 5035 Forbes Tower, Pittsburgh, PA 15260, USA.
| | - David Charles
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA.
| | - Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville TN 37232, USA; Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Simonyan K, Barkmeier-Kraemer J, Blitzer A, Hallett M, Houde JF, Jacobson Kimberley T, Ozelius LJ, Pitman MJ, Richardson RM, Sharma N, Tanner K. Laryngeal Dystonia: Multidisciplinary Update on Terminology, Pathophysiology, and Research Priorities. Neurology 2021; 96:989-1001. [PMID: 33858994 DOI: 10.1212/wnl.0000000000011922] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To delineate research priorities for improving clinical management of laryngeal dystonia, the NIH convened a multidisciplinary panel of experts for a 1-day workshop to examine the current progress in understanding its etiopathophysiology and clinical care. METHODS The participants reviewed the current terminology of disorder and discussed advances in understanding its pathophysiology since a similar workshop was held in 2005. Clinical and research gaps were identified, and recommendations for future directions were delineated. RESULTS The panel unanimously agreed to adopt the term "laryngeal dystonia" instead of "spasmodic dysphonia" to reflect the current progress in characterizations of this disorder. Laryngeal dystonia was recognized as a multifactorial, phenotypically heterogeneous form of isolated dystonia. Its etiology remains unknown, whereas the pathophysiology likely involves large-scale functional and structural brain network disorganization. Current challenges include the lack of clinically validated diagnostic markers and outcome measures and the paucity of therapies that address the disorder pathophysiology. CONCLUSION Research priorities should be guided by challenges in clinical management of laryngeal dystonia. Identification of disorder-specific biomarkers would allow the development of novel diagnostic tools and unified measures of treatment outcome. Elucidation of the critical nodes within neural networks that cause or modulate symptoms would allow the development of targeted therapies that address the underlying pathophysiology. Given the rarity of laryngeal dystonia, future rapid research progress may be facilitated by multicenter, national and international collaborations.
Collapse
Affiliation(s)
- Kristina Simonyan
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT.
| | - Julie Barkmeier-Kraemer
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Andrew Blitzer
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Mark Hallett
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - John F Houde
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Teresa Jacobson Kimberley
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Laurie J Ozelius
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Michael J Pitman
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Robert Mark Richardson
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Nutan Sharma
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Kristine Tanner
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | | |
Collapse
|
16
|
Khosravani S, Chen G, Ozelius LJ, Simonyan K. Neural endophenotypes and predictors of laryngeal dystonia penetrance and manifestation. Neurobiol Dis 2020; 148:105223. [PMID: 33316367 PMCID: PMC8284879 DOI: 10.1016/j.nbd.2020.105223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022] Open
Abstract
Focal dystonias are the most common forms of isolated dystonia; however, the etiopathophysiological signatures of disorder penetrance and clinical manifestation remain unclear. Using an imaging genetics approach, we investigated functional and structural representations of neural endophenotypes underlying the penetrance and manifestation of laryngeal dystonia in families, including 21 probands and 21 unaffected relatives, compared to 32 unrelated healthy controls. We further used a supervised machine-learning algorithm to predict the risk for dystonia development in susceptible individuals based on neural features of identified endophenotypes. We found that abnormalities in prefrontal-parietal cortex, thalamus, and caudate nucleus were commonly shared between patients and their unaffected relatives, representing an intermediate endophenotype of laryngeal dystonia. Machine learning classified 95.2% of unaffected relatives as patients rather than healthy controls, substantiating that these neural alterations represent the endophenotypic marker of dystonia penetrance, independent of its symptomatology. Additional abnormalities in premotor-parietal-temporal cortical regions, caudate nucleus, and cerebellum were present only in patients but not their unaffected relatives, likely representing a secondary endophenotype of dystonia manifestation. Based on alterations in the parietal cortex and caudate nucleus, the machine learning categorized 28.6% of unaffected relative as patients, indicating their increased lifetime risk for developing clinical manifestation of dystonia. The identified endophenotypic neural markers may be implemented for screening of at-risk individuals for dystonia development, selection of families for genetic studies of novel variants based on their risk for disease penetrance, or stratification of patients who would respond differently to a particular treatment in clinical trials.
Collapse
Affiliation(s)
- Sanaz Khosravani
- Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Gang Chen
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
A microstructural neural network biomarker for dystonia diagnosis identified by a DystoniaNet deep learning platform. Proc Natl Acad Sci U S A 2020; 117:26398-26405. [PMID: 33004625 PMCID: PMC7586425 DOI: 10.1073/pnas.2009165117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This research identified a microstructural neural network biomarker for objective and accurate diagnosis of isolated dystonia based on the disorder pathophysiology using an advanced deep learning algorithm, DystoniaNet, and raw structural brain images of large cohorts of patients with isolated focal dystonia and healthy controls. DystoniaNet significantly outperformed shallow machine-learning pipelines and substantially exceeded the current agreement rates between clinicians, reaching an overall accuracy of 98.8% in diagnosing different forms of isolated focal dystonia. These results suggest that DystoniaNet could serve as an objective, robust, and generalizable algorithmic platform of dystonia diagnosis for enhanced clinical decision-making. Implementation of the identified biomarker for objective and accurate diagnosis of dystonia may be transformative for clinical management of this disorder. Isolated dystonia is a neurological disorder of heterogeneous pathophysiology, which causes involuntary muscle contractions leading to abnormal movements and postures. Its diagnosis is remarkably challenging due to the absence of a biomarker or gold standard diagnostic test. This leads to a low agreement between clinicians, with up to 50% of cases being misdiagnosed and diagnostic delays extending up to 10.1 y. We developed a deep learning algorithmic platform, DystoniaNet, to automatically identify and validate a microstructural neural network biomarker for dystonia diagnosis from raw structural brain MRIs of 612 subjects, including 392 patients with three different forms of isolated focal dystonia and 220 healthy controls. DystoniaNet identified clusters in corpus callosum, anterior and posterior thalamic radiations, inferior fronto-occipital fasciculus, and inferior temporal and superior orbital gyri as the biomarker components. These regions are known to contribute to abnormal interhemispheric information transfer, heteromodal sensorimotor processing, and executive control of motor commands in dystonia pathophysiology. The DystoniaNet-based biomarker showed an overall accuracy of 98.8% in diagnosing dystonia, with a referral of 3.5% of cases due to diagnostic uncertainty. The diagnostic decision by DystoniaNet was computed in 0.36 s per subject. DystoniaNet significantly outperformed shallow machine-learning algorithms in benchmark comparisons, showing nearly a 20% increase in its diagnostic performance. Importantly, the microstructural neural network biomarker and its DystoniaNet platform showed substantial improvement over the current 34% agreement on dystonia diagnosis between clinicians. The translational potential of this biomarker is in its highly accurate, interpretable, and generalizable performance for enhanced clinical decision-making.
