1
|
Gary NC, Misganaw B, Hammamieh R, Gautam A. Exploring metabolomic dynamics in acute stress disorder: amino acids, lipids, and carbohydrates. Front Genet 2024; 15:1394630. [PMID: 39119583 PMCID: PMC11306072 DOI: 10.3389/fgene.2024.1394630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Acute Stress Disorder (ASD) is a psychiatric condition that can develop shortly after trauma exposure. Although molecular studies of ASD are only beginning, groups of metabolites have been found to be significantly altered with acute stress phenotypes in various pre-clinical and clinical studies. ASD implicated metabolites include amino acids (β-hydroxybutyrate, glutamate, 5-aminovalerate, kynurenine and aspartate), ketone bodies (β-hydroxybutyrate), lipids (cortisol, palmitoylethanomide, and N-palmitoyl taurine) and carbohydrates (glucose and mannose). Network and pathway analysis with the most prominent metabolites shows that Extracellular signal-regulated kinases and c-AMP response element binding (CREB) protein can be crucial players. After highlighting main recent findings on the role of metabolites in ASD, we will discuss potential future directions and challenges that need to be tackled. Overall, we aim to showcase that metabolomics present a promising opportunity to advance our understanding of ASD pathophysiology as well as the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Nicholas C. Gary
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Culmen International, Alexandria, VA, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
2
|
Perica MI, Luna B. Impact of stress on excitatory and inhibitory markers of adolescent cognitive critical period plasticity. Neurosci Biobehav Rev 2023; 153:105378. [PMID: 37643681 PMCID: PMC10591935 DOI: 10.1016/j.neubiorev.2023.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Adolescence is a time of significant neurocognitive development. Prolonged maturation of prefrontal cortex (PFC) through adolescence has been found to support improvements in executive function. Changes in excitatory and inhibitory mechanisms of critical period plasticity have been found to be present in the PFC through adolescence, suggesting that environment may have a greater effect on development during this time. Stress is one factor known to affect neurodevelopment increasing risk for psychopathology. However, less is known about how stress experienced during adolescence could affect adolescent-specific critical period plasticity mechanisms and cognitive outcomes. In this review, we synthesize findings from human and animal literatures looking at the experience of stress during adolescence on cognition and frontal excitatory and inhibitory neural activity. Studies indicate enhancing effects of acute stress on cognition and excitation within specific contexts, while chronic stress generally dampens excitatory and inhibitory processes and impairs cognition. We propose a model of how stress could affect frontal critical period plasticity, thus potentially altering neurodevelopmental trajectories that could lead to risk for psychopathology.
Collapse
Affiliation(s)
- Maria I Perica
- Department of Psychology, University of Pittsburgh, PA, USA.
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
3
|
Veeraiah P, Jansen JFA. Multinuclear Magnetic Resonance Spectroscopy at Ultra-High-Field: Assessing Human Cerebral Metabolism in Healthy and Diseased States. Metabolites 2023; 13:metabo13040577. [PMID: 37110235 PMCID: PMC10143499 DOI: 10.3390/metabo13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a highly energetic organ. Although the brain can consume metabolic substrates, such as lactate, glycogen, and ketone bodies, the energy metabolism in a healthy adult brain mainly relies on glucose provided via blood. The cerebral metabolism of glucose produces energy and a wide variety of intermediate metabolites. Since cerebral metabolic alterations have been repeatedly implicated in several brain disorders, understanding changes in metabolite levels and corresponding cell-specific neurotransmitter fluxes through different substrate utilization may highlight the underlying mechanisms that can be exploited to diagnose or treat various brain disorders. Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure tissue metabolism in vivo. 1H-MRS is widely applied in research at clinical field strengths (≤3T) to measure mostly high abundant metabolites. In addition, X-nuclei MRS including, 13C, 2H, 17O, and 31P, are also very promising. Exploiting the higher sensitivity at ultra-high-field (>4T; UHF) strengths enables obtaining unique insights into different aspects of the substrate metabolism towards measuring cell-specific metabolic fluxes in vivo. This review provides an overview about the potential role of multinuclear MRS (1H, 13C, 2H, 17O, and 31P) at UHF to assess the cerebral metabolism and the metabolic insights obtained by applying these techniques in both healthy and diseased states.
