1
|
Cui X, Ding Q, Yu S, Zhang S, Li X. The deficit in cognitive reappraisal capacity in individuals with anxiety or depressive disorders: meta-analyses of behavioral and neuroimaging studies. Clin Psychol Rev 2024; 114:102480. [PMID: 39243683 DOI: 10.1016/j.cpr.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The deficit in cognitive reappraisal capacity is a key factor in developing and maintaining emotional disorders such as anxiety disorders and depressive disorders. However, the results from both neuroimaging and behavioral studies are mixed. Therefore, we systematically conducted a series of meta-analyses based on behavioral and neuroimaging studies to clarify this issue. METHODS In behavioral meta-analyses, we used three-level random-effects models to summarize the overall effect sizes based on Hedges' g. In neuroimaging meta-analyses, we used SDM-PSI to summarize the brain activation patterns. RESULTS Behavioral meta-analyses found that individuals with anxiety disorders or depressive disorders could reduce negative reactivity through reappraisal; the reduction of negative emotions through reappraisal by individuals with anxiety disorders was similar to that by healthy individuals; the reduction by depressive disorders was lower than that of healthy individuals. Neuroimaging meta-analyses showed that individuals with anxiety disorders or depressive disorders activated regions of cognitive control during cognitive reappraisal; the activation in individuals with anxiety disorders was lower than in healthy individuals; while the activation in individuals with depressive disorders was similar to that in healthy individuals. CONCLUSION Individuals with anxiety and depressive disorders showed dissociation in behaviour and neuroimaging patterns of cognitive reappraisal capacity deficit.
Collapse
Affiliation(s)
- Xiaobing Cui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingwen Ding
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shuting Yu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Siyuan Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xuebing Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
2
|
Killanin AD, Ward TW, Embury CM, Calhoun VD, Wang Y, Stephen JM, Picci G, Heinrichs‐Graham E, Wilson TW. Effects of endogenous testosterone on oscillatory activity during verbal working memory in youth. Hum Brain Mapp 2024; 45:e26774. [PMID: 38949599 PMCID: PMC11215982 DOI: 10.1002/hbm.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Testosterone levels sharply rise during the transition from childhood to adolescence and these changes are known to be associated with changes in human brain structure. During this same developmental window, there are also robust changes in the neural oscillatory dynamics serving verbal working memory processing. Surprisingly, whereas many studies have investigated the effects of chronological age on the neural oscillations supporting verbal working memory, none have probed the impact of endogenous testosterone levels during this developmental period. Using a sample of 89 youth aged 6-14 years-old, we collected salivary testosterone samples and recorded magnetoencephalography during a modified Sternberg verbal working memory task. Significant oscillatory responses were identified and imaged using a beamforming approach and the resulting maps were subjected to whole-brain ANCOVAs examining the effects of testosterone and sex, controlling for age, during verbal working memory encoding and maintenance. Our primary results indicated robust testosterone-related effects in theta (4-7 Hz) and alpha (8-14 Hz) oscillatory activity, controlling for age. During encoding, females exhibited weaker theta oscillations than males in right cerebellar cortices and stronger alpha oscillations in left temporal cortices. During maintenance, youth with greater testosterone exhibited weaker alpha oscillations in right parahippocampal and cerebellar cortices, as well as regions across the left-lateralized language network. These results extend the existing literature on the development of verbal working memory processing by showing region and sex-specific effects of testosterone, and are the first results to link endogenous testosterone levels to the neural oscillatory activity serving verbal working memory, above and beyond the effects of chronological age.
Collapse
Affiliation(s)
- Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Christine M. Embury
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | | | - Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
3
|
Montandon ML, Haller S, Rodriguez C, Herrmann FR, Giannakopoulos P. Wearing a KN95/FFP2 facemask has no measureable effect on functional activity in a challenging working memory n-back task. Front Hum Neurosci 2024; 18:1374625. [PMID: 38770397 PMCID: PMC11103007 DOI: 10.3389/fnhum.2024.1374625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Wide use of facemasks is one of the many consequences of the COVID-19 pandemic. Methods We used an established working memory n-back task in functional magnetic resonance imaging (fMRI) to explore whether wearing a KN95/FFP2 facemask affects overall performance and brain activation patterns. We provide here a prospective crossover design 3 T fMRI study with/without wearing a tight FFP2/KN95 facemask, including 24 community-dwelling male healthy control participants (mean age ± SD = 37.6 ± 12.7 years) performing a 2-back task. Data analysis was performed using the FSL toolbox, performing both task-related and functional connectivity independent component analyses. Results Wearing an FFP2/KN95 facemask did not impact behavioral measures of the 2-back task (response time and number of errors). The 2-back task resulted in typical activations in working-memory related areas in both MASK and NOMASK conditions. There were no statistically significant differences in MASK versus NOMASK while performing the 2-back task in both task-related and functional connectivity fMRI analyses. Conclusion The effect of wearing a tight FFP2/KN95 facemasks did not significantly affect working memory performance and brain activation patterns of functional connectivity.
Collapse
Affiliation(s)
- Marie-Louise Montandon
- Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Sven Haller
- CIMC—Centre d’Imagerie Médicale de Cornavin, Geneva, Switzerland
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Faculty of Medicine of the University of Geneva, Geneva, Switzerland
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cristelle Rodriguez
- Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - François R. Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Leopold DR, Kim H, Carlson KW, Rowe MA, Groff BR, Major MP, Willcutt EG, Cutting LE, Banich MT. Stimulus shapes strategy: Effects of stimulus characteristics and individual differences in academic achievement on the neural mechanisms engaged during the N-back task. Dev Cogn Neurosci 2024; 66:101372. [PMID: 38593494 PMCID: PMC11015100 DOI: 10.1016/j.dcn.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
This fMRI study of 126 youth explored whether the neural mechanisms underlying the N-back task, commonly used to examine executive control over the contents of working memory, are associated with individual differences in academic achievement in reading and math. Moreover, the study explored whether these relationships occur regardless of the nature of the stimulus being manipulated in working memory (letters, numbers, nonsense shapes) or whether these relationships are specific to achievement domain and stimulus type (i.e., letters for reading and numbers for math). The results indicated that higher academic achievement in each of reading and math was associated with greater activation of dorsolateral prefrontal cortex in the N-back task regardless of stimulus type (i.e., did not differ for letters and numbers), suggesting that at least some aspects of the neural mechanisms underlying these academic domains are executive in nature. In addition, regardless of level of academic achievement, prefrontal regions were engaged to a greater degree for letters than numbers than nonsense shapes. In contrast, nonsense shapes yielded greater hippocampal activation than letters and numbers. Potential reasons for this pattern of findings are discussed.
Collapse
Affiliation(s)
- Daniel R Leopold
- University of Colorado Boulder, Institute of Cognitive Science, USA
| | - Hyojeong Kim
- University of Colorado Boulder, Institute of Cognitive Science, USA
| | | | - Mikaela A Rowe
- University of Colorado Boulder, Department of Psychology and Neuroscience, USA
| | - Boman R Groff
- University of Colorado Boulder, Institute of Cognitive Science, USA; University of Colorado Boulder, Department of Psychology and Neuroscience, USA
| | - Moriah P Major
- University of Colorado Boulder, Institute of Cognitive Science, USA
| | - Erik G Willcutt
- University of Colorado Boulder, Department of Psychology and Neuroscience, USA; University of Colorado Boulder, Institute for Behavioral Genetics, USA
| | - Laurie E Cutting
- Vanderbilt University, Peabody College of Human Development, USA
| | - Marie T Banich
- University of Colorado Boulder, Institute of Cognitive Science, USA; University of Colorado Boulder, Department of Psychology and Neuroscience, USA.
| |
Collapse
|
5
|
Killanin AD, Ward TW, Embury CM, Calhoun VD, Wang YP, Stephen JM, Picci G, Heinrichs-Graham E, Wilson TW. Better with age: Developmental changes in oscillatory activity during verbal working memory encoding and maintenance. Dev Cogn Neurosci 2024; 66:101354. [PMID: 38330526 PMCID: PMC10864839 DOI: 10.1016/j.dcn.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Numerous investigations have characterized the oscillatory dynamics serving working memory in adults, but few have probed its relationship with chronological age in developing youth. We recorded magnetoencephalography during a modified Sternberg verbal working memory task in 82 youth participants aged 6-14 years old. Significant oscillatory responses were identified and imaged using a beamforming approach and the resulting whole-brain maps were probed for developmental effects during the encoding and maintenance phases. Our results indicated robust oscillatory responses in the theta (4-7 Hz) and alpha (8-14 Hz) range, with older participants exhibiting stronger alpha oscillations in left-hemispheric language regions. Older participants also had greater occipital theta power during encoding. Interestingly, there were sex-by-age interaction effects in cerebellar cortices during encoding and in the right superior temporal region during maintenance. These results extend the existing literature on working memory development by showing strong associations between age and oscillatory dynamics across a distributed network. To our knowledge, these findings are the first to link chronological age to alpha and theta oscillatory responses serving working memory encoding and maintenance, both across and between male and female youth; they reveal robust developmental effects in crucial brain regions serving higher order functions.
Collapse
Affiliation(s)
- Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
6
|
Rosales-Fernández R, Paredes M, Zuñiga A, Durán F, Sarce-Paredes N, Vásquez C, Conejero J, Alarcón-Garrido F. [Neuroanatomical mapping of inhibitory attention and working memory with functional magnetic resonance imaging in healthy children]. Rev Neurol 2024; 78:147-155. [PMID: 38482702 PMCID: PMC11064954 DOI: 10.33588/rn.7806.2023221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION The objective is to produce an average brain activation mapping template in healthy children using functional magnetic resonance imaging (fMRI), with specific paradigms for activating inhibitory attention and working memory functions. SUBJECTS AND METHODS A nutritional and neuropsychological evaluation was performed on 87 right-handed children. The inclusion criteria were met by 30 children (15 boys and 15 girls) between 9 and 11 years old, who were studied with fMRI in two inhibitory attention tests (Go/No Go), with food cues, a working memory test (Continuous Performance Test Identical Pairs) and measurement of anatomical volumes. These data were subsequently processed with the FSL-v5 program, with a threshold of p < 0.05 (cluster-wise). The brain areas activated were located using a standard Montreal Neurological Institute brain template and the Harvard-Oxford structural cortical atlas. RESULTS The inhibitory attention tests showed activation frontal areas predominantly on the right, and the cingulate, parietal and occipital areas, with preponderance in occipital areas in the food cues test. In the Continuous Performance Test-Identical Pairs test, activation was obtained predominantly in the occipital, frontal and parietal areas. CONCLUSIONS Brain activity mapping templates are obtained in healthy children with tests for inhibitory attention, food cues and working memory. The activation areas are mostly those reported in the literature. This provides baseline brain activation patterns for studying pathologies related to inhibitory attention, impulsivity and working memory.