Collapse
|
18
|
Tomić A, Agosta F, Sarasso E, Svetel M, Kresojević N, Fontana A, Canu E, Petrović I, Kostić VS, Filippi M. Brain Structural Changes in Focal Dystonia—What About Task Specificity? A Multimodal
MRI
Study. Mov Disord 2020; 36:196-205. [DOI: 10.1002/mds.28304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/26/2023] Open
Affiliation(s)
- Aleksandra Tomić
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| | - Marina Svetel
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Nikola Kresojević
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo Foggia Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
| | - Igor Petrović
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Vladimir S. Kostić
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
- Neurology Unit and Neurophysiology Unit IRCCS San Raffaele Scientific Institute Milan Italy
| |
Collapse
|
19
|
Lee SJ, Kang MS, Choi HS, Lim JY. Alternating Unilateral Versus Bilateral Injections of Botulinum Toxin for the Treatment of Adductor Spasmodic Dysphonia. Otolaryngol Head Neck Surg 2020; 164:815-820. [PMID: 32957836 DOI: 10.1177/0194599820957608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to compare the long-term efficacy, durability, and dose and interval stability between alternating unilateral and bilateral injections of botulinum neurotoxin type A for the treatment of adductor spasmodic dysphonia. STUDY DESIGN Retrospective cohort study. SETTING Academic tertiary medical center. METHODS A total of 137 patients (105 alternating unilateral and 32 bilateral injections) who were administered ≥5 injections of botulinum neurotoxin type A were included in this study. The mean dosage change, dose adjustment ratio (number of dose increases/total number of injections), and stability of treatment responses were compared between the alternating unilateral and bilateral injection groups. RESULTS Long-term changes in the mean dosages for alternating unilateral (mean ± SD, -0.010 ± 0.048 IU) and bilateral (-0.042 ± 0.142 IU) injections did not differ between groups (P = .225), suggesting that both methods follow a decreasing dosing trend over time. The dose adjustment ratio also did not differ between groups (P = .077), although a longer average treatment interval (P < .001) and duration of hoarse voice (P = .045) were found in the bilateral injection group. The proportion of stable patients who did not increase injection dose and had regular follow-up did not differ between the groups. CONCLUSION Both alternating unilateral and bilateral injection methods showed a long-term decreasing dosing trend, with comparable levels of efficacy, durability, and stability for treating adductor spasmodic dysphonia. Our findings indicate that alternating unilateral injections can be routinely performed with fewer side effects, albeit at shorter treatment intervals, than bilateral injections.
Collapse
Affiliation(s)
- Seung Jin Lee
- Department of Otorhinolaryngology, Gangnam Severance Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Min Seok Kang
- Department of Otorhinolaryngology, Gangnam Severance Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | - Jae-Yol Lim
- Department of Otorhinolaryngology, Gangnam Severance Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Mantel T, Dresel C, Welte M, Meindl T, Jochim A, Zimmer C, Haslinger B. Altered sensory system activity and connectivity patterns in adductor spasmodic dysphonia. Sci Rep 2020; 10:10179. [PMID: 32576918 PMCID: PMC7311401 DOI: 10.1038/s41598-020-67295-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Adductor-type spasmodic dysphonia (ADSD) manifests in effortful speech temporarily relievable by botulinum neurotoxin type A (BoNT-A). Previously, abnormal structure, phonation-related and resting-state sensorimotor abnormalities as well as peripheral tactile thresholds in ADSD were described. This study aimed at assessing abnormal central tactile processing patterns, their spatial relation with dysfunctional resting-state connectivity, and their BoNT-A responsiveness. Functional MRI in 14/12 ADSD patients before/under BoNT-A effect and 15 controls was performed (i) during automatized tactile stimulus application to face/hand, and (ii) at rest. Between-group differential stimulation-induced activation and resting-state connectivity (regional homogeneity, connectivity strength within selected sensory(motor) networks), as well as within-patient BoNT-A effects on these differences were investigated. Contralateral-to-stimulation overactivity in ADSD before BoNT-A involved primary and secondary somatosensory representations, along with abnormalities in higher-order parietal, insular, temporal or premotor cortices. Dysphonic impairment in ADSD positively associated with left-hemispheric temporal activity. Connectivity was increased within right premotor (sensorimotor network), left primary auditory cortex (auditory network), and regionally reduced at the temporoparietal junction. Activation/connectivity before/after BoNT-A within-patients did not significantly differ. Abnormal ADSD central somatosensory processing supports its significance as common pathophysiologic focal dystonia trait. Abnormal temporal cortex tactile processing and resting-state connectivity might hint at abnormal cross-modal sensory interactions.