Collapse
Affiliation(s)
- Pandichelvam Veeraiah
- Scannexus (Ultra-High-Field MRI Center), 6229 EV Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
4
|
Pasanta D, He JL, Ford T, Oeltzschner G, Lythgoe DJ, Puts NA. Functional MRS studies of GABA and glutamate/Glx - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104940. [PMID: 36332780 PMCID: PMC9846867 DOI: 10.1016/j.neubiorev.2022.104940] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Talitha Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 700. N. Broadway, 21207 Baltimore, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Wolfe Street, 21205 Baltimore, United States
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL London, United Kingdom.
| |
Collapse
|
5
|
Kaul D, Schwab SG, Mechawar N, Ooi L, Matosin N. Alterations in Astrocytic Regulation of Excitation and Inhibition by Stress Exposure and in Severe Psychopathology. J Neurosci 2022; 42:6823-6834. [PMID: 38377014 PMCID: PMC9463979 DOI: 10.1523/jneurosci.2410-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Dysregulation of excitatory and inhibitory signaling is commonly observed in major psychiatric disorders, including schizophrenia, depression, and bipolar disorder, and is often targeted by psychological and pharmacological treatment methods. The balance of excitation and inhibition is highly sensitive to severe psychological stress, one of the strongest risk factors for psychiatric disorders. The role of astrocytes in regulating excitatory and inhibitory signaling is now widely recognized; however, the specific involvement of astrocytes in the context of psychiatric disorders with a history of significant stress exposure remains unclear. In this review, we summarize how astrocytes regulate the balance of excitation and inhibition in the context of stress exposure and severe psychopathology, with a focus on the PFC, a brain area highly implicated in psychopathology. We first focus on preclinical models to demonstrate that the duration of stress (particularly acute vs chronic stress) is key to shaping astrocyte function and downstream behavior. We then provide a hypothesis for how astrocytes are involved in stress-associated cortical signaling imbalance, discuss how this directly contributes to phenotypes of psychopathologies, and provide suggestions for future research. We highlight that astrocytes are a key target to understand and treat the dysregulation of cortical signaling associated with stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Dominic Kaul
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Naguib Mechawar
- Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, Quebec H4H 1R3, Canada
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, Munich, 80804, Germany
| |
Collapse
|
6
|
Gruenbaum BF, Zlotnik A, Fleidervish I, Frenkel A, Boyko M. Glutamate Neurotoxicity and Destruction of the Blood–Brain Barrier: Key Pathways for the Development of Neuropsychiatric Consequences of TBI and Their Potential Treatment Strategies. Int J Mol Sci 2022; 23:ijms23179628. [PMID: 36077024 PMCID: PMC9456007 DOI: 10.3390/ijms23179628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with significant cognitive and psychiatric conditions. Neuropsychiatric symptoms can persist for years following brain injury, causing major disruptions in patients’ lives. In this review, we examine the role of glutamate as an aftereffect of TBI that contributes to the development of neuropsychiatric conditions. We hypothesize that TBI causes long-term blood–brain barrier (BBB) dysfunction lasting many years and even decades. We propose that dysfunction in the BBB is the central factor that modulates increased glutamate after TBI and ultimately leads to neurodegenerative processes and subsequent manifestation of neuropsychiatric conditions. Here, we have identified factors that determine the upper and lower levels of glutamate concentration in the brain after TBI. Furthermore, we consider treatments of disruptions to BBB integrity, including repairing the BBB and controlling excess glutamate, as potential therapeutic modalities for the treatment of acute and chronic neuropsychiatric conditions and symptoms. By specifically focusing on the BBB, we hypothesize that restoring BBB integrity will alleviate neurotoxicity and related neurological sequelae.
Collapse
Affiliation(s)
- Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Ilya Fleidervish
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Amit Frenkel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
- Correspondence:
| |
Collapse
|
7
|
Lim S, Xin L. γ-aminobutyric acid measurement in the human brain at 7 T: Short echo-time or Mescher-Garwood editing. NMR IN BIOMEDICINE 2022; 35:e4706. [PMID: 35102618 PMCID: PMC9285498 DOI: 10.1002/nbm.4706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The purposes of the current study were to introduce a Mescher-Garwood (MEGA) semi-adiabatic spin-echo full-intensity localization (MEGA-sSPECIAL) sequence with macromolecule (MM) subtraction and to compare the test-retest reproducibility of γ-aminobutyric acid (GABA) measurements at 7 T using the sSPECIAL and MEGA-sSPECIAL sequences. The MEGA-sSPECIAL editing scheme using asymmetric adiabatic and highly selective Gaussian pulses was used to compare its GABA measurement reproducibility with that of short echo-time (TE) sSPECIAL. Proton magnetic resonance spectra were acquired in the