1
|
Hong CT, Yang CC, Chen DYT, Chao SP, Chan L. Cerebellar Structural and N-Acetylaspartate, Choline, and Creatine Metabolic Profiles in Parkinson's Disease and Essential Tremor. Diagnostics (Basel) 2024; 14:2430. [PMID: 39518397 PMCID: PMC11544772 DOI: 10.3390/diagnostics14212430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The role of the cerebellum in Parkinson's disease (PD), particularly in tremor-dominant subtypes, is increasingly recognized. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) provide anatomical and metabolic insights, suggesting compensatory hyperactivity or degenerative changes in the cerebellum in PD. Volumetric analysis of cerebellar structures in MRI images, combined with metabolic profiles from MRS, offers possibilities for differentiating PD from essential tremor (ET). The cerebellum may be a potential therapeutic target due to its role in neurocircuitry of PD and ET. METHODS Brain structural data were obtained using MRI, and cerebellar metabolic profiles, focusing on the quantification of N-acetylaspartate (NAA), choline, and creatine peaks were obtained using MRS. This study enrolled patients with ET and PD, both with and without tremor, as well as disease controls with cerebellar atrophy (including spinocerebellar ataxia and multiple system atrophy). Volumetric analysis of cerebellar structures was performed. Differences in MRI and MRS parameters were analyzed using one-way analysis of covariance with a significance threshold of p < 0.05. RESULTS From November 2018 to March 2023, 111 patients were enrolled, including 29 ET, 29 cerebellar atrophy, 12 PD without tremor, and 41 PD with tremor. No significant differences in cerebellar volume and N-acetylaspartate/creatine and choline/creatine ratios were found between ET and PD with tremor. CONCLUSIONS This preliminary retrospective study suggests similarities in cerebellar structures and metabolic profiles between ET and PD, highlighting the need for advanced imaging techniques to better differentiate between these conditions. Future research should integrate clinical data, such as tremor severity and cognitive assessments, to explore the relationships with cerebellar MRI parameters.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 110, Taiwan; (C.-T.H.); (C.-C.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Chang Yang
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 110, Taiwan; (C.-T.H.); (C.-C.Y.)
- International Ph.D. Program in Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
| | - David Yen-Ting Chen
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Imaging, Shuang Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Ping Chao
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 110, Taiwan; (C.-T.H.); (C.-C.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan;
| | - Lung Chan
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 110, Taiwan; (C.-T.H.); (C.-C.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan;
| |
Collapse
|
2
|
Qiu T, Liu M, Qiu X, Li T, Le W. Cerebellar involvement in Parkinson's disease: Pathophysiology and neuroimaging. Chin Med J (Engl) 2024; 137:2395-2403. [PMID: 39227357 PMCID: PMC11479504 DOI: 10.1097/cm9.0000000000003248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 09/05/2024] Open
Abstract
ABSTRACT Parkinson's disease (PD) is a neurodegenerative disease characterized by various motor and non-motor symptoms. The complexity of its symptoms suggests that PD is a heterogeneous neurological disorder. Its pathological changes are not limited to the substantia nigra-striatal system, but gradually extending to other regions including the cerebellum. The cerebellum is connected to a wide range of central nervous system regions that form essential neural circuits affected by PD. In addition, altered dopaminergic activity and α-synuclein pathology are found in the cerebellum, further suggesting its role in the PD progression. Furthermore, an increasing evidence obtained from imaging studies has demonstrated that cerebellar structure, functional connectivity, and neural metabolism are altered in PD when compared to healthy controls, as well as among different PD subtypes. This review provides a comprehensive summary of the cerebellar pathophysiology and results from neuroimaging studies related to both motor and non-motor symptoms of PD, highlighting the potential significance of cerebellar assessment in PD diagnosis, differential diagnosis, and disease monitoring.
Collapse
Affiliation(s)
- Tao Qiu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Meichen Liu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Xinhui Qiu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Tianbai Li
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Weidong Le
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 200000, China
| |
Collapse
|
3
|
He C, Yang R, Rong S, Zhang P, Chen X, Qi Q, Gao Z, Li Y, Li H, de Leeuw FE, Tuladhar AM, Duering M, Helmich RC, van der Vliet R, Darweesh SKL, Liu Z, Wang L, Cai M, Zhang Y. Temporal evolution of microstructural integrity in cerebellar peduncles in Parkinson's disease: Stage-specific patterns and dopaminergic correlates. Neuroimage Clin 2024; 44:103679. [PMID: 39366283 PMCID: PMC11489329 DOI: 10.1016/j.nicl.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Previous research revealed differences in cerebellar white matter integrity by disease stages, indicating a compensatory role in Parkinson's disease (PD). However, the temporal evolution of cerebellar white matter microstructure in patients with PD (PwPD) remains unclear. OBJECTIVE To unravel temporal evolution of cerebellar white matter and its dopaminergic correlates in PD. METHODS We recruited 124 PwPD from the PPMI study. The participants were divided into two subsets: Subset 1 (n = 41) had three MRI scans (baseline, 2 years, and 4 years), and Subset 2 (n = 106) had at least two MRI scans at baseline, 1 year, and/or 2 years. Free water-corrected diffusion metrics were used to measure the microstructural integrity in cerebellar peduncles (CP), the main white matter tracts connecting to and from the cerebellum. The ACAPULCO processing pipeline was used to assess cerebellar lobules volumes. Linear mixed-effect models were used to study longitudinal changes. We also examined the relationships between microstructural integrity in CP, striatal dopamine transporter specific binding ratio (SBR), and clinical symptoms. RESULTS Microstructural changes in CP showed a non-linear pattern in PwPD. Free water-corrected fractional anisotropy (FAt) increased in the first two years but declined from 2 to 4 years, while free water-corrected mean diffusivity exhibited the opposite trend. The initial increased FAt in CP correlated with cerebellar regional volume atrophy, striatal dopaminergic SBR decline, and worsening clinical symptoms, but this correlation varied across disease stages. CONCLUSIONS Our findings suggest a non-linear evolution of microstructural integrity in CP throughout the course of PD, indicating the adaptive structural reorganization of the cerebellum simultaneously with progressive striatal dopaminergic degeneration in PD.
Collapse
Affiliation(s)
- Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Rui Yang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Siming Rong
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Qi Qi
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Ziqi Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Hao Li
- Radboud University Medical Center, Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, the Netherlands
| | - Frank-Erik de Leeuw
- Radboud University Medical Center, Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, the Netherlands
| | - Anil M Tuladhar
- Radboud University Medical Center, Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, the Netherlands
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
| | - Rick C Helmich
- Radboud University Medical Center, Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, the Netherlands
| | - Rick van der Vliet
- Department of Neurology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Sirwan K L Darweesh
- Radboud University Medical Center, Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, the Netherlands
| | - Zaiyi Liu
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Mengfei Cai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Radboud University Medical Center, Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, the Netherlands.
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
4
|
Li X, Pang H, Bu S, Zhao M, Wang J, Liu Y, Yu H, Fan G. Stage-dependent differential impact of network communication on cognitive function across the continuum of cognitive decline in Parkinson's disease. Neurobiol Dis 2024; 199:106578. [PMID: 38925316 DOI: 10.1016/j.nbd.2024.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Our objective was to explore the patterns of resting-state network (RSN) connectivity alterations and investigate how the influences of individual-level network connections on cognition varied across clinical stages without assuming a constant relationship. METHODS 108 PD patients with continuum of cognitive decline (PD-NC = 46, PD-MCI = 43, PDD = 19) and 34 healthy controls (HCs) underwent resting-state functional MRI and neuropsychological tests. Independent component analysis (ICA) and graph theory analyses (GTA) were employed to explore RSN connection changes. Additionally, stage-dependent differential impact of network communication on cognitive performance were examined using sparse varying coefficient modeling. RESULTS Compared to HCs, the dorsal attention network (DAN) and dorsal sensorimotor network (dSMN) were central networks with decreased connections in PD-NC and PD-MCI stage, while the lateral visual network (LVN) emerged as a central network in patients with dementia. Additionally, connectivity of the cerebellum network (CBN) increased in the PD-NC and PD-MCI stages. GTA demonstrated decreased nodal metrics for DAN and dSMN, coupled with an increase for CBN. Moreover, the degree centrality (DC) values of DAN and dSMN exhibited a stage-dependent differential impact on cognitive performance across the continuum of cognitive decline. CONCLUSION Our findings suggest that across the progression of cognitive impairment, the LVN gradually transitions into a core node with reduced connectivity, while the enhancement of connections in CBN diminishes. Furthermore, the non-linear relationship between the DC values of RSNs and cognitive decline indicates the potential for tailored interventions targeting specific stages.
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huize Pang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shuting Bu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mengwan Zhao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Juzhou Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
5
|
Qu J, Tian M, Zhu R, Song C, Wu Y, Xu G, Liu Y, Wang D. Aberrant dynamic functional network connectivity in progressive supranuclear palsy. Neurobiol Dis 2024; 195:106493. [PMID: 38579913 DOI: 10.1016/j.nbd.2024.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The clinical symptoms of progressive supranuclear palsy (PSP) may be mediated by aberrant dynamic functional network connectivity (dFNC). While earlier research has found altered functional network connections in PSP patients, the majority of those studies have concentrated on static functional connectivity. Nevertheless, in this study, we sought to evaluate the modifications in dynamic characteristics and establish the correlation between these disease-related changes and clinical variables. METHODS In our study, we conducted a study on 53 PSP patients and 65 normal controls. Initially, we employed a group independent component analysis (ICA) to derive resting-state networks (RSNs), while employing a sliding window correlation approach to produce dFNC matrices. The K-means algorithm was used to cluster these matrices into distinct dynamic states, and then state analysis was subsequently employed to analyze the dFNC and temporal metrics between the two groups. Finally, we made a correlation analysis. RESULTS PSP patients showed increased connectivity strength between medulla oblongata (MO) and visual network (VN) /cerebellum network (CBN) and decreased connections were found between default mode network (DMN) and VN/CBN, subcortical cortex network (SCN) and CBN. In addition, PSP patients spend less fraction time and shorter dwell time in a diffused state, especially the MO and SCN. Finally, the fraction time and mean dwell time in the distributed connectivity state (state 2) is negatively correlated with duration, bulbar and oculomotor symptoms. DISCUSSION Our findings were that the altered connectivity was mostly concentrated in the CBN and MO. In addition, PSP patients had different temporal dynamics, which were associated with bulbar and oculomotor symptoms in PSPRS. It suggest that variations in dynamic functional network connectivity properties may represent an essential neurological mechanism in PSP.
Collapse
Affiliation(s)
- Junyu Qu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China
| | - Min Tian
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Rui Zhu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Yongsheng Wu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China
| | - Guihua Xu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, China.
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China; Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Ji'nan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Ji'nan, China.
| |
Collapse
|
6
|
Rong D, Hu CP, Yang J, Guo Z, Liu W, Yu M. Consistent abnormal activity in the putamen by dopamine modulation in Parkinson's disease: A resting-state neuroimaging meta-analysis. Brain Res Bull 2024; 210:110933. [PMID: 38508469 DOI: 10.1016/j.brainresbull.2024.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE This study aimed to elucidate brain areas mediated by oral anti-parkinsonian medicine that consistently show abnormal resting-state activation in PD and to reveal their functional connectivity profiles using meta-analytic approaches. METHODS Searches of the PubMed, Web of Science databases identified 78 neuroimaging studies including PD OFF state (PD-OFF) versus (vs.) PD ON state (PD-ON) or PD-ON versus healthy controls (HCs) or PD-OFF versus HCs data. Coordinate-based meta-analysis and functional meta-analytic connectivity modeling (MACM) were performed using the activation likelihood estimation algorithm. RESULTS Brain activation in PD-OFF vs. PD-ON was significantly changed in the right putamen and left inferior parietal lobule (IPL). Contrast analysis indicated that PD-OFF vs. HCs had more consistent activation in the right paracentral lobule, right middle frontal gyrus, right thalamus, left superior parietal lobule and right putamen, whereas PD-ON vs. HCs elicited more consistent activation in the bilateral middle temporal gyrus, left occipital gyrus, right inferior frontal gyrus and right caudate. MACM revealed coactivation of the right putamen in the direct contrast of PD-OFF vs. PD-ON. Subtraction analysis of significant coactivation clusters for PD-OFF vs. PD-ON with the medium of HCs showed effects in the sensorimotor, top-down control, and visual networks. By overlapping the MACM maps of the two analytical strategies, we demonstrated that the coactivated brain region focused on the right putamen. CONCLUSIONS The convergence of local brain regions and co-activation neural networks are involved the putamen, suggesting its potential as a specific imaging biomarker to monitor treatment efficacy. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD CRD42022304150].