Collapse
Affiliation(s)
- Tobias Mantel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Christian Dresel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.,Department of Neurology, Johannes Gutenberg University, Langenbeckstrasse, 1, Mainz, Germany
| | - Michael Welte
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Tobias Meindl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.
| |
Collapse
|
21
|
What Is New in Laryngeal Dystonia: Review of Novel Findings of Pathophysiology and Novel Treatment Options. CURRENT OTORHINOLARYNGOLOGY REPORTS 2020. [DOI: 10.1007/s40136-020-00301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Maguire F, Reilly RB, Simonyan K. Normal Temporal Discrimination in Musician's Dystonia Is Linked to Aberrant Sensorimotor Processing. Mov Disord 2020; 35:800-807. [PMID: 31930574 PMCID: PMC7818836 DOI: 10.1002/mds.27984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Alterations in sensory discrimination are a prominent nonmotor feature of dystonia. Abnormal temporal discrimination in focal dystonia is considered to represent its mediational endophenotype, albeit unclear pathophysiological correlates. We examined the associations between the visual temporal discrimination threshold (TDT) and brain activity in patients with musician's dystonia, nonmusician's dystonia, and healthy controls. METHODS A total of 42 patients and 41 healthy controls participated in the study. Between-group differences in TDT z scores were computed using inferential statistics. Statistical associations of TDT z scores with clinical characteristics of dystonia and resting-state functional brain activity were examined using nonparametric rank correlations. RESULTS The TDT z scores of healthy controls were significantly different from those of patients with nonmusician's dystonia, but not of patients with musician's dystonia. Healthy controls showed a significant relationship between normal TDT levels and activity in the inferior parietal cortex. This relationship was lost in all patients. Instead, TDT z scores in musician's dystonia established additional correlations with activity in premotor, primary somatosensory, ventral extrastriate cortices, inferior occipital gyrus, precuneus, and cerebellum, whereas nonmusician's dystonia showed a trending correlation in the lingual gyrus extending to the cerebellar vermis. There were no significant relationships between TDT z scores and dystonia onset, duration, or severity. CONCLUSIONS TDT assessment as an endophenotypic marker may only be relevant to nonmusician forms of dystonia because of the lack of apparent alterations in musician's dystonia. Compensatory adaptation of neural circuitry responsible for TDT processing likely adjusted the TDT performance to the behaviorally normal levels in patients with musician's dystonia, but not nonmusician's dystonia. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fiachra Maguire
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Richard B. Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Kristina Simonyan
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology–Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
de Lima Xavier L, Simonyan K. The extrinsic risk and its association with neural alterations in spasmodic dysphonia. Parkinsonism Relat Disord 2019; 65:117-123. [PMID: 31153765 DOI: 10.1016/j.parkreldis.2019.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/24/2019] [Accepted: 05/23/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Spasmodic dysphonia (SD) is an isolated focal dystonia characterized by laryngeal spasms during voluntary voice production. Environmental factors have been assumed to play a role in SD pathophysiology; however, the exact extrinsic risk factors and their association with neural alterations remain unknown. METHODS A total of 186 SD patients and 85 healthy controls completed a structured 177-question survey, consisting of questions on general biographical information, medical history, symptomatology of dystonia. Data were imputed in a stepwise regression model to identify extrinsic risk factors for SD. In addition, functional MRI data from a subset of this cohort were analyzed to determine brain activation abnormalities associated with the SD extrinsic risk. RESULTS We found that (1) recurrent upper respiratory infections, gastroesophageal reflux, and neck trauma, all of which influence sensory feedback from the larynx, represent extrinsic risk factors, likely triggering the manifestation of SD symptoms, and (2) neural alterations in the regions necessary for sensorimotor preparation and integration are influenced by an extrinsic risk in susceptible individuals. CONCLUSIONS These findings provide evidence for the extrinsic risk in SD development and demonstrate the link with alterations in the sensorimotor preparatory network that collectively contribute to the multifactorial pathophysiology of SD.
Collapse
Affiliation(s)
- Laura de Lima Xavier
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Uehara K, Furuya S, Numazawa H, Kita K, Sakamoto T, Hanakawa T. Distinct roles of brain activity and somatotopic representation in pathophysiology of focal dystonia. Hum Brain Mapp 2019; 40:1738-1749. [PMID: 30570801 DOI: 10.1002/hbm.24486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
Two main neural mechanisms including loss of cortical inhibition and maladaptive plasticity have been thought to be involved in the pathophysiology of focal task-specific dystonia. Such loss of inhibition and maladaptive plasticity likely correspond to cortical overactivity and disorganized somatotopy, respectively. However, the most plausible mechanism of focal task-specific dystonia remains unclear. To address this question, we assessed brain activity and somatotopic representations of motor-related brain areas using functional MRI and behavioral measurement in healthy instrumentalists and patients with embouchure dystonia as an example of focal task-specific dystonia. Dystonic symptoms were measured as variability of fundamental frequency during long tone playing. We found no significant differences in brain activity between the embouchure dystonia and healthy wind instrumentalists in the motor-related areas. Assessment of somatotopy, however, revealed significant differences in the somatotopic representations of the mouth area for the right somatosensory cortex between the two groups. Multiple-regression analysis revealed brain activity in the primary motor and somatosensory cortices, cerebellum, and putamen was significantly associated with variability of fundamental frequency signals representing dystonic symptoms. Conversely, somatotopic representations in motor-related brain areas were not associated with variability of fundamental frequency signals in embouchure dystonia. The present findings suggest that abnormal motor-related network activity and aberrant somatotopy correlate with different aspects of mechanisms underlying focal task-specific dystonia.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan.,Research fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shinichi Furuya
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan.,Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
| | - Hidemi Numazawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kahori Kita
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan.,Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Takashi Sakamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan
| |
Collapse
|
25
|
Narasimham S, McGovern EM, Quinlivan B, Killian O, Beck R, O'Riordan S, Hutchinson M, Reilly RB. Neural Correlates of Abnormal Temporal Discrimination in Unaffected Relatives of Cervical Dystonia Patients. Front Integr Neurosci 2019; 13:8. [PMID: 30914929 PMCID: PMC6423170 DOI: 10.3389/fnint.2019.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background: An abnormal temporal discrimination threshold in cervical dystonia (CD) is considered to be a mediational endophenotype; in unaffected relatives it is hypothesized to indicate non-manifesting gene carriage. The pathogenesis underlying this condition remains unknown. Investigation of the neural networks involved in disordered temporal discrimination may highlight its pathomechanisms. Objective: To examine resting state brain function in unaffected relatives of CD patients with normal and abnormal temporal discrimination. We hypothesized that the endophenotype, an abnormal temporal discrimination, would manifest as altered connectivity in relatives in regions associated with CD, thereby illuminating the neural substrates of the link between temporal discrimination and CD. Methods: Rs-fMRI data was analyzed from two sex- and age-matched cohorts: 16 unaffected relatives of CD patients with normal temporal discrimination and 16 with abnormal temporal discrimination. Regional and whole brain functional connectivity measures were extracted via Independent Component Analysis (ICA), Regional Homogeneity (ReHo), and Amplitude of Low Frequency (ALFF) analyses. Results: Our ICA analysis revealed increased connectivity within both the executive control and cerebellar networks and decreased connectivity within the sensorimotor network in relatives with abnormal temporal discrimination when compared to relatives with normal temporal discrimination. The ReHo and ALFF analyses complimented these results and demonstrated connectivity differences in areas corresponding to motor planning, movement coordination, visual information processing, and eye movements in unaffected relatives with abnormal temporal discrimination. Conclusion: Disordered connectivity in unaffected relatives with abnormal temporal discrimination illuminates neural substrates underlying endophenotype expression and supports the hypothesis that genetically determined aberrant connectivity, when later coupled with unknown environmental triggers, may lead to disease penetrance.