Collapse
Affiliation(s)
- R Rosales-Fernández
- Universidad de los Andes, Santiago de Chile, Chile
- Clínica Santa María, Santiago, Chile
| | - M Paredes
- Universidad de los Andes, Santiago de Chile, Chile
- Clínica Santa María, Santiago, Chile
| | - A Zuñiga
- Clínica Santa María, Santiago, Chile
| | - F Durán
- Clínica Santa María, Santiago, Chile
| | | | - C Vásquez
- Clínica Santa María, Santiago, Chile
| | | | | |
Collapse
|
7
|
Kowalczyk OS, Cubillo AI, Criaud M, Giampietro V, O'Daly OG, Mehta MA, Rubia K. Single-dose effects of methylphenidate and atomoxetine on functional connectivity during an n-back task in boys with ADHD. Psychopharmacology (Berl) 2023; 240:2045-2060. [PMID: 37500785 PMCID: PMC10506949 DOI: 10.1007/s00213-023-06422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
RATIONALE Working memory deficits and associated neurofunctional abnormalities are frequently reported in attention-deficit/hyperactivity disorder (ADHD). Methylphenidate and atomoxetine improve working memory performance and increase activation of regions under-functioning in ADHD. Additionally, methylphenidate has been observed to modulate functional networks involved in working memory. No research, however, has examined the effects of atomoxetine or compared the two drugs. OBJECTIVES This study aimed to test methylphenidate and atomoxetine effects on functional connectivity during working memory in boys with ADHD. METHODS We tested comparative effects of methylphenidate and atomoxetine on functional connectivity during the n-back task in 19 medication-naïve boys with ADHD (10-15 years old) relative to placebo and assessed potential normalisation effects of brain dysfunctions under placebo relative to 20 age-matched neurotypical boys. Patients were scanned in a randomised, double-blind, cross-over design under single doses of methylphenidate, atomoxetine, and placebo. Controls were scanned once, unmedicated. RESULTS Patients under placebo showed abnormally increased connectivity between right superior parietal gyrus (rSPG) and left central operculum/insula. This hyperconnectivity was not observed when patients were under methylphenidate or atomoxetine. Furthermore, under methylphenidate, patients showed increased connectivity relative to controls between right middle frontal gyrus (rMFG) and cingulo-temporo-parietal and striato-thalamic regions, and between rSPG and cingulo-parietal areas. Interrogating these networks within patients revealed increased connectivity between both rMFG and rSPG and right supramarginal gyrus under methylphenidate relative to placebo. Nonetheless, no differences across drug conditions were observed within patients at whole brain level. No drug effects on performance were observed. CONCLUSIONS This study shows shared modulating effects of methylphenidate and atomoxetine on parieto-insular connectivity but exclusive effects of methylphenidate on connectivity increases in fronto-temporo-parietal and fronto-striato-thalamic networks in ADHD.
Collapse
Affiliation(s)
- Olivia S Kowalczyk
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Ana I Cubillo
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Jacobs Center for Productive Youth Development, Zurich Center for Neuroeconomics, University of Zürich, Zürich, Switzerland
| | - Marion Criaud
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Owen G O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Liu M, Han T, Wu Y, Cheng J, Zhang L, Zhang B, Zuo XN, Zhu W, Qiu S, Geng Z, Zhang X, Cui G, Zhang Q, Yu Y, Zhang H, Gao B, Xu X, Yao Z, Qin W, Liang M, Liu F, Guo L, Xu Q, Fu J, Xu J, Tang J, Liu N, Xue K, Zhang P, Li W, Shi D, Wang C, Gao JH, Lui S, Yan Z, Chen F, Li J, Zhang J, Shen W, Miao Y, Xian J, Yu L, Xu K, Wang M, Ye Z, Liao WH, Wang D, Yu C. The impact of pre-adulthood urbanicity on hippocampal subfield volumes and neurocognitive abilities in young adults. ENVIRONMENT INTERNATIONAL 2023; 174:107905. [PMID: 37019025 DOI: 10.1016/j.envint.2023.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Urbanicity refers to the conditions that are particular to urban areas and is a growing environmental challenge that may affect hippocampus and neurocognition. This study aimed to investigate the effects of the average pre-adulthood urbanicity on hippocampal subfield volumes and neurocognitive abilities as well as the sensitive age windows of the urbanicity effects. PARTICIPANTS AND METHODS We included 5,390 CHIMGEN participants (3,538 females; age: 23.69 ± 2.26 years, range: 18-30 years). Pre-adulthood urbanicity of each participant was defined as the average value of annual night-time light (NL) or built-up% from age 0-18, which were extracted from remote-sensing satellite data based on annual residential coordinates of the participants. The hippocampal subfield volumes were calculated based on structural MRI and eight neurocognitive measures were assessed. The linear regression was applied to investigate the associations of pre-adulthood NL with hippocampal subfield volumes and neurocognitive abilities, mediation models were used to find the underlying pathways among urbanicity, hippocampus and neurocognition, and distributed lag models were used to identify sensitive age windows of urbanicity effect. RESULTS Higher pre-adulthood NL was associated with greater volumes in the left (β = 0.100, 95%CI: [0.075, 0.125]) and right (0.078, [0.052, 0.103]) fimbria and left subiculum body (0.045, [0.020, 0.070]) and better neurocognitive abilities in information processing speed (-0.212, [-0.240, -0.183]), working memory (0.085, [0.057, 0.114]), episodic memory (0.107, [0.080, 0.135]), and immediate (0.094, [0.065, 0.123]) and delayed (0.087, [0.058, 0.116]) visuospatial recall, and hippocampal subfield volumes and visuospatial memory showed bilateral mediations for the urbanicity effects. Urbanicity effects were greatest on the fimbria in preschool and adolescence, on visuospatial memory and information processing from childhood to adolescence and on working memory after 14 years. CONCLUSION These findings improve our understanding of the impact of urbanicity on hippocampus and neurocognitive abilities and will benefit for designing more targeted intervention for neurocognitive improvement.
Collapse
Affiliation(s)
- Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, 300350 Tianjin, China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002 Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, 210008 Nanjing, China
| | - Xi-Nian Zuo
- IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875 Beijing, China; Institute of Psychology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Shijun Qiu
- Department of Medical Imaging, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, 510405 Guangzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 050000 Shijiazhuang, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, 230027 Hefei, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, 710038 Xi'an, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Force, 300162 Tianjin, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, 550004 Guiyang, China; Department of Radiology, Yantai Yuhuangding Hospital, 264000 Yantai, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, 310009 Hangzhou, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, 300203 Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Dapeng Shi
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 450003 Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China
| | - Su Lui
- Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), 570311 Haikou, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, 730030 Lanzhou, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, 730030 Lanzhou, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, 300192 Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 116011 Dalian, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
| | - Le Yu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, 221006 Xuzhou, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 450003 Zhengzhou, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410008 Changsha, China; Molecular Imaging Research Center of Central South University, 410008 Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, China.
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, 250012 Jinan, China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China.
| |
Collapse
|
9
|
Gómez CM, Muñoz V, Rodríguez-Martínez EI, Arjona A, Barriga-Paulino CI, Pelegrina S. Child and adolescent development of the brain oscillatory activity during a working memory task. Brain Cogn 2023; 167:105969. [PMID: 36958141 DOI: 10.1016/j.bandc.2023.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
The developmental trajectories of brain oscillations during the encoding and maintenance phases of a Working Memory (WM) task were calculated. The Delayed-Match-to-Sample Test (DMTS) was applied to 239 subjects of 6-29 years, while EEG was recorded. The Event-Related Spectral Perturbation (ERSP) was obtained in the range between 1 and 25 Hz during the encoding and maintenance phases. Behavioral parameters of reaction times (RTs) and response accuracy were simultaneously recorded. The results indicate a myriad of transient and sustained bursts of oscillatory activity from low frequencies (1 Hz) to the beta range (up to 19 Hz). Beta and Low-frequency ERSP increases were prominent in the encoding phase in all age groups, while low-frequency ERSP indexed the maintenance phase only in children and adolescents, but not in late adolescents and young adults, suggesting an age-dependent neural mechanism of stimulus trace maintenance. While the latter group showed Beta and Alpha indices of anticipatory attention for the retrieval phase. Mediation analysis showed an important role of early Delta-Theta and late Alpha oscillations for mediation between age and behavioral responses performance. In conclusion, the results show a complex pattern of oscillatory bursts during the encoding and maintenance phases with a consistent pattern of developmental changes.
Collapse
Affiliation(s)
- Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Elena I Rodríguez-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | | | | |
Collapse
|
10
|
Arjona A, Angulo-Ruiz BY, Rodríguez-Martínez EI, Cabello-Navarro C, Gómez CM. Time-frequency neural dynamics of ADHD children and adolescents during a Working Memory task. Neurosci Lett 2023; 798:137100. [PMID: 36720344 DOI: 10.1016/j.neulet.2023.137100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
The present report analyzed the time-frequency changes in Event-Related Spectral perturbations (ERSP) in a sample of ADHD children and adolescents compared to a normodevelopment (ND) sample. A delayed match-to-sample (DMTS) test of working memory (WM) was presented to a group of ADHD subjects (N = 29) and compared with ND group (N = 34) with ages between 6 and 17 years old. Time-frequency decomposition was computed through wavelets. ADHD subjects presented higher Reaction Time (RT), Standard Deviation of RT (Std of RT), and a reduced percentage of correct responses. The results showed a complex pattern of oscillatory bursts during the encoding, maintenance, and recognition phases with similar dynamics in both groups. ADHD children presented a reduced Event-Related Synchronization (ERS) in the Theta range during the encoding phase, and also a reduced Alpha ERS during the late period of the maintenance phase. S1 Early theta ERS was positively correlated with Std of RT. Behavioral data, early Theta, and late Alpha ERS classified correctly above 70 % of ADHD and ND subjects when a linear discriminant analysis was applied. The reduced encoding and maintenance impaired brain dynamics of ADHD subjects would justify the poorer performance of this group of subjects.
Collapse
Affiliation(s)
- Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | - Brenda Y Angulo-Ruiz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | | | - Celia Cabello-Navarro
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | - Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| |
Collapse
|
11
|
Desaunay P, Guillery B, Moussaoui E, Eustache F, Bowler DM, Guénolé F. Brain correlates of declarative memory atypicalities in autism: a systematic review of functional neuroimaging findings. Mol Autism 2023; 14:2. [PMID: 36627713 PMCID: PMC9832704 DOI: 10.1186/s13229-022-00525-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
The long-described atypicalities of memory functioning experienced by people with autism have major implications for daily living, academic learning, as well as cognitive remediation. Though behavioral studies have identified a robust profile of memory strengths and weaknesses in autism spectrum disorder (ASD), few works have attempted to establish a synthesis concerning their neural bases. In this systematic review of functional neuroimaging studies, we highlight functional brain asymmetries in three anatomical planes during memory processing between individuals with ASD and typical development. These asymmetries consist of greater activity of the left hemisphere than the right in ASD participants, of posterior brain regions-including hippocampus-rather than anterior ones, and presumably of the ventral (occipito-temporal) streams rather than the dorsal (occipito-parietal) ones. These functional alterations may be linked to atypical memory processes in ASD, including the pre-eminence of verbal over spatial information, impaired active maintenance in working memory, and preserved relational memory despite poor context processing in episodic memory.
