1
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
2
|
Ehrler M, Speckert A, Kretschmar O, Tuura O'Gorman R, Latal B, Jakab A. The cumulative impact of clinical risk on brain networks and associations with executive function impairments in adolescents with congenital heart disease. Hum Brain Mapp 2024; 45:e70028. [PMID: 39377685 PMCID: PMC11459682 DOI: 10.1002/hbm.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Patients with congenital heart disease (CHD) demonstrate altered structural brain network connectivity. However, there is large variability between reported results and little information is available to identify those patients at highest risk for brain alterations. Thus, we aimed to investigate if network connectivity measures were associated with the individual patient's cumulative load of clinical risk factors and with family-environmental factors in a cohort of adolescents with CHD. Further, we investigated associations with executive function impairments. In 53 adolescents with CHD who underwent open-heart surgery during infancy, and 75 healthy controls, diffusion magnetic resonance imaging and neuropsychological assessment was conducted at a mean age of 13.2 ± 1.3 years. Structural connectomes were constructed using constrained spherical deconvolution tractography. Graph theory and network-based statistics were applied to investigate network connectivity measures. A cumulative clinical risk (CCR) score was built by summing up binary risk factors (neonatal, cardiac, neurologic) based on clinically relevant thresholds. The role of family-environmental factors (parental education, parental mental health, and family function) was investigated. An age-adjusted executive function summary score was built from nine neuropsychological tests. While network integration and segregation were preserved in adolescents with CHD, they showed lower edge strength in a dense subnetwork. A higher CCR score was associated with lower network segregation, edge strength, and executive function performance. Edge strength was particularly reduced in a subnetwork including inter-frontal and fronto-parietal-thalamic connections. There was no association with family-environmental factors. Poorer executive functioning was associated with lower network integration and segregation. We demonstrated evidence for alterations of network connectivity strength in adolescents with CHD - particularly in those patients who face a cumulative exposure to multiple clinical risk factors over time. Quantifying the cumulative load of risk early in life may help to better predict trajectories of brain development in order to identify and support the most vulnerable patients as early as possible.
Collapse
Affiliation(s)
- Melanie Ehrler
- Child Development CenterUniversity Children's Hospital ZurichZurichSwitzerland
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD)University of ZurichZurichSwitzerland
| | - Anna Speckert
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD)University of ZurichZurichSwitzerland
- Center for MR ResearchUniversity Children's Hospital ZurichZurichSwitzerland
| | - Oliver Kretschmar
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- Pediatric Cardiology, Pediatric Heart Center, Department of SurgeryUniversity Children's Hospital ZurichZurichSwitzerland
| | - Ruth Tuura O'Gorman
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- Center for MR ResearchUniversity Children's Hospital ZurichZurichSwitzerland
| | - Beatrice Latal
- Child Development CenterUniversity Children's Hospital ZurichZurichSwitzerland
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD)University of ZurichZurichSwitzerland
| | - Andras Jakab
- Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD)University of ZurichZurichSwitzerland
- Center for MR ResearchUniversity Children's Hospital ZurichZurichSwitzerland
| |
Collapse
|
3
|
Jang YH, Ham J, Kasani PH, Kim H, Lee JY, Lee GY, Han TH, Kim BN, Lee HJ. Predicting 2-year neurodevelopmental outcomes in preterm infants using multimodal structural brain magnetic resonance imaging with local connectivity. Sci Rep 2024; 14:9331. [PMID: 38653988 DOI: 10.1038/s41598-024-58682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The neurodevelopmental outcomes of preterm infants can be stratified based on the level of prematurity. We explored brain structural networks in extremely preterm (EP; < 28 weeks of gestation) and very-to-late (V-LP; ≥ 28 and < 37 weeks of gestation) preterm infants at term-equivalent age to predict 2-year neurodevelopmental outcomes. Using MRI and diffusion MRI on 62 EP and 131 V-LP infants, we built a multimodal feature set for volumetric and structural network analysis. We employed linear and nonlinear machine learning models to predict the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) scores, assessing predictive accuracy and feature importance. Our findings revealed that models incorporating local connectivity features demonstrated high predictive performance for BSID-III subsets in preterm infants. Specifically, for cognitive scores in preterm (variance explained, 17%) and V-LP infants (variance explained, 17%), and for motor scores in EP infants (variance explained, 15%), models with local connectivity features outperformed others. Additionally, a model using only local connectivity features effectively predicted language scores in preterm infants (variance explained, 15%). This study underscores the value of multimodal feature sets, particularly local connectivity, in predicting neurodevelopmental outcomes, highlighting the utility of machine learning in understanding microstructural changes and their implications for early intervention.
Collapse
Affiliation(s)
- Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Jusung Ham
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| | - Payam Hosseinzadeh Kasani
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Gang Yi Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Tae Hwan Han
- Division of Neurology, Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Carozza S, Holmes J, Akarca D, Astle DE. Global topology of human connectome is insensitive to early life environments - A prospective longitudinal study of the general population. Dev Sci 2024:e13490. [PMID: 38494672 DOI: 10.1111/desc.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/19/2024]
Abstract
The widely acknowledged detrimental impact of early adversity on child development has driven efforts to understand the underlying mechanisms that may mediate these effects within the developing brain. Recent efforts have begun to move beyond associating adversity with the morphology of individual brain regions towards determining if and how adversity might shape their interconnectivity. However, whether adversity effects a global shift in the organisation of whole-brain networks remains unclear. In this study, we assessed this possibility using parental questionnaire and diffusion imaging data from The Avon Longitudinal Study of Parents and Children (ALSPAC, N = 913), a prospective longitudinal study spanning more than 20 years. We tested whether a wide range of adversities-including experiences of abuse, domestic violence, physical and emotional cruelty, poverty, neglect, and parental separation-measured by questionnaire within the first seven years of life were significantly associated with the tractography-derived connectome in young adulthood. We tested this across multiple measures of organisation and using a computational model that simulated the wiring economy of the brain. We found no significant relationships between early exposure to any form of adversity and the global organisation of the structural connectome in young adulthood. We did detect local differences in the medial prefrontal cortex, as well as an association between weaker brain wiring constraints and greater externalising behaviour in adolescence. Our results indicate that further efforts are necessary to delimit the magnitude and functional implications of adversity-related differences in connectomic organization. RESEARCH HIGHLIGHTS: Diverse prospective measures of the early-life environment do not predict the organisation of the DTI tractography-derived connectome in young adulthood Wiring economy of the connectome is weakly associated with externalising in adolescence, but not internalising or cognitive ability Further work is needed to establish the scope and significance of global adversity-related differences in the structural connectome.
Collapse
Affiliation(s)
- Sofia Carozza
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Joni Holmes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- School of Psychology, University of East Anglia, Norwich, UK
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
França LGS, Ciarrusta J, Gale-Grant O, Fenn-Moltu S, Fitzgibbon S, Chew A, Falconer S, Dimitrova R, Cordero-Grande L, Price AN, Hughes E, O'Muircheartaigh J, Duff E, Tuulari JJ, Deco G, Counsell SJ, Hajnal JV, Nosarti C, Arichi T, Edwards AD, McAlonan G, Batalle D. Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment. Nat Commun 2024; 15:16. [PMID: 38331941 PMCID: PMC10853532 DOI: 10.1038/s41467-023-44050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.
Collapse
Affiliation(s)
- Lucas G S França
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Judit Ciarrusta
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Oliver Gale-Grant
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sunniva Fenn-Moltu
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sean Fitzgibbon
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Ralica Dimitrova
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Eugene Duff
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
- Department of Brain Sciences, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500, Turku, Finland
- Turku Collegium for Science and Medicine and Technology, University of Turku, 20500, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, 20500, Turku, Finland
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Pompeu Fabra University, 08002, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3010, Australia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
6
|
Rapuc S, Pierrat V, Marchand-Martin L, Benhammou V, Kaminski M, Ancel PY, Twilhaar ES. The interrelatedness of cognitive abilities in very preterm and full-term born children at 5.5 years of age: a psychometric network analysis approach. J Child Psychol Psychiatry 2024; 65:18-30. [PMID: 37165961 DOI: 10.1111/jcpp.13816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Very preterm (VP) birth is associated with a considerable risk for cognitive impairment, putting children at a disadvantage in academic and everyday life. Despite lower cognitive ability on the group level, there are large individual differences among VP born children. Contemporary theories define intelligence as a network of reciprocally connected cognitive abilities. Therefore, intelligence was studied as a network of interrelated abilities to provide insight into interindividual differences. We described and compared the network of cognitive abilities, including strength of interrelations between and the relative importance of abilities, of VP and full-term (FT) born children and VP children with below-average and average-high intelligence at 5.5 years. METHODS A total of 2,253 VP children from the EPIPAGE-2 cohort and 578 FT controls who participated in the 5.5-year-follow-up were eligible for inclusion. The WPPSI-IV was used to measure verbal comprehension, visuospatial abilities, fluid reasoning, working memory, and processing speed. Psychometric network analysis was applied to analyse the data. RESULTS Cognitive abilities were densely and positively interconnected in all networks, but the strength of connections differed between networks. The cognitive network of VP children was more strongly interconnected than that of FT children. Furthermore, VP children with below average IQ had a more strongly connected network than VP children with average-high IQ. Contrary to our expectations, working memory had the least central role in all networks. CONCLUSIONS In line with the ability differentiation hypothesis, children with higher levels of cognitive ability had a less interconnected and more specialised cognitive structure. Composite intelligence scores may therefore mask domain-specific deficits, particularly in children at risk for cognitive impairments (e.g., VP born children), even when general intelligence is unimpaired. In children with strongly and densely connected networks, domain-specific deficits may have a larger overall impact, resulting in lower intelligence levels.