Collapse
Affiliation(s)
- Shruti Narasimham
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Eavan M McGovern
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Brendan Quinlivan
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Owen Killian
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Rebecca Beck
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Battistella G, Simonyan K. Top-down alteration of functional connectivity within the sensorimotor network in focal dystonia. Neurology 2019; 92:e1843-e1851. [PMID: 30918091 DOI: 10.1212/wnl.0000000000007317] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To determine the directionality of regional interactions and influences of one region on another within the functionally abnormal sensorimotor network in isolated focal dystonia. METHODS A total of 40 patients with spasmodic dysphonia with and without dystonic tremor of voice and 35 healthy controls participated in the study. Independent component analysis (ICA) of resting-state fMRI was used to identify 4 abnormally coupled brain regions within the functional sensorimotor network in all patients compared to controls. Follow-up spectral dynamic causal modeling (DCM) estimated regional effective connectivity between patients and controls and between patients with spasmodic dysphonia with and without dystonic tremor of voice to expand the understanding of symptomatologic variability associated with this disorder. RESULTS ICA found abnormally reduced functional connectivity of the left inferior parietal cortex, putamen, and bilateral premotor cortex in all patients compared to controls, pointing to a largely overlapping pathophysiology of focal dystonia and dystonic tremor. DCM determined that the disruption of the sensorimotor network was both top-down, involving hyperexcitable parieto-putaminal influence, and interhemispheric, involving right-to-left hyperexcitable premotor coupling in all patients compared to controls. These regional alterations were associated with their abnormal self-inhibitory function when comparing patients with spasmodic dysphonia patients with and without dystonic tremor of voice. CONCLUSIONS Abnormal hyperexcitability of premotor-parietal-putaminal circuitry may be explained by altered information transfer between these regions due to underlying deficient connectivity. Identification of brain regions involved in processing of sensorimotor information in preparation for movement execution suggests that complex network disruption is staged well before the dystonic behavior is produced by the primary motor cortex.
Collapse
Affiliation(s)
- Giovanni Battistella
- From the Memory and Aging Center (G.B.), Department of Neurology, University of California San Francisco; Department of Otolaryngology (K.S.), Massachusetts Eye and Ear; Department of Neurology (K.S.), Massachusetts General Hospital (K.S.); and Harvard Medical School (K.S.), Boston, MA
| | - Kristina Simonyan
- From the Memory and Aging Center (G.B.), Department of Neurology, University of California San Francisco; Department of Otolaryngology (K.S.), Massachusetts Eye and Ear; Department of Neurology (K.S.), Massachusetts General Hospital (K.S.); and Harvard Medical School (K.S.), Boston, MA.
| |
Collapse
|
27
|
Bianchi S, Fuertinger S, Huddleston H, Frucht SJ, Simonyan K. Functional and structural neural bases of task specificity in isolated focal dystonia. Mov Disord 2019; 34:555-563. [PMID: 30840778 DOI: 10.1002/mds.27649] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/31/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Task-specific focal dystonias selectively affect movements during the production of highly learned and complex motor behaviors. Manifestation of some task-specific focal dystonias, such as musician's dystonia, has been associated with excessive practice and overuse, whereas the etiology of others remains largely unknown. OBJECTIVES In this study, we aimed to examine the neural correlates of task-specific dystonias in order to determine their disorder-specific pathophysiological traits. METHODS Using multimodal neuroimaging analyses of resting-state functional connectivity, voxel-based morphometry and tract-based spatial statistics, we examined functional and structural abnormalities that are both common to and distinct between four different forms of task-specific focal dystonias. RESULTS Compared to the normal state, all task-specific focal dystonias were characterized by abnormal recruitment of parietal and premotor cortices that are necessary for both modality-specific and heteromodal control of the sensorimotor network. Contrasting the laryngeal and hand forms of focal dystonia revealed distinct patterns of sensorimotor integration and planning, again involving parietal cortex in addition to inferior frontal gyrus and anterior insula. On the other hand, musician's dystonia compared to nonmusician's dystonia was shaped by alterations in primary and secondary sensorimotor cortices together with middle frontal gyrus, pointing to impairments of sensorimotor guidance and executive control. CONCLUSION Collectively, this study outlines a specialized footprint of functional and structural alterations in different forms of task-specific focal dystonia, all of which also share a common pathophysiological framework involving premotor-parietal aberrations. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Stefan Fuertinger
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Hailey Huddleston
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Steven J Frucht
- Department of Neurology, New York University, New York, New York, USA
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Abstract
Dystonia is a neurological disorder characterized by involuntary, repetitive movements. Although the precise mechanisms of dystonia development remain unknown, the diversity of its clinical phenotypes is thought to be associated with multifactorial pathophysiology, which is linked not only to alterations of brain organization, but also environmental stressors and gene mutations. This chapter will present an overview of the pathophysiology of isolated dystonia through the lens of applications of major neuroimaging methodologies, with links to genetics and environmental factors that play a prominent role in symptom manifestation.