Collapse
Affiliation(s)
- Pierre Desaunay
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France ,grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Bérengère Guillery
- grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Edgar Moussaoui
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France
| | - Francis Eustache
- grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Dermot M. Bowler
- grid.28577.3f0000 0004 1936 8497Autism Research Group, City University of London, DG04 Rhind Building, Northampton Square, EC1V 0HB London, UK
| | - Fabian Guénolé
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France ,grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France ,grid.412043.00000 0001 2186 4076Faculté de Médecine, Pôle des Formation et de Recherche en Santé, Université de Caen Normandie, 2 rue des Rochambelles, 14032 Caen cedex CS, France
| |
Collapse
|
12
|
Bi C, Lin H, Zhang J, Gui X, Shi Z. Regional variation in growth status: A cross-sectional survey among Tibetan adolescents living at three different high altitudes in Tibet, China. Am J Hum Biol 2022; 35:e23856. [PMID: 36579776 DOI: 10.1002/ajhb.23856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To explore the regional and age variation in growth status and age-by-site interaction effect on the growth status among Chinese Tibetan adolescents at different altitudes in Tibet, China. METHODS The research was conducted in three regions of Tibet, China: Nyingchi (average altitude 3100 m), Lhasa (average altitude 3650 m), and Nagqu (average altitude 4500 m). A total of 3817 Chinese Tibetan adolescents aged 12-18 years were tested for height, weight, chest circumference, and waist circumference. One-way ANOVA was used to compare the growth status of Chinese Tibetan adolescents. Two-way ANOVA was used to explore the age-by-site interaction effect on the growth status of Chinese Tibetan adolescents. RESULTS The height, weight, and chest circumference of Chinese Tibetan adolescents in Nagqu are the lowest among the three cities. Age and site have an interaction effect influence on the growth status of Chinese Tibetan adolescents (p < .01). CONCLUSIONS The growth indicators (height, weight, chest circumference, WC) of Chinese Tibetan adolescents differed with altitudes. Policies to improve the growth status of Chinese Tibetan adolescents in Nagqu are urgently needed.
Collapse
Affiliation(s)
- Cunjian Bi
- School of Physical Education, Chizhou University, Chizhou, China.,Sports Health Promotion Center, Chizhou University, Chizhou, China
| | - Hongniu Lin
- School of Physical Education, Chizhou University, Chizhou, China.,Sports Health Promotion Center, Chizhou University, Chizhou, China
| | - Jie Zhang
- School of Physical Education, Chizhou University, Chizhou, China.,Sports Health Promotion Center, Chizhou University, Chizhou, China
| | - Xiaoying Gui
- Lhasa Beijing Experimental Middle School Sports Group, Lhasa, China
| | - Zhen Shi
- Sports Department, Tibet University, Lhasa, China
| |
Collapse
|
13
|
Valentini B, Vergauwe E. Stuck on the Last: The Last-Presented Benefit as an Index of Attentional Refreshing in Adolescents. J Intell 2022; 11:4. [PMID: 36662134 PMCID: PMC9860735 DOI: 10.3390/jintelligence11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Working memory is a limited-capacity system responsible for maintaining information that is known to dramatically develop throughout childhood and adolescence. Different maintenance mechanisms are proposed to support working memory development, among which is attentional refreshing. Attentional refreshing is assumed to improve the accessibility of working-memory representations by cycling attention from one mental representation to the other, serially. It has been suggested that the efficiency of refreshing increases between the ages of 7 and 14 years old, thereby supporting working memory development. Yet, there is not much research about refreshing in adolescence. Here, we investigate the occurrence of refreshing in 15-year-olds by using a recently-developed index, i.e., the last-presented benefit. Adolescents had to remember a list of four letters and judge whether a subsequent probe letter was present or not in the list. Reaction times to the probe were used to assess the spontaneous occurrence of refreshing. We found that, unlike young adults, 15-year-olds showed consistent speeded responses to probes matching the last-presented memory item, indicating that, in this task, adolescents did not refocus their attention away from the last memory item to initiate refreshing. Implications for working memory functioning and development are discussed.
Collapse
Affiliation(s)
- Beatrice Valentini
- Faculty of Psychology and Science of Education, University of Geneva, Bureau 5158, 40 Boulevard Pont d’Arve, 1205 Genève, Switzerland
| | | |
Collapse
|
14
|
Umashankar A, Shivaiah C, Prabhu P. Changes in Auditory Working Memory Capacities During Adolescence. Indian J Otolaryngol Head Neck Surg 2022; 74:5492-5498. [PMID: 36742490 PMCID: PMC9895679 DOI: 10.1007/s12070-021-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of the article was to compare the auditory working memory capacities during adolescence period. A total of 45 participants between the age of 10 and 22 years were included in the study. The participants were grouped in 3 based on their age range from 10 to 14 (group 1), 14-18 (group 2), and 18-22 years (group 3) for the study. Participants with normal hearing thresholds and no history of middle ear pathology were enrolled for the study. Auditory working memory tests were carried out in these individuals which included midpoint and maximum scores of ascending span, descending span, digit forward span, and digit backward span. Statistical analysis was carried out using the SPSS version 25.0, descriptive and inferential statistics were carried out. Data was normally distributed on the Shapiro-Wilk's test of normality due to which a one-way ANOVA was done to establish the nature of significance across the groups and Tukey's post hoc test was done for establishing the presence of significance between the groups (group 1-group 2, group 2-groups 3, and group 1-group 3). To identify the relationship between the age of individuals and working memory scores, a Pearson correlation was done. Results reveal the presence of significant difference across the groups and between the groups too (p < 0.05) with noticeable significant effect seen in group 3 (18-22 years) than in group 2 (14-18 years) and group 1 (10-14 years) respectively. There is a positive effect of age and changes in working memory abilities. This implies the presence of maturation during adolescence period at the level of prefrontal cortex and other cortical areas. Supporting literatures state there is presence of reduced activation on functional imaging studies during early adulthood period which could attribute to the significantly high scores in age range 18-22 years.
Collapse
Affiliation(s)
- Abishek Umashankar
- All India Institute of Speech and Hearing Mysuru, Mysuru, India
- Department of Audiology, All India Institute of Speech and Hearing Mysuru, Naimisham Campus, Road No.3 TK Layout, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Chandana Shivaiah
- All India Institute of Speech and Hearing Mysuru, Mysuru, India
- Department of Audiology, All India Institute of Speech and Hearing Mysuru, Naimisham Campus, Road No.3 TK Layout, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Prashanth Prabhu
- Department of Audiology, All India Institute of Speech and Hearing Mysuru, Naimisham Campus, Road No.3 TK Layout, Manasagangotri, Mysuru, Karnataka 570006 India
| |
Collapse
|
15
|
Huffman LG, Oshri A. Continuity versus change in latent profiles of emotion regulation and working memory during adolescence. Dev Cogn Neurosci 2022; 58:101177. [PMID: 36436429 PMCID: PMC9706540 DOI: 10.1016/j.dcn.2022.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022] Open
Abstract
Significant structural and functional brain development occurs during early adolescence. These changes underlie developments in central neurocognitive processes such as working memory (WM) and emotion regulation (ER). The preponderance of studies modeling trajectories of adolescent brain development use variable-centered approaches, omitting attention to individual differences that may undergird neurobiological embedding of early life stress and attendant psychopathology. This preregistered, data-driven study used latent transition analysis (LTA) to identify (1) latent profiles of neural function during a WM and implicit ER task, (2) transitions in profiles across 24 months, and 3) associations between transitions, parental support, and subsequent psychopathology. Using two waves of data from the ABCD Study (Mage T1 = 10; Mage T2 = 12), we found three unique profiles of neural function at both T1 and T2. The Typical, Emotion Hypo-response, and Emotion-Hyper response profiles were characterized by, respectively: moderate amygdala activation and fusiform deactivation; high ACC, fusiform, and insula deactivation; and high amygdala, ACC, and insula response to ER. While 69.5 % remained in the Typical profile from T1 to T2, 27.8 % of the sample moved from one profile at T1 to another at T2. However, neither latent profiles nor transitions exhibited associations between parental support or psychopathology symptoms.
Collapse
Affiliation(s)
- Landry Goodgame Huffman
- Neuroscience Program, University of Georgia, Athens, GA, USA; Department of Human Development & Family Science, University of Georgia, Athens, GA, USA.
| | - Assaf Oshri
- Neuroscience Program, University of Georgia, Athens, GA, USA; Department of Human Development & Family Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
16
|
Snelleksz M, Rossell SL, Gibbons A, Nithianantharajah J, Dean B. Evidence that the frontal pole has a significant role in the pathophysiology of schizophrenia. Psychiatry Res 2022; 317:114850. [PMID: 36174274 DOI: 10.1016/j.psychres.2022.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/04/2023]
Abstract
Different regions of the cortex have been implicated in the pathophysiology of schizophrenia. Recently published data suggested there are many more changes in gene expression in the frontal pole (Brodmann's Area (BA) 10) compared to the dorsolateral prefrontal cortex (BA 9) and the anterior cingulate cortex (BA 33) from patients with schizophrenia. These data argued that the frontal pole is significantly affected by the pathophysiology of schizophrenia. The frontal pole is a region necessary for higher cognitive functions and is highly interconnected with many other brain regions. In this review we summarise the growing body of evidence to support the hypothesis that a dysfunctional frontal pole, due at least in part to its widespread effects on brain function, is making an important contribution to the pathophysiology of schizophrenia. We detail the many structural, cellular and molecular abnormalities in the frontal pole from people with schizophrenia and present findings that argue the symptoms of schizophrenia are closely linked to dysfunction in this critical brain region.