Collapse
Affiliation(s)
- Danyan Rong
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Chuan-Peng Hu
- School of Psychology, Nanjing Normal University, No.122, Ninghai Road, Gulou District, Nanjing, Jiangsu 210024, China
| | - Jiaying Yang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhiying Guo
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China.
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
7
|
Goelman G, Dan R, Bezdicek O, Jech R, Ekstein D. Directed functional connectivity of the default-mode-network of young and older healthy subjects. Sci Rep 2024; 14:4304. [PMID: 38383579 PMCID: PMC10881992 DOI: 10.1038/s41598-024-54802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Alterations in the default mode network (DMN) are associated with aging. We assessed age-dependent changes of DMN interactions and correlations with a battery of neuropsychological tests, to understand the differences of DMN directed connectivity between young and older subjects. Using a novel multivariate analysis method on resting-state functional MRI data from fifty young and thirty-one healthy older subjects, we calculated intra- and inter-DMN 4-nodes directed pathways. For the old subject group, we calculated the partial correlations of inter-DMN pathways with: psychomotor speed and working memory, executive function, language, long-term memory and visuospatial function. Pathways connecting the DMN with visual and limbic regions in older subjects engaged at BOLD low frequency and involved the dorsal posterior cingulate cortex (PCC), whereas in young subjects, they were at high frequency and involved the ventral PCC. Pathways combining the sensorimotor (SM) cortex and the DMN, were SM efferent in the young subjects and SM afferent in the older subjects. Most DMN efferent pathways correlated with reduced speed and working memory. We suggest that the reduced sensorimotor efferent and the increased need to control such activities, cause a higher dependency on external versus internal cues thus suggesting how physical activity might slow aging.
Collapse
Affiliation(s)
- Gadi Goelman
- Department of Neurology, Ginges Center of Neurogenetics, Hadassah Hebrew University Medical Center, 91120, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rotem Dan
- Department of Neurology, Ginges Center of Neurogenetics, Hadassah Hebrew University Medical Center, 91120, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, Charles University, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, Charles University, Prague, Czech Republic
| | - Dana Ekstein
- Department of Neurology, Ginges Center of Neurogenetics, Hadassah Hebrew University Medical Center, 91120, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Mellema CJ, Nguyen KP, Treacher A, Andrade AX, Pouratian N, Sharma VD, O'Suileabhain P, Montillo AA. Longitudinal prognosis of Parkinson's outcomes using causal connectivity. Neuroimage Clin 2024; 42:103571. [PMID: 38471435 PMCID: PMC10944096 DOI: 10.1016/j.nicl.2024.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
Despite the prevalence of Parkinson's disease (PD), there are no clinically-accepted neuroimaging biomarkers to predict the trajectory of motor or cognitive decline or differentiate Parkinson's disease from atypical progressive parkinsonian diseases. Since abnormal connectivity in the motor circuit and basal ganglia have been previously shown as early markers of neurodegeneration, we hypothesize that patterns of interregional connectivity could be useful to form patient-specific predictive models of disease state and of PD progression. We use fMRI data from subjects with Multiple System Atrophy (MSA), Progressive Supranuclear Palsy (PSP), idiopathic PD, and healthy controls to construct predictive models for motor and cognitive decline and differentiate between the four subgroups. Further, we identify the specific connections most informative for progression and diagnosis. When predicting the one-year progression in the MDS-UPDRS-III1* and Montreal Cognitive assessment (MoCA), we achieve new state-of-the-art mean absolute error performance. Additionally, the balanced accuracy we achieve in the diagnosis of PD, MSA, PSP, versus healthy controls surpasses that attained in most clinics, underscoring the relevance of the brain connectivity features. Our models reveal the connectivity between deep nuclei, motor regions, and the thalamus as the most important for prediction. Collectively these results demonstrate the potential of fMRI connectivity as a prognostic biomarker for PD and increase our understanding of this disease.
Collapse
Affiliation(s)
- Cooper J Mellema
- Lyda Hill Department of Bioinformatics, United States; Biomedical Engineering Department, United States; University of Texas Southwestern Medical Center, United States
| | - Kevin P Nguyen
- Lyda Hill Department of Bioinformatics, United States; Biomedical Engineering Department, United States; University of Texas Southwestern Medical Center, United States
| | - Alex Treacher
- Lyda Hill Department of Bioinformatics, United States; Biophysics Department, United States; University of Texas Southwestern Medical Center, United States
| | - Aixa X Andrade
- Lyda Hill Department of Bioinformatics, United States; Biomedical Engineering Department, United States; University of Texas Southwestern Medical Center, United States
| | - Nader Pouratian
- Neurosurgery Department, United States; University of Texas Southwestern Medical Center, United States
| | - Vibhash D Sharma
- Neurology Department, United States; University of Texas Southwestern Medical Center, United States
| | - Padraig O'Suileabhain
- Neurology Department, United States; University of Texas Southwestern Medical Center, United States
| | - Albert A Montillo
- Lyda Hill Department of Bioinformatics, United States; Biomedical Engineering Department, United States; Advanced Imaging Research Center, United States; Radiology Department, United States; University of Texas Southwestern Medical Center, United States.
| |
Collapse
|
9
|
Herrejon IA, Jackson TB, Hicks TH, Bernard JA. Functional Connectivity Differences in Distinct Dentato-Cortical Networks in Alzheimer's Disease and Mild Cognitive Impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578249. [PMID: 38352603 PMCID: PMC10862898 DOI: 10.1101/2024.02.02.578249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recent research has implicated the cerebellum in Alzheimer's disease (AD), and cerebrocerebellar network connectivity is emerging as a possible contributor to symptom severity. The cerebellar dentate nucleus (DN) has parallel motor and non-motor sub-regions that project to motor and frontal regions of the cerebral cortex, respectively. These distinct dentato-cortical networks have been delineated in the non-human primate and human brain. Importantly, cerebellar regions prone to atrophy in AD are functionally connected to atrophied regions of the cerebral cortex, suggesting that dysfunction perhaps occurs at a network level. Investigating functional connectivity (FC) alterations of the DN is a crucial step in understanding the cerebellum in AD and in mild cognitive impairment (MCI). Inclusion of this latter group stands to provide insights into cerebellar contributions prior to diagnosis of AD. The present study investigated FC differences in dorsal (dDN) and ventral (vDN) DN networks in MCI and AD relative to cognitively normal participants (CN) and relationships between FC and behavior. Our results showed patterns indicating both higher and lower functional connectivity in both dDN and vDN in AD compared to CN. However, connectivity in the AD group was lower when compared to MCI. We argue that these findings suggest that the patterns of higher FC in AD may act as a compensatory mechanism. Additionally, we found associations between the individual networks and behavior. There were significant interactions between dDN connectivity and motor symptoms. However, both DN seeds were associated with cognitive task performance. Together, these results indicate that cerebellar DN networks are impacted in AD, and this may impact behavior. In concert with the growing body of literature implicating the cerebellum in AD, our work further underscores the importance of investigations of this region. We speculate that much like in psychiatric diseases such as schizophrenia, cerebellar dysfunction results in negative impacts on thought and the organization therein. Further, this is consistent with recent arguments that the cerebellum provides crucial scaffolding for cognitive function in aging. Together, our findings stand to inform future clinical work in the diagnosis and understanding of this disease.
Collapse
Affiliation(s)
- Ivan A. Herrejon
- Department of Psychological and Brain Sciences Texas A&M University
| | - T. Bryan Jackson
- Department of Psychological and Brain Sciences Texas A&M University
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center
| | - Tracey H. Hicks
- Department of Psychological and Brain Sciences Texas A&M University
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences Texas A&M University
- Texas A&M Institute for Neuroscience Texas A&M University
| | | |
Collapse
|
10
|
Li T, Le W, Jankovic J. Linking the cerebellum to Parkinson disease: an update. Nat Rev Neurol 2023; 19:645-654. [PMID: 37752351 DOI: 10.1038/s41582-023-00874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Parkinson disease (PD) is characterized by heterogeneous motor and non-motor symptoms, resulting from neurodegeneration involving various parts of the central nervous system. Although PD pathology predominantly involves the nigral-striatal system, growing evidence suggests that pathological changes extend beyond the basal ganglia into other parts of the brain, including the cerebellum. In addition to a primary involvement in motor control, the cerebellum is now known to also have an important role in cognitive, sleep and affective processes. Over the past decade, an accumulating body of research has provided clinical, pathological, neurophysiological, structural and functional neuroimaging findings that clearly establish a link between the cerebellum and PD. This Review presents an overview and update on the involvement of the cerebellum in the clinical features and pathogenesis of PD, which could provide a novel framework for a better understanding the heterogeneity of the disease.
Collapse
Affiliation(s)
- Tianbai Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China.
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Marchese SM, Palesi F, Nigri A, Bruzzone MG, Pantaleoni C, Gandini Wheeler-Kingshott CAM, D’Arrigo S, D’Angelo E, Cavallari P. Structural and connectivity parameters reveal spared connectivity in young patients with non-progressive compared to slow-progressive cerebellar ataxia. Front Neurol 2023; 14:1279616. [PMID: 37965172 PMCID: PMC10642782 DOI: 10.3389/fneur.2023.1279616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Within Pediatric Cerebellar Ataxias (PCAs), patients with non-progressive ataxia (NonP) surprisingly show postural motor behavior comparable to that of healthy controls, differently to slow-progressive ataxia patients (SlowP). This difference may depend on the building of compensatory strategies of the intact areas in NonP brain network. Methods Eleven PCAs patients were recruited: five with NonP and six with SlowP. We assessed volumetric and axonal bundles alterations with a multimodal approach to investigate whether eventual spared connectivity between basal ganglia and cerebellum explains the different postural motor behavior of NonP and SlowP patients. Results Cerebellar lobules were smaller in SlowP patients. NonP patients showed a lower number of streamlines in the cerebello-thalamo-cortical tracts but a generalized higher integrity of white matter tracts connecting the cortex and the basal ganglia with the cerebellum. Discussion This work reveals that the axonal bundles connecting the cerebellum with basal ganglia and cortex demonstrate a higher integrity in NonP patients. This evidence highlights the importance of the cerebellum-basal ganglia connectivity to explain the different postural motor behavior of NonP and SlowP patients and support the possible compensatory role of basal ganglia in patients with stable cerebellar malformation.
Collapse
Affiliation(s)
- Silvia Maria Marchese
- Human Physiology Section of the DePT, Università degli Studi di Milano, Milan, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Digital Neuroscience, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Nigri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Digital Neuroscience, IRCCS Mondino Foundation, Pavia, Italy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Stefano D’Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Digital Neuroscience, IRCCS Mondino Foundation, Pavia, Italy
| | - Paolo Cavallari
- Human Physiology Section of the DePT, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Liu X, Tyler LK, Cam-Can, Davis SW, Rowe JB, Tsvetanov KA. Cognition's dependence on functional network integrity with age is conditional on structural network integrity. Neurobiol Aging 2023; 129:195-208. [PMID: 37392579 DOI: 10.1016/j.neurobiolaging.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023]
Abstract
Maintaining good cognitive function is crucial for well-being across the lifespan. We proposed that the degree of cognitive maintenance is determined by the functional interactions within and between large-scale brain networks. Such connectivity can be represented by the white matter architecture of structural brain networks that shape intrinsic neuronal activity into integrated and distributed functional networks. We explored how the function-structure connectivity convergence, and the divergence of functional connectivity from structural connectivity, contribute to the maintenance of cognitive function across the adult lifespan. Multivariate analyses were used to investigate the relationship between function-structure connectivity convergence and divergence with multivariate cognitive profiles, respectively. Cognitive function was increasingly dependent on function-structure connectivity convergence as age increased. The dependency of cognitive function on connectivity was particularly strong for high-order cortical networks and subcortical networks. The results suggest that brain functional network integrity sustains cognitive functions in old age, as a function of the integrity of the brain's structural connectivity.