Collapse
|
29
|
Fuertinger S, Simonyan K. Task-specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel. Mov Disord 2018; 33:1918-1927. [PMID: 30264427 DOI: 10.1002/mds.97] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Task-specific focal dystonia selectively affects the motor control during skilled and highly learned behaviors. Recent data suggest the role of neural network abnormalities in the development of the pathophysiological dystonic cascade. METHODS We used resting-state functional MRI and analytic techniques rooted in network science and graph theory to examine the formation of abnormal subnetwork of highly influential brain regions, the functional network kernel, and its influence on aberrant dystonic connectivity specific to affected body region and skilled motor behavior. RESULTS We found abnormal embedding of sensorimotor cortex and prefrontal thalamus in dystonic network kernel as a hallmark of task-specific focal dystonia. Dependent on the affected body region, aberrant functional specialization of the network kernel included regions of motor control management in focal hand dystonia (writer's cramp, musician's focal hand dystonia) and sensorimotor processing in laryngeal dystonia (spasmodic dysphonia, singer's laryngeal dystonia). Dependent on skilled motor behavior, the network kernel featured altered connectivity between sensory and motor execution circuits in musician's dystonia (musician's focal hand dystonia, singer's laryngeal dystonia) and abnormal integration of sensory feedback into motor planning and executive circuits in non-musician's dystonia (writer's cramp, spasmodic dysphonia). CONCLUSIONS Our study identified specific traits in disorganization of large-scale neural connectivity that underlie the common pathophysiology of task-specific focal dystonia while reflecting distinct symptomatology of its different forms. Identification of specialized regions of information transfer that influence dystonic network activity is an important step for future delineation of targets for neuromodulation as a potential therapeutic option of task-specific focal dystonia. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stefan Fuertinger
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Beck RB, McGovern EM, Butler JS, Birsanu D, Quinlivan B, Beiser I, Narasimham S, O'Riordan S, Hutchinson M, Reilly RB. Measurement & Analysis of the Temporal Discrimination Threshold Applied to Cervical Dystonia. J Vis Exp 2018. [PMID: 29443021 DOI: 10.3791/56310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The temporal discrimination threshold (TDT) is the shortest time interval at which an observer can discriminate two sequential stimuli as being asynchronous (typically 30-50 ms). It has been shown to be abnormal (prolonged) in neurological disorders, including cervical dystonia, a phenotype of adult onset idiopathic isolated focal dystonia. The TDT is a quantitative measure of the ability to perceive rapid changes in the environment and is considered indicative of the behavior of the visual neurons in the superior colliculus, a key node in covert attentional orienting. This article sets out methods for measuring the TDT (including two hardware options and two modes of stimuli presentation). We also explore two approaches of data analysis and TDT calculation. The application of the assessment of temporal discrimination to the understanding of the pathogenesis of cervical dystonia and adult onset idiopathic isolated focal dystonia is also discussed.
Collapse
Affiliation(s)
- Rebecca B Beck
- School of Engineering, Trinity College Dublin, The University of Dublin;
| | - Eavan M McGovern
- School of Engineering, Trinity College Dublin, The University of Dublin; Department of Neurology, St. Vincent's University Hospital; School of Medicine and Medical Sciences, University College Dublin
| | - John S Butler
- School of Mathematical Sciences, Dublin Institute of Technology
| | - Dorina Birsanu
- School of Engineering, Trinity College Dublin, The University of Dublin
| | - Brendan Quinlivan
- School of Engineering, Trinity College Dublin, The University of Dublin
| | - Ines Beiser
- School of Engineering, Trinity College Dublin, The University of Dublin; Department of Neurology, St. Vincent's University Hospital; School of Medicine and Medical Sciences, University College Dublin
| | - Shruti Narasimham
- School of Engineering, Trinity College Dublin, The University of Dublin
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital; School of Medicine and Medical Sciences, University College Dublin
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital; School of Medicine and Medical Sciences, University College Dublin
| | - Richard B Reilly
- School of Engineering, Trinity College Dublin, The University of Dublin; School of Medicine Trinity College Dublin, The University of Dublin
| |
Collapse
|
31
|
Neural correlates of dystonic tremor: a multimodal study of voice tremor in spasmodic dysphonia. Brain Imaging Behav 2018; 11:166-175. [PMID: 26843004 DOI: 10.1007/s11682-016-9513-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tremor, affecting a dystonic body part, is a frequent feature of adult-onset dystonia. However, our understanding of dystonic tremor pathophysiology remains ambiguous as its interplay with the main co-occurring disorder, dystonia, is largely unknown. We used a combination of functional MRI, voxel-based morphometry and diffusion-weighted imaging to investigate similar and distinct patterns of brain functional and structural alterations in patients with dystonic tremor of voice (DTv) and isolated spasmodic dysphonia (SD). We found that, compared to controls, SD patients with and without DTv showed similarly increased activation in the sensorimotor cortex, inferior frontal (IFG) and superior temporal gyri, putamen and ventral thalamus, as well as deficient activation in the inferior parietal cortex and middle frontal gyrus (MFG). Common structural alterations were observed in the IFG and putamen, which were further coupled with functional abnormalities in both patient groups. Abnormal activation in left putamen was correlated with SD onset; SD/DTv onset was associated with right putaminal volumetric changes. DTv severity established a significant relationship with abnormal volume of the left IFG. Direct patient group comparisons showed that SD/DTv patients had additional abnormalities in MFG and cerebellar function and white matter integrity in the posterior limb of the internal capsule. Our findings suggest that dystonia and dystonic tremor, at least in the case of SD and SD/DTv, are heterogeneous disorders at different ends of the same pathophysiological spectrum, with each disorder carrying a characteristic neural signature, which may potentially help development of differential markers for these two conditions.