Collapse
Affiliation(s)
- Megan Snelleksz
- Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan L Rossell
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Andrew Gibbons
- The Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Jess Nithianantharajah
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Lippolis M, Müllensiefen D, Frieler K, Matarrelli B, Vuust P, Cassibba R, Brattico E. Learning to play a musical instrument in the middle school is associated with superior audiovisual working memory and fluid intelligence: A cross-sectional behavioral study. Front Psychol 2022; 13:982704. [PMID: 36312139 PMCID: PMC9610841 DOI: 10.3389/fpsyg.2022.982704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Music training, in all its forms, is known to have an impact on behavior both in childhood and even in aging. In the delicate life period of transition from childhood to adulthood, music training might have a special role for behavioral and cognitive maturation. Among the several kinds of music training programs implemented in the educational communities, we focused on instrumental training incorporated in the public middle school curriculum in Italy that includes both individual, group and collective (orchestral) lessons several times a week. At three middle schools, we tested 285 preadolescent children (aged 10–14 years) with a test and questionnaire battery including adaptive tests for visuo-spatial working memory skills (with the Jack and Jill test), fluid intelligence (with a matrix reasoning test) and music-related perceptual and memory abilities (with listening tests). Of these children, 163 belonged to a music curriculum within the school and 122 to a standard curriculum. Significant differences between students of the music and standard curricula were found in both perceptual and cognitive domains, even when controlling for pre-existing individual differences in musical sophistication. The music children attending the third and last grade of middle school had better performance and showed the largest advantage compared to the control group on both audiovisual working memory and fluid intelligence. Furthermore, some gender differences were found for several tests and across groups in favor of females. The present results indicate that learning to play a musical instrument as part of the middle school curriculum represents a resource for preadolescent education. Even though the current evidence is not sufficient to establish the causality of the found effects, it can still guide future research evaluation with longitudinal data.
Collapse
Affiliation(s)
- Mariangela Lippolis
- Department of Teaching of Musical, Visual and Corporal Expression, University of Valencia, Valencia, Spain
- Mariangela Lippolis,
| | - Daniel Müllensiefen
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Klaus Frieler
- Department of Methodology, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Benedetta Matarrelli
- Department of Clinical Medicine, Center for Music in the Brain (MIB), The Royal Academy of Music Aarhus and Aalborg, Aarhus University, Aarhus, Denmark
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Peter Vuust
- Department of Clinical Medicine, Center for Music in the Brain (MIB), The Royal Academy of Music Aarhus and Aalborg, Aarhus University, Aarhus, Denmark
| | - Rosalinda Cassibba
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Elvira Brattico
- Department of Clinical Medicine, Center for Music in the Brain (MIB), The Royal Academy of Music Aarhus and Aalborg, Aarhus University, Aarhus, Denmark
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Elvira Brattico,
| |
Collapse
|
18
|
Phonological working memory is adversely affected in adults with anorexia nervosa: a systematic literature review. Eat Weight Disord 2022; 27:1931-1952. [PMID: 35133643 PMCID: PMC9287223 DOI: 10.1007/s40519-022-01370-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Cognitive restraint has potentiating and deleterious effects on working memory (WM) in anorexia nervosa (AN). Conflicting evidence may be due to heterogeneity of tasks examining different WM components (e.g., verbal/auditory versus visuospatial), and differences in adolescent versus adult AN. Additionally, differential cognitive profiles of restricting versus binge/purging subtypes, comorbid psychiatric disorders and psychotropic medication use may confound findings. METHODS To address these conflicts, 25 studies, published between 2016 and 2021, investigating WM in children, adolescents and adults with AN were systematically reviewed using PRISMA guidelines. RESULTS In 71% of WM tasks, no difference in performance between AN patients and age-matched controls was reported, while 29% of WM tasks showed worse performance. Adults with AN displayed deficits in 44% of the verbal/auditory tasks, while performance remained unaffected in 86% of visuospatial tasks. CONCLUSION Examining age groups and WM subsystems separately revealed novel findings of differentially affected WM components in AN. Comorbidities and psychotropic medications were common among AN participants and should be regarded as critical confounding factors for WM measures. Future studies examining different components of WM, acknowledging these confounding factors, may reveal specific deficits in AN to aid treatment improvement strategies. LEVEL OF EVIDENCE I, systematic review.
Collapse
|
19
|
Almodóvar-Payá C, Guardiola-Ripoll M, Giralt-López M, Gallego C, Salgado-Pineda P, Miret S, Salvador R, Muñoz MJ, Lázaro L, Guerrero-Pedraza A, Parellada M, Carrión MI, Cuesta MJ, Maristany T, Sarró S, Fañanás L, Callado LF, Arias B, Pomarol-Clotet E, Fatjó-Vilas M. NRN1 Gene as a Potential Marker of Early-Onset Schizophrenia: Evidence from Genetic and Neuroimaging Approaches. Int J Mol Sci 2022; 23:ijms23137456. [PMID: 35806464 PMCID: PMC9267632 DOI: 10.3390/ijms23137456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Included in the neurotrophins family, the Neuritin 1 gene (NRN1) has emerged as an attractive candidate gene for schizophrenia (SZ) since it has been associated with the risk for the disorder and general cognitive performance. In this work, we aimed to further investigate the association of NRN1 with SZ by exploring its role on age at onset and its brain activity correlates. First, we developed two genetic association analyses using a family-based sample (80 early-onset (EO) trios (offspring onset ≤ 18 years) and 71 adult-onset (AO) trios) and an independent case–control sample (120 healthy subjects (HS), 87 EO and 138 AO patients). Second, we explored the effect of NRN1 on brain activity during a working memory task (N-back task; 39 HS, 39 EO and 39 AO; matched by age, sex and estimated IQ). Different haplotypes encompassing the same three Single Nucleotide Polymorphisms(SNPs, rs3763180–rs10484320–rs4960155) were associated with EO in the two samples (GCT, TCC and GTT). Besides, the GTT haplotype was associated with worse N-back task performance in EO and was linked to an inefficient dorsolateral prefrontal cortex activity in subjects with EO compared to HS. Our results show convergent evidence on the NRN1 association with EO both from genetic and neuroimaging approaches, highlighting the role of neurotrophins in the pathophysiology of SZ.
Collapse
Affiliation(s)
- Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - Maria Giralt-López
- Departament de Psiquiatria, Hospital Universitari Germans Trias i Pujol (HUGTP), 08916 Badalona, Barcelona, Spain;
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Carme Gallego
- Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Barcelona, Spain;
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - Salvador Miret
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Centre de Salut Mental d’Adults de Lleida, Servei de Psiquiatria, Salut Mental i Addiccions, Hospital Universitari Santa Maria de Lleida, 25198 Lleida, Lleida, Spain
- Institut de Recerca Biomèdica (IRB), 25198 Lleida, Lleida, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - María J. Muñoz
- Complex Assistencial en Salut Mental Benito Menni, 08830 Sant Boi de Llobregat, Barcelona, Spain;
| | - Luisa Lázaro
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, 08036 Barcelona, Barcelona, Spain
- Departament de Medicina, Universitat de Barcelona (UB), 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Barcelona, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Complex Assistencial en Salut Mental Benito Menni, 08830 Sant Boi de Llobregat, Barcelona, Spain;
| | - Mara Parellada
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), 28007 Madrid, Madrid, Spain
- Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Madrid, Spain
| | | | - Manuel J. Cuesta
- Servicio de Psiquiatría, Hospital Universitario de Navarra, 31008 Pamplona, Navarra, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain
| | - Teresa Maristany
- Departament de Diagnòstic per la Imatge, Hospital Sant Joan de Déu Fundació de Recerca, 08950 Esplugues de Llobregat, Barcelona, Spain;
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - Lourdes Fañanás
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Departament de Biologia Evolutiva, Ecología i Ciències Ambientals, Universitat de Barcelona (UB), 08028 Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Barcelona, Spain
| | - Luis F. Callado
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Bárbara Arias
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Departament de Biologia Evolutiva, Ecología i Ciències Ambientals, Universitat de Barcelona (UB), 08028 Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Correspondence: (E.P.-C.); (M.F.-V.)
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Departament de Biologia Evolutiva, Ecología i Ciències Ambientals, Universitat de Barcelona (UB), 08028 Barcelona, Barcelona, Spain
- Correspondence: (E.P.-C.); (M.F.-V.)
| |
Collapse
|
20
|
Cognitive reserve and its correlates in child and adolescent offspring of patients diagnosed with schizophrenia or bipolar disorder. Eur Child Adolesc Psychiatry 2022:10.1007/s00787-022-01957-0. [PMID: 35175425 DOI: 10.1007/s00787-022-01957-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
AIM To analyze cognitive reserve (CR) in child and adolescent offspring of patients diagnosed with schizophrenia (SZ-off) or bipolar disorder (BD-off) and compare them with a group of community controls (CC-off). We also aimed to investigate whether there was an association between CR and clinical and neuropsychological variables according to group. METHODS The study included 46 SZ-off, 105 BD-off and 102 CC-off. All participants completed assessments regarding CR and clinical, neuropsychological and psychosocial functioning. CR was measured with a proxy based on premorbid intelligence, parental occupational level, educational attainment, developmental milestones and sociability. The clinical assessment included the Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime, the Semi-structured Interview for Prodromal Syndromes, and the Global Assessment Functioning scale. The neuropsychological assessment included measures of executive functioning, attention, verbal memory, working memory and processing speed. RESULTS SZ-off showed a lower level of CR compared to BD-off and CC-off, while BD-off showed an intermediate level of CR between SZ-off and CC-off. Moreover, an association between higher CR and less lifetime psychopathology, fewer prodromal psychotic symptoms, higher psychosocial functioning, and a higher working memory score was observed in all groups, but it was stronger in SZ-off. CONCLUSIONS CR seemed to be associated with psychopathology, clinical symptoms, psychosocial functioning, and some cognitive functions. SZ-off appeared to benefit more from a higher CR, therefore it could be considered a protective factor against the development of clinical symptomatology and cognitive impairment.
Collapse
|
21
|
Weinstein SM, Vandekar SN, Adebimpe A, Tapera TM, Robert‐Fitzgerald T, Gur RC, Gur RE, Raznahan A, Satterthwaite TD, Alexander‐Bloch AF, Shinohara RT. A simple permutation-based test of intermodal correspondence. Hum Brain Mapp 2021; 42:5175-5187. [PMID: 34519385 PMCID: PMC8519855 DOI: 10.1002/hbm.25577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state-of-the-art methods involve comparing observed group-level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group-level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject-level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p-value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n-back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.