Collapse
Affiliation(s)
- Xulin Liu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Lorraine K Tyler
- The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Simon W Davis
- Department of Neurology, Duke University, School of Medicine, Durham, NC, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Mahoney-Rafferty EC, Tucker HR, Akhtar K, Herlihy R, Audil A, Shah D, Gupta M, Kochman EM, Feustel PJ, Molho ES, Pilitsis JG, Shin DS. Assessing the Location, Relative Expression and Subclass of Dopamine Receptors in the Cerebellum of Hemi-Parkinsonian Rats. Neuroscience 2023; 521:1-19. [PMID: 37116741 DOI: 10.1016/j.neuroscience.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. Yet, if and how this brain area responds to PD therapy and contributes to maintaining motor function fidelity in the face of diminished BG function remains largely unanswered. Limited research suggests that dopaminergic signaling exists in the cerebellum with functional dopamine receptors, tyrosine hydroxylase (TH) and dopamine transporters (DATs); however, much of this information is largely derived from healthy animals and humans. Here, we identified the location and relative expression of dopamine 1 receptors (D1R) and dopamine 2 receptors (D2R) in the cerebellum of a hemi-parkinsonian male rat model of PD. D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.
Collapse
Affiliation(s)
- Emily C Mahoney-Rafferty
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Heidi R Tucker
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Kainat Akhtar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Rachael Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Aliyah Audil
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Dia Shah
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Megan Gupta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Eliyahu M Kochman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Eric S Molho
- Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurosurgery, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
14
|
Wang Q, Yu M, Yan L, Xu J, Wang Y, Zhou G, Liu W. Altered functional connectivity of the primary motor cortex in tremor dominant and postural instability gait difficulty subtypes of early drug-naive Parkinson's disease patients. Front Neurol 2023; 14:1151775. [PMID: 37251215 PMCID: PMC10213280 DOI: 10.3389/fneur.2023.1151775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
Background The primary motor cortex (M1) is an important hub in the motor circuitry of Parkinson's disease (PD), but the subregions' function and their correlation to tremor dominant (TD) and postural instability and gait disturbance (PIGD) with PD remain unclear. This study aimed to determine whether the functional connectivity (FC) of the M1 subregions varied between the PD and PIGD subtypes. Methods We recruited 28 TD patients, 49 PIGD patients, and 42 healthy controls (HCs). M1 was divided into 12 regions of interest using the Human Brainnetome Atlas template to compare FC among these groups. Results Compared with HCs, TD and PIGD patients exhibited increased FC between the left upper limb region (A4UL_L) and the right caudate nucleus (CAU)/left putamen (PUT), between the right A4UL (A4UL_R) and the left anterior cingulate and paracingulate gyri (ACG)/bilateral cerebellum4_5 (CRBL4_5)/left PUT/right CAU/left supramarginal gyrus/left middle frontal gyrus (MFG), as well as decreased connectivity between the A4UL_L and the left postcentral gyrus and the bilateral cuneus, and between the A4UL_R and the right inferior occipital gyrus. TD patients showed increased FC between the right caudal dorsolateral area 6 (A6CDL_R) and the left ACG/right MFG, between the A4UL_L and the right CRBL6/right middle frontal gyrus, orbital part/bilateral inferior frontal gyrus, and orbital part (ORBinf), and between the A4UL_R and the left ORBinf/right MFG/right insula (INS). PIGD patients displayed increased connectivity between the A4UL_L and the left CRBL4_5. Compared with PIGD patients, TD patients exhibited increased connectivity between the A6CDL_R and the left ACG/right MFG and between the A4UL_R and the left ACG/left ORBinf/right INS/right MFG. Furthermore, in TD and PIGD groups, the FC strength between the A6CDL_R and right MFG was negatively correlated with PIGD scores, while the FC strength between the A4UL_R and left ORBinf/right INS was positively correlated with TD scores and tremor scores. Conclusion Our results demonstrated that early TD and PIGD patients share some common injury and compensatory mechanisms. TD patients occupied more resources in the MFG, ORBinf, INS, and ACG, which can be used as biomarkers to distinguish them from PIGD patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Yu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Yan
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxia Xu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Wang
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gaiyan Zhou
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Cao Z, Wu J, Liu X, Chen J, Wen J, Qin J, Tan S, Duanmu X, Zhang B, Huang P, Xu X, Zhang M. Normalization effect of dopamine replacement therapy on brain functional connectome in Parkinson's disease. Hum Brain Mapp 2023; 44:3845-3858. [PMID: 37126590 DOI: 10.1002/hbm.26316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023] Open
Abstract
Dopamine replacement therapy (DRT) represents the standard treatment for Parkinson's disease (PD), however, instant and long-term medication influence on patients' brain function have not been delineated. Here, a total of 97 drug-naïve patients, 43 patients under long-term DRT, and 94 normal control (NC) were, retrospectively, enrolled. Resting-state functional magnetic resonance imaging data and motor symptom assessments were conducted before and after levodopa challenge test. Whole-brain functional connectivity (FC) matrices were constructed. Network-based statistics were performed to assess FC difference between drug-naïve patients and NC, and these significant FCs were defined as disease-related connectomes, which were used for further statistical analyses. Patients showed better motor performances after both long-term DRT and levodopa challenge test. Two disease-related connectomes were observed with distinct patterns. The FC of the increased connectome, which mainly consisted of the motor, visual, subcortical, and cerebellum networks, was higher in drug-naïve patients than that in NC and was normalized after long-term DRT (p-value <.050). The decreased connectome was mainly composed of the motor, medial frontal, and salience networks and showed significantly lower FC in all patients than NC (p-value <.050). The global FC of both increased and decreased connectome was significantly enhanced after levodopa challenge test (q-value <0.050, false discovery rate-corrected). The global FC of increased connectome in ON-state was negatively associated with levodopa equivalency dose (r = -.496, q-value = 0.007). Higher global FC of the decreased connectome was related to better motor performances (r = -.310, q-value = 0.022). Our findings provided insights into brain functional alterations under dopaminergic medication and its benefit on motor symptoms.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Chen Z, He C, Zhang P, Cai X, Huang W, Chen X, Xu M, Wang L, Zhang Y. Abnormal cerebellum connectivity patterns related to motor subtypes of Parkinson's disease. J Neural Transm (Vienna) 2023; 130:549-560. [PMID: 36859555 PMCID: PMC10050038 DOI: 10.1007/s00702-023-02606-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Cerebellar dysfunction may substantially contribute to the clinical symptoms of Parkinson's disease (PD). The role of cerebellar subregions in tremors and gait disturbances in PD remains unknown. To investigate alterations in cerebellar subregion volumes and functional connectivity (FC), as well as FC between the dentate nucleus (DN) and ventral lateral posterior nucleus (VLp) of the thalamus, which are potentially involved in different PD motor subtypes. We conducted morphometric and resting-state functional connectivity analyses in various cerebellar subregions in 22 tremor-dominant (TD)-PD and 35 postural instability gait difficulty dominant (PIGD)-PD patients and 38 sex- and age-matched healthy controls (HCs). The volume and FC alterations in various cerebellar subregions and the neural correlates of these changes with the clinical severity scores were investigated. The PIGD-PD group showed greater FC between the right motor cerebellum (CBMm) and left postcentral gyrus than the HC group, and a higher FC was associated with less severe PIGD symptoms. In contrast, the TD-PD group had decreased FC between the right DN and left VLp compared with the PIGD-PD and HC groups, and lower FC was associated with worse TD symptoms. Furthermore, the PIGD-PD group had higher FC between the left DN and left inferior temporal gyrus than the TD-PD group. Morphometric analysis revealed that the TD-PD group showed a significantly higher volume of left CBMm than the HC group. Our findings point to differential alteration patterns in cerebellar subregions and offer a new perspective on the pathophysiology of motor subtypes of PD.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.,Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xin Cai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Wenlin Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100190, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China. .,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
17
|
Landelle C, Dahlberg LS, Lungu O, Misic B, De Leener B, Doyon J. Altered Spinal Cord Functional Connectivity Associated with Parkinson's Disease Progression. Mov Disord 2023; 38:636-645. [PMID: 36802374 DOI: 10.1002/mds.29354] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) has traditionally been viewed as an α-synucleinopathy brain pathology. Yet evidence based on postmortem human and animal experimental models indicates that the spinal cord may also be affected. OBJECTIVE Functional magnetic resonance imaging (fMRI) seems to be a promising candidate to better characterize spinal cord functional organization in PD patients. METHODS Resting-state spinal fMRI was performed in 70 PD patients and 24 age-matched healthy controls, the patients being divided into three groups based on their motor symptom severity: PDlow (n = 24), PDmed (n = 22), and PDadv (n = 24) groups. A combination of independent component analysis (ICA) and a seed-based approach was applied. RESULTS When pooling all participants, the ICA revealed distinct ventral and dorsal components distributed along the rostro-caudal axis. This organization was highly reproducible within subgroups of patients and controls. PD severity, assessed by Unified Parkinson's Disease Rating Scale (UPDRS) scores, was associated with a decrease in spinal functional connectivity (FC). Notably, we observed a reduced intersegmental correlation in PD as compared to controls, the latter being negatively associated with patients' upper-limb UPDRS scores (P = 0.0085). This negative association between FC and upper-limb UPDRS scores was significant between adjacent C4-C5 (P = 0.015) and C5-C6 (P = 0.20) cervical segments, levels associated with upper-limb functions. CONCLUSIONS The present study provides the first evidence of spinal cord FC changes in PD and opens new avenues for the effective diagnosis and therapeutic strategies in PD. This underscores how spinal cord fMRI can serve as a powerful tool to characterize, in vivo, spinal circuits for a variety of neurological diseases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Caroline Landelle
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Linda Solstrand Dahlberg
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Bratislav Misic
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Benjamin De Leener
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.,CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Julien Doyon
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Cristini J, Parwanta Z, De las Heras B, Medina-Rincon A, Paquette C, Doyon J, Dagher A, Steib S, Roig M. Motor Memory Consolidation Deficits in Parkinson's Disease: A Systematic Review with Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2023; 13:865-892. [PMID: 37458048 PMCID: PMC10578244 DOI: 10.3233/jpd-230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The ability to encode and consolidate motor memories is essential for persons with Parkinson's disease (PD), who usually experience a progressive loss of motor function. Deficits in memory encoding, usually expressed as poorer rates of skill improvement during motor practice, have been reported in these patients. Whether motor memory consolidation (i.e., motor skill retention) is also impaired is unknown. OBJECTIVE To determine whether motor memory consolidation is impaired in PD compared to neurologically intact individuals. METHODS We conducted a pre-registered systematic review (PROSPERO: CRD42020222433) following PRISMA guidelines that included 46 studies. RESULTS Meta-analyses revealed that persons with PD have deficits in retaining motor skills (SMD = -0.17; 95% CI = -0.32, -0.02; p = 0.0225). However, these deficits are task-specific, affecting sensory motor (SMD = -0.31; 95% CI -0.47, -0.15; p = 0.0002) and visuomotor adaptation (SMD = -1.55; 95% CI = -2.32, -0.79; p = 0.0001) tasks, but not sequential fine motor (SMD = 0.17; 95% CI = -0.05, 0.39; p = 0.1292) and gross motor tasks (SMD = 0.04; 95% CI = -0.25, 0.33; p = 0.7771). Importantly, deficits became non-significant when augmented feedback during practice was provided, and additional motor practice sessions reduced deficits in sensory motor tasks. Meta-regression analyses confirmed that deficits were independent of performance during encoding, as well as disease duration and severity. CONCLUSION Our results align with the neurodegenerative models of PD progression and motor learning frameworks and emphasize the importance of developing targeted interventions to enhance motor memory consolidation in PD.