Collapse
|
32
|
Blitzer A, Brin MF, Simonyan K, Ozelius LJ, Frucht SJ. Phenomenology, genetics, and CNS network abnormalities in laryngeal dystonia: A 30-year experience. Laryngoscope 2018; 128 Suppl 1:S1-S9. [PMID: 29219190 PMCID: PMC5757628 DOI: 10.1002/lary.27003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/23/2017] [Accepted: 10/16/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Laryngeal dystonia (LD) is a functionally specific disorder of the afferent-efferent motor coordination system producing action-induced muscle contraction with a varied phenomenology. This report of long-term studies aims to review and better define the phenomenology and central nervous system abnormalities of this disorder and improve diagnosis and treatment. METHODS Our studies categorized over 1,400 patients diagnosed with LD over the past 33 years, including demographic and medical history records and their phenomenological presentations. Patients were grouped on clinical phenotype (adductor or abductor) and genotype (sporadic and familial) and with DNA analysis and functional magnetic resonance imaging (fMRI) to investigate brain organization differences and characterize neural markers for genotype/phenotype categorization. A number of patients with alcohol-sensitive dystonia were also studied. RESULTS A spectrum of LD phenomena evolved: adductor, abductor, mixed, singer's, dystonic tremor, and adductor respiratory dystonia. Patients were genetically screened for DYT (dystonia) 1, DYT4, DYT6, and DYT25 (GNAL)-and several were positive. The functional MRI studies showed distinct alterations within the sensorimotor network, and the LD patients with a family history had distinct cortical and cerebellar abnormalities. A linear discriminant analysis of fMRI findings showed a 71% accuracy in characterizing LD from normal and in characterizing adductor from abductor forms. CONCLUSION Continuous studies of LD patients over 30 years has led to an improved understanding of the phenomenological characteristics of this neurological disorder. Genetic and fMRI studies have better characterized the disorder and raise the possibility of making objective rather than subjective diagnoses, potentially leading to new therapeutic approaches. Laryngoscope, 128:S1-S9, 2018.
Collapse
Affiliation(s)
- Andrew Blitzer
- Dept of Otolaryngology-Head and Neck Surgery, Columbia University, College of Physicians and Surgeons
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
- New York Center for Voice and Swallowing Disorders
| | | | - Kristina Simonyan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School
| | | | - Steven J Frucht
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
33
|
Conte A, McGovern EM, Narasimham S, Beck R, Killian O, O'Riordan S, Reilly RB, Hutchinson M. Temporal Discrimination: Mechanisms and Relevance to Adult-Onset Dystonia. Front Neurol 2017; 8:625. [PMID: 29234300 PMCID: PMC5712317 DOI: 10.3389/fneur.2017.00625] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/07/2017] [Indexed: 12/05/2022] Open
Abstract
Temporal discrimination is the ability to determine that two sequential sensory stimuli are separated in time. For any individual, the temporal discrimination threshold (TDT) is the minimum interval at which paired sequential stimuli are perceived as being asynchronous; this can be assessed, with high test–retest and inter-rater reliability, using a simple psychophysical test. Temporal discrimination is disordered in a number of basal ganglia diseases including adult-onset dystonia, of which the two most common phenotypes are cervical dystonia and blepharospasm. The causes of adult-onset focal dystonia are unknown; genetic, epigenetic, and environmental factors are relevant. Abnormal TDTs in adult-onset dystonia are associated with structural and neurophysiological changes considered to reflect defective inhibitory interneuronal processing within a network which includes the superior colliculus, basal ganglia, and primary somatosensory cortex. It is hypothesized that abnormal temporal discrimination is a mediational endophenotype and, when present in unaffected relatives of patients with adult-onset dystonia, indicates non-manifesting gene carriage. Using the mediational endophenotype concept, etiological factors in adult-onset dystonia may be examined including (i) the role of environmental exposures in disease penetrance and expression; (ii) sexual dimorphism in sex ratios at age of onset; (iii) the pathogenesis of non-motor symptoms of adult-onset dystonia; and (iv) subcortical mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Eavan M McGovern
- Department of Neurology, St Vincent's University Hospital Dublin, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shruti Narasimham
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Rebecca Beck
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Owen Killian
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Sean O'Riordan
- Department of Neurology, St Vincent's University Hospital Dublin, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital Dublin, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Hintze JM, Ludlow CL, Bansberg SF, Adler CH, Lott DG. Spasmodic Dysphonia: A Review. Part 1: Pathogenic Factors. Otolaryngol Head Neck Surg 2017; 157:551-557. [PMID: 28850801 DOI: 10.1177/0194599817728521] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective The purpose of this review is to describe the recent advances in identifying possible factors involved in the pathogenesis of spasmodic dysphonia. Spasmodic dysphonia is a task-specific focal laryngeal dystonia characterized by irregular and uncontrolled voice breaks. Pathogenesis of the disorder is poorly understood. Data Sources PubMed, Google Scholar, and Cochrane Library. Review Methods The data sources were searched using the following search terms: ( spasmodic dysphonia or laryngeal dystonia) and ( etiology, aetiology, diagnosis, pathogenesis, or pathophysiology). Conclusions Several potential etiological factors have been proposed by epidemiological, genetic, and neuropathological studies. Spasmodic dysphonia is a rare disorder primarily affecting females beginning in their 40s. Vocal tremor co-occurs in 30% to 60%. Large cohort studies identified risk factors such as a family history of neurological disorders including dystonia and tremor, recent viral illness, and heavy voice use. As none are rare events, a complex interactive process may contribute to pathogenesis in a small proportion of those at risk. Consequences to pathogenesis are neurological processes found in spasmodic dysphonia: loss of cortical inhibition, sensory processing disturbances, and neuroanatomical and physiological differences in the laryngeal motor control system. Implications for Practice Diagnosis of spasmodic dysphonia usually includes speech and laryngoscopic assessment. However, as diagnosis is sometimes problematic, measurement of neurophysiological abnormalities may contribute useful adjuncts for the diagnosis of spasmodic dysphonia in the future.