Collapse
Affiliation(s)
- Sarah M. Weinstein
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
| | | | - Azeez Adebimpe
- Department of Psychiatry, Lifespan Informatics and Neuroimaging CenterUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain InstituteUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
| | - Tinashe M. Tapera
- Department of Psychiatry, Lifespan Informatics and Neuroimaging CenterUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain InstituteUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
| | - Timothy Robert‐Fitzgerald
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
| | - Ruben C. Gur
- Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain InstituteUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Psychiatry, Neurodevelopment and Psychosis Section and Penn‐CHOP Lifespan Brain InstituteUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
| | - Raquel E. Gur
- Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain InstituteUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Psychiatry, Neurodevelopment and Psychosis Section and Penn‐CHOP Lifespan Brain InstituteUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Armin Raznahan
- Section on Developmental NeurogenomicsNational Institute of Mental Health Intramural Research ProgramBethesdaMaryland
| | - Theodore D. Satterthwaite
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Psychiatry, Lifespan Informatics and Neuroimaging CenterUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain InstituteUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Center for Biomedical Image Computing and Analytics, Department of RadiologyUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
| | - Aaron F. Alexander‐Bloch
- Department of Psychiatry, Neurodevelopment and Psychosis Section and Penn‐CHOP Lifespan Brain InstituteUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
- Center for Biomedical Image Computing and Analytics, Department of RadiologyUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvania
| |
Collapse
|
22
|
Goddings AL, Roalf D, Lebel C, Tamnes CK. Development of white matter microstructure and executive functions during childhood and adolescence: a review of diffusion MRI studies. Dev Cogn Neurosci 2021; 51:101008. [PMID: 34492631 PMCID: PMC8424510 DOI: 10.1016/j.dcn.2021.101008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) provides indirect measures of white matter microstructure that can be used to make inferences about structural connectivity within the brain. Over the last decade, a growing literature of cross-sectional and longitudinal studies have documented relationships between dMRI indices and cognitive development. In this review, we provide a brief overview of dMRI methods and how they can be used to study white matter and connectivity and review the extant literature examining the links between dMRI indices and executive functions during development. We explore the links between white matter microstructure and specific executive functions: inhibition, working memory and cognitive shifting, as well as performance on complex executive function tasks. Concordance in findings across studies are highlighted, and potential explanations for discrepancies between results, together with challenges with using dMRI in child and adolescent populations, are discussed. Finally, we explore future directions that are necessary to better understand the links between child and adolescent development of structural connectivity of the brain and executive functions.
Collapse
Affiliation(s)
- Anne-Lise Goddings
- UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and the University of Pennsylvania, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Alberta, Canada
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
23
|
Dilcher R, Beste C, Takacs A, Bluschke A, Tóth-Fáber E, Kleimaker M, Münchau A, Li SC. Perception-action integration in young age-A cross-sectional EEG study. Dev Cogn Neurosci 2021; 50:100977. [PMID: 34147987 PMCID: PMC8225655 DOI: 10.1016/j.dcn.2021.100977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
Humans differ in their capacity for integrating perceived events and related actions. The "Theory of event coding" (TEC) conceptualizes how stimuli and actions are cognitively bound into a common functional representation (or "code"), known as the "event file". To date, however, the neural processes underlying the development of event file coding mechanisms across age are largely unclear. We investigated age-related neural changes of event file coding from late childhood to early adulthood, using EEG signal decompositions methods. We included a group of healthy participants (n = 91) between 10 and 30 years, performing an event file paradigm. Results of this study revealed age-related effects on event file coding processes both at the behavioural and the neurophysiological level. Performance accuracy data showed that event file unbinding und rebinding processes become more efficient from late childhood to early adulthood. These behavioural effects are reflected by age-related effects in two neurophysiological subprocesses associated with the superior parietal cortex (BA7) as revealed in the analyses using EEG signal decomposition. The first process entails mapping and association processes between stimulus and response; whereas, the second comprises inhibitory control subprocesses subserving the selection of the relevant motor programme amongst competing response options.
Collapse
Affiliation(s)
- Roxane Dilcher
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | | | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Germany; Centre for Tactile Internet With Human-in-the-Loop, TU Dresden, Germany.
| |
Collapse
|
24
|
Fagerlund B, Pantelis C, Jepsen JRM, Raghava JM, Rostrup E, Thomas MB, Nielsen MØ, Bojesen K, Jensen KG, Stentebjerg-Decara M, Klauber DG, Rudå D, Ebdrup BH, Jessen K, Sigvard A, Tangmose K, Jeppesen P, Correll CU, Fink-Jensen A, Pagsberg AK, Glenthøj BY. Differential effects of age at illness onset on verbal memory functions in antipsychotic-naïve schizophrenia patients aged 12-43 years. Psychol Med 2021; 51:1570-1580. [PMID: 32156323 DOI: 10.1017/s0033291720000409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The typical onset of schizophrenia coincides with the maturational peak in cognition; however, for a significant proportion of patients the onset is before age 18 and after age 30 years. While cognitive deficits are considered core features of schizophrenia, few studies have directly examined the impact of age of illness onset on cognition. METHODS The aim of the study was to examine if the effects of age on cognition differ between healthy controls (HCs) and patients with schizophrenia at illness onset. We examined 156 first-episode antipsychotic-naïve patients across a wide age span (12-43 years), and 161 age- and sex-matched HCs. Diagnoses were made according to ICD-10 criteria. Cognition was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS), and IQ was estimated using subtests from the Wechsler adult- or child-intelligence scales. Multivariate analysis of covariance (MANCOVA) was used to examine linear and quadratic effects of age on cognitive scores and interactions by group, including sex and parental socioeconomic status as covariates. RESULTS There was a significant overall effect of age on BACS and IQ (p < 0.001). Significant group-by-age interactions for verbal memory (for age-squared, p = 0.009), and digit sequencing (for age, p = 0.01; age-squared, p < 0.001), indicated differential age-related trajectories between patients and HCs. CONCLUSIONS Cognitive functions showing protracted maturation into adulthood, such as verbal memory and verbal working memory, may be particularly impaired in both early- and late-schizophrenia onset. Our findings indicate a potential interaction between the timing of neurodevelopmental maturation and a possible premature age effect in late-onset schizophrenia.
Collapse
Affiliation(s)
- Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Jens Richardt Møllegaard Jepsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Mental Health Services, Capital Region of Denmark, Child and Adolescent Mental Health Center, Copenhagen, Denmark
| | - Jayachandra Mitta Raghava
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Marie Bjerregaard Thomas
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Kirsten Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Karsten Gjessing Jensen
- Mental Health Services, Capital Region of Denmark, Child and Adolescent Mental Health Center, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Marie Stentebjerg-Decara
- Mental Health Services, Capital Region of Denmark, Child and Adolescent Mental Health Center, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Dea Gowers Klauber
- Mental Health Services, Capital Region of Denmark, Child and Adolescent Mental Health Center, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Ditte Rudå
- Mental Health Services, Capital Region of Denmark, Child and Adolescent Mental Health Center, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Pia Jeppesen
- Mental Health Services, Capital Region of Denmark, Child and Adolescent Mental Health Center, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA
- Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA
- Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| | - Anders Fink-Jensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
- Mental Health Center Copenhagen, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne Katrine Pagsberg
- Mental Health Services, Capital Region of Denmark, Child and Adolescent Mental Health Center, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| |
Collapse
|
25
|
Yaple ZA, Tolomeo S, Yu R. Mapping working memory-specific dysfunction using a transdiagnostic approach. NEUROIMAGE-CLINICAL 2021; 31:102747. [PMID: 34256292 PMCID: PMC8278205 DOI: 10.1016/j.nicl.2021.102747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/17/2023]
Abstract
Background Working memory (WM) is an executive ability that allows one to hold and manipulate information for a short period of time. Schizophrenia and mood disorders are severe psychiatric conditions with overlapping genetic and clinical symptoms. Whilst WM has been suggested as meeting the criteria for being an endophenotype for schizophrenia and mood disorders, it still unclear whether they share overlapping neural circuitry. Objective The n-back task has been widely used to measure WM capacity, such as maintenance, flexible updating, and interference control. Here we compiled studies that included psychiatric populations, i.e., schizophrenia, bipolar disorder and major depressive disorder. Methods We performed a coordinate-based meta-analysis that combined 34 BOLD-fMRI studies comparing activity associated with n-back working memory between psychiatric patients and healthy controls. We specifically focused our search using the n-back task to diminish study heterogeneity. Results All patient groups showed blunted activity in the striatum, anterior insula and frontal lobe. The same brain networks related to WM were compromised in schizophrenia, major depressive disorder and bipolar disorder. Conclusion Our findings support the suggestion of commonal functional abnormalities across schizophrenia and mood disorders related to WM.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
26
|
de Oliveira Rosa V, Rosa Franco A, Abrahão Salum Júnior G, Moreira-Maia CR, Wagner F, Simioni A, de Fraga Bassotto C, R Moritz G, Schaffer Aguzzoli C, Buchweitz A, Schmitz M, Rubia K, Paim Rohde LA. Effects of computerized cognitive training as add-on treatment to stimulants in ADHD: a pilot fMRI study. Brain Imaging Behav 2021; 14:1933-1944. [PMID: 31218531 DOI: 10.1007/s11682-019-00137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neurofunctional effects of Cognitive training (CT) are poorly understood. Our main objective was to assess fMRI brain activation patterns in children with ADHD who received CT as an add-on treatment to stimulant medication. We included twenty children with ADHD from a clinical trial of stimulant medication and CT (10 in medication + CT and 10 in medication + non-active training). Between-group differences were assessed in performance and in brain activation during 3 fMRI paradigms of working memory (N-back: 0-back, 1-back, 2-back, 3-back), sustained attention (Sustained Attention Task - SAT: 2 s, 5 s and 8 s delays) and inhibitory control (Go/No-Go). We found significant group x time x condition interactions in working memory (WM) and sustained attention on brain activation. In N-back, decreases were observed in the BOLD signal change from baseline to endpoint with increasing WM load in the right insula, right putamen, left thalamus and left pallidum in the CT compared to the non-active group; in SAT - increases in the BOLD signal change from baseline to endpoint with increasing delays were observed in bilateral precuneus, right insula, bilateral associative visual cortex and angular gyrus, right middle temporal, precentral, postcentral, superior frontal and middle frontal gyri in the CT compared to the non-active group. CT in ADHD was associated with changes in activation in task-relevant parietal and striato-limbic regions of sustained attention and working memory. Changes in brain activity may precede behavioral performance modifications in working memory and sustained attention, but not in inhibitory control.