Collapse
Affiliation(s)
- Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Zohra Parwanta
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Bernat De las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Almudena Medina-Rincon
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- Grupo de investigación iPhysio, San Jorge University, Zaragoza, Aragón, Spain
- Department of Physiotherapy, San Jorge University, Zaragoza, Aragón, Spain
| | - Caroline Paquette
- Department of Kinesiology & Physical Education, McGill University, Montreal, QC,Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Simon Steib
- Department of Human Movement, Training and Active Aging, Institute of Sports and Sports Sciences, Heidelberg University, Heidelberg, Germany
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Neuropathology of the Basal Ganglia in SNCA Transgenic Rat Model of Parkinson's Disease: Involvement of Parvalbuminergic Interneurons and Glial-Derived Neurotropic Factor. Int J Mol Sci 2022; 23:ijms231710126. [PMID: 36077524 PMCID: PMC9456397 DOI: 10.3390/ijms231710126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein, encoded by the SNCA gene. The main neuropathological hallmark of PD is the degeneration of dopaminergic neurons leading to striatal dopamine depletion. Trophic support by a neurotrophin called glial-derived neurotrophic factor (GDNF) is also lacking in PD. We performed immunohistochemical studies to investigate neuropathological changes in the basal ganglia of a rat transgenic model of PD overexpressing alfa-synuclein. We observed that neuronal loss also occurs in the dorsolateral part of the striatum in the advanced stages of the disease. Moreover, along with the degeneration of the medium spiny projection neurons, we found a dramatic loss of parvalbumin interneurons. A marked decrease in GDNF, which is produced by parvalbumin interneurons, was observed in the striatum and in the substantia nigra of these animals. This confirmed the involvement of the striatum in the pathophysiology of PD and the importance of GDNF in maintaining the health of the substantia nigra.
Collapse
|
20
|
Choi E, Han JW, Suh SW, Bae JB, Han JH, Lee S, Kim SE, Kim KW. Altered resting state brain metabolic connectivity in dementia with Lewy bodies. Front Neurol 2022; 13:847935. [PMID: 36003295 PMCID: PMC9393539 DOI: 10.3389/fneur.2022.847935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Although dementia with Lewy bodies (DLB) have Parkinsonism in common with Parkinson's disease (PD) or PD dementia (PDD), they have different neuropathologies that underlie Parkinsonism. Altered brain functional connectivity that may correspond to neuropathology has been reported in PD while never been studied in DLB. To identify the characteristic brain connectivity of Parkinsonism in DLB, we compared the resting state metabolic connectivity in striato-thalamo-cortical (STC) circuit, nigrostriatal pathway, and cerebello-thalamo-cortical motor (CTC) circuit in 27 patients with drug-naïve DLB and 27 age- and sex-matched normal controls using 18F-fluoro-2-deoxyglucose PET. We derived 118 regions of interest using the Automated Anatomical Labeling templates and the Wake Forest University Pick-Atlas. We applied the sparse inverse covariance estimation method to construct the metabolic connectivity matrix. Patients with DLB, with or without Parkinsonism, showed lower inter-regional connectivity between the areas included in the STC circuit (motor cortex–striatum, midbrain–striatum, striatum–globus pallidus, and globus pallidus–thalamus) than the controls. DLB patients with Parkinsonism showed less reduced inter-regional connectivity between the midbrain and the striatum than those without Parkinsonism, and higher inter-regional connectivity between the areas included in the CTC circuit (motor cortex–pons, pons–cerebellum, and cerebellum–thalamus) than those without Parkinsonism and the controls. The resting state metabolic connectivity in the STC circuit may be reduced in DLB. In DLB with Parkinsonism, the CTC circuit and the nigrostriatal pathway may be activated to mitigate Parkinsonism. This difference in the brain connectivity may be a candidate biomarker for differentiating DLB from PD or PDD.
Collapse
Affiliation(s)
- Euna Choi
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung Wan Suh
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Hyun Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Subin Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Ki Woong Kim
| |
Collapse
|
21
|
Zhang H, Wang L, Gan C, Cao X, Ji M, Sun H, Yuan Y, Zhang K. Altered functional connectivity of cerebellar dentate nucleus in peak-dose dyskinesia in Parkinson’s disease. Front Aging Neurosci 2022; 14:943179. [PMID: 36034152 PMCID: PMC9400811 DOI: 10.3389/fnagi.2022.943179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the emergence of levodopa-induced dyskinesia (LID) in Parkinson’s disease (PD), yet the neural mechanism remains obscure. Our aim was to ascertain the role of functional connectivity (FC) patterns of the cerebellar dentate nucleus (DN) in the pathogenesis of peak-dose dyskinesia in PD. Twenty-three peak-dose dyskinetic PD patients, 27 non-dyskinetic PD patients, and 36 healthy controls (HCs) were enrolled and underwent T1-weighted and resting-state functional magnetic resonance imaging (rs-fMRI) scans after dopaminergic medication intake. We selected left and right DN as the regions of interest and then employed voxel-wise FC analysis and voxel-based morphometry analysis (VBM). The correlations between the altered FC pattern and clinical scores were also examined. Finally, receiver operating characteristic (ROC) curve analysis was performed to assess the potential of DN FC measures as a feature of peak-dose dyskinesia in PD. Dyskinetic PD patients showed excessively increased FC between the left DN and right putamen compared with the non-dyskinetic. When compared with controls, dyskinetic PD patients mainly exhibited increased FC between left DN and bilateral putamen, left paracentral lobule, right postcentral gyrus, and supplementary motor area. Additionally, non-dyskinetic PD patients displayed increased FC between left DN and left precentral gyrus and right paracentral lobule compared with controls. Meanwhile, increased FC between DN (left/right) and ipsilateral cerebellum lobule VIII was observed in both PD subgroups. However, no corresponding alteration in gray matter volume (GMV) was found. Further, a positive correlation between the z-FC values of left DN-right putamen and the Unified Dyskinesia Rating Scale (UDysRS) was confirmed in dyskinetic PD patients. Notably, ROC curve analyses revealed that the z-FC values of left DN-right putamen could be a potential neuroimaging feature identifying dyskinetic PD patients. Our findings demonstrated that the excessively strengthened connectivity of DN-putamen might contribute to the pathophysiological mechanisms of peak-dose dyskinesia in PD.
Collapse
|
22
|
Sun Y, Li L, Chen Y, Wang L, Zhai L, Sheng J, Liu T, Jin X. Feasibility and positive effects of scalp acupuncture for modulating motor and cerebral activity in Parkinson's disease: A pilot study. NeuroRehabilitation 2022; 51:467-479. [PMID: 35871374 DOI: 10.3233/nre-220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A variety of acupuncture therapies have shown efficacy in Parkinson's disease (PD). OBJECTIVE To evaluate scalp acupuncture (SA) effects on motor and cerebral activity by using gait equipment and resting-state functional magnetic resonance imaging (rs-fMRI). METHODS Twelve patients with PD received SA. They underwent the first functional-imaging scan after tactile stimulation and the second scan following needle removal. Gait test and local sensation assessment were performed immediately after each functional scan. Gait parameter differences between pre- and post-SA were analyzed using a paired t-test and altered brain areas in degree centrality (DC) and fractional amplitude of low-frequency fluctuation (fALFF) were identified between the two scans. RESULTS Eight patients completed the experiment. Stride length, maximum ankle height, maximum ankle horizontal displacement, gait speed, and range of shank motion significantly increased post-treatment (P < 0.05). fALFF in left middle frontal gyrus and DC in left cerebellum (corrected) increased, while fALFF in left inferior parietal lobule (corrected) during SA decreased, compared with those in tactile stimulation. A positive correlation was observed between right limb swings and both fALFF areas. CONCLUSIONS Differences in gait and brain analyses presented modulation to motor and brain activity in PD, thus, providing preliminary evidence for SA efficacy.
Collapse
Affiliation(s)
- Yingying Sun
- Department of Acupuncture, Ningbo Zhenhai People's Hospital, Ningbo, China
| | - Lihong Li
- Department of Acupuncture, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Yao Chen
- Department of Radiology, Zhejiang Hospital, Hangzhou, China
| | - Lei Wang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Lihao Zhai
- Department of Radiology, Zhejiang Hospital, Hangzhou, China
| | - Jili Sheng
- Department of Acupuncture, Zhejiang Hospital, Hangzhou, China
| | - Tao Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Xiaoqing Jin
- Department of Acupuncture, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
23
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
24
|
Su L, Zhuo Z, Duan Y, Huang J, Qiu X, Li M, Liu Y, Zeng X. Structural and Functional Characterization of Gray Matter Alterations in Female Patients With Neuropsychiatric Systemic Lupus. Front Neurosci 2022; 16:839194. [PMID: 35585919 PMCID: PMC9108669 DOI: 10.3389/fnins.2022.839194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate morphological and functional alterations within gray matter (GM) in female patients with neuropsychiatric systemic lupus (NPSLE) and to explore their clinical significance. Methods 54 female patients with SLE (30 NPSLE and 24 non-NPSLE) and 32 matched healthy controls were recruited. All subjects received a quantitative MRI scan (FLAIR, 3DT1, resting-state functional MRI). GM volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree of centrality (DC) were obtained. Between-group comparison, clinical correlation, and discrimination of NPSLE from non-NPSLE were achieved by voxel-based analysis, cerebellar seed-based functional connectivity analysis, regression analysis, and support vector machine (SVM), respectively. Results Patients with NPSLE showed overt subcortical GM atrophy without significantly abnormal brain functions in the same region compared with controls. The dysfunction within the left superior temporal gyri (L-STG) was found precede the GM volumetric loss. The function of the nodes in default mode network (DMN) and salience network (SN) were weakened in NPSLE patients compared to controls. The function of the cerebellar posterior lobes was significantly activated in non-NPSLE patients but attenuated along with GM atrophy and presented higher connectivity with L-STG and DMN in NPSLE patients, while the variation of the functional activities in the sensorimotor network (SMN) was the opposite. These structural and functional alterations were mainly correlated with disease burden and anti-phospholipid antibodies (aPLs) (r ranges from -1.53 to 1.29). The ReHos in the bilateral cerebellar posterior lobes showed high discriminative power in identifying patients with NPSLE with accuracy of 87%. Conclusion Patients with NPSLE exhibit both structural and functional alterations in the GM of the brain, which especially involved the deep GM, the cognitive, and sensorimotor regions, reflecting a reorganization to compensate for the disease damage to the brain which was attenuated along with pathologic burden and cerebral vascular risk factors. The GM within the left temporal lobe may be one of the direct targets of lupus-related inflammatory attack. The function of the cerebellar posterior lobes might play an essential role in compensating for cortical functional disturbances and may contribute to identifying patients with suspected NPSLE in clinical practice.
Collapse
Affiliation(s)
- Li Su
- Department of Rheumatology and Clinical Immunology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Education, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Qiu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Education, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Education, Beijing, China
- *Correspondence: Xiaofeng Zeng,
| |
Collapse
|
25
|
Lee B, Di Pietro F, Henderson LA, Austin PJ. Altered basal ganglia infraslow oscillation and resting functional connectivity in complex regional pain syndrome. J Neurosci Res 2022; 100:1487-1505. [PMID: 35441738 PMCID: PMC9543905 DOI: 10.1002/jnr.25057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Complex regional pain syndrome (CRPS) is a painful condition commonly accompanied by movement disturbances and often affects the upper limbs. The basal ganglia motor loop is central to movement, however, non-motor basal ganglia loops are involved in pain, sensory integration, visual processing, cognition, and emotion. Systematic evaluation of each basal ganglia functional loop and its relation to motor and non-motor disturbances in CRPS has not been investigated. We recruited 15 upper limb CRPS and 45 matched healthy control subjects. Using functional magnetic resonance imaging, infraslow oscillations (ISO) and resting-state functional connectivity in motor and non-motor basal ganglia loops were investigated using putamen and caudate seeds. Compared to controls, CRPS subjects displayed increased ISO power in the putamen contralateral to the CRPS affected limb, specifically, in contralateral putamen areas representing the supplementary motor area hand, motor hand, and motor tongue. Furthermore, compared to controls, CRPS subjects displayed increased resting connectivity between these putaminal areas as well as from the caudate body to cortical areas such as the primary motor cortex, supplementary and cingulate motor areas, parietal association areas, and the orbitofrontal cortex. These findings demonstrate changes in basal ganglia loop function in CRPS subjects and may underpin motor disturbances of CRPS.