Collapse
Affiliation(s)
- Justin M Hintze
- 1 Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Christy L Ludlow
- 2 Department of Communication Sciences and Disorders, James Madison University, Virginia, USA
| | - Stephen F Bansberg
- 3 Department of Otorhinolaryngology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Charles H Adler
- 4 Department of Neurology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - David G Lott
- 1 Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic Arizona, Phoenix, Arizona, USA.,3 Department of Otorhinolaryngology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
35
|
Hintze JM, Ludlow CL, Bansberg SF, Adler CH, Lott DG. Spasmodic Dysphonia: A Review. Part 2: Characterization of Pathophysiology. Otolaryngol Head Neck Surg 2017; 157:558-564. [DOI: 10.1177/0194599817728465] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective The purpose of this review is to describe the recent advances in characterizing spasmodic dysphonia. Spasmodic dysphonia is a task-specific focal laryngeal dystonia characterized by irregular and uncontrolled voice breaks. The pathophysiology is poorly understood, and there are diagnostic difficulties. Data Sources PubMed, Google Scholar, and Cochrane Library. Review Methods The data sources were searched using the following search terms: ( spasmodic dysphonia or laryngeal dystonia) and ( etiology, aetiology, diagnosis, pathogenesis, or pathophysiology). Conclusion The diagnosis of spasmodic dysphonia can be difficult due to the lack of a scientific consensus on diagnostic criteria and the fact that other voice disorders may present similarly. Confusion can arise between spasmodic dysphonia and muscle tension dysphonia. Spasmodic dysphonia symptoms are tied to particular speech sounds, whereas muscle tension dysphonia is not. With the advent of more widespread use of high-speed laryngoscopy and videokymography, measures of the disruptions in phonation and delays in the onset of vocal fold vibration after vocal fold closure can be quantified. Recent technological developments have expanded our understanding of the pathophysiology of spasmodic dysphonia. Implications for Practice A 3-tiered approach, involving a questionnaire, followed by speech assessment and nasolaryngoscopy is the most widely accepted method for making the diagnosis in most cases. More experimental and invasive techniques such as electromyography and neuroimaging have been explored to further characterize spasmodic dysphonia and aid in diagnosing difficult cases.
Collapse
Affiliation(s)
- Justin M. Hintze
- Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Christy L. Ludlow
- Department of Communication Sciences and Disorders, James Madison University, Virginia, USA
| | - Stephen F. Bansberg
- Department of Otorhinolaryngology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Charles H. Adler
- Department of Neurology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - David G. Lott
- Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic Arizona, Phoenix, Arizona, USA
- Department of Otorhinolaryngology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
36
|
Connectome-Wide Phenotypical and Genotypical Associations in Focal Dystonia. J Neurosci 2017; 37:7438-7449. [PMID: 28674168 DOI: 10.1523/jneurosci.0384-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/21/2022] Open
Abstract
Isolated focal dystonia is a debilitating movement disorder of unknown pathophysiology. Early studies in focal dystonias have pointed to segregated changes in brain activity and connectivity. Only recently has the notion that dystonia pathophysiology may lie in abnormalities of large-scale brain networks appeared in the literature. Here, we outline a novel concept of functional connectome-wide alterations that are linked to dystonia phenotype and genotype. Using a neural community detection strategy and graph theoretical analysis of functional MRI data in human patients with the laryngeal form of dystonia (LD) and healthy controls (both males and females), we identified an abnormally widespread hub formation in LD, which particularly affected the primary sensorimotor and parietal cortices and thalamus. Left thalamic regions formed a delineated functional community that highlighted differences in network topology between LD patients with and without family history of dystonia. Conversely, marked differences in the topological organization of parietal regions were found between phenotypically different forms of LD. The interface between sporadic genotype and adductor phenotype of LD yielded four functional communities that were primarily governed by intramodular hub regions. Conversely, the interface between familial genotype and abductor phenotype was associated with numerous long-range hub nodes and an abnormal integration of left thalamus and basal ganglia. Our findings provide the first comprehensive atlas of functional topology across different phenotypes and genotypes of focal dystonia. As such, this study constitutes an important step toward defining dystonia as a large-scale network disorder, understanding its causative pathophysiology, and identifying disorder-specific markers.SIGNIFICANCE STATEMENT The architecture of the functional connectome in focal dystonia was analyzed in a large population of patients with laryngeal dystonia. Breaking with the empirical concept of dystonia as a basal ganglia disorder, we discovered large-scale alterations of neural communities that are significantly influenced by the disorder's clinical phenotype and genotype.
Collapse
|
37
|
Stepp CE, Lester-Smith RA, Abur D, Daliri A, Pieter Noordzij J, Lupiani AA. Evidence for Auditory-Motor Impairment in Individuals With Hyperfunctional Voice Disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:1545-1550. [PMID: 28590007 PMCID: PMC5544411 DOI: 10.1044/2017_jslhr-s-16-0282] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/06/2017] [Indexed: 05/09/2023]
Abstract
PURPOSE The vocal auditory-motor control of individuals with hyperfunctional voice disorders was examined using a sensorimotor adaptation paradigm. METHOD Nine individuals with hyperfunctional voice disorders and 9 individuals with typical voices produced sustained vowels over 160 trials in 2 separate conditions: (a) while experiencing gradual upward perturbations in the fundamental frequency (fo) of their auditory feedback (shift-up) and (b) under no auditory perturbation (control). The shift-up condition consisted of 4 ordered (fixed) phases: baseline (no perturbation), ramp (gradual increases in heard fo), hold (a consistently higher heard fo), and after-effect (no perturbation). Adaptive responses were defined as the difference in produced fo during control and shift-up conditions. RESULTS Adaptive responses were significantly different between groups. Individuals with typical voices generally showed compensatory adaptive responses, with decreased fo during the ramp and hold phases. Conversely, many individuals with hyperfunctional voice disorders instead displayed the opposite effect by following the direction of the perturbation. When fo was experimentally increased, speakers further increased their fo. CONCLUSION Results indicate that some individuals diagnosed with hyperfunctional voice disorders have disrupted auditory-motor control, suggesting atypical neurological function. These findings may eventually allow for the development of new interventions for hyperfunctional voice disorders.