Collapse
Affiliation(s)
- Virginia de Oliveira Rosa
- Postgraduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil. .,ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil.
| | - Alexandre Rosa Franco
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Giovanni Abrahão Salum Júnior
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Carlos Renato Moreira-Maia
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil
| | - Flávia Wagner
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil
| | - André Simioni
- Postgraduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil
| | - Caroline de Fraga Bassotto
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil
| | - Guilherme R Moritz
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil
| | | | - Augusto Buchweitz
- BraIns, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Schmitz
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil
| | - Katya Rubia
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Luis Augusto Paim Rohde
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Serviço de Psiquiatria. Ramiro Barcelos, 2350. Bairro Santa Cecília, Porto Alegre, RS, CEP: 90035-903, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| |
Collapse
|
27
|
Zhang Z, Peng P, Eickhoff SB, Lin X, Zhang D, Wang Y. Neural substrates of the executive function construct, age-related changes, and task materials in adolescents and adults: ALE meta-analyses of 408 fMRI studies. Dev Sci 2021; 24:e13111. [PMID: 33817920 DOI: 10.1111/desc.13111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
To explore the neural substrates of executive function (EF), we conducted an activation likelihood estimation meta-analysis of 408 functional magnetic resonance imaging studies (9639 participants, 7587 activation foci, 518 experimental contrasts) covering three fundamental EF subcomponents: inhibition, switching, and working memory. Our results found that activation common to all three EF subcomponents converged in the multiple-demand network across adolescence and adulthood. The function of EF with the multiple-demand network involved, especially for the prefrontal cortex and the parietal regions, could not be mature until adulthood. In adolescents, only working memory could be separable from common EF, whereas in adults, the three EF subcomponents could be separable from common EF. However, findings of switching in adolescents should be treated with substantial caution and may be exploratory due to limited data available on switching tasks. For task materials, inhibition and working memory showed both domain generality and domain specificity, undergirded by the multiple-demand network, as well as different brain regions in response to verbal and nonverbal task materials, respectively. In contrast, switching showed only domain generality with no activation specialized for either verbal or nonverbal task materials. These findings, taken together, support and contribute to the unitary-diverse nature of EF such that EF should be interpreted in an integrative model that relies on the integration of the EF construct, development, and task materials.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Special Education, The University of Texas at Austin, Austin, Texas, USA
| | - Peng Peng
- Department of Special Education, The University of Texas at Austin, Austin, Texas, USA
| | - Simon B Eickhoff
- Medical Faculty, Institute of Systems Neuroscience, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Brain & Behaviour (INM-7), Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
| | - Xin Lin
- Department of Special Education, The University of Texas at Austin, Austin, Texas, USA
| | - Delong Zhang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou, PR China
| | - Yingying Wang
- Department of Special Education and Communication Disorders, Neuroimaging for Language, Literacy, and Learning, College of Education and Human Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
28
|
Del Re EC, Stone WS, Bouix S, Seitz J, Zeng V, Guliano A, Somes N, Zhang T, Reid B, Lyall A, Lyons M, Li H, Whitfield-Gabrieli S, Keshavan M, Seidman LJ, McCarley RW, Wang J, Tang Y, Shenton ME, Niznikiewicz MA. Baseline Cortical Thickness Reductions in Clinical High Risk for Psychosis: Brain Regions Associated with Conversion to Psychosis Versus Non-Conversion as Assessed at One-Year Follow-Up in the Shanghai-At-Risk-for-Psychosis (SHARP) Study. Schizophr Bull 2021; 47:562-574. [PMID: 32926141 PMCID: PMC8480195 DOI: 10.1093/schbul/sbaa127] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess cortical thickness (CT) and surface area (SA) of frontal, temporal, and parietal brain regions in a large clinical high risk for psychosis (CHR) sample, and to identify cortical brain abnormalities in CHR who convert to psychosis and in the whole CHR sample, compared with the healthy controls (HC). METHODS Magnetic resonance imaging, clinical, and cognitive data were acquired at baseline in 92 HC, 130 non-converters, and 22 converters (conversion assessed at 1-year follow-up). CT and SA at baseline were calculated for frontal, temporal, and parietal subregions. Correlations between regions showing group differences and clinical scores and age were also obtained. RESULTS CT but not SA was significantly reduced in CHR compared with HC. Two patterns of findings emerged: (1) In converters, CT was significantly reduced relative to non-converters and controls in the banks of superior temporal sulcus, Heschl's gyrus, and pars triangularis and (2) CT in the inferior parietal and supramarginal gyrus, and at trend level in the pars opercularis, fusiform, and middle temporal gyri was significantly reduced in all high-risk individuals compared with HC. Additionally, reduced CT correlated significantly with older age in HC and in non-converters but not in converters. CONCLUSIONS These results show for the first time that fronto-temporo-parietal abnormalities characterized all CHR, that is, both converters and non-converters, relative to HC, while CT abnormalities in converters relative to CHR-NC and HC were found in core auditory and language processing regions.
Collapse
Affiliation(s)
- Elisabetta C Del Re
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston
Healthcare System, Brockton Division, and Harvard Medical School,
Boston, MA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
| | - Anthony Guliano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
| | - Nathaniel Somes
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of
Medicine, Shanghai Key Laboratory of Psychotic Disorders, SHARP
Program, Shanghai China
| | - Benjamin Reid
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - Amanda Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
- Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
| | - Monica Lyons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
- Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
| | - Huijun Li
- Florida A&M University, Department of Psychology,
Tallahassee, FL
| | | | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
- Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
| | - Robert W McCarley
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston
Healthcare System, Brockton Division, and Harvard Medical School,
Boston, MA
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of
Medicine, Shanghai Key Laboratory of Psychotic Disorders, SHARP
Program, Shanghai China
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of
Medicine, Shanghai Key Laboratory of Psychotic Disorders, SHARP
Program, Shanghai China
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
- Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
- Department of Radiology, Brigham and Women’s Hospital, and
Harvard Medical School, Boston, MA
- Research and Development, VA Boston Healthcare System,
Boston, MA
| | - Margaret A Niznikiewicz
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston
Healthcare System, Brockton Division, and Harvard Medical School,
Boston, MA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
- To whom correspondence should be addressed; e-mail:
| |
Collapse
|
29
|
Kim K, Duc NT, Choi M, Lee B. EEG microstate features according to performance on a mental arithmetic task. Sci Rep 2021; 11:343. [PMID: 33431963 PMCID: PMC7801706 DOI: 10.1038/s41598-020-79423-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we hypothesized that task performance could be evaluated applying EEG microstate to mental arithmetic task. This pilot study also aimed at evaluating the efficacy of microstates as novel features to discriminate task performance. Thirty-six subjects were divided into good and poor performers, depending on how well they performed the task. Microstate features were derived from EEG recordings during resting and task states. In the good performers, there was a decrease in type C and an increase in type D features during the task compared to the resting state. Mean duration and occurrence decreased and increased, respectively. In the poor performers, occurrence of type D feature, mean duration and occurrence showed greater changes. We investigated whether microstate features were suitable for task performance classification and eleven features including four archetypes were selected by recursive feature elimination (RFE). The model that implemented them showed the highest classification performance for differentiating between groups. Our pilot findings showed that the highest mean Area Under Curve (AUC) was 0.831. This study is the first to apply EEG microstate features to specific cognitive tasks in healthy subjects, suggesting that EEG microstate features can reflect task achievement.
Collapse
Affiliation(s)
- Kyungwon Kim
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea
| | - Nguyen Thanh Duc
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea
| | - Min Choi
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
30
|
Olivares EI, Urraca AS, Lage-Castellanos A, Iglesias J. Different and common brain signals of altered neurocognitive mechanisms for unfamiliar face processing in acquired and developmental prosopagnosia. Cortex 2020; 134:92-113. [PMID: 33271437 DOI: 10.1016/j.cortex.2020.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
Neuropsychological studies have shown that prosopagnosic individuals perceive face structure in an atypical way. This might preclude the formation of appropriate face representations and, consequently, hamper effective recognition. The present ERP study, in combination with Bayesian source reconstruction, investigates how information related to both external (E) and internal (I) features was processed by E.C. and I.P., suffering from acquired and developmental prosopagnosia, respectively. They carried out a face-feature matching task with new faces. E.C. showed poor performance and remarkable lack of early face-sensitive P1, N170 and P2 responses on right (damaged) posterior cortex. Although she presented the expected mismatch effect to target faces in the E-I sequence, it was of shorter duration than in Controls, and involved left parietal, right frontocentral and dorsofrontal regions, suggestive of reduced neural circuitry to process face configurations. In turn, I.P. performed efficiently but with a remarkable bias to give "match" responses. His face-sensitive potentials P1-N170 were comparable to those from Controls, however, he showed no subsequent P2 response and a mismatch effect only in the I-E sequence, reflecting activation confined to those regions that sustain typically the initial stages of face processing. Relevantly, neither of the prosopagnosics exhibited conspicuous P3 responses to features acting as primes, indicating that diagnostic information for constructing face representations could not be sufficiently attended nor deeply encoded. Our findings suggest a different locus for altered neurocognitive mechanisms in the face network in participants with different types of prosopagnosia, but common indicators of a deficient allocation of attentional resources for further recognition.
Collapse
Affiliation(s)
- Ela I Olivares
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Spain.
| | - Ana S Urraca
- Centro Universitario Cardenal Cisneros, Alcalá de Henares, Madrid, Spain
| | - Agustín Lage-Castellanos
- Department of Neuroinformatics, Cuban Center for Neuroscience, Havana, Cuba; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jaime Iglesias
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
31
|
Reduced regional homogeneity and neurocognitive impairment in patients with moderate-to-severe obstructive sleep apnea. Sleep Med 2020; 75:418-427. [PMID: 32980663 DOI: 10.1016/j.sleep.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neurocognitive dysfunction and abnormal regional homogeneity (ReHo) have been reported in patients with obstructive sleep apnea (OSA). However, little is known about whether brain functional alteration could be used to differentiate from healthy controls (HCs) and its correlation with neurocognitive impairment. METHODS Thirty-three treatment-naive patients with moderate-to-severe OSA and 22 HCs with matched age, sex and education underwent the evaluation of Epworth sleepiness scale, neurocognitive function, full night polysomnography and resting-state functional magnetic resonance imaging scan. ReHo, support vector machine, and correlation with neurocognitive function were administrated to analyze the data. RESULTS Compared with HCs, patients with OSA showed decreased ReHo in the bilateral superior frontal gyrus (FG), bilateral superior medial prefrontal cortex (PFC)/right supplementary motor area (SMA), left middle FG, and right precentral/postcentral gyrus. Negative correlations were observed between the ReHo values in the left superior FG/middle FG and apnea hypopnea index, oxygen desaturation index in the OSA group. The scores of Stroop word test, Stroop color-word test, symbol coding test were all negatively correlated with the ReHo values in the right precentral gyrus/postcentral gyrus in patients. Scores of the animal naming fluency test were positively correlated with the ReHo values in the left superior FG/middle FG in patients. Moreover, support vector machine analysis showed the ReHo values in the left superior FG/middle FG or bilateral superior medial PFC/right SMA both could discriminate patients from HCs with good accuracies, sensitivities, and specificities (85.45%, 87.88%, 81.82% and 81.82%, 84.85%, 77.27%, respectively). CONCLUSION Dysfunction in the frontal lobe is a potentially pivotal neuro-pathophysiological mechanism of neurocognitive impairment in patients with moderate-to-severe OSA. And significantly lower ReHo values in the left superior FG/middle FG and/or superior medial PFC/SMA are promising imaging biomarkers to discriminate moderate-to-severe patients with OSA from HCs.