Collapse
Affiliation(s)
- Barbara Lee
- School of Medical Sciences and Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Flavia Di Pietro
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Luke A Henderson
- School of Medical Sciences and Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Paul J Austin
- School of Medical Sciences and Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
26
|
Tang S, Wang Y, Liu Y, Chau SW, Chan JW, Chu WC, Abrigo JM, Mok VC, Wing YK. Large-scale network dysfunction in α-Synucleinopathy: A meta-analysis of resting-state functional connectivity. EBioMedicine 2022; 77:103915. [PMID: 35259574 PMCID: PMC8904227 DOI: 10.1016/j.ebiom.2022.103915] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 01/22/2023] Open
Abstract
Background Although dysfunction of large-scale brain networks has been frequently demonstrated in patients with α-Synucleinopathy (α-Syn, i.e., Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy), a consistent pattern of dysfunction remains unclear. We aim to investigate network dysfunction in patients with α-Syn through a meta-analysis. Methods Whole-brain seed-based resting-state functional connectivity studies (published before September 1st, 2020 in English) comparing α-Syn patients with healthy controls (HC) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE). Seeds from each study were categorized into networks by their location within a priori functional networks. Seed-based effect size mapping with Permutation of Subject Images analysis of between-group effects identified the network systems in which α-Syn was associated with hyperconnectivity (increased connectivity in α-Syn vs. HC) or hypoconnectivity (decreased connectivity in α-Syn vs. HC) within and between each seed-network. This study was registered on PROSPERO (CRD42020210133). Findings In total, 136 seed-based voxel-wise resting-state functional connectivity datasets from 72 publications (3093 α-Syn patients and 3331 HC) were included in the meta-analysis. We found that α-Syn patients demonstrated imbalanced connectivity among subcortical network, cerebellum, and frontal parietal networks that involved in motor functioning and executive control. The patient group was associated with hypoconnectivity in default mode network and ventral attention network that involved in cognition and attention. Additionally, the patient group exhibited hyperconnectivity between neural systems involved in top-down emotion regulation and hypoconnectivity between networks involved in bottom-up emotion processing. Interpretation These findings supported neurocognitive models in which network dysfunction is tightly linked to motor, cognitive and psychiatric symptoms observed in α-Syn patients.
Collapse
Affiliation(s)
- Shi Tang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanlin Wang
- Advanced Computing and Digital Engineering Research, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, China
| | - Yaping Liu
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Steven Wh Chau
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joey Wy Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Cw Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jill M Abrigo
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
27
|
Safai A, Vakharia N, Prasad S, Saini J, Shah A, Lenka A, Pal PK, Ingalhalikar M. Multimodal Brain Connectomics-Based Prediction of Parkinson’s Disease Using Graph Attention Networks. Front Neurosci 2022; 15:741489. [PMID: 35280342 PMCID: PMC8904413 DOI: 10.3389/fnins.2021.741489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background A multimodal connectomic analysis using diffusion and functional MRI can provide complementary information on the structure–function network dynamics involved in complex neurodegenerative network disorders such as Parkinson’s disease (PD). Deep learning-based graph neural network models generate higher-level embeddings that could capture intricate structural and functional regional interactions related to PD. Objective This study aimed at investigating the role of structure–function connections in predicting PD, by employing an end-to-end graph attention network (GAT) on multimodal brain connectomes along with an interpretability framework. Methods The proposed GAT model was implemented to generate node embeddings from the structural connectivity matrix and multimodal feature set containing morphological features and structural and functional network features of PD patients and healthy controls. Graph classification was performed by extracting topmost node embeddings, and the interpretability framework was implemented using saliency analysis and attention maps. Moreover, we also compared our model with unimodal models as well as other state-of-the-art models. Results Our proposed GAT model with a multimodal feature set demonstrated superior classification performance over a unimodal feature set. Our model demonstrated superior classification performance over other comparative models, with 10-fold CV accuracy and an F1 score of 86% and a moderate test accuracy of 73%. The interpretability framework highlighted the structural and functional topological influence of motor network and cortico-subcortical brain regions, among which structural features were correlated with onset of PD. The attention maps showed dependency between large-scale brain regions based on their structural and functional characteristics. Conclusion Multimodal brain connectomic markers and GAT architecture can facilitate robust prediction of PD pathology and provide an attention mechanism-based interpretability framework that can highlight the pathology-specific relation between brain regions.
Collapse
Affiliation(s)
- Apoorva Safai
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| | - Nirvi Vakharia
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| | - Shweta Prasad
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Clinical Neuroscience, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Apurva Shah
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
| | - Abhishek Lenka
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
- *Correspondence: Madhura Ingalhalikar,
| |
Collapse
|
28
|
Lahlou S, Gabitov E, Owen L, Shohamy D, Sharp M. Preserved motor memory in Parkinson's disease. Neuropsychologia 2022; 167:108161. [PMID: 35041839 DOI: 10.1016/j.neuropsychologia.2022.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Patients with Parkinson's disease, who lose the dopaminergic projections to the striatum, are impaired in certain aspects of motor learning. Recent evidence suggests that, in addition to its role in motor performance, the striatum plays a key role in the memory of motor learning. Whether Parkinson's patients have impaired motor memory and whether motor memory is modulated by dopamine at the time of initial learning is unknown. To address these questions, we measured memory of a learned motor sequence in Parkinson's patients who were either On or Off their dopaminergic medications at the time of initial learning. We compared them to a group of older and younger controls. Contrary to our predictions, motor memory was not impaired in patients compared to older controls, and was not influenced by dopamine state at the time of initial learning. To probe post-learning consolidation processes, we also tested whether learning a new sequence shortly after learning the initial sequence would interfere with later memory. We found that, in contrast to younger adults, neither older adults nor patients were susceptible to this interference. These findings suggest that motor memory is preserved in Parkinson's patients and raise the possibility that motor memory in patients is supported by compensatory non-dopamine sensitive mechanisms. Furthermore, given the similar performance characteristics observed in the patients and older adults and the absence of an effect of dopamine, these results raise the possibility that aging and Parkinson's disease affect motor memory in similar ways.
Collapse
Affiliation(s)
- Soraya Lahlou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | - Ella Gabitov
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | - Lucy Owen
- Department of Psychological and Brain Sciences, Dartmouth College, USA
| | - Daphna Shohamy
- Department of Psychology, Columbia University, USA; Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, USA
| | - Madeleine Sharp
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada.
| |
Collapse
|
29
|
Naeije G, Coquelet N, Wens V, Goldman S, Pandolfo M, De Tiège X. Age of onset modulates resting-state brain network dynamics in Friedreich Ataxia. Hum Brain Mapp 2021; 42:5334-5344. [PMID: 34523778 PMCID: PMC8519851 DOI: 10.1002/hbm.25621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
This magnetoencephalography (MEG) study addresses (i) how Friedreich ataxia (FRDA) affects the sub‐second dynamics of resting‐state brain networks, (ii) the main determinants of their dynamic alterations, and (iii) how these alterations are linked with FRDA‐related changes in resting‐state functional brain connectivity (rsFC) over long timescales. For that purpose, 5 min of resting‐state MEG activity were recorded in 16 FRDA patients (mean age: 27 years, range: 12–51 years; 10 females) and matched healthy subjects. Transient brain network dynamics was assessed using hidden Markov modeling (HMM). Post hoc median‐split, nonparametric permutations and Spearman rank correlations were used for statistics. In FRDA patients, a positive correlation was found between the age of symptoms onset (ASO) and the temporal dynamics of two HMM states involving the posterior default mode network (DMN) and the temporo‐parietal junctions (TPJ). FRDA patients with an ASO <11 years presented altered temporal dynamics of those two HMM states compared with FRDA patients with an ASO > 11 years or healthy subjects. The temporal dynamics of the DMN state also correlated with minute‐long DMN rsFC. This study demonstrates that ASO is the main determinant of alterations in the sub‐second dynamics of posterior associative neocortices in FRDA patients and substantiates a direct link between sub‐second network activity and functional brain integration over long timescales.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Coquelet
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Massimo Pandolfo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
30
|
Palesi F, Ferrante M, Gaviraghi M, Misiti A, Savini G, Lascialfari A, D'Angelo E, Gandini Wheeler‐Kingshott CAM. Motor and higher-order functions topography of the human dentate nuclei identified with tractography and clustering methods. Hum Brain Mapp 2021; 42:4348-4361. [PMID: 34087040 PMCID: PMC8356999 DOI: 10.1002/hbm.25551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/29/2023] Open
Abstract
Deep gray matter nuclei are the synaptic relays, responsible to route signals between specific brain areas. Dentate nuclei (DNs) represent the main output channel of the cerebellum and yet are often unexplored especially in humans. We developed a multimodal MRI approach to identify DNs topography on the basis of their connectivity as well as their microstructural features. Based on results, we defined DN parcellations deputed to motor and to higher-order functions in humans in vivo. Whole-brain probabilistic tractography was performed on 25 healthy subjects from the Human Connectome Project to infer DN parcellations based on their connectivity with either the cerebral or the cerebellar cortex, in turn. A third DN atlas was created inputting microstructural diffusion-derived metrics in an unsupervised fuzzy c-means classification algorithm. All analyses were performed in native space, with probability atlas maps generated in standard space. Cerebellar lobule-specific connectivity identified one motor parcellation, accounting for about 30% of the DN volume, and two non-motor parcellations, one cognitive and one sensory, which occupied the remaining volume. The other two approaches provided overlapping results in terms of geometrical distribution with those identified with cerebellar lobule-specific connectivity, although with some differences in volumes. A gender effect was observed with respect to motor areas and higher-order function representations. This is the first study that indicates that more than half of the DN volumes is involved in non-motor functions and that connectivity-based and microstructure-based atlases provide complementary information. These results represent a step-ahead for the interpretation of pathological conditions involving cerebro-cerebellar circuits.
Collapse
Affiliation(s)
- Fulvia Palesi
- Department of Brain and Behavioral SciencesUniversity of PaviaPavia
| | | | - Marta Gaviraghi
- Department of Electrical, Computer, and Biomedical EngineeringUniversity of PaviaPaviaItaly
| | - Anastasia Misiti
- Department of Electrical, Computer, and Biomedical EngineeringUniversity of PaviaPaviaItaly
| | - Giovanni Savini
- Department of NeuroradiologyIRCCS Humanitas Research HospitalMilanItaly
| | | | - Egidio D'Angelo
- Department of Brain and Behavioral SciencesUniversity of PaviaPavia
- Brain Connectivity CenterIRCCS Mondino FoundationPavia
| | - Claudia A. M. Gandini Wheeler‐Kingshott
- Department of Brain and Behavioral SciencesUniversity of PaviaPavia
- Brain Connectivity CenterIRCCS Mondino FoundationPavia
- NMR Research Unit, Queen Square MS Centre, Department of NeuroinflammationUCL Queen Square Institute of NeurologyLondon
| |
Collapse
|
31
|
Flace P, Livrea P, Basile GA, Galletta D, Bizzoca A, Gennarini G, Bertino S, Branca JJV, Gulisano M, Bianconi S, Bramanti A, Anastasi G. The Cerebellar Dopaminergic System. Front Syst Neurosci 2021; 15:650614. [PMID: 34421548 PMCID: PMC8375553 DOI: 10.3389/fnsys.2021.650614] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 12/04/2022] Open
Abstract
In the central nervous system (CNS), dopamine (DA) is involved in motor and cognitive functions. Although the cerebellum is not been considered an elective dopaminergic region, studies attributed to it a critical role in dopamine deficit-related neurological and psychiatric disorders [e.g., Parkinson's disease (PD) and schizophrenia (SCZ)]. Data on the cerebellar dopaminergic neuronal system are still lacking. Nevertheless, biochemical studies detected in the mammalians cerebellum high dopamine levels, while chemical neuroanatomy studies revealed the presence of midbrain dopaminergic afferents to the cerebellum as well as wide distribution of the dopaminergic receptor subtypes (DRD1-DRD5). The present review summarizes the data on the cerebellar dopaminergic system including its involvement in associative and projective circuits. Furthermore, this study also briefly discusses the role of the cerebellar dopaminergic system in some neurologic and psychiatric disorders and suggests its potential involvement as a target in pharmacologic and non-pharmacologic treatments.