Collapse
Affiliation(s)
- S Rapuc
- Université Paris Cité, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), INSERM, INRAE, Paris, France
| | - V Pierrat
- Université Paris Cité, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), INSERM, INRAE, Paris, France
- Department of Neonatology, Centre Hospitalier Intercommunal Créteil, Créteil, France
| | - L Marchand-Martin
- Université Paris Cité, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), INSERM, INRAE, Paris, France
| | - V Benhammou
- Université Paris Cité, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), INSERM, INRAE, Paris, France
| | - M Kaminski
- Université Paris Cité, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), INSERM, INRAE, Paris, France
| | - P-Y Ancel
- Université Paris Cité, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), INSERM, INRAE, Paris, France
- Assistance Publique-Hôpitaux de Paris, Clinical Investigation Centre P1419, Paris, France
| | - E S Twilhaar
- Université Paris Cité, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team (EPOPé), INSERM, INRAE, Paris, France
- Department of Psychology, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Zheng W, Wang X, Liu T, Hu B, Wu D. Preterm-birth alters the development of nodal clustering and neural connection pattern in brain structural network at term-equivalent age. Hum Brain Mapp 2023; 44:5372-5386. [PMID: 37539754 PMCID: PMC10543115 DOI: 10.1002/hbm.26442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Preterm-born neonates are prone to impaired neurodevelopment that may be associated with disrupted whole-brain structural connectivity. The present study aimed to investigate the longitudinal developmental pattern of the structural network from preterm birth to term-equivalent age (TEA), and identify how prematurity influences the network topological organization and properties of local brain regions. Multi-shell diffusion-weighted MRI of 28 preterm-born scanned a short time after birth (PB-AB) and at TEA (PB-TEA), and 28 matched term-born (TB) neonates in the Developing Human Connectome Project (dHCP) were used to construct structural networks through constrained spherical deconvolution tractography. Structural network development from preterm birth to TEA showed reduced shortest path length, clustering coefficient, and modularity, and more "connector" hubs linking disparate communities. Furthermore, compared with TB newborns, premature birth significantly altered the nodal properties (i.e., clustering coefficient, within-module degree, and participation coefficient) in the limbic/paralimbic, default-mode, and subcortical systems but not global topology at TEA, and we were able to distinguish the PB from TB neonates at TEA based on the nodal properties with 96.43% accuracy. Our findings demonstrated a topological reorganization of the structural network occurs during the perinatal period that may prioritize the optimization of global network organization to form a more efficient architecture; and local topology was more vulnerable to premature birth-related factors than global organization of the structural network, which may underlie the impaired cognition and behavior in PB infants.
Collapse
Affiliation(s)
- Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of SemiconductorsChinese Academy of SciencesLanzhouChina
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| |
Collapse
|
8
|
The effect of mindfulness-based intervention on neurobehavioural functioning and its association with white-matter microstructural changes in preterm young adolescents. Sci Rep 2023; 13:2010. [PMID: 36737638 PMCID: PMC9898533 DOI: 10.1038/s41598-023-29205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Very preterm (VPT) young adolescents are at high risk of executive, behavioural and socio-emotional difficulties. Previous research has shown significant evidence of the benefits of mindfulness-based intervention (MBI) on these abilities. This study aims to assess the association between the effects of MBI on neurobehavioral functioning and changes in white-matter microstructure in VPT young adolescents who completed an 8-week MBI program. Neurobehavioural assessments (i.e., neuropsychological testing, parents- and self-reported questionnaires) and multi-shell diffusion MRI were performed before and after MBI in 32 VPT young adolescents. Combined diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) measures were extracted on well-defined white matter tracts (TractSeg). A multivariate data-driven approach (partial least squares correlation) was used to explore associations between MBI-related changes on neurobehavioural measures and microstructural changes. The results showed an enhancement of global executive functioning using parent-reported questionnaire after MBI that was associated with a general pattern of increase in fractional anisotropy (FA) and decrease in axonal dispersion (ODI) in white-matter tracts involved in executive processes. Young VPT adolescents with lower gestational age at birth showed the greatest gain in white-matter microstructural changes after MBI.
Collapse
|
9
|
Vulnerability of the Neonatal Connectome following Postnatal Stress. J Neurosci 2022; 42:8948-8959. [PMID: 36376077 PMCID: PMC9732827 DOI: 10.1523/jneurosci.0176-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Stress following preterm birth can disrupt the emerging foundation of the neonatal brain. The current study examined how structural brain development is affected by a stressful early environment and whether changes in topological architecture at term-equivalent age could explain the increased vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation (N = 145, 43.5% female). A global index of postnatal stress was determined based on the number of invasive procedures during hospitalization (e.g., heel lance). Higher stress levels impaired structural connectivity growth in a subnetwork of 48 connections (p = 0.003), including the amygdala, insula, hippocampus, and posterior cingulate cortex. Findings were replicated in an independent validation sample (N = 123, 39.8% female, n = 91 with follow-up). Classifying infants into vulnerable and resilient based on having more or less internalizing symptoms at two to five years of age (n = 71) revealed lower connectivity in the hippocampus and amygdala for vulnerable relative to resilient infants (p < 0.001). Our findings suggest that higher stress exposure during hospital admission is associated with slower growth of structural connectivity. The preservation of global connectivity of the amygdala and hippocampus might reflect a stress-buffering or resilience-enhancing factor against a stressful early environment and early-childhood internalizing symptoms.SIGNIFICANCE STATEMENT The preterm brain is exposed to various external stimuli following birth. The effects of early chronic stress on neonatal brain networks and the remarkable degree of resilience are not well understood. The current study aims to provide an increased understanding of the impact of postnatal stress on third-trimester brain development and describe the topological architecture of a resilient brain. We observed a sparser neonatal brain network in infants exposed to higher postnatal stress. Limbic regulatory regions, including the hippocampus and amygdala, may play a key role as crucial convergence sites of protective factors. Understanding how stress-induced alterations in early brain development might lead to brain (re)organization may provide essential insights into resilient functioning.
Collapse
|
10
|
Jang YH, Kim H, Lee JY, Ahn JH, Chung AW, Lee HJ. Altered development of structural MRI connectome hubs at near-term age in very and moderately preterm infants. Cereb Cortex 2022; 33:5507-5523. [PMID: 36408630 DOI: 10.1093/cercor/bhac438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
Preterm infants may exhibit altered developmental patterns of the brain structural network by endogenous and exogenous stimuli, which are quantifiable through hub and modular network topologies that develop in the third trimester. Although preterm brain networks can compensate for white matter microstructural abnormalities of core connections, less is known about how the network developmental characteristics of preterm infants differ from those of full-term infants. We identified 13 hubs and 4 modules and revealed subtle differences in edgewise connectivity and local network properties between 134 preterm and 76 full-term infants, identifying specific developmental patterns of the brain structural network in preterm infants. The modules of preterm infants showed an imbalanced composition. The edgewise connectivity in preterm infants showed significantly decreased long- and short-range connections and local network properties in the dorsal superior frontal gyrus. In contrast, the fusiform gyrus and several nonhub regions showed significantly increased wiring of short-range connections and local network properties. Our results suggested that decreased local network in the frontal lobe and excessive development in the occipital lobe may contribute to the understanding of brain developmental deviances in preterm infants.
Collapse
Affiliation(s)
- Yong Hun Jang
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Hyuna Kim
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Joo Young Lee
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Ja-Hye Ahn
- Hanyang University College of Medicine Department of Pediatrics, Hanyang University Hospital, , Seoul 04763 , Republic of Korea
| | - Ai Wern Chung
- Harvard Medical School Fetal Neonatal-Neuroimaging and Developmental Science Center, Boston Children’s Hospital, , Boston, MA 02115 , USA
- Harvard Medical School Department of Pediatrics, Boston Children’s Hospital, , Boston, MA 02115 , USA
| | - Hyun Ju Lee
- Hanyang University College of Medicine Department of Pediatrics, Hanyang University Hospital, , Seoul 04763 , Republic of Korea
| |
Collapse
|
11
|
Siffredi V, Liverani MC, Freitas LGA, Tadros D, Farouj Y, Borradori Tolsa C, Van De Ville D, Hüppi PS, Ha-Vinh Leuchter R. Large-scale brain network dynamics in very preterm children and relationship with socio-emotional outcomes: an exploratory study. Pediatr Res 2022:10.1038/s41390-022-02342-y. [PMID: 36329223 DOI: 10.1038/s41390-022-02342-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Children born very preterm (VPT; <32 weeks' gestation) are at high risk of neurodevelopmental and behavioural difficulties associated with atypical brain maturation, including socio-emotional difficulties. The analysis of large-scale brain network dynamics during rest allows us to investigate brain functional connectivity and its association with behavioural outcomes. METHODS Dynamic functional connectivity was extracted by using the innovation-driven co-activation patterns framework in VPT and full-term children aged 6-9 to explore changes in spatial organisation, laterality and temporal dynamics of spontaneous large-scale brain activity (VPT, n = 28; full-term, n = 12). Multivariate analysis was used to explore potential biomarkers for socio-emotional difficulties in VPT children. RESULTS The spatial organisation of the 13 retrieved functional networks was comparable across groups. Dynamic features and lateralisation of network brain activity were also comparable for all brain networks. Multivariate analysis unveiled group differences in associations between dynamical functional connectivity parameters with socio-emotional abilities. CONCLUSION In this exploratory study, the group differences observed might reflect reduced degrees of maturation of functional architecture in the VPT group in regard to socio-emotional abilities. Dynamic features of functional connectivity could represent relevant neuroimaging markers and inform on potential mechanisms through which preterm birth leads to neurodevelopmental and behavioural disorders. IMPACT Spatial organisation of the retrieved resting-state networks was comparable between school-aged very preterm and full-term children. Dynamic features and lateralisation of network brain activity were also comparable across groups. Multivariate pattern analysis revealed different patterns of association between dynamical functional connectivity parameters and socio-emotional abilities in the very preterm and full-term groups. Findings suggest a reduced degree of maturation of the functional architecture in the very preterm group in association with socio-emotional abilities.