Collapse
|
32
|
Kang H, An SC, Kim NO, Sung M, Kang Y, Lee US, Yang HJ. Meditative Movement Affects Working Memory Related to Neural Activity in Adolescents: A Randomized Controlled Trial. Front Psychol 2020; 11:931. [PMID: 32477223 PMCID: PMC7236766 DOI: 10.3389/fpsyg.2020.00931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have revealed that meditative movement changes brain activity and improves the cognitive function of adults. However, there is still insufficient data on whether meditative movement contributes to the cognitive function of adolescents whose brain is still under development. Therefore, this study aimed to uncover the effects of meditative movement on the cognitive performance and its relation with brain activity in adolescents. Forty healthy adolescent participants (mean age of 17∼18) were randomly allocated into two groups: meditative movement and control group. The meditative movement group was instructed to perform the meditative movement, twice a day for 9 min each, for a duration of 3 weeks. During the same time of the day, the control group was instructed to rest under the same condition. To measure changes in cognitive abilities, a dual n-back task was performed before and after the intervention and analyzed by repeated two-way analysis of variance (ANOVA). During the task, electroencephalogram signals were collected to find the relation of brain activity with working memory performance and was analyzed by regression analysis. A repeated two-way ANOVA with Bonferroni correction showed that working memory performance was significantly increased by meditative movement compared with the retest effect. Based on regression analysis, the amplitude of high-beta rhythm in the F3 channel showed a significant correlation with dual n-back score in the experimental group after the intervention, while there was no correlation in the control group. Our results suggest that meditative movement improves the performance of working memory, which is related to brain activity in adolescents. Clinical Trial Registration:cris.nih.go.kr/cris, identifier KCT0004706.
Collapse
Affiliation(s)
- Hojung Kang
- Korea Institute of Brain Science, Seoul, South Korea
| | - Seung Chan An
- Korea Institute of Brain Science, Seoul, South Korea
| | - Nah Ok Kim
- Korea Institute of Brain Science, Seoul, South Korea
| | - Minkyu Sung
- Korea Institute of Brain Science, Seoul, South Korea
| | - Yunjung Kang
- Korea Institute of Brain Science, Seoul, South Korea
| | - Ul Soon Lee
- Department of Brain Education, Global Cyber University, Cheonan-si, South Korea
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul, South Korea.,Department of Integrative Biosciences, University of Brain Education, Cheonan-si, South Korea.,Department of Integrative Health Care, University of Brain Education, Cheonan-si, South Korea
| |
Collapse
|
33
|
Ioakeimidis V, Haenschel C, Yarrow K, Kyriakopoulos M, Dima D. A Meta-analysis of Structural and Functional Brain Abnormalities in Early-Onset Schizophrenia. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Early-onset schizophrenia (EOS) patients demonstrate brain changes that are similar to severe cases of adult-onset schizophrenia. Neuroimaging research in EOS is limited due to the rarity of the disorder. The present meta-analysis aims to consolidate MRI and functional MRI findings in EOS. Seven voxel-based morphometry (VBM) and 8 functional MRI studies met the inclusion criteria, reporting whole-brain analyses of EOS vs healthy controls. Activation likelihood estimation (ALE) was conducted to identify aberrant anatomical or functional clusters across the included studies. Separate ALE analyses were performed, first for all task-dependent studies (Cognition ALE) and then only for working memory ones (WM ALE). The VBM ALE revealed no significant clusters for gray matter volume reductions in EOS. Significant hypoactivations peaking in the right anterior cingulate cortex (rACC) and the right temporoparietal junction (rTPJ) were detected in the Cognition ALE. In the WM ALE, consistent hypoactivations were found in the left precuneus (lPreC), the right inferior parietal lobule (rIPL) and the rTPJ. These hypoactivated areas show strong associations with language, memory, attention, spatial, and social cognition. The functional co-activated networks of each suprathreshold ALE cluster, identified using the BrainMap database, revealed a core co-activation network with similar topography to the salience network. Our results add support to posterior parietal, ACC and rTPJ dysfunction in EOS, areas implicated in the cognitive impairments characterizing EOS. The salience network lies at the core of these cognitive processes, co-activating with the hypoactivating regions, and thus highlighting the importance of salience dysfunction in EOS.
Collapse
Affiliation(s)
- Vasileios Ioakeimidis
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Corinna Haenschel
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Kielan Yarrow
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Marinos Kyriakopoulos
- National and Specialist Acorn Lodge Inpatient Children Unit, South London & Maudsley NHS Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
34
|
D'Antuono G, Maini M, Marin D, Boccia M, Piccardi L. Effect of ageing on verbal and visuo-spatial working memory: Evidence from 880 individuals. APPLIED NEUROPSYCHOLOGY. ADULT 2020; 29:193-202. [PMID: 32125884 DOI: 10.1080/23279095.2020.1732979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It is well-known that ageing is associated with a decrease in working memory abilities. It is not so clear at what age the decline begins and if there are differences in the decline of verbal and visuo-spatial working memory. This study investigates the effect of ageing on verbal and visuo-spatial working memory by comparing the performance of 880 subjects aged between 15- and 80-year old who were subdivided into five groups. The results show that age is negatively correlated with performance on both verbal and visuo-spatial working memory tasks. Specifically, we observed a gradual deterioration in performance with increasing age starting at 36-year old. Comparing the performance of the five groups, it is possible to observe a clear decline in both verbal and visuo-spatial working memory domains in subjects over 66-year old. However, in the next youngest age group, it is possible to notice differences in performance depending on the type of material being processed and the cognitive load required. This variability is discussed by analyzing the factors that may have influenced test performance.
Collapse
Affiliation(s)
| | - Manuela Maini
- Nucleo Speciale per le Gravissime Disabilità Acquisite, CRA "Virginia Grandi," Bologna, Italy
| | - Dario Marin
- SOC Neuropsichiatria ASUIUD, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Maddalena Boccia
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Laura Piccardi
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
35
|
Catharine VL, Helena V, Ellen D, Guy V, Karel D, Karen C. Exploration of gray matter correlates of cognitive training benefit in adolescents with chronic traumatic brain injury. Neuroimage Clin 2019; 23:101827. [PMID: 31005776 PMCID: PMC6477162 DOI: 10.1016/j.nicl.2019.101827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/19/2019] [Accepted: 04/13/2019] [Indexed: 12/23/2022]
Abstract
Sustaining a traumatic brain injury (TBI) during adolescence has a profound effect on brain development and can result in persistent executive functioning deficits in daily life. Cognitive recovery from pediatric-TBI relies on the potential of neuroplasticity, which can be fostered by restorative training-programs. However the structural mechanisms underlying cognitive recovery in the immature brain are poorly understood. This study investigated gray matter plasticity following 2 months of cognitive training in young patients with TBI. Sixteen adolescents in the chronic stage of moderate-severe-TBI (9 male, mean age = 15y8m ± 1y7m) were enrolled in a cognitive computerized training program for 8 weeks (5 times/week, 40 min/session). Pre-and post-intervention, and 6 months after completion of the training, participants underwent a comprehensive neurocognitive test-battery and anatomical Magnetic Resonance Imaging scans. We selected 9 cortical-subcortical Regions-Of-Interest associated with Executive Functioning (EF-ROIs) and 3 control regions from the Desikan-Killiany atlas. Baseline analyses showed significant decreased gray matter density in the superior frontal gyri p = 0.033, superior parietal gyri p = 0.015 and thalamus p = 0.006 in adolescents with TBI compared to age and gender matched controls. Linear mixed model analyses of longitudinal volumetric data of the EF-ROI revealed no strong evidence of training-related changes in the group with TBI. However, compared to the change over time in the control regions between post-intervention and 6 months follow-up, the change in the EF-ROIs showed a significant difference. Exploratory analyses revealed a negative correlation between the change on the Digit Symbol Substitution test and the change in volume of the putamen (r = -0.596, p = 0.015). This preliminary study contributes to the insights of training-related plasticity mechanisms after pediatric-TBI.
Collapse
Affiliation(s)
- Vander Linden Catharine
- Ghent University Hospital, Child Rehabilitation Centre K7, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Verhelst Helena
- Ghent University, Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium.
| | - Deschepper Ellen
- Ghent University, Biostatistics Unit, Department of Public Health, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Vingerhoets Guy
- Ghent University, Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium.
| | - Deblaere Karel
- Ghent University Hospital, Department of Neuroradiology, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Caeyenberghs Karen
- Australian Catholic University, Mary McKillop Institute for Health Research Level 5, 215 Spring Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
36
|
Suzuki M, Kawagoe T, Nishiguchi S, Abe N, Otsuka Y, Nakai R, Asano K, Yamada M, Yoshikawa S, Sekiyama K. Neural Correlates of Working Memory Maintenance in Advanced Aging: Evidence From fMRI. Front Aging Neurosci 2018; 10:358. [PMID: 30459595 PMCID: PMC6232505 DOI: 10.3389/fnagi.2018.00358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2018] [Indexed: 11/13/2022] Open
Abstract
Working memory (WM)-related brain activity is known to be modulated by aging; particularly, older adults demonstrate greater activity than young adults. However, it is still unclear whether the activity increase in older adults is also observed in advanced aging. The present functional magnetic resonance imaging (fMRI) study was designed to clarify the neural correlates of WM in advanced aging. Further, we set out to investigate in the case that adults of advanced age do show age-related increase in WM-related activity, what the functional significance of this over-recruitment might be. Two groups of older adults – “young–old” (61–70 years, n = 17) and “old–old” (77–82 years, n = 16) – were scanned while performing a visual WM task (the n-back task: 0-back and 1-back). WM effects (1-back > 0-back) common to both age groups were identified in several regions, including the bilateral dorsolateral prefrontal cortex (DLPFC), the inferior parietal cortex, and the insula. Greater WM effects in the old–old than in the young–old group were identified in the right caudal DLPFC. These results were replicated when we performed a separate analysis between two age groups with the same level of WM performance (the young–old vs. a “high-performing” subset of the old–old group). There were no regions where WM effects were greater in the young–old group than in the old–old group. Importantly, the magnitude of the over-recruitment WM effects positively correlated with WM performance in the old–old group, but not in the young–old group. The present findings suggest that cortical over-recruitment occurs in advanced old age, and that increased activity may serve a compensatory function in mediating WM performance.
Collapse
Affiliation(s)
- Maki Suzuki
- Division of Cognitive Psychology, Faculty of Letters, Kumamoto University, Kumamoto, Japan.,Department of Behavioral Neurology and Neuropsychiatry, United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Toshikazu Kawagoe
- Division of Human and Social Sciences, Graduate School of Social and Cultural Sciences, Kumamoto University, Kumamoto, Japan
| | - Shu Nishiguchi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Yuki Otsuka
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Ryusuke Nakai
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Minoru Yamada
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kaoru Sekiyama
- Division of Cognitive Psychology, Faculty of Letters, Kumamoto University, Kumamoto, Japan.,Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Embury CM, Wiesman AI, Proskovec AL, Mills MS, Heinrichs-Graham E, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural dynamics of verbal working memory processing in children and adolescents. Neuroimage 2018; 185:191-197. [PMID: 30336254 DOI: 10.1016/j.neuroimage.2018.10.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 01/01/2023] Open
Abstract
Development of cognitive functions and the underlying neurophysiology is evident throughout childhood and adolescence, with higher order processes such as working memory (WM) being some of the last cognitive faculties to fully mature. Previous functional neuroimaging studies of the neurodevelopment of WM have largely focused on overall regional activity levels rather than the temporal dynamics of neural component recruitment. In this study, we used magnetoencephalography (MEG) to examine the neural dynamics of WM in a large cohort of children and adolescents who were performing a high-load, modified verbal Sternberg WM task. Consistent with previous studies in adults, our findings indicated left-lateralized activity throughout the task period, beginning in the occipital cortices and spreading anterior to include temporal and prefrontal cortices during later encoding and into maintenance. During maintenance, the occipital alpha increase that has been widely reported in adults was found to be relatively weak in this developmental sample, suggesting continuing development of this component of neural processing, which was supported by correlational analyses. Intriguingly, we also found sex-specific developmental effects in alpha responses in the right inferior frontal region during encoding and in parietal and occipital cortices during maintenance. These findings suggested a developmental divergence between males and females in the maturation of neural circuitry serving WM during the transition from childhood to adolescence.