Collapse
Affiliation(s)
- Paolo Flace
- Medical School, University of Bari ‘Aldo Moro', Bari, Italy
| | | | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Diana Galletta
- Unit of Psychiatry and Psychology, Federico II University Hospital, Naples, Italy
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Simona Bianconi
- Physical, Rehabilitation Medicine and Sport Medicine Unit, University Hospital “G. Martino”, Messina, Italy
| | - Alessia Bramanti
- Scientific Institute for Research, Hospitalization and Health Care IRCCS “Centro Neurolesi Bonino Pulejo”, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
32
|
D'Iorio A, Guida P, Maggi G, Redgrave P, Santangelo G, Obeso I. Neuropsychological spectrum in early PD: Insights from controlled and automatic behavioural regulation. Neurosci Biobehav Rev 2021; 126:465-480. [PMID: 33836213 DOI: 10.1016/j.neubiorev.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/05/2021] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Abstract
Initial changes in Parkinson's disease (PD) are marked by loss of automatic movements and decline of some cognitive functions. Yet, the exact profile and extent of cognitive impairments in early stages of PD as well as their mechanisms related to automatic motor dysfunction remain unclear. Our objective was to examine the neuropsychological changes in early PD and their association to automatic and controlled modes of behavioural control. Significant relationships between early PD and cognitive dysfunction in set-shifting, abstraction ability/concept formation, processing speed, visuospatial/constructional abilities and verbal-visual memory was found. We also noted that tests with a strong effortful and controlled component were similarly affected as automatic tests by early PD, particularly those testing verbal memory, processing speed and visuospatial/constructional functions. Our findings indicate that initial stages of PD sets constraints over most of the cognitive domains normally assessed and are not easily explained in terms of either automatic or controlled mechanisms, as both appear similarly altered in early PD.
Collapse
Affiliation(s)
- Alfonsina D'Iorio
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Pasqualina Guida
- HM CINAC. Centro Integral de Neurociencias AC. HM Hospitales CEU San Pablo University, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases, Carlos III Institute, Madrid, Spain
| | - Gianpaolo Maggi
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Ignacio Obeso
- HM CINAC. Centro Integral de Neurociencias AC. HM Hospitales CEU San Pablo University, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases, Carlos III Institute, Madrid, Spain.
| |
Collapse
|
33
|
Bonacchi R, Rocca MA, Ramirez GA, Bozzolo EP, Canti V, Preziosa P, Valsasina P, Riccitelli GC, Meani A, Moiola L, Rovere-Querini P, Manfredi AA, Filippi M. Resting state network functional connectivity abnormalities in systemic lupus erythematosus: correlations with neuropsychiatric impairment. Mol Psychiatry 2021; 26:3634-3645. [PMID: 33051605 DOI: 10.1038/s41380-020-00907-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
Neuropsychiatric manifestations are highly prevalent in systemic lupus erythematosus (SLE)-patients. We aimed to unravel the substrates of these manifestations by investigating abnormalities of resting state (RS) functional connectivity (FC) and their correlations with neuropsychiatric variables in SLE-patients. Thirty-two SLE-patients and 32 age- and sex-matched healthy controls (HC) underwent brain 3T RS fMRI. Neuropsychological assessment was performed for all SLE-patients. The main large-scale cognitive and psychiatric functional networks were derived and between-group comparisons and correlations with neuropsychological measures were performed. Compared to HC, SLE-patients exhibited increased RS FC in the right middle cingulate cortex and decreased RS FC in the left precuneus within default-mode network (DMN). They also showed increased RS FC in the left cerebellar crus I and left posterior cingulate cortex, and decreased RS FC in the left angular gyrus within working-memory networks (WMN). Compared to HC, SLE-patients exhibited increased RS FC in the left insular cortex and decreased RS FC in the right anterior cingulate cortex within salience network (SN), as well as decreased RS FC in the right middle frontal gyrus within executive-control network (ECN). Correlation analysis indicated a maladaptive role for left angular gyrus and cerebellar RS FC abnormalities in WMN, affecting memory and executive functions; and for precuneus and insular abnormalities in DMN and SN for psychiatric symptoms. Cingulate cortex modifications within DMN and SN correlated with better memory and global cognitive performance. Significant RS FC alterations in relevant cognitive and psychiatric networks occur in SLE-patients and participate in the pathophysiology of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Raffaello Bonacchi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe A Ramirez
- Vita-Salute San Raffaele University, Milan, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases & Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrica P Bozzolo
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Canti
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases & Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianna C Riccitelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases & Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo A Manfredi
- Vita-Salute San Raffaele University, Milan, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases & Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
34
|
Su W, Li K, Li CM, Ma XX, Zhao H, Chen M, Li SH, Wang R, Lou BH, Chen HB, Yan CZ. Motor Symptom Lateralization Influences Cortico-Striatal Functional Connectivity in Parkinson's Disease. Front Neurol 2021; 12:619631. [PMID: 34054684 PMCID: PMC8160303 DOI: 10.3389/fneur.2021.619631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/08/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: The striatum is unevenly impaired bilaterally in Parkinson's disease (PD). Because the striatum plays a key role in cortico-striatal circuits, we assume that lateralization affects cortico-striatal functional connectivity in PD. The present study sought to evaluate the effect of lateralization on various cortico-striatal circuits through resting-state functional magnetic resonance imaging (fMRI). Methods: Thirty left-onset Parkinson's disease (LPD) patients, 27 right-onset Parkinson's disease (RPD) patients, and 32 normal controls with satisfactory data were recruited. Their demographic, clinical, and neuropsychological information was collected. Resting-state fMRI was performed, and functional connectivity changes of seven subdivisions of the striatum were explored in the two PD groups. In addition, the associations between altered functional connectivity and various clinical and neuropsychological characteristics were analyzed by Pearson's or Spearman's correlation. Results: Directly comparing the LPD and RPD patients demonstrated that the LPD patients had lower FC between the left dorsal rostral putamen and the left orbitofrontal cortex than the RPD patients. In addition, the LPD patients showed aberrant functional connectivity involving several striatal subdivisions in the right hemisphere. The right dorsal caudate, ventral rostral putamen, and superior ventral striatum had decreased functional connectivity with the cerebellum and parietal and occipital lobes relative to the normal control group. The comparison between RPD patients and the controls did not obtain significant difference in functional connectivity. The functional connectivity between the left dorsal rostral putamen and the left orbitofrontal cortex was associated with contralateral motor symptom severity in PD patients. Conclusions: Our findings provide new insights into the distinct characteristics of cortico-striatal circuits in LPD and RPD patients. Lateralization of motor symptoms is associated with lateralized striatal functional connectivity.
Collapse
Affiliation(s)
- Wen Su
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital of Shandong University, Jinan, China
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun-Mei Li
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Xin-Xin Ma
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhao
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Shu-Hua Li
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Wang
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Bao-Hui Lou
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Hai-Bo Chen
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuan-Zhu Yan
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
35
|
Tinaz S. Functional Connectome in Parkinson's Disease and Parkinsonism. Curr Neurol Neurosci Rep 2021; 21:24. [PMID: 33817766 DOI: 10.1007/s11910-021-01111-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW There has been an exponential growth in functional connectomics research in neurodegenerative disorders. This review summarizes the recent findings and limitations of the field in Parkinson's disease (PD) and atypical parkinsonian syndromes. RECENT FINDINGS Increasingly more sophisticated methods ranging from seed-based to network and whole-brain dynamic functional connectivity have been used. Results regarding the disruption in the functional connectome vary considerably based on disease severity and phenotypes, and treatment status in PD. Non-motor symptoms of PD also link to the dysfunction in heterogeneous networks. Studies in atypical parkinsonian syndromes are relatively scarce. An important clinical goal of functional connectomics in neurodegenerative disorders is to establish the presence of pathology, track disease progression, predict outcomes, and monitor treatment response. The obstacles of reliability and reproducibility in the field need to be addressed to improve the potential of the functional connectome as a biomarker for these purposes in PD and atypical parkinsonian syndromes.
Collapse
Affiliation(s)
- Sule Tinaz
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, 15 York St, LCI 710, New Haven, CT, 06510, USA.
| |
Collapse
|
36
|
Zhuo C, Li G, Lin X, Jiang D, Xu Y, Tian H, Wang W, Song X. Strategies to solve the reverse inference fallacy in future MRI studies of schizophrenia: a review. Brain Imaging Behav 2021; 15:1115-1133. [PMID: 32304018 PMCID: PMC8032587 DOI: 10.1007/s11682-020-00284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Few advances in schizophrenia research have been translated into clinical practice, despite 60 years of serum biomarkers studies and 50 years of genetic studies. During the last 30 years, neuroimaging studies on schizophrenia have gradually increased, partly due to the beautiful prospect that the pathophysiology of schizophrenia could be explained entirely by the Human Connectome Project (HCP). However, the fallacy of reverse inference has been a critical problem of the HCP. For this reason, there is a dire need for new strategies or research "bridges" to further schizophrenia at the biological level. To understand the importance of research "bridges," it is vital to examine the strengths and weaknesses of the recent literature. Hence, in this review, our team has summarized the recent literature (1995-2018) about magnetic resonance imaging (MRI) of schizophrenia in terms of regional and global structural and functional alterations. We have also provided a new proposal that may supplement the HCP for studying schizophrenia. As postulated, despite the vast number of MRI studies in schizophrenia, the lack of homogeneity between the studies, along with the relatedness of schizophrenia with other neurological disorders, has hindered the study of schizophrenia. In addition, the reverse inference cannot be used to diagnose schizophrenia, further limiting the clinical impact of findings from medical imaging studies. We believe that multidisciplinary technologies may be used to develop research "bridges" to further investigate schizophrenia at the single neuron or neuron cluster levels. We have postulated about future strategies for overcoming the current limitations and establishing the research "bridges," with an emphasis on multimodality imaging, molecular imaging, neuron cluster signals, single transmitter biomarkers, and nanotechnology. These research "bridges" may help solve the reverse inference fallacy and improve our understanding of schizophrenia for future studies.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China.
- Department of Psychiatry Pattern Recognition, Department of Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, 272119, Jining, China.
- Department of Psychiatry, Wenzhou Seventh People's Hospital, 325000, Wenzhou, China.
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, 030001, Taiyuan, China.
- Department of Psychiatric-Neuroimaging-Genetics and Co-Morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, 300222, Tianjin, China.
- Biological Psychiatry of Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital, University of Alberta, Xiamen Xianyue Hospital, 361000, Xiamen, China.
- Department of Psychiatry, Tianjin Medical University, 300075, Tianjin, China.
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Department of Psychiatry, Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Shanxi Medical University, 300222, Tianjin, China.
| | - Gongying Li
- Department of Psychiatry Pattern Recognition, Department of Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, 272119, Jining, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, 325000, Wenzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, 325000, Wenzhou, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
| | - Hongjun Tian
- Department of Psychiatric-Neuroimaging-Genetics and Co-Morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, 300222, Tianjin, China
| | - Wenqiang Wang
- Biological Psychiatry of Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital, University of Alberta, Xiamen Xianyue Hospital, 361000, Xiamen, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Department of Psychiatry, Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Shanxi Medical University, 300222, Tianjin, China
| |
Collapse
|
37
|
Palmer WC, Cholerton BA, Zabetian CP, Montine TJ, Grabowski TJ, Rane S. Resting-State Cerebello-Cortical Dysfunction in Parkinson's Disease. Front Neurol 2021; 11:594213. [PMID: 33584497 PMCID: PMC7876057 DOI: 10.3389/fneur.2020.594213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose: Recently, the cerebellum's role in Parkinson's disease (PD) has been highlighted. Therefore, this study sought to test the hypothesis that functional connectivity (FC) between cerebellar and cortical nodes of the resting-state networks differentiates PD patients from controls by scanning participants at rest using functional magnetic resonance imaging (fMRI) and investigating connectivity of the cerebellar nodes of the resting-state networks. Materials and Methods: Sixty-two PD participants off medication for at least 12 h and 33 normal controls (NCs) were scanned at rest using blood oxygenation level-dependent fMRI scans. Motor and cognitive functions were assessed with the Movement Disorder Society's Revision of the Unified Parkinson's Disease Rating Scale III and Montreal Cognitive Assessment, respectively. Connectivity was investigated with cerebellar seeds defined by Buckner's 7-network atlas. Results: PD participants had significant differences in FC when compared to NC participants. Most notably, PD patients had higher FC between cerebellar nodes of the somatomotor network (SMN) and the corresponding cortical nodes. Cognitive functioning was differentially associated with connectivity of the cerebellar SMN and dorsal attention network. Further, cerebellar connectivity of frontoparietal and default mode networks correlated with the severity of motor function. Conclusion: Our study demonstrates altered cerebello-cortical FC in PD, as well as an association of this FC with PD-related motor and cognitive disruptions, thus providing additional evidence for the cerebellum's role in PD.
Collapse
Affiliation(s)
- William C Palmer
- Department of Radiology, University of Washington Medical Center, Seattle, WA, United States
| | - Brenna A Cholerton
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Cyrus P Zabetian
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Thomas J Grabowski
- Department of Radiology, University of Washington Medical Center, Seattle, WA, United States.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Swati Rane
- Department of Radiology, University of Washington Medical Center, Seattle, WA, United States
| |
Collapse
|
38
|
Wang T, Liao H, Zi Y, Wang M, Mao Z, Xiang Y, Zhang L, Li J, Shen Q, Cai S, Tan C. Distinct Changes in Global Brain Synchronization in Early-Onset vs. Late-Onset Parkinson Disease. Front Aging Neurosci 2020; 12:604995. [PMID: 33381021 PMCID: PMC7767969 DOI: 10.3389/fnagi.2020.604995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Early- and late-onset Parkinson's disease (EOPD and LOPD, respectively) have different risk factors, clinical features, and disease course; however, the functional outcome of these differences have not been well characterized. This study investigated differences in global brain synchronization changes and their clinical significance in EOPD and LOPD patients. Patients with idiopathic PD including 25 EOPD and 24 LOPD patients, and age- and sex-matched healthy control (HC) subjects including 27 younger and 26 older controls (YCs and OCs, respectively) were enrolled. Voxel-based degree centrality (DC) was calculated as a measure of global synchronization and compared between PD patients and HC groups matched in terms of disease onset and severity. DC was decreased in bilateral Rolandic operculum and left insula and increased in the left superior frontal gyrus (SFG) and precuneus of EOPD patients compared to YCs. DC was decreased in the right putamen, mid-cingulate cortex, bilateral Rolandic operculum, and left insula and increased in the right cerebellum-crus1 of LOPD patients compared to OCs. Correlation analyses showed that DC in the right cerebellum-crus1 was inversely associated with the Hamilton Depression Scale (HDS) score in LOPD patients. Thus, EOPD and LOPD patients show distinct alterations in global synchronization relative to HCs. Furthermore, our results suggest that the left SFG and right cerebellum-crus1 play important roles in the compensation for corticostriatal-thalamocortical loop injury in EOPD and LOPD patients, whereas the cerebellum is a key hub in the neural mechanisms underlying LOPD with depression. These findings provide new insight into the clinical heterogeneity of the two PD subtypes.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijuan Xiang
- Department of Radiology, Hunan Province Maternal and Child Health Care Hospital, Changsha, China
| | - Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Wang S, Zhang Y, Lei J, Guo S. Investigation of sensorimotor dysfunction in Parkinson disease by resting-state fMRI. Neurosci Lett 2020; 742:135512. [PMID: 33221477 DOI: 10.1016/j.neulet.2020.135512] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Functional MRI has played a fundamental role in Parkinson's disease(PD) study. In this paper, we performed an independent component analysis (ICA) based on functional networks to reveal the intricate variations on the morphology and functional properties of brain. Our analysis aims at discovering the differences between PD patients with sensorimotor function impairment and normal controls(NC), thus helping to understand the coordination neurological function degeneration in PD objectively. METHOD We investigated the blood oxygen level dependent(BOLD) functional MRI obtained at a 3.0 T MRI scanner. 30 PD patients and 28 NC subjects underwent the scan in resting state. The signals of sensory and motor coordinative control areas in the sensorimotor, insula and cerebellum networks acquired by ICA(Independent Component Analysis)were applied to analyze the functional alterations. Specifically, intra-network analysis was performed with signals in local networks, and inter-network analysis was conducted by functional network connectivity (FNC) with signals across different networks. Two sample T test was carried out to detect the significant (p < 0.05, FDR p < 0.05) functional abnormality in PD patients. CONCLUSION We identified an obvious increase in bilateral posterior insula, but decrease in bilateral cerebellum hemisphere, supplementary motor area(SMA) and precentral gyrus paracentral lobule of left postcentral gyrus. Besides, we found a significantly increased connection between independent component (IC) 13 which was located in right postcentral gyrus and cerebellum. Decreased connections were detected between sensory and motor cortex in sensorimotor network and between cerebellum and insula network by FNC analysis in PD patients as well. DISCUSSION Parkinson's disease derives from the degeneration of the dopaminergic neurons in substantia nigra, and results in decreased secretion of inhibitory neurotransmitter. The significant differences between PD and NC groups in our research maybe explain the clinical manifestations of prominent bradykinesia and multiple extrapyramidal symptoms.
Collapse
Affiliation(s)
- Shuaiwen Wang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China; Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, Gansu, 730000, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, Gansu, 730000, China.
| | - Yanli Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China; Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, Gansu, 730000, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Junqiang Lei
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China; Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, Gansu, 730000, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Shunlin Guo
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China; Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, Gansu, 730000, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, Gansu, 730000, China
| |
Collapse
|
40
|
Cerebello-basal ganglia connectivity fingerprints related to motor/cognitive performance in Parkinson's disease. Parkinsonism Relat Disord 2020; 80:21-27. [PMID: 32932024 DOI: 10.1016/j.parkreldis.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The role of the cerebellum in Parkinson's disease (PD) has attracted increasing attention; however, the role of functional connectivity (FC) between the basal ganglia and particular cerebellar subregions remains to be elucidated. We aimed to clarify the FC and its contribution to motor and cognitive performances in patients with PD. METHODS We included 99 patients with PD and 99 age- and sex-matched healthy controls in this study. We created a cerebellar functional parcellation by performing cerebellum-only independent component analysis. Using the functional parcellation map, we performed seed-based connectivity analysis using each region as a seed and extracted the mean correlation coefficients within the thalamus and basal ganglia, including the caudate, pallidum, putamen and subthalamic nucleus. We examined the group differences and correlations with the motor and general cognitive scores. In addition, we conducted a mediation analysis to clarify the relationship among FC, motor severity, and cognition. RESULTS The PD group showed decreased FC between a wide range of cerebellar subregions and the basal ganglia. Motor severity was correlated with FC between the subthalamic nucleus and posterior Crus I/II, and general cognitive performance scores correlated with FC between the caudate nucleus and medial-posterior part of the Crus I/II (p < 0.05, corrected for multiple comparisons). The cerebello-caudate network had a direct effect on cognitive performance (p = 9.0 × 10-3), although partially mediated by motor performance (p = 8.2 × 10-3). CONCLUSION FC between cerebellar Crus I/II and divergent basal ganglia related to motor and cognitive performance in PD.
Collapse
|
41
|
Carvalho LP, Mate KKV, Cinar E, Abou-Sharkh A, Lafontaine AL, Mayo NE. A new approach toward gait training in patients with Parkinson's Disease. Gait Posture 2020; 81:14-20. [PMID: 32650238 DOI: 10.1016/j.gaitpost.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Typically, people with Parkinson's Disease (PD) progress to develop a gait pattern that is characterized by quick, short and shuffling steps. Gait cycle is altered and lacks definition and fluidity. Gait training combined with a variety of feedback modalities for PD are usually based on non-immediate and externally-based cues but none of these provide real-time feedback on gait quality and acquired gains tend to abate shortly after rehabilitation. Based on principals of motor learning, our team has developed the Heel2Toe sensor to provide real-time auditory feedback during gait training. RESEARCH QUESTION Is a short-term training using the Heel2Toe sensor feasible and efficient to improve gait in people with PD? Our objectives are to identify the extent of the immediate response to the feedback within the same session and the carry-over response to training and; 2) to identify patients' perceived effects, pleasures and challenges of using the Heel2Toe. METHODS Single-arm, proof-of-concept study. Six people received five sessions of gait training over a 2-3-week period using the Heel2Toe augmented with mobility exercises as an adjunct to gait training. The main outcomes were technically assessed gait parameters collected over a 2-minute walk test, without and with feedback. Heel2Toe signals were analyzed to extract angular velocity(AV), percentage of good steps, average cadence, and AV coefficient of variation(CV). RESULTS An immediate response to the Heel2Toe use and a carry-over response to the short-term training with the sensor were observed: an increase in AV with a reduction in CV (better heel strike and gait regularity); an increase in %good steps; and a near-optimal and homogeneous cadence (∼100 steps/min), which is equivalent to a moderate-intensity walking. SIGNIFICANCE Gait training using the Heel2Toe sensor is feasible and potentially effective for improving gait quality in people with PD. A definitive trial is a logical next step.
Collapse
Affiliation(s)
- Livia P Carvalho
- Department of Medicine, School of Physical and Occupational Therapy, McGill University, Center for Outcomes Research and Evaluation, Research Institute-McGill University Health Center, Montreal, H4A 3S5, Canada.
| | - Kedar K V Mate
- Department of Medicine, School of Physical and Occupational Therapy, McGill University, Center for Outcomes Research and Evaluation, Research Institute-McGill University Health Center, Montreal, H4A 3S5, Canada.
| | - Eda Cinar
- Department of Medicine, School of Physical and Occupational Therapy, McGill University, Center for Outcomes Research and Evaluation, Research Institute-McGill University Health Center, Montreal, H4A 3S5, Canada.
| | - Ahmed Abou-Sharkh
- Department of Medicine, School of Physical and Occupational Therapy, McGill University, Center for Outcomes Research and Evaluation, Research Institute-McGill University Health Center, Montreal, H4A 3S5, Canada.
| | | | - Nancy E Mayo
- Department of Medicine, School of Physical and Occupational Therapy, McGill University, Center for Outcomes Research and Evaluation, Research Institute-McGill University Health Center, Montreal, H4A 3S5, Canada.
| |
Collapse
|
42
|
Wang X, Li L, Wei W, Zhu T, Huang GF, Li X, Ma HB, Lv Y. Altered activation in sensorimotor network after applying rTMS over the primary motor cortex at different frequencies. Brain Behav 2020; 10:e01670. [PMID: 32506744 PMCID: PMC7375128 DOI: 10.1002/brb3.1670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) can modulate brain activity both in the stimulated site and remote brain areas of the sensorimotor network. However, the modulatory effects of rTMS at different frequencies remain unclear. Here, we employed finger-tapping task-based fMRI to investigate alterations in activation of the sensorimotor network after the application of rTMS over the left M1 at different frequencies. MATERIALS AND METHODS Forty-five right-handed healthy participants were randomly divided into three groups by rTMS frequency (HF, high-frequency, 3 Hz; LF, low-frequency, 1 Hz; and SHAM) and underwent two task-fMRI sessions (RH, finger-tapping with right index finger; LH, finger-tapping with left index finger) before and after applying rTMS over the left M1. We defined regions of interest (ROIs) in the sensorimotor network based on group-level activation maps (pre-rTMS) from RH and LH tasks and calculated the percentage signal change (PSC) for each ROI. We then assessed the differences of PSC within HF or LF groups and between groups. RESULTS Application of rTMS at different frequencies resulted in a change in activation of several areas of the sensorimotor network. We observed the increased PSC in M1 after high-frequency stimulation, while we detected the reduced PSC in the primary sensory cortex (S1), ventral premotor cortex (PMv), supplementary motor cortex (SMA), and putamen after low-frequency stimulation. Moreover, the PSC in the SMA, dorsal premotor cortex (PMd), and putamen in the HF group was higher than in the LF group after stimulation. CONCLUSION Our findings suggested that activation alterations within sensorimotor network are dependent on the frequency of rTMS. Therefore, our findings contribute to understanding the effects of rTMS on brain activation in healthy individuals and ultimately may further help to suggest mechanisms of how rTMS could be employed as a therapeutic tool.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Lingyu Li
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Shandong Huayu University of Technology, Dezhou, China
| | - Wei Wei
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Tingting Zhu
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Guo-Feng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Xue Li
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Hui-Bin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China.,Integrated Medical Research School, Jiamusi University, Jiamusi, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
43
|
Horn A, Wenzel G, Irmen F, Huebl J, Li N, Neumann WJ, Krause P, Bohner G, Scheel M, Kühn AA. Deep brain stimulation induced normalization of the human functional connectome in Parkinson's disease. Brain 2020; 142:3129-3143. [PMID: 31412106 DOI: 10.1093/brain/awz239] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/12/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroimaging has seen a paradigm shift away from a formal description of local activity patterns towards studying distributed brain networks. The recently defined framework of the 'human connectome' enables global analysis of parts of the brain and their interconnections. Deep brain stimulation (DBS) is an invasive therapy for patients with severe movement disorders aiming to retune abnormal brain network activity by local high frequency stimulation of the basal ganglia. Beyond clinical utility, DBS represents a powerful research platform to study functional connectomics and the modulation of distributed brain networks in the human brain. We acquired resting-state functional MRI in 20 patients with Parkinson's disease with subthalamic DBS switched on and off. An age-matched control cohort of 15 subjects was acquired from an open data repository. DBS lead placement in the subthalamic nucleus was localized using a state-of-the art pipeline that involved brain shift correction, multispectral image registration and use of a precise subcortical atlas. Based on a realistic 3D model of the electrode and surrounding anatomy, the amount of local impact of DBS was estimated using a finite element method approach. On a global level, average connectivity increases and decreases throughout the brain were estimated by contrasting on and off DBS scans on a voxel-wise graph comprising eight thousand nodes. Local impact of DBS on the motor subthalamic nucleus explained half the variance in global connectivity increases within the motor network (R = 0.711, P < 0.001). Moreover, local impact of DBS on the motor subthalamic nucleus could explain the degree to how much voxel-wise average brain connectivity normalized towards healthy controls (R = 0.713, P < 0.001). Finally, a network-based statistics analysis revealed that DBS attenuated specific couplings known to be pathological in Parkinson's disease. Namely, coupling between motor thalamus and motor cortex was increased while striatal coupling with cerebellum, external pallidum and subthalamic nucleus was decreased by DBS. Our results show that resting state functional MRI may be acquired in DBS on and off conditions on clinical MRI hardware and that data are useful to gain additional insight into how DBS modulates the functional connectome of the human brain. We demonstrate that effective DBS increases overall connectivity in the motor network, normalizes the network profile towards healthy controls and specifically strengthens thalamo-cortical connectivity while reducing striatal control over basal ganglia and cerebellar structures.
Collapse
Affiliation(s)
- Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Gregor Wenzel
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Friederike Irmen
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julius Huebl
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Ningfei Li
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany.,Department of Neuroradiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Patricia Krause
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Georg Bohner
- Department of Neuroradiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Ilan Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable Beneficial Effects. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:335-344. [PMID: 32671136 PMCID: PMC7341037 DOI: 10.1016/j.omtm.2020.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic administration of drugs leads to the activation of compensatory mechanisms that may inhibit some of their activity and induce unwanted toxicity. These mechanisms are an obstacle for maintaining a sustainable effect for many chronic medications. Pathways that adapt to the burden induced by chronic drugs, whether or not related to the underlying disease, can lead to a partial or complete loss of effect. Variability characterizes many biological systems and manifests itself as large intra- and inter-individual differences in the response to drugs. Circadian rhythm-based chronotherapy is further associated with variability in responses noted among patients. This paper reviews current knowledge regarding the loss of effect of chronic medications and the range of variabilities that have been described in responses and loss of responses. Establishment of a personalized platform for overcoming these prohibitive mechanisms is presented as a model for ensuring long-term sustained medication effects. This novel platform implements personalized variability signatures and individualized circadian rhythms for preventing and opposing the prohibitive effect of the compensatory mechanisms induced by chronic drug administration.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, IL91120 Jerusalem, Israel
- Corresponding author: Yaron Ilan, MD, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120 Jerusalem, Israel
| |
Collapse
|
45
|
Lopez AM, Trujillo P, Hernandez AB, Lin YC, Kang H, Landman BA, Englot DJ, Dawant BM, Konrad PE, Claassen DO. Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor. Mov Disord 2020; 35:1181-1188. [PMID: 32343870 DOI: 10.1002/mds.28044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) and essential tremor (ET) are commonly encountered movement disorders. Pathophysiologic processes that localize to the cerebellum are described in both. There are limited studies investigating cerebellar structural changes in these conditions, largely because of inherent challenges in the efficiency of segmentation. METHODS We applied a novel multiatlas cerebellar segmentation method to T1-weighted images in 282 PD and 111 essential tremor patients to define 26 cerebellar lobule volumes. The severity of postural and resting tremor in both populations and gait and postural instability in PD patients were defined using subscores of the UPDRS and Washington Heights-Inwood Genetic Study motor scales. These clinical measurements were related to lobule volume size. Multiple comparisons were controlled using a false discovery rate method. RESULTS Group differences were identified between ET and PD patients, with reductions in deep cerebellar nucleus volume in ET versus reduced lobule VI volume in PD. In ET patients, lobule VIII was negatively correlated with the severity of postural tremor. In PD patients, lobule IV was positively correlated with resting tremor and total tremor severity. We observed differences in cerebellar structure that localized to sensorimotor lobules of the cerebellum. Lobule volumes appeared to differentially relate to clinical symptoms, suggesting important clinicopathologic distinctions between these conditions. These results emphasize the role of the cerebellum in tremor symptoms and should foster future clinical and pathologic investigations of the sensorimotor lobules of the cerebellum. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexander M Lopez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adreanna B Hernandez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ya-Chen Lin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bennett A Landman
- Department of Radiology/Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benoit M Dawant
- Department of Radiology/Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter E Konrad
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Sanjari Moghaddam H, Dolatshahi M, Mohebi F, Aarabi MH. Structural white matter alterations as compensatory mechanisms in Parkinson's disease: A systematic review of diffusion tensor imaging studies. J Neurosci Res 2020; 98:1398-1416. [DOI: 10.1002/jnr.24617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 01/04/2023]
Affiliation(s)
| | - Mahsa Dolatshahi
- Neuroradiology Division School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Farnam Mohebi
- Non‐Communicable Diseases Research Center Endocrinology and Metabolism Population Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Hadi Aarabi
- Neuroradiology Division School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
47
|
Neuropsychiatric aspects of Parkinson disease psychopharmacology: Insights from circuit dynamics. HANDBOOK OF CLINICAL NEUROLOGY 2020; 165:83-121. [PMID: 31727232 DOI: 10.1016/b978-0-444-64012-3.00007-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder with a complex pathophysiology characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Persons with PD experience several motoric and neuropsychiatric symptoms. Neuropsychiatric features of PD include depression, anxiety, psychosis, impulse control disorders, and apathy. In this chapter, we will utilize the National Institutes of Mental Health Research Domain Criteria (RDoC) to frame and integrate observations from two prevailing disease constructions: neurotransmitter anomalies and circuit physiology. When there is available evidence, we posit how unified translational observations may have clinical relevance and postulate importance outside of PD. Finally, we review the limited evidence available for pharmacologic management of these symptoms.
Collapse
|
48
|
Abstract
Controlling posture, i.e., governing the ensemble of involuntary muscular activities that manage body equilibrium, represents a demanding function in which the cerebellum plays a key role. Postural activities are particularly important during gait initiation when passing from quiet standing to locomotion. Indeed, several studies used such motor task for evaluating pathological conditions, including cerebellar disorders. The linkage between cerebellum maturation and the development of postural control has received less attention. Therefore, we evaluated postural control during quiet standing and gait initiation in children affected by a slow progressive generalized cerebellar atrophy (SlowP) or non-progressive vermian hypoplasia (Joubert syndrome, NonP), compared to that of healthy children (H). Despite the similar clinical evaluation of motor impairments in NonP and SlowP, only SlowP showed a less stable quiet standing and a shorter and slower first step than H. Moreover, a descriptive analysis of lower limb and back muscle activities suggested a more severe timing disruption in SlowP. Such differences might stem from the extent of cerebellar damage. However, literature reports that during childhood, neural plasticity of intact brain areas could compensate for cerebellar agenesis. We thus proposed that the difference might stem from disease progression, which contrasts the consolidation of compensatory strategies.
Collapse
|
49
|
Misiura MB, Howell JC, Wu J, Qiu D, Parker MW, Turner JA, Hu WT. Race modifies default mode connectivity in Alzheimer's disease. Transl Neurodegener 2020; 9:8. [PMID: 32099645 PMCID: PMC7029517 DOI: 10.1186/s40035-020-0186-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background Older African Americans are more likely to develop Alzheimer's disease (AD) than older Caucasians, and this difference cannot be readily explained by cerebrovascular and socioeconomic factors alone. We previously showed that mild cognitive impairment and AD dementia were associated with attenuated increases in the cerebrospinal fluid (CSF) levels of total and phosphorylated tau in African Americans compared to Caucasians, even though there was no difference in beta-amyloid 1-42 level between the two races. Methods We extended our work by analyzing early functional magnetic resonance imaging (fMRI) biomarkers of the default mode network in older African Americans and Caucasians. We calculated connectivity between nodes of the regions belonging to the various default mode network subsystems and correlated these imaging biomarkers with non-imaging biomarkers implicated in AD (CSF amyloid, total tau, and cognitive performance). Results We found that race modifies the relationship between functional connectivity of default mode network subsystems and cognitive performance, tau, and amyloid levels. Conclusion These findings provide further support that race modifies the AD phenotypes downstream from cerebral amyloid deposition, and identifies key inter-subsystem connections for deep imaging and neuropathologic characterization.
Collapse
Affiliation(s)
- Maria B Misiura
- 1Department of Psychology, Georgia State University, Atlanta, GA USA.,2Departments of Neurology, Emory University, 615 Michael Street, Suite 505, Atlanta, GA 30322 USA
| | - J Christina Howell
- 2Departments of Neurology, Emory University, 615 Michael Street, Suite 505, Atlanta, GA 30322 USA
| | - Junjie Wu
- 3Departments of Radiology, Emory University, Atlanta, GA USA
| | - Deqiang Qiu
- 3Departments of Radiology, Emory University, Atlanta, GA USA
| | - Monica W Parker
- 2Departments of Neurology, Emory University, 615 Michael Street, Suite 505, Atlanta, GA 30322 USA
| | - Jessica A Turner
- 1Department of Psychology, Georgia State University, Atlanta, GA USA
| | - William T Hu
- 2Departments of Neurology, Emory University, 615 Michael Street, Suite 505, Atlanta, GA 30322 USA
| |
Collapse
|
50
|
Lavin KM, Sealfon SC, McDonald MLN, Roberts BM, Wilk K, Nair VD, Ge Y, Lakshman Kumar P, Windham ST, Bamman MM. Skeletal muscle transcriptional networks linked to type I myofiber grouping in Parkinson's disease. J Appl Physiol (1985) 2020; 128:229-240. [PMID: 31829804 PMCID: PMC7052589 DOI: 10.1152/japplphysiol.00702.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder impacting cognition, movement, and quality of life in >10 million individuals worldwide. We recently characterized and quantified a skeletal muscle pathology in PD represented by exaggerated type I myofiber grouping presumed to result from denervation-reinnervation processes. Our previous findings indicated that impaired neuromuscular junction integrity may be involved in type I grouping, which is associated with excessive motor unit activation during weight-bearing tasks. In this study, we performed transcriptional profiling to test the hypothesis that type I grouping severity would link to distinct gene expression networks. We generated transcriptome-wide poly(A) RNA-Seq data from skeletal muscle of individuals with PD [n = 12 (9 men, 3 women); 67 ± 2 yr], age- and sex-matched older adults (n = 12; 68 ± 2 yr), and sex-matched young adults (n = 12; 30 ± 1 yr). Differentially expressed genes were evaluated across cohorts. Weighted gene correlation network analysis (WGCNA) was performed to identify gene networks most correlated with indicators of abnormal type I grouping. Among coexpression networks mapping to phenotypes pathologically increased in PD muscle, one network was highly significantly correlated to type I myofiber group size and another to percentage of type I myofibers found in groups. Annotation of coexpressed networks revealed that type I grouping is associated with altered expression of genes involved in neural development, postsynaptic signaling, cell cycle regulation and cell survival, protein and energy metabolism, inflammation/immunity, and posttranscriptional regulation (microRNAs). These transcriptomic findings suggest that skeletal muscle may play an active role in signaling to promote myofiber survival, reinnervation, and remodeling, perhaps to an extreme in PD.NEW & NOTEWORTHY Despite our awareness of the impact of Parkinson's disease (PD) on motor function for over two centuries, limited attention has focused on skeletal muscle. We previously identified type I myofiber grouping, a novel indicator of muscle dysfunction in PD, presumably a result of heightened rates of denervation/reinnervation. Using transcriptional profiling to identify networks associated with this phenotype, we provide insight into potential mechanistic roles of skeletal muscle in signaling to promote its survival in PD.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Merry-Lynn N McDonald
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon M Roberts
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Preeti Lakshman Kumar
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|