Collapse
Affiliation(s)
- Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland. .,Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland. .,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,SensoriMotor, Affective and Social Development Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Lorena G A Freitas
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland.,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - D Tadros
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland.,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Y Farouj
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland.,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Dimitri Van De Ville
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland.,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Petra Susan Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
12
|
Vo Van P, Alison M, Morel B, Beck J, Bednarek N, Hertz-Pannier L, Loron G. Advanced Brain Imaging in Preterm Infants: A Narrative Review of Microstructural and Connectomic Disruption. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030356. [PMID: 35327728 PMCID: PMC8947160 DOI: 10.3390/children9030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Preterm birth disrupts the in utero environment, preventing the brain from fully developing, thereby causing later cognitive and behavioral disorders. Such cerebral alteration occurs beneath an anatomical scale, and is therefore undetectable by conventional imagery. Prematurity impairs the microstructure and thus the histological process responsible for the maturation, including the myelination. Cerebral MRI diffusion tensor imaging sequences, based on water’s motion into the brain, allows a representation of this maturation process. Similarly, the brain’s connections become disorganized. The connectome gathers structural and anatomical white matter fibers, as well as functional networks referring to remote brain regions connected one over another. Structural and functional connectivity is illustrated by tractography and functional MRI, respectively. Their organizations consist of core nodes connected by edges. This basic distribution is already established in the fetal brain. It evolves greatly over time but is compromised by prematurity. Finally, cerebral plasticity is nurtured by a lifetime experience at microstructural and macrostructural scales. A preterm birth causes a negative and early disruption, though it can be partly mitigated by positive stimuli based on developmental neonatal care.
Collapse
Affiliation(s)
- Philippe Vo Van
- Department of Neonatology, Hospices Civils de Lyon, Femme Mère Enfant Hospital, 59 Boulevard Pinel, 69500 Bron, France
- Correspondence:
| | - Marianne Alison
- Service d’Imagerie Pédiatrique, Hôpital Robert Debré, APHP, 75019 Paris, France;
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
| | - Baptiste Morel
- Pediatric Radiology Department, Clocheville Hospital, CHRU of Tours, 37000 Tours, France;
- UMR 1253, iB-Rain, Université de Tours, Inserm, 37000 Tours, France
| | - Jonathan Beck
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Nathalie Bednarek
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Lucie Hertz-Pannier
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
- NeuroSpin, CEA-Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Gauthier Loron
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| |
Collapse
|
13
|
The structural connectome and internalizing and externalizing symptoms at 7 and 13 years in individuals born very preterm and full-term. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:424-434. [PMID: 34655805 DOI: 10.1016/j.bpsc.2021.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Children born very preterm (VP) are at higher risk of emotional and behavioral problems compared with full-term (FT) children. We investigated the neurobiological basis of internalizing and externalizing symptoms in individuals born VP and FT by applying a graph theory approach. METHODS Structural and diffusion MRI data were combined to generate structural connectomes and calculate measures of network integration and segregation at 7 (VP:72; FT:17) and 13 years (VP:125; FT:44). Internalizing and externalizing were assessed at 7 and 13 years using the Strengths and Difficulties Questionnaire. Linear regression models were used to relate network measures and internalizing and externalizing symptoms concurrently at 7 and 13 years. RESULTS Lower network integration (characteristic path length and global efficiency) was associated with higher internalizing symptoms in VP and FT children at 7 years, but not at 13 years. The association between network integration (characteristic path length) and externalizing symptoms at 7 years was weaker, but there was some evidence for differential associations between groups, with lower integration in the VP and higher integration in the FT group associated with higher externalizing symptoms. At 13 years, there was some evidence that associations between network segregation (average clustering coefficient, transitivity, local efficiency) and externalizing differed between the VP and FT groups, with stronger positive associations in the VP group. CONCLUSIONS This study provides insights into the neurobiological basis of emotional and behavioral problems following preterm birth, highlighting the role of the structural connectome in internalizing and externalizing symptoms in childhood and adolescence.
Collapse
|
14
|
Dudink I, Hüppi PS, Sizonenko SV, Castillo-Melendez M, Sutherland AE, Allison BJ, Miller SL. Altered trajectory of neurodevelopment associated with fetal growth restriction. Exp Neurol 2021; 347:113885. [PMID: 34627856 DOI: 10.1016/j.expneurol.2021.113885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022]
Abstract
Fetal growth restriction (FGR) is principally caused by suboptimal placental function. Poor placental function causes an under supply of nutrients and oxygen to the developing fetus, restricting development of individual organs and overall growth. Estimated fetal weight below the 10th or 3rd percentile with uteroplacental dysfunction, and knowledge regarding the onset of growth restriction (early or late), provide diagnostic criteria for fetuses at greatest risk for adverse outcome. Brain development and function is altered with FGR, with ongoing clinical and preclinical studies elucidating neuropathological etiology. During the third trimester of pregnancy, from ~28 weeks gestation, neurogenesis is complete and neuronal complexity is expanding, through axonal and dendritic outgrowth, dendritic branching and synaptogenesis, accompanied by myelin production. Fetal compromise over this period, as occurs in FGR, has detrimental effects on these processes. Total brain volume and grey matter volume is reduced in infants with FGR, first evident in utero, with cortical volume particularly vulnerable. Imaging studies show that cerebral morphology is disturbed in FGR, with altered cerebral cortex, volume and organization of brain networks, and reduced connectivity of long- and short-range circuits. Thus, FGR induces a deviation in brain development trajectory affecting both grey and white matter, however grey matter volume is preferentially reduced, contributed by cell loss, and reduced neurite outgrowth of surviving neurons. In turn, cell-to-cell local networks are adversely affected in FGR, and whole brain left and right intrahemispheric connections and interhemispheric connections are altered. Importantly, disruptions to region-specific brain networks are linked to cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Petra S Hüppi
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Stéphane V Sizonenko
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
15
|
Abstract
Intrauterine growth restriction is a condition that prevents normal fetal development, and previous studies have reported that intrauterine growth restriction is caused by adverse intrauterine factors. This condition affects both short- and long-term neurodevelopmental disorders. Studies have revealed that neurodevelopmental disorders can contribute to gray and white matter damage and decrease the brain volume of affected individuals. Further, these disorders are associated with increased risks of mental retardation, cognitive impairment, and cerebral palsy, which seriously affect the quality of life. Although the mechanisms underlying the neurologic injury associated with intrauterine growth restriction are not completely clear, studies have revealed that neuronal apoptosis, neuroinflammation, oxidative stress, excitatory toxicity, disruption of blood-brain barrier, and epigenetics may be involved in this process. This article reviews the manifestations and possible mechanisms underlying neurologic injury in intrauterine growth restriction and provides a theoretical basis for the effective prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lijia Wan
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Kaiju Luo
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Pingyang Chen
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Padilla N, Saenger VM, van Hartevelt TJ, Fernandes HM, Lennartsson F, Andersson JLR, Kringelbach M, Deco G, Åden U. Breakdown of Whole-brain Dynamics in Preterm-born Children. Cereb Cortex 2021; 30:1159-1170. [PMID: 31504269 PMCID: PMC7132942 DOI: 10.1093/cercor/bhz156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023] Open
Abstract
The brain operates at a critical point that is balanced between order and disorder. Even during rest, unstable periods of random behavior are interspersed with stable periods of balanced activity patterns that support optimal information processing. Being born preterm may cause deviations from this normal pattern of development. We compared 33 extremely preterm (EPT) children born at < 27 weeks of gestation and 28 full-term controls. Two approaches were adopted in both groups, when they were 10 years of age, using structural and functional brain magnetic resonance imaging data. The first was using a novel intrinsic ignition analysis to study the ability of the areas of the brain to propagate neural activity. The second was a whole-brain Hopf model, to define the level of stability, desynchronization, or criticality of the brain. EPT-born children exhibited fewer intrinsic ignition events than controls; nodes were related to less sophisticated aspects of cognitive control, and there was a different hierarchy pattern in the propagation of information and suboptimal synchronicity and criticality. The largest differences were found in brain nodes belonging to the rich-club architecture. These results provide important insights into the neural substrates underlying brain reorganization and neurodevelopmental impairments related to prematurity.
Collapse
Affiliation(s)
- Nelly Padilla
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Victor M Saenger
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
| | - Tim J van Hartevelt
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Henrique M Fernandes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Finn Lennartsson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Sciences Lund, Lund University, Skånes universitetssjukhus Lund, Barngatan, Sweden
| | - Jesper L R Andersson
- FMRIB-Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, United Kingdom
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,School of Psychological Sciences, Monash University, Melbourne, Clayton VIC, Australia
| | - Ulrika Åden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 2021; 41:689-706. [PMID: 33099576 DOI: 10.1038/s41372-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.
Collapse
|
18
|
Eyre M, Fitzgibbon SP, Ciarrusta J, Cordero-Grande L, Price AN, Poppe T, Schuh A, Hughes E, O'Keeffe C, Brandon J, Cromb D, Vecchiato K, Andersson J, Duff EP, Counsell SJ, Smith SM, Rueckert D, Hajnal JV, Arichi T, O'Muircheartaigh J, Batalle D, Edwards AD. The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. Brain 2021; 144:2199-2213. [PMID: 33734321 PMCID: PMC8370420 DOI: 10.1093/brain/awab118] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
The Developing Human Connectome Project is an Open Science project that provides the
first large sample of neonatal functional MRI data with high temporal and spatial
resolution. These data enable mapping of intrinsic functional connectivity between
spatially distributed brain regions under normal and adverse perinatal circumstances,
offering a framework to study the ontogeny of large-scale brain organization in humans.
Here, we characterize in unprecedented detail the maturation and integrity of resting
state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm).
First, we applied group independent component analysis to define 11 RSNs in term-born
infants scanned at 43.5–44.5 weeks postmenstrual age (PMA). Adult-like topography was
observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among
six higher-order, association RSNs, analogues of the adult networks for language and
ocular control were identified, but a complete default mode network precursor was not.
Next, we regressed the subject-level datasets from an independent cohort of infants
scanned at 37–43.5 weeks PMA against the group-level RSNs to test for the effects of age,
sex and preterm birth. Brain mapping in term-born infants revealed areas of positive
association with age across four of six association RSNs, indicating active maturation in
functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased
connectivity in inferotemporal regions of the visual association network. Preterm birth
was associated with striking impairments of functional connectivity across all RSNs in a
dose-dependent manner; conversely, connectivity of the superior parietal lobules within
the lateral motor network was abnormally increased in preterm infants, suggesting a
possible mechanism for specific difficulties such as developmental coordination disorder,
which occur frequently in preterm children. Overall, we found a robust, modular,
symmetrical functional brain organization at normal term age. A complete set of
adult-equivalent primary RSNs is already instated, alongside emerging connectivity in
immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence
of brain development. The early developmental disruption imposed by preterm birth is
associated with extensive alterations in functional connectivity.
Collapse
Affiliation(s)
- Michael Eyre
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tanya Poppe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Andreas Schuh
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jakki Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK.,Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| |
Collapse
|
19
|
Warsi NM, Ibrahim GM. Commentary: Tract-Specific Relationships Between Cerebrospinal Fluid Biomarkers and Periventricular White Matter in Posthemorrhagic Hydrocephalus of Prematurity. Neurosurgery 2021; 88:E267-E268. [PMID: 33369653 DOI: 10.1093/neuros/nyaa483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nebras M Warsi
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Spencer APC, Brooks JCW, Masuda N, Byrne H, Lee-Kelland R, Jary S, Thoresen M, Tonks J, Goodfellow M, Cowan FM, Chakkarapani E. Disrupted brain connectivity in children treated with therapeutic hypothermia for neonatal encephalopathy. Neuroimage Clin 2021; 30:102582. [PMID: 33636541 PMCID: PMC7906894 DOI: 10.1016/j.nicl.2021.102582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
Therapeutic hypothermia following neonatal encephalopathy due to birth asphyxia reduces death and cerebral palsy. However, school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy still have reduced performance on cognitive and motor tests, attention difficulties, slower reaction times and reduced visuo-spatial processing abilities compared to typically developing controls. We acquired diffusion-weighted imaging data from school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy at birth, and a matched control group. Voxelwise analysis (33 cases, 36 controls) confirmed reduced fractional anisotropy in widespread areas of white matter in cases, particularly in the fornix, corpus callosum, anterior and posterior limbs of the internal capsule bilaterally and cingulum bilaterally. In structural brain networks constructed using probabilistic tractography (22 cases, 32 controls), graph-theoretic measures of strength, local and global efficiency, clustering coefficient and characteristic path length were found to correlate with IQ in cases but not controls. Network-based statistic analysis implicated brain regions involved in visuo-spatial processing and attention, aligning with previous behavioural findings. These included the precuneus, thalamus, left superior parietal gyrus and left inferior temporal gyrus. Our findings demonstrate that, despite the manifest successes of therapeutic hypothermia, brain development is impaired in these children.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom; School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, United States; Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hollie Byrne
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Richard Lee-Kelland
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - James Tonks
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; University of Exeter Medical School, Exeter, United Kingdom
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Frances M Cowan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Neonatal Intensive Care Unit, St Michael's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom.
| |
Collapse
|
21
|
de Kieviet JF, Lustenhouwer R, Königs M, van Elburg RM, Pouwels PJW, Oosterlaan J. Altered structural connectome and motor problems of very preterm born children at school-age. Early Hum Dev 2021; 152:105274. [PMID: 33227634 DOI: 10.1016/j.earlhumdev.2020.105274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023]
Abstract
Infants born very preterm (<32 weeks of gestation) show distinct cognitive and motor problems throughout childhood. This study aims 1) to investigate differences in the structural connectome between very preterm born children and term born controls at school-age, and 2) to examine the relationship of the structural connectome with cognitive and motor problems. This study included 29 very preterm (12 males, mean age 8.6 years) and 52 term born peers (25 males, mean age 8.7 years). Wechsler Intelligence Scale for Children and Movement Assessment Battery for Children were used. Brain network measures of smallworldness, clustering coefficient and shortest path length based on fiber density of white matter tracts were determined from Diffusion Tensor Imaging data using probabilistic tractography. Smallworldness (F(1,79) = -2.09, p = .04, d = 0.52) and clustering coefficient (F(1,79) = -2.63, p = .01, d = 0.64) were significantly higher for very preterm children as compared to term peers. For Total Motor Impairment score and Manual Dexterity, there was a significant interaction between group and smallworldness (Beta = -10.81, p = .03 and Beta = -2.99, p = .004, respectively). Greater Total Motor Impairment and poorer Manual Dexterity were only significantly related to higher smallworldness in term controls (r = 0.35, p = .01 and r = 0.27, p = .04, respectively). Poorer Ball Skills were significantly related to higher smallworldness in both groups (Beta = -0.30, p = .03). This study clearly shows a more segregated network organization in very preterm children as compared to term peers. Importantly, motor problems go together with altered organization of the structural connectome in term born children, whereas this potential compensational process is only found for Ball Skills for very preterm children.
Collapse
Affiliation(s)
- Jorrit F de Kieviet
- Amsterdam UMC, Department of Rehabilitation Medicine, Amsterdam, the Netherlands.
| | - Renee Lustenhouwer
- Radboud UMC, Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| | - Marsh Königs
- Amsterdam UMC Emma Children's Hospital, Emma Neuroscience Group, Department of Paediatrics, Amsterdam, the Netherlands.
| | - Ruurd M van Elburg
- Amsterdam UMC Emma Children's Hospital, Emma Neuroscience Group, Department of Paediatrics, Amsterdam, the Netherlands.
| | - Petra J W Pouwels
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands.
| | - Jaap Oosterlaan
- Amsterdam UMC Emma Children's Hospital, Emma Neuroscience Group, Department of Paediatrics, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Boggini T, Pozzoli S, Schiavolin P, Erario R, Mosca F, Brambilla P, Fumagalli M. Cumulative procedural pain and brain development in very preterm infants: A systematic review of clinical and preclinical studies. Neurosci Biobehav Rev 2020; 123:320-336. [PMID: 33359095 DOI: 10.1016/j.neubiorev.2020.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023]
Abstract
Very preterm infants may manifest neurodevelopmental impairments, even in the absence of brain lesions. Pathogenesis is complex and multifactorial. Evidence suggests a role of early adversities on neurodevelopmental outcomes, via epigenetic regulation and changes in brain architecture. In this context, we focused on cumulative pain exposure which preterm neonates experience in neonatal intensive care unit (NICU). We systematically searched for: i) evidence linking pain with brain development and exploring the potential pathogenetic role of epigenetics; ii) preclinical research supporting clinical observational studies. Nine clinical neuroimaging studies, during neonatal or school age, mostly from the same research group, revealed volume reduction of white and gray matter structures in association with postnatal pain exposure. Three controlled animal studies mimicking NICU settings found increased cell death or apoptosis; nevertheless, eligible groups were limited in size. Epigenetic modulation (SLC6A4 promoter methylation) was identified in only two clinical trials. We call for additional research and, although knowledge gaps, we also point out the urgent need of minimizing painful procedures in NICUs.
Collapse
Affiliation(s)
- Tiziana Boggini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.
| | - Sara Pozzoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy
| | - Paola Schiavolin
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Raffaele Erario
- University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy; University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Paolo Brambilla
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy; University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Monica Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy; University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| |
Collapse
|
23
|
Sa de Almeida J, Meskaldji DE, Loukas S, Lordier L, Gui L, Lazeyras F, Hüppi PS. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns. Neuroimage 2020; 225:117440. [PMID: 33039621 DOI: 10.1016/j.neuroimage.2020.117440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Prematurity disrupts brain development during a critical period of brain growth and organization and is known to be associated with an increased risk of neurodevelopmental impairments. Investigating whole-brain structural connectivity alterations accompanying preterm birth may provide a better comprehension of the neurobiological mechanisms related to the later neurocognitive deficits observed in this population. Using a connectome approach, we aimed to study the impact of prematurity on neonatal whole-brain structural network organization at term-equivalent age. In this cohort study, twenty-four very preterm infants at term-equivalent age (VPT-TEA) and fourteen full-term (FT) newborns underwent a brain MRI exam at term age, comprising T2-weighted imaging and diffusion MRI, used to reconstruct brain connectomes by applying probabilistic constrained spherical deconvolution whole-brain tractography. The topological properties of brain networks were quantified through a graph-theoretical approach. Furthermore, edge-wise connectivity strength was compared between groups. Overall, VPT-TEA infants' brain networks evidenced increased segregation and decreased integration capacity, revealed by an increased clustering coefficient, increased modularity, increased characteristic path length, decreased global efficiency and diminished rich-club coefficient. Furthermore, in comparison to FT, VPT-TEA infants had decreased connectivity strength in various cortico-cortical, cortico-subcortical and intra-subcortical networks, the majority of them being intra-hemispheric fronto-paralimbic and fronto-limbic. Inter-hemispheric connectivity was also decreased in VPT-TEA infants, namely through connections linking to the left precuneus or left dorsal cingulate gyrus - two regions that were found to be hubs in FT but not in VPT-TEA infants. Moreover, posterior regions from Default-Mode-Network (DMN), namely precuneus and posterior cingulate gyrus, had decreased structural connectivity in VPT-TEA group. Our finding that VPT-TEA infants' brain networks displayed increased modularity, weakened rich-club connectivity and diminished global efficiency compared to FT infants suggests a delayed transition from a local architecture, focused on short-range connections, to a more distributed architecture with efficient long-range connections in those infants. The disruption of connectivity in fronto-paralimbic/limbic and posterior DMN regions might underlie the behavioral and social cognition difficulties previously reported in the preterm population.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Djalel-Eddine Meskaldji
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Serafeim Loukas
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
24
|
Jakab A, Natalucci G, Koller B, Tuura R, Rüegger C, Hagmann C. Mental development is associated with cortical connectivity of the ventral and nonspecific thalamus of preterm newborns. Brain Behav 2020; 10:e01786. [PMID: 32790242 PMCID: PMC7559616 DOI: 10.1002/brb3.1786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The thalamus is a key hub for regulating cortical connectivity. Dysmaturation of thalamocortical networks that accompany white matter injury has been hypothesized as neuroanatomical correlate of late life neurocognitive impairment following preterm birth. Our objective was to find a link between thalamocortical connectivity measures at term equivalent age and two-year neurodevelopmental outcome in preterm infants. METHODS Diffusion tensor MRI data of 58 preterm infants (postmenstrual age at birth, mean (SD), 29.71 (1.47) weeks) were used in the study. We utilized probabilistic diffusion tractography to trace connections between the cortex and thalami. Possible associations between connectivity strength, the length of the probabilistic fiber pathways, and developmental scores (Bayley Scales of Infant Development, Second Edition) were analyzed using multivariate linear regression models. RESULTS We found strong correlation between mental developmental index and two complementary measures of thalamocortical networks: Connectivity strength projected to a cortical skeleton and pathway length emerging from thalamic voxels (partial correlation, R = .552 and R = .535, respectively, threshold-free cluster enhancement, corrected p-value < .05), while psychomotor development was not associated with thalamocortical connectivity. Post hoc stepwise linear regression analysis revealed that parental socioeconomic scale, postmenstrual age, and the duration of mechanical ventilation at the intensive care unit contribute to the variability of outcome. CONCLUSIONS Our findings independently validated previous observations in preterm infants, providing additional evidence injury or dysmaturation of tracts emerging from ventral-specific and various nonspecific thalamus projecting to late-maturing cortical regions are predictive of mental, but not psychomotor developmental outcomes.
Collapse
Affiliation(s)
- Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giancarlo Natalucci
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Brigitte Koller
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Ruth Tuura
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christoph Rüegger
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Child Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Ní Bhroin M, Abo Seada S, Bonthrone AF, Kelly CJ, Christiaens D, Schuh A, Pietsch M, Hutter J, Tournier JD, Cordero-Grande L, Rueckert D, Hajnal JV, Pushparajah K, Simpson J, Edwards AD, Rutherford MA, Counsell SJ, Batalle D. Reduced structural connectivity in cortico-striatal-thalamic network in neonates with congenital heart disease. Neuroimage Clin 2020; 28:102423. [PMID: 32987301 PMCID: PMC7520425 DOI: 10.1016/j.nicl.2020.102423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Impaired brain development has been observed in newborns with congenital heart disease (CHD). We performed graph theoretical analyses and network-based statistics (NBS) to assess global brain network topology and identify subnetworks of altered connectivity in infants with CHD prior to cardiac surgery. Fifty-eight infants with critical/serious CHD prior to surgery and 116 matched healthy controls as part of the developing Human Connectome Project (dHCP) underwent MRI on a 3T system and high angular resolution diffusion MRI (HARDI) was obtained. Multi-tissue constrained spherical deconvolution, anatomically constrained probabilistic tractography (ACT) and spherical-deconvolution informed filtering of tractograms (SIFT2) was used to construct weighted structural networks. Network topology was assessed and NBS was used to identify structural connectivity differences between CHD and control groups. Structural networks were partitioned into core and peripheral nodes, and edges classed as core, peripheral, or feeder. NBS identified one subnetwork with reduced structural connectivity in CHD infants involving basal ganglia, amygdala, hippocampus, cerebellum, vermis, and temporal and parieto-occipital lobe, primarily affecting core nodes and edges. However, we did not find significantly different global network characteristics in CHD neonates. This locally affected sub-network with reduced connectivity could explain, at least in part, the neurodevelopmental impairments associated with CHD.
Collapse
Affiliation(s)
- Megan Ní Bhroin
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Ireland
| | - Samy Abo Seada
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lucillio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Kuberan Pushparajah
- Paediatric Cardiology Department, Evelina London Children's Healthcare, London, UK
| | - John Simpson
- Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
26
|
Savenko IV, Garbaruk ES, Boboshko MY. [Psychoacoustic methods in diagnosis of central auditory processing disorders in prematurely born children]. Vestn Otorinolaringol 2020; 85:11-17. [PMID: 32628376 DOI: 10.17116/otorino20208503111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The presence of numerous perinatal risk factors and comorbid pathology in prematurely born children, even in the absence of peripheral auditory deficit, can lead to disruptions in the processes of higher nervous sound information processing with the formation of central auditory disorders. OBJECTIVE Audiological assessment of the functional state of auditory system central parts in prematurely born children. MATERIAL AND METHODS The study involved 54 deeply premature born infants, which were divided into 3 groups depending on age (6-7, 8-9, and 10-11 years), 18 subjects in each group, and 70 healthy, term-born children of the corresponding age. In addition to the traditional audiological examination, all children underwent an assessment of functional state of the central parts of auditory system through a pause detection test (Random Gap Detection Test, RGDT); the perception of fast rhythmic sequences of stimuli, monaural low excess speech testing, binaural interaction test in alternating binaural speech format (ABS ), dichotic presentation of pairs of single digits, single digits and monosyllables, two-digit numerals, Russian matrix phrasal test in noise (RUMatrix) were studied. RESULTS Prematurely born infants of all age groups were significantly worse compared to control group (p<0.01) while having RGDT, a test for assessing the perception of fast rhythmic sequences of stimuli and dichotic binaural integration tests. Monaural intelligibility of monosyllabic words in silence in children of all three groups did not differ from normal values, but it suffered from contralateral use of noise interference in children aged 6-7. According to the RUMatrix test, legibility of phrases in noise was impaired in 65% of subjects. Test results in the ABS format revealed a significant violation of speech intelligibility (p<0.01) only in children of the younger age group. CONCLUSION In prematurely born children, there is a dysfunction of the central parts of the auditory system, which is multilevel in nature, partially leveling as children grow older. Moreover, the processes of temporary processing of acoustic information suffer to the greatest extent, not being compensated up to adolescence.
Collapse
Affiliation(s)
- I V Savenko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - E S Garbaruk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - M Yu Boboshko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,Mechnikov North-Western State Medical University of the Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
27
|
Kim SY, Liu M, Hong SJ, Toga AW, Barkovich AJ, Xu D, Kim H. Disruption and Compensation of Sulcation-based Covariance Networks in Neonatal Brain Growth after Perinatal Injury. Cereb Cortex 2020; 30:6238-6253. [PMID: 32656563 DOI: 10.1093/cercor/bhaa181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Perinatal brain injuries in preterm neonates are associated with alterations in structural neurodevelopment, leading to impaired cognition, motor coordination, and behavior. However, it remains unknown how such injuries affect postnatal cortical folding and structural covariance networks, which indicate functional parcellation and reciprocal brain connectivity. Studying 229 magnetic resonance scans from 158 preterm neonates (n = 158, mean age = 28.2), we found that severe injuries including intraventricular hemorrhage, periventricular leukomalacia, and ventriculomegaly lead to significantly reduced cortical folding and increased covariance (hyper-covariance) in only the early (<31 weeks) but not middle (31-35 weeks) or late stage (>35 weeks) of the third trimester. The aberrant hyper-covariance may drive acceleration of cortical folding as a compensatory mechanism to "catch-up" with normal development. By 40 weeks, preterm neonates with/without severe brain injuries exhibited no difference in cortical folding and covariance compared with healthy term neonates. However, graph theory-based analysis showed that even after recovery, severely injured brains exhibit a more segregated, less integrated, and overall inefficient network system with reduced integration strength in the dorsal attention, frontoparietal, limbic, and visual network systems. Ultimately, severe perinatal injuries cause network-level deviations that persist until the late stage of the third trimester and may contribute to neurofunctional impairment.
Collapse
Affiliation(s)
- Sharon Y Kim
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - A James Barkovich
- Department of Radiology, School of Medicine, University of California San Francisco, 1 Irving St., San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology, School of Medicine, University of California San Francisco, 1 Irving St., San Francisco, CA 94143, USA
| | - Hosung Kim
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Kim DJ, Min BK. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J 2020; 18:1761-1773. [PMID: 32695269 PMCID: PMC7355726 DOI: 10.1016/j.csbj.2020.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions within the brain network, known as the brain’s cores or hubs. These regions require high energy cost but possess highly efficient neural information transfer in the brain’s network and are termed the rich-club. The rich-club of the brain network is essential as it directly regulates functional integration across multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent advances in rich-club organization to address the fundamental roles of the rich-club in the brain and discuss how these core brain regions affect brain development and disorders. We describe the concepts of the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight novel insights based on animal studies related to the rich-club and illustrate how human studies using neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant to the rich-club phenomenon in the brain network.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADHD, attention deficit hyperactivity disorder
- ASD, autism spectrum disorder
- BD, bipolar disorder
- Brain connectivity
- Brain network
- DTI, diffusion tensor imaging
- EEG, electroencephalography
- Graph theory
- MDD, major depressive disorder
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Neuroimaging
- Rich-club
- TBI, traumatic brain injury
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 2020; 193:101845. [PMID: 32505757 DOI: 10.1016/j.pneurobio.2020.101845] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
White matter (WM) injury, once known primarily in preterm newborns, is emerging in its non-focal (diffused), non-necrotic form as a critical component of subtle brain injuries in many early-life diseases like prematurity, intrauterine growth restriction, congenital heart defects, and hypoxic-ischemic encephalopathy. While advances in medical techniques have reduced the number of severe outcomes, the incidence of tardive impairments in complex cognitive functions or psychopathology remains high, with lifelong detrimental effects. The importance of WM in coordinating neuronal assemblies firing and neural groups synchronizing within multiple frequency bands through myelination, even mild alterations in WM structure, may interfere with the cognitive performance that increasing social and learning demands would exploit tardively during children growth. This phenomenon may contribute to explaining longitudinally the high incidence of late-appearing impairments that affect children with a history of perinatal insults. Furthermore, WM abnormalities have been highlighted in several neuropsychiatric disorders, such as autism and schizophrenia. In this review, we gather and organize evidence on how diffused WM injuries contribute to neurodevelopmental disorders through different perinatal diseases and insults. An insight into a possible common, cross-disease, mechanism, neuroimaging and monitoring, biomarkers, and neuroprotective strategies will also be presented.
Collapse
|
30
|
Santos CL, Costa KMDM, Dourado JEC, Lima SBGD, Dotto LMG, Schirmer J. Maternal factors associated with prematurity in public maternity hospitals at the Brazilian Western Amazon. Midwifery 2020; 85:102670. [DOI: 10.1016/j.midw.2020.102670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/02/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022]
|
31
|
Abstract
Developmental pathoconnectomics is an emerging field that aims to unravel the events leading to and outcome from disrupted brain connectivity development. Advanced magnetic resonance imaging (MRI) technology enables the portrayal of human brain connectivity before birth and has the potential to offer novel insights into normal and pathological human brain development. This review gives an overview of the currently used MRI techniques for connectomic imaging, with a particular focus on recent studies that have successfully translated these to the in utero or postmortem fetal setting. Possible mechanisms of how pathologies, maternal, or environmental factors may interfere with the emergence of the connectome are considered. The review highlights the importance of advanced image post processing and the need for reproducibility studies for connectomic imaging. Further work and novel data-sharing efforts would be required to validate or disprove recent observations from in utero connectomic studies, which are typically limited by low case numbers and high data drop out. Novel knowledge with regard to the ontogenesis, architecture, and temporal dynamics of the human brain connectome would lead to the more precise understanding of the etiological background of neurodevelopmental and mental disorders. To achieve this goal, this review considers the growing evidence from advanced fetal connectomic imaging for the increased vulnerability of the human brain during late gestation for pathologies that might lead to impaired connectome development and subsequently interfere with the development of neural substrates serving higher cognition.
Collapse
|
32
|
Sa de Almeida J, Lordier L, Zollinger B, Kunz N, Bastiani M, Gui L, Adam-Darque A, Borradori-Tolsa C, Lazeyras F, Hüppi PS. Music enhances structural maturation of emotional processing neural pathways in very preterm infants. Neuroimage 2019; 207:116391. [PMID: 31765804 DOI: 10.1016/j.neuroimage.2019.116391] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
Prematurity disrupts brain maturation by exposing the developing brain to different noxious stimuli present in the neonatal intensive care unit (NICU) and depriving it from meaningful sensory inputs during a critical period of brain development, leading to later neurodevelopmental impairments. Musicotherapy in the NICU environment has been proposed to promote sensory stimulation, relevant for activity-dependent brain plasticity, but its impact on brain structural maturation is unknown. Neuroimaging studies have demonstrated that music listening triggers neural substrates implied in socio-emotional processing and, thus, it might influence networks formed early in development and known to be affected by prematurity. Using multi-modal MRI, we aimed to evaluate the impact of a specially composed music intervention during NICU stay on preterm infant's brain structure maturation. 30 preterm newborns (out of which 15 were exposed to music during NICU stay and 15 without music intervention) and 15 full-term newborns underwent an MRI examination at term-equivalent age, comprising diffusion tensor imaging (DTI), used to evaluate white matter maturation using both region-of-interest and seed-based tractography approaches, as well as a T2-weighted image, used to perform amygdala volumetric analysis. Overall, WM microstructural maturity measured through DTI metrics was reduced in preterm infants receiving the standard-of-care in comparison to full-term newborns, whereas preterm infants exposed to the music intervention demonstrated significantly improved white matter maturation in acoustic radiations, external capsule/claustrum/extreme capsule and uncinate fasciculus, as well as larger amygdala volumes, in comparison to preterm infants with standard-of-care. These results suggest a structural maturational effect of the proposed music intervention on premature infants' auditory and emotional processing neural pathways during a key period of brain development.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Nicolas Kunz
- Center of BioMedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; NIHR Biomedical Research Centre, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN) - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Alexandra Adam-Darque
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Borradori-Tolsa
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
33
|
Kozhemiako N, Nunes AS, Vakorin VA, Chau CMY, Moiseev A, Ribary U, Grunau RE, Doesburg SM. Sex differences in brain connectivity and male vulnerability in very preterm children. Hum Brain Mapp 2019; 41:388-400. [PMID: 31587465 PMCID: PMC7267928 DOI: 10.1002/hbm.24809] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence indicates better cognitive and behavioral outcomes for females born very preterm (≤32 weeks gestation) compared to males, but the neurophysiology underlying this apparent resiliency of the female brain remains poorly understood. Here we test the hypothesis that very preterm males express more pronounced connectivity alterations as a reflection of higher male vulnerability. Resting state MEG recordings, neonatal and psychometric data were collected from 100 children at age 8 years: very preterm boys (n = 27), very preterm girls (n = 34), full‐term boys (n = 15) and full‐term girls (n = 24). Neuromagnetic source dynamics were reconstructed from 76 cortical brain regions. Functional connectivity was estimated using inter‐regional phase‐synchronization. We performed a series of multivariate analyses to test for differences across groups as well as to explore relationships between deviations in functional connectivity and psychometric scores and neonatal factors for very preterm children. Very preterm boys displayed significantly higher (p < .001) absolute deviation from average connectivity of same‐sex full‐term group, compared to very preterm girls versus full‐term girls. In the connectivity comparison between very preterm and full‐term groups separately for boys and girls, significant group differences (p < .05) were observed for boys, but not girls. Sex differences in connectivity (p < .01) were observed in very preterm children but not in full‐term groups. Our findings indicate that very preterm boys have greater alterations in resting neurophysiological network communication than girls. Such uneven brain communication disruption in very preterm boys and girls suggests that stronger connectivity alterations might contribute to male vulnerability in long‐term behavioral and cognitive outcome.
Collapse
Affiliation(s)
- Nataliia Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Adonay S Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Vasily A Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada.,Fraser Health, British Columbia Health Authority, Surrey, British Columbia, Canada
| | - Cecil M Y Chau
- Pediatrics Department, University of British Columbia, Vancouver, British Columbia, Canada.,B.C. Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Alexander Moiseev
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Urs Ribary
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada.,B.C. Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ruth E Grunau
- Pediatrics Department, University of British Columbia, Vancouver, British Columbia, Canada.,B.C. Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
34
|
Kozhemiako N, Nunes A, Vakorin VA, Chau CMY, Moiseev A, Ribary U, Grunau RE, Doesburg SM. Atypical resting state neuromagnetic connectivity and spectral power in very preterm children. J Child Psychol Psychiatry 2019; 60:975-987. [PMID: 30805942 DOI: 10.1111/jcpp.13026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Children born very preterm often display selective cognitive difficulties at school age even in the absence of major brain injury. Alterations in neurophysiological activity underpinning such difficulties, as well as their relation to specific aspects of adverse neonatal experience, remain poorly understood. In the present study, we examined interregional connectivity and spectral power in very preterm children at school age, and their relationship with clinical neonatal variables and long-term outcomes (IQ, executive functions, externalizing/internalizing behavior, visual-motor integration). METHODS We collected resting state magnetoencephalographic (MEG) and psychometric data from a cohort at the age of 8 years followed prospectively since birth, which included three groups: Extremely Low Gestational Age (ELGA, 24-28 weeks GA n = 24, age 7.7 ± 0.38, 10 girls), Very Low Gestational Age (VLGA, 29-32 weeks GA n = 37, age 7.7 ± 0.39, 24 girls), and full-term children (38-41 weeks GA n = 39, age 7.9 ± 1.02, 24 girls). Interregional phase synchrony and spectral power were tested for group differences, and associations with neonatal and outcome variables were examined using mean-centered and behavioral Partial Least Squares (PLS) analyses, respectively. RESULTS We found greater connectivity in the theta band in the ELGA group compared to VLGA and full-term groups, primarily involving frontal connections. Spectral power analysis demonstrated overall lower power in the ELGA and VLGA compared to full-term group. PLS indicated strong associations between neurophysiological connectivity at school age, adverse neonatal experience and cognitive performance, and behavior. Resting spectral power was associated only with behavioral scores. CONCLUSIONS Our findings indicate significant atypicalities of neuromagnetic brain activity and connectivity in very preterm children at school age, with alterations in connectivity mainly observed only in the ELGA group. We demonstrate a significant relationship between connectivity, adverse neonatal experience, and long-term outcome, indicating that the disruption of developing neurophysiological networks may mediate relationships between neonatal events and cognitive and behavioral difficulties at school age.
Collapse
Affiliation(s)
- Nataliia Kozhemiako
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Adonay Nunes
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Vasily A Vakorin
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada.,Fraser Health, British Columbia Health Authority, Surrey, BC, Canada
| | - Cecil M Y Chau
- Pediatrics Department, University of British Columbia, Vancouver, BC, Canada.,B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Alexander Moiseev
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
| | - Urs Ribary
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada.,Pediatrics Department, University of British Columbia, Vancouver, BC, Canada.,B.C. Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Ruth E Grunau
- Pediatrics Department, University of British Columbia, Vancouver, BC, Canada.,B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sam M Doesburg
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
35
|
Jakab A, Ruegger C, Bucher HU, Makki M, Huppi PS, Tuura R, Hagmann C. Network based statistics reveals trophic and neuroprotective effect of early high dose erythropoetin on brain connectivity in very preterm infants. NEUROIMAGE-CLINICAL 2019; 22:101806. [PMID: 30991614 PMCID: PMC6451173 DOI: 10.1016/j.nicl.2019.101806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/17/2023]
Abstract
Periventricular white matter injury is common in very preterm infants and it is associated with long term neurodevelopmental impairments. While evidence supports the protective effects of erythropoetin (EPO) in preventing injury, we currently lack the complete understanding of how EPO affects the emergence and maturation of anatomical brain connectivity and function. In this case-control study, connectomic analysis based on diffusion MRI tractography was applied to evaluate the effect of early high-dose EPO in preterm infants. A whole brain, network-level analysis revealed a sub-network of anatomical brain connections in which connectivity strengths were significantly stronger in the EPO group. This distributed network comprised connections predominantly in the frontal and temporal lobe bilaterally, and the effect of EPO was focused on peripheral and feeder connections of the core structural connectivity network. EPO resulted in a globally increased clustering coefficient, higher global and average local efficiency, while higher strength and increased clustering was found for regions in the frontal lobe and cingulate gyrus. The connectivity network most affected by the EPO treatment showed a steeper increase graph theoretical measures with age compared to the placebo group. Our results demonstrate a weak but widespread effect of EPO on the structural connectivity network and a possible trophic effect of EPO reflected by increasing network segregation, predominantly in local connections. Erythropoietin (EPO) is a potential neuroprotective agent in very preterm infants. EPO leads to increased structural brain connectivity in fronto-temporal regions. Clustering coefficient, local and global efficiency increases after EPO treatment.
Collapse
Affiliation(s)
- A Jakab
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
| | - C Ruegger
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - H U Bucher
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Malek Makki
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - P S Huppi
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - R Tuura
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - C Hagmann
- Department of Neonatology, University Hospital Zurich, Zurich, Switzerland; Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
36
|
Smyser CD, Wheelock MD, Limbrick DD, Neil JJ. Neonatal brain injury and aberrant connectivity. Neuroimage 2019; 185:609-623. [PMID: 30059733 PMCID: PMC6289815 DOI: 10.1016/j.neuroimage.2018.07.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Brain injury sustained during the neonatal period may disrupt development of critical structural and functional connectivity networks leading to subsequent neurodevelopmental impairment in affected children. These networks can be characterized using structural (via diffusion MRI) and functional (via resting state-functional MRI) neuroimaging techniques. Advances in neuroimaging have led to expanded application of these approaches to study term- and prematurely-born infants, providing improved understanding of cerebral development and the deleterious effects of early brain injury. Across both modalities, neuroimaging data are conducive to analyses ranging from characterization of individual white matter tracts and/or resting state networks through advanced 'connectome-style' approaches capable of identifying highly connected network hubs and investigating metrics of network topology such as modularity and small-worldness. We begin this review by summarizing the literature detailing structural and functional connectivity findings in healthy term and preterm infants without brain injury during the postnatal period, including discussion of early connectome development. We then detail common forms of brain injury in term- and prematurely-born infants. In this context, we next review the emerging body of literature detailing studies employing diffusion MRI, resting state-functional MRI and other complementary neuroimaging modalities to characterize structural and functional connectivity development in infants with brain injury. We conclude by reviewing technical challenges associated with neonatal neuroimaging, highlighting those most relevant to studying infants with brain injury and emphasizing the need for further targeted study in this high-risk population.
Collapse
Affiliation(s)
- Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Muriah D Wheelock
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8134, St. Louis, MO, 63110, USA.
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine, One Children's Place, Suite S20, St. Louis, MO, 63110, USA.
| | - Jeffrey J Neil
- Department of Pediatric Neurology, Boston Children's Hospital, 300 Longwood Avenue, BCH3443, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Nurturing the preterm infant brain: leveraging neuroplasticity to improve neurobehavioral outcomes. Pediatr Res 2019; 85:166-175. [PMID: 30531968 DOI: 10.1038/s41390-018-0203-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
Abstract
An intrinsic feature of the developing brain is high susceptibility to environmental influence-known as plasticity. Research indicates cascading disruption to neurological development following preterm (PT) birth; yet, the interactive effects of PT birth and plasticity remain unclear. It is possible that, with regard to neuropsychological outcomes in the PT population, plasticity is a double-edged sword. On one side, high plasticity of rapidly developing neural tissue makes the PT brain more vulnerable to injury resulting from events, including inflammation, hypoxia, and ischemia. On the other side, plasticity may be a mechanism through which positive experience can normalize neurological development for PT children. Much of the available literature on PT neurological development is clinically weighted and focused on diagnostic utility for predicting long-term outcomes. Although diagnostic utility is valuable, research establishing neuroprotective factors is equally beneficial. This review will: (1) detail specific mechanisms through which plasticity is adaptive or maladaptive depending on the experience; (2) integrate research from neuroimaging, intervention, and clinical science fields in a summary of findings suggesting inherent plasticity of the PT brain as a mechanism to improve child outcomes; and (3) summarize how responsive caregiving experiences situate parents as agents of change in normalizing PT infant brain development.
Collapse
|
38
|
Lee JY, Park HK, Lee HJ. Accelerated Small-World Property of Structural Brain Networks in Preterm Infants at Term-Equivalent Age. Neonatology 2019; 115:99-107. [PMID: 30384384 DOI: 10.1159/000493087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The prediction of neurodevelopmental outcomes in preterm infants is one of the clinical challenges of pediatrics. Despite the recent interest in brain development and white matter connectivity using a network-based analysis, very little is known about the brain network of at term-equivalent age in preterm infants. OBJECTIVE We aimed to investigate the structural brain network using diffusion MRI following preterm delivery at term-equivalent age compared with term infants and explored the influence of gestational age (GA) and clinical factors. METHOD Diffusion tensor imaging data were acquired prospectively from 55 preterm neonates without apparent brain abnormalities (mean gestational age: 29.43 weeks) and 21 full-term infants at term-equivalent age. The global structural brain networks were produced by probabilistic white matter tractography in combination with the Johns Hopkins University neonate atlas to quantify connectivity between different cortical regions. RESULTS Compared with full-term infants, preterm infants had significantly lower global efficiency (p = 0.048) and increased small worldness (p = 0.012) after correcting for sex and age at MRI scan. The increased small worldness in the brain network at term-equivalent age was significantly linearly correlated with lower GA after adjusting for sex and the effects of postmenstrual age at MRI scan on the data in preterm infants (β = -0.020, p = 0.037). In multivariate analysis, infants with chronic lung disease had significantly decreased changes in clustering (p = 0.014) and local efficiency (p = 0.027). CONCLUSION The accelerated small worldness in preterm infants suggests that the structural brain network after preterm birth is reorganized in maximizing integrated and segregated processing, implying resilience against prematurity-associated pathology.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea.,Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea, .,Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea,
| |
Collapse
|
39
|
Sripada K, Bjuland KJ, Sølsnes AE, Håberg AK, Grunewaldt KH, Løhaugen GC, Rimol LM, Skranes J. Trajectories of brain development in school-age children born preterm with very low birth weight. Sci Rep 2018; 8:15553. [PMID: 30349084 PMCID: PMC6197262 DOI: 10.1038/s41598-018-33530-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Preterm birth (gestational age < 37 weeks) with very low birth weight (VLBW, birth weight ≤ 1500 g) is associated with lifelong cognitive deficits, including in executive function, and persistent alterations in cortical and subcortical structures. However, it remains unclear whether “catch-up” growth is possible in the preterm/VLBW brain. Longitudinal structural MRI was conducted with children born preterm with VLBW (n = 41) and term-born peers participating in the Norwegian Mother and Child Cohort Study (MoBa) (n = 128) at two timepoints in early school age (mean ages 8.0 and 9.3 years). Images were analyzed with the FreeSurfer 5.3.0 longitudinal stream to assess differences in development of cortical thickness, surface area, and brain structure volumes, as well as associations with executive function development (NEPSY Statue and WMS-III Spatial Span scores) and perinatal health markers. No longitudinal group × time effects in cortical thickness, surface area, or subcortical volumes were seen, indicating similar brain growth trajectories in the groups over an approximately 16-month period in middle childhood. Higher IQ scores within the VLBW group were associated with greater surface area in left parieto-occipital and inferior temporal regions. Among VLBW preterm-born children, cortical surface area was smaller across the cortical mantle, and cortical thickness was thicker occipitally and frontally and thinner in lateral parietal and posterior temporal areas. Smaller volumes of corpus callosum, right globus pallidus, and right thalamus persisted in the VLBW group from timepoint 1 to 2. VLBW children had on average IQ 1 SD below term-born MoBa peers and significantly worse scores on WMS-III Spatial Span. Executive function scores did not show differential associations with morphometry between groups cross-sectionally or longitudinally. This study investigated divergent or “catch-up” growth in terms of cortical thickness, surface area, and volumes of subcortical gray matter structures and corpus callosum in children born preterm/VLBW and did not find group × time interactions. Greater surface area at mean age 9.3 in left parieto-occipital and inferior temporal cortex was associated with higher IQ in the VLBW group. These results suggest that preterm VLBW children may have altered cognitive networks, yet have structural growth trajectories that appear generally similar to their term-born peers in this early school age window.
Collapse
Affiliation(s)
- K Sripada
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.
| | - K J Bjuland
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - A E Sølsnes
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway
| | - A K Håberg
- Department of Neuromedicine & Movement Science, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Radiology & Nuclear Medicine, St. Olav's Hospital, Trondheim, Norway
| | - K H Grunewaldt
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Pediatrics, St. Olav's Hospital, Trondheim, Norway
| | - G C Løhaugen
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - L M Rimol
- Department of Radiology & Nuclear Medicine, St. Olav's Hospital, Trondheim, Norway.,Department of Circulation & Medical Imaging, Norwegian University of Science & Technology, Trondheim, Norway
| | - J Skranes
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, Trondheim, Norway.,Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| |
Collapse
|
40
|
Cespedes MI, McGree J, Drovandi CC, Mengersen K, Doecke JD, Fripp J. An efficient algorithm for estimating brain covariance networks. PLoS One 2018; 13:e0198583. [PMID: 30001336 PMCID: PMC6042721 DOI: 10.1371/journal.pone.0198583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Often derived from partial correlations or many pairwise analyses, covariance networks represent the inter-relationships among regions and can reveal important topological structures in brain measures from healthy and pathological subjects. However both approaches are not consistent network estimators and are sensitive to the value of the tuning parameters. Here, we propose a consistent covariance network estimator by maximising the network likelihood (MNL) which is robust to the tuning parameter. We validate the consistency of our algorithm theoretically and via a simulation study, and contrast these results against two well-known approaches: the graphical LASSO (gLASSO) and Pearson pairwise correlations (PPC) over a range of tuning parameters. The MNL algorithm had a specificity equal to and greater than 0.94 for all sample sizes in the simulation study, and the sensitivity was shown to increase as the sample size increased. The gLASSO and PPC demonstrated a specificity-sensitivity trade-off over a range of values of tuning parameters highlighting the discrepancy in the results for misspecified values. Application of the MNL algorithm to the case study data showed a loss of connections between healthy and impaired groups, and improved ability to identify between lobe connectivity in contrast to gLASSO networks. In this work, we propose the MNL algorithm as an effective approach to find covariance brain networks, which can inform the organisational features in brain-wide analyses, particularly for large sample sizes.
Collapse
Affiliation(s)
- Marcela I. Cespedes
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Health and Biosecurity/ Australian e-Health Research Centre, CSIRO, Herston, Queensland, Australia
- * E-mail:
| | - James McGree
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher C. Drovandi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kerrie Mengersen
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James D. Doecke
- Health and Biosecurity/ Australian e-Health Research Centre, CSIRO, Herston, Queensland, Australia
| | - Jurgen Fripp
- Health and Biosecurity/ Australian e-Health Research Centre, CSIRO, Herston, Queensland, Australia
| | | |
Collapse
|
41
|
Bennet L, Walker DW, Horne RSC. Waking up too early - the consequences of preterm birth on sleep development. J Physiol 2018; 596:5687-5708. [PMID: 29691876 DOI: 10.1113/jp274950] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Good quality sleep of sufficient duration is vital for optimal physiological function and our health. Sleep deprivation is associated with impaired neurocognitive function and emotional control, and increases the risk for cardiometabolic diseases, obesity and cancer. Sleep develops during fetal life with the emergence of a recognisable pattern of sleep states in the preterm fetus associated with the development, maturation and connectivity within neural networks in the brain. Despite the physiological importance of sleep, surprisingly little is known about how sleep develops in individuals born preterm. Globally, an estimated 15 million babies are born preterm (<37 weeks gestation) each year, and these babies are at significant risk of neural injury and impaired brain development. This review discusses how sleep develops during fetal and neonatal life, how preterm birth impacts on sleep development to adulthood, and the factors which may contribute to impaired brain and sleep development, leading to altered neurocognitive, behavioural and motor capabilities in the infant and child. Going forward, the challenge is to identify specific risk factors for impaired sleep development in preterm babies to allow for the design of interventions that will improve the quality and quantity of sleep throughout life.
Collapse
Affiliation(s)
- Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Rosemary S C Horne
- The Ritchie Centre, Department of Paediatrics, Monash University and Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Batalle D, Edwards AD, O'Muircheartaigh J. Annual Research Review: Not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 2018; 59:350-371. [PMID: 29105061 PMCID: PMC5900873 DOI: 10.1111/jcpp.12838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND There has been a recent proliferation in neuroimaging research focusing on brain development in the prenatal, neonatal and very early childhood brain. Early brain injury and preterm birth are associated with increased risk of neurodevelopmental disorders, indicating the importance of this early period for later outcome. SCOPE AND METHODOLOGY Although using a wide range of different methodologies and investigating diverse samples, the common aim of many of these studies has been to both track normative development and investigate deviations in this development to predict behavioural, cognitive and neurological function in childhood. Here we review structural and functional neuroimaging studies investigating the developing brain. We focus on practical and technical complexities of studying this early age range and discuss how neuroimaging techniques have been successfully applied to investigate later neurodevelopmental outcome. CONCLUSIONS Neuroimaging markers of later outcome still have surprisingly low predictive power and their specificity to individual neurodevelopmental disorders is still under question. However, the field is still young, and substantial challenges to both acquiring and modeling neonatal data are being met.
Collapse
Affiliation(s)
- Dafnis Batalle
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - A. David Edwards
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Department of NeuroimagingInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
43
|
Raju TNK, Buist AS, Blaisdell CJ, Moxey-Mims M, Saigal S. Adults born preterm: a review of general health and system-specific outcomes. Acta Paediatr 2017; 106:1409-1437. [PMID: 28419544 DOI: 10.1111/apa.13880] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
In this review of 126 publications, we report that an overwhelming majority of adults born at preterm gestations remain healthy and well. However, a small, but a significant fraction of them remain at higher risk for neurological, personality and behavioural abnormalities, cardio-pulmonary functional limitations, systemic hypertension and metabolic syndrome compared to their term-born counterparts. The magnitude of increased risk differed across organ systems and varied across reports. The risks were proportional to the degree of prematurity at birth and seemed to occur more frequently among preterm infants born in the final two decades of the 20th century and later. These findings have considerable public health and clinical practice relevance. CONCLUSION Preterm birth needs to be considered a chronic condition, with a slight increase in the risk for long-term morbidities among adults born preterm. Therefore, obtaining a history of gestational age and weight at birth should be a routine part of care for patients of all age groups.
Collapse
Affiliation(s)
- Tonse N. K. Raju
- Eunice Kennedy Shriver National Institute of Child Health and Human Development; Portland OR USA
| | | | | | - Marva Moxey-Mims
- National Institute of Diabetes and Kidney Diseases; Bethesda MD USA
| | | |
Collapse
|
44
|
Bright HR, Babata K, Allred EN, Erdei C, Kuban KCK, Joseph RM, O’Shea TM, Leviton A, Dammann O. Neurocognitive Outcomes at 10 Years of Age in Extremely Preterm Newborns with Late-Onset Bacteremia. J Pediatr 2017; 187:43-49.e1. [PMID: 28526224 PMCID: PMC5533634 DOI: 10.1016/j.jpeds.2017.04.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the difference in 10-year neurocognitive outcomes between extremely low gestational age newborns without bacteremia and those with suspected or confirmed late-onset bacteremia. STUDY DESIGN Neurocognitive function was evaluated at 10 years of age in 889 children born at <28 weeks of gestation and followed from birth. Definite (culture-positive) late-onset bacteremia during postnatal weeks 2-4 was identified in 223 children, and 129 children had suspected bacteremia. RESULTS Infants with the lowest gestational age and birth weight z-score had the highest prevalence of definite and suspected late-onset bacteremia. Compared with peers with no or suspected bacteremia, infants with definite bacteremia performed worse on tests of general cognitive ability, language, academic achievement, and executive function, even after adjustment for potential confounders. Adjustment for low IQ attenuated the associations between bacteremia and all dysfunctions at age 10 years. Children with suspected bacteremia did not differ appreciably from those with no evidence of bacteremia. The motor domain was unaffected. CONCLUSIONS Extremely low gestational age newborns who had definite late bacteremia during postnatal weeks 2-4 are at heightened risk of neurocognitive limitations at age 10 years.
Collapse
Affiliation(s)
- H. Reeve Bright
- Tufts University School of Medicine, Boston, Massachusetts, United States,Corresponding Author: Kikelomo Babata, MD, Phone: 347.421.4414. Fax: 617.636.1456. . Tufts Medical Center Floating Hospital for Children, Division of Newborn, Medicine 800, Washington Street, Boston, MA 02111
| | - Kikelomo Babata
- Department of Newborn Medicine, Tufts Medical Center, Boston, MA.
| | - Elizabeth N. Allred
- Harvard Medical School, Boston, Massachusetts, United States,Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Carmina Erdei
- Harvard Medical School, Boston, Massachusetts, United States,Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States
| | - Karl C. K. Kuban
- Department of Pediatrics, Division of Pediatric Neurology, Boston University Medical Center, Boston, Massachusetts, United States
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Alan Leviton
- Harvard Medical School, Boston, Massachusetts, United States,Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States,Perinatal Neuroepidemiology Unit, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
45
|
Detection and assessment of brain injury in the growth-restricted fetus and neonate. Pediatr Res 2017; 82:184-193. [PMID: 28234891 DOI: 10.1038/pr.2017.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/14/2017] [Indexed: 11/08/2022]
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy and, in severe cases, is associated with elevated rates of perinatal mortality, neonatal morbidity, and poor neurodevelopmental outcomes. The leading cause of FGR is placental insufficiency, with the placenta failing to adequately meet the increasing oxygen and nutritional needs of the growing fetus with advancing gestation. The resultant chronic fetal hypoxia induces a decrease in fetal growth, and a redistribution of blood flow preferentially to the brain. However, this adaptation does not ensure normal brain development. Early detection of brain injury in FGR, allowing for the prediction of short- and long-term neurodevelopmental consequences, remains a significant challenge. Furthermore, in FGR infants the detection and diagnosis of neuropathology is complicated by preterm birth, the etiological heterogeneity of FGR, timing of onset of growth restriction, its severity, and coexisting complications. In this review, we examine existing and emerging diagnostic tools from human and preclinical studies for the detection and assessment of brain injury in FGR fetuses and neonates. Increased detection rates, and early detection of brain injury associated with FGR, will offer opportunities for developing and assessing interventions to improve long-term outcomes.
Collapse
|
46
|
Wilson PH, Smits-Engelsman B, Caeyenberghs K, Steenbergen B. Toward a Hybrid Model of Developmental Coordination Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2017. [DOI: 10.1007/s40474-017-0115-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Batalle D, Hughes EJ, Zhang H, Tournier JD, Tusor N, Aljabar P, Wali L, Alexander DC, Hajnal JV, Nosarti C, Edwards AD, Counsell SJ. Early development of structural networks and the impact of prematurity on brain connectivity. Neuroimage 2017; 149:379-392. [PMID: 28153637 PMCID: PMC5387181 DOI: 10.1016/j.neuroimage.2017.01.065] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25+3 and 45+6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth. First characterisation of preterm brain networks weighted by microstructural features. Preterm brain is resistant to disruptions in development of core connections. Peripheral connections associated with cognition and behaviour are more vulnerable.
Collapse
Affiliation(s)
- Dafnis Batalle
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Luqman Wali
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Daniel C Alexander
- Department of Computer Science & Centre for Medical Image Computing, University College London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom.
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| |
Collapse
|