Collapse
Affiliation(s)
- Cara E. Stepp
- Department of Speech, Language, and Hearing Sciences, Boston University, Massachusetts
- Department of Biomedical Engineering, Boston University, Massachusetts
- Department of Otolaryngology–Head and Neck Surgery, Boston University School of Medicine, Massachusetts
| | | | - Defne Abur
- Department of Speech, Language, and Hearing Sciences, Boston University, Massachusetts
| | - Ayoub Daliri
- Department of Speech, Language, and Hearing Sciences, Boston University, Massachusetts
| | - J. Pieter Noordzij
- Department of Speech, Language, and Hearing Sciences, Boston University, Massachusetts
- Department of Otolaryngology–Head and Neck Surgery, Boston University School of Medicine, Massachusetts
| | - Ashling A. Lupiani
- Department of Speech, Language, and Hearing Sciences, Boston University, Massachusetts
| |
Collapse
|
38
|
Bianchi S, Battistella G, Huddleston H, Scharf R, Fleysher L, Rumbach AF, Frucht SJ, Blitzer A, Ozelius LJ, Simonyan K. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia. Mov Disord 2017; 32:560-568. [PMID: 28186656 DOI: 10.1002/mds.26920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. METHODS Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). RESULTS Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. CONCLUSIONS Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giovanni Battistella
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hailey Huddleston
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rebecca Scharf
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anna F Rumbach
- School of Health and Rehabilitation Sciences, Speech Pathology, University of Queensland, Brisbane, Queensland, Australia
| | - Steven J Frucht
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Blitzer
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Head and Neck Surgical Group, New York, New York, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
39
|
Antelmi E, Erro R, Rocchi L, Liguori R, Tinazzi M, Di Stasio F, Berardelli A, Rothwell JC, Bhatia KP. Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia. Mov Disord 2016; 32:141-148. [PMID: 27671708 DOI: 10.1002/mds.26804] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/02/2016] [Accepted: 08/16/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Somatosensory temporal discrimination threshold is often prolonged in patients with dystonia. Previous evidence suggested that this might be caused by impaired somatosensory processing in the time domain. Here, we tested if other markers of reduced inhibition in the somatosensory system might also contribute to abnormal somatosensory temporal discrimination in dystonia. METHODS Somatosensory temporal discrimination threshold was measured in 19 patients with isolated cervical dystonia and 19 age-matched healthy controls. We evaluated temporal somatosensory inhibition using paired-pulse somatosensory evoked potentials, spatial somatosensory inhibition by measuring the somatosensory evoked potentials interaction between simultaneous stimulation of the digital nerves in thumb and index finger, and Gamma-aminobutyric acid-ergic (GABAergic) sensory inhibition using the early and late components of high-frequency oscillations in digital nerves somatosensory evoked potentials. RESULTS When compared with healthy controls, dystonic patients had longer somatosensory temporal discrimination thresholds, reduced suppression of cortical and subcortical paired-pulse somatosensory evoked potentials, less spatial inhibition of simultaneous somatosensory evoked potentials, and a smaller area of the early component of the high-frequency oscillations. A logistic regression analysis found that paired pulse suppression of the N20 component at an interstimulus interval of 5 milliseconds and the late component of the high-frequency oscillations were independently related to somatosensory temporal discrimination thresholds. "Dystonia group" was also a predictor of enhanced somatosensory temporal discrimination threshold, indicating a dystonia-specific effect that independently influences this threshold. CONCLUSIONS Increased somatosensory temporal discrimination threshold in dystonia is related to reduced activity of inhibitory circuits within the primary somatosensory cortex. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elena Antelmi
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.,Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCSS, Istituto di Ricovero e Cura a Carattere Scientifico; Research Hospital, Institute of Neurological Sciences, Bologna, Italy
| | - Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCSS, Istituto di Ricovero e Cura a Carattere Scientifico; Research Hospital, Institute of Neurological Sciences, Bologna, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Flavio Di Stasio
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
40
|
Botulinum toxin injection in laryngeal dyspnea. Eur Arch Otorhinolaryngol 2016; 274:909-917. [PMID: 27600559 DOI: 10.1007/s00405-016-4289-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
Data, regarding the use of botulinum toxin (BT-A) in laryngeal dyspnea, are scarce, coming from some cases reports in the literature, including Vocal fold paralysis, laryngeal dystonia, vocal cord dysfunction also called paradoxical motion of the vocal fold (PMVF), and post-neuroleptic laryngeal dyskinesia. There is no consensus regarding the muscles and the doses to inject. The aim of this study is to present a retrospective review of patients treated in our ENT Department by BT-A injection in this indication. This study is a retrospective study describing patients who underwent an injection of botulinum toxin for laryngeal dyspnea in the ENT Department from 2005 to 2015 years. The inclusion criteria were a dyspnea associated with a laryngeal dysfunction, confirmed by flexible fiberoptic nasopharyngolaryngoscopy. Information concerning the causes of the dyspnea, the botulinum toxin BT-A injections procedure, post-injection follow-up, and respiratory outcome were collected for all patients included. In the group of 13 patients included, the main cause identified as principal factor linked with the short breath was: a bilateral VF paralysis (Patel et al., Otolaryngol Head Neck Surg 130:686-689, 7), laryngeal dystonia (Balkissoon and Kenn, Semin Respir Crit Care Med 33:595-605, 2), Anxiety syndrome associated with unilateral vocal fold paralysis or asthma (Marcinow et al., Laryngoscope 124:1425-1430, 3), and an isolated asthma (Zwirner et al., Eur Arch Otorhinolaryngol 254:242-245, 1). Nine out of the thirteen patients were improved by the injections. A BT-A-induced stable benefit for four patients led them to stop the injections in the follow-up. Good outcome was observed in five other patients (main cause: bilateral VP paralysis), allowing a progressive lengthening of the delay between BT-A injections. Four patients did not report a positive risk/benefit ratio after BT-A injections; two of them (with bilateral VF paralysis), because of respiratory side effects and lack of benefit without the side effects for the two others. This failure of effect was not related with BT-A doses injected. This study provides support for using BT-A injections as a symptomatic treatment of periodic laryngeal dyspnea, regardless of the etiologic context. From our data, we suggest that a small starting dose (of around 4 U BT-A Botox®) could be enough for a first injection to obtain a good benefit. The target muscle should be determined by the EMG analysis.
Collapse
|
41
|
Battistella G, Fuertinger S, Fleysher L, Ozelius LJ, Simonyan K. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia. Eur J Neurol 2016; 23:1517-27. [PMID: 27346568 DOI: 10.1111/ene.13067] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. METHODS We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. RESULTS We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. CONCLUSIONS Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder.
Collapse
Affiliation(s)
- G Battistella
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Fuertinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - K Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|