Collapse
Affiliation(s)
- Christine M Embury
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amy L Proskovec
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Mackenzie S Mills
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
38
|
Sneider JT, Cohen-Gilbert JE, Hamilton DA, Stein ER, Golan N, Oot EN, Seraikas AM, Rohan ML, Harris SK, Nickerson LD, Silveri MM. Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task. Front Hum Neurosci 2018; 12:238. [PMID: 29997486 PMCID: PMC6028523 DOI: 10.3389/fnhum.2018.00238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022] Open
Abstract
The frontal cortex undergoes substantial structural and functional changes during adolescence and significant developmental changes also occur in the hippocampus. Both of these regions are notably vulnerable to alcohol and other substance use, which is typically initiated during adolescence. Identifying measures of brain function during adolescence, particularly before initiation of drug or alcohol use, is critical to understanding how such behaviors may affect brain development, especially in these vulnerable brain regions. While there is a substantial developmental literature on adolescent working memory, less is known about spatial memory. Thus, a virtual Morris water task (vMWT) was applied to probe function of the adolescent hippocampus. Multiband blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) data were acquired at 3T during task performance. Participants included 32 healthy, alcohol- and drug-naïve adolescents, 13–14 years old, examined at baseline of a 3-year longitudinal MRI study. Significantly greater BOLD activation was observed in the hippocampus and surrounding areas, and in prefrontal regions involved in executive function, during retrieval relative to motor performance. In contrast, significantly greater BOLD activation was observed in components of the default mode network, including frontal medial cortex, during the motor condition (when task demands were minimal) relative to the retrieval condition. Worse performance (longer path length) during retrieval was associated with greater activation of angular gyrus/supramarginal gyrus, whereas worse performance (longer path length/latency) during motor control was associated with less activation of frontal pole. Furthermore, while latency (time to complete task) was greater in females than in males, there were no sex differences in path length (accuracy), suggesting that females required more time to navigate the virtual environment, but did so as effectively as males. These findings demonstrate that performance of the vMWT elicits hippocampal and prefrontal activation patterns in early adolescence, similar to activation observed during spatial memory retrieval in adults. Given that this task is sensitive to hippocampal function, and that the adolescent hippocampus is notably vulnerable to the effects of alcohol and other substances, data acquired using this task during healthy adolescent development may provide a framework for understanding neurobiological impact of later initiation of use.
Collapse
Affiliation(s)
- Jennifer T Sneider
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Julia E Cohen-Gilbert
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Elena R Stein
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, United States
| | - Noa Golan
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, United States
| | - Emily N Oot
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, United States.,School of Medicine, Boston University, Boston, MA, United States
| | - Anna M Seraikas
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, United States
| | - Michael L Rohan
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States.,Brain Imaging Center, McLean Hospital, Belmont, MA, United States
| | - Sion K Harris
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Lisa D Nickerson
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States.,Applied Neuroimaging Statistics Laboratory, McLean Hospital, Belmont, MA, United States
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States.,School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
39
|
Yaple Z, Arsalidou M. N
-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children. Child Dev 2018; 89:2010-2022. [DOI: 10.1111/cdev.13080] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zachary Yaple
- National Research University Higher School of Economics
| | - Marie Arsalidou
- National Research University Higher School of Economics
- York University
| |
Collapse
|
40
|
Malagoli C, Usai MC. The effects of gender and age on inhibition and working memory organization in 14- to 19-year-old adolescents and young adults. COGNITIVE DEVELOPMENT 2018. [DOI: 10.1016/j.cogdev.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Rosenbaum GM, Venkatraman V, Steinberg L, Chein JM. The Influences of Described and Experienced Information on Adolescent Risky Decision Making. DEVELOPMENTAL REVIEW 2017. [PMID: 29527087 DOI: 10.1016/j.dr.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adolescents are known to take more risks than adults, which can be harmful to their health and well-being. However, despite age differences in real-world risk taking, laboratory risk-taking paradigms often do not evince these developmental patterns. Recent findings in the literature suggest that this inconsistency may be due in part to differences between how adolescents process information about risk when it is described (e.g., in a description-based classroom intervention) versus when it is experienced (e.g., when a teenager experiences the outcome of a risky choice). The present review considers areas of research that can inform approaches to intervention by deepening our understanding of risk taking in described or experienced contexts. We examine the literature on the description-experience gap, which has generally been limited to studies of adult samples, but which highlights differential decision making when risk information is described versus experienced. Informed by this work, we then explore the developmental literature comparing adolescent to adult decision making, and consider whether inconsistencies in age-related findings might be explained by distinguishing between studies in which participants learn about decision outcomes through experience versus description. In light of evidence that studies using experience-based tasks more often show age differences in risk taking, we consider the implications of this pattern, and argue that experience-based tasks may be more ecologically valid measures of adolescent risky decision making, in part due to the heightened affective nature of these tasks. Finally, we propose a model to integrate our findings with theories of adolescent risk-taking, and discuss implications for risk-reduction messaging.
Collapse
Affiliation(s)
- Gail M Rosenbaum
- Department of Psychology, Temple University Weiss Hall, 1701 N. 13 St., Philadelphia, PA 19122
| | - Vinod Venkatraman
- Department of Marketing, Fox School of Business, Temple University 1801, Liacouras Walk (Alter A562), Philadelphia, PA 19122.,Center for Neural Decision Making, Fox School of Business, Temple University 1801, Liacouras Walk (Alter A562), Philadelphia, PA 19122
| | - Laurence Steinberg
- Department of Psychology, Temple University Weiss Hall, 1701 N. 13 St., Philadelphia, PA 19122
| | - Jason M Chein
- Department of Psychology, Temple University Weiss Hall, 1701 N. 13 St., Philadelphia, PA 19122
| |
Collapse
|
42
|
Eckfeld A, Karlsgodt KH, Haut KM, Bachman P, Jalbrzikowski M, Zinberg J, van Erp TGM, Cannon TD, Bearden CE. Disrupted Working Memory Circuitry in Adolescent Psychosis. Front Hum Neurosci 2017; 11:394. [PMID: 28848413 PMCID: PMC5550407 DOI: 10.3389/fnhum.2017.00394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/17/2017] [Indexed: 12/02/2022] Open
Abstract
Individuals with schizophrenia (SZ) consistently show deficits in spatial working memory (WM) and associated atypical patterns of neural activity within key WM regions, including the dorsolateral prefrontal cortex (dlPFC) and parietal cortices. However, little research has focused on adolescent psychosis (AP) and potential age-associated disruptions of WM circuitry that may occur in youth with this severe form of illness. Here we utilized each subject's individual spatial WM capacity to investigate task-based neural dysfunction in 17 patients with AP (16.58 ± 2.60 years old) as compared to 17 typically developing, demographically comparable adolescents (18.07 ± 3.26 years old). AP patients showed lower behavioral performance at higher WM loads and lower overall WM capacity compared to healthy controls. Whole-brain activation analyses revealed greater bilateral precentral and right postcentral activity in controls relative to AP patients, when controlling for individual WM capacity. Seed-based psychophysiological interaction (PPI) analyses revealed significantly greater co-activation between the left dlPFC and left frontal pole in controls relative to AP patients. Significant group-by-age interactions were observed in both whole-brain and PPI analyses, with AP patients showing atypically greater neural activity and stronger coupling between WM task activated brain regions as a function of increasing age. Additionally, AP patients demonstrated positive relationships between right dlPFC neural activity and task performance, but unlike healthy controls, failed to show associations between neural activity and out-of-scanner neurocognitive performance. Collectively, these findings are consistent with atypical WM-related functioning and disrupted developmental processes in youth with AP.
Collapse
Affiliation(s)
- Ariel Eckfeld
- Department of Psychology, UCLALos Angeles, CA, United States
| | | | - Kristen M. Haut
- Department of Psychiatry, Rush University Medical CenterChicago, IL, United States
| | - Peter Bachman
- Department of Psychiatry, University of PittsburghPittsburgh, PA, United States
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of PittsburghPittsburgh, PA, United States
| | - Jamie Zinberg
- Semel Institute for Neuroscience and Human Behavior, UCLALos Angeles, CA, United States
| | - Theo G. M. van Erp
- Department of Psychiatry and Human Behavior, University of California, IrvineIrvine, CA, United States
| | - Tyrone D. Cannon
- Departments of Psychology and Psychiatry, Yale UniversityNew Haven, CT, United States
| | - Carrie E. Bearden
- Department of Psychology, UCLALos Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, UCLALos Angeles, CA, United States
| |
Collapse
|
43
|
Mueller SC, Cromheeke S, Siugzdaite R, Nicolas Boehler C. Evidence for the triadic model of adolescent brain development: Cognitive load and task-relevance of emotion differentially affect adolescents and adults. Dev Cogn Neurosci 2017; 26:91-100. [PMID: 28688343 PMCID: PMC6987860 DOI: 10.1016/j.dcn.2017.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 10/31/2022] Open
Abstract
In adults, cognitive control is supported by several brain regions including the limbic system and the dorsolateral prefrontal cortex (dlPFC) when processing emotional information. However, in adolescents, some theories hypothesize a neurobiological imbalance proposing heightened sensitivity to affective material in the amygdala and striatum within a cognitive control context. Yet, direct neurobiological evidence is scarce. Twenty-four adolescents (12-16) and 28 adults (25-35) completed an emotional n-back working memory task in response to happy, angry, and neutral faces during fMRI. Importantly, participants either paid attention to the emotion (task-relevant condition) or judged the gender (task-irrelevant condition). Behaviorally, for both groups, when happy faces were task-relevant, performance improved relative to when they were task-irrelevant, while performance decrements were seen for angry faces. In the dlPFC, angry faces elicited more activation in adults during low relative to high cognitive load (2-back vs. 0-back). By contrast, happy faces elicited more activation in the amygdala in adolescents when they were task-relevant. Happy faces also generally increased nucleus accumbens activity (regardless of relevance) in adolescents relative to adults. Together, the findings are consistent with neurobiological models of adolescent brain development and identify neurodevelopmental differences in cognitive control emotion interactions.
Collapse
Affiliation(s)
- Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - Sofie Cromheeke
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Roma Siugzdaite
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - C Nicolas Boehler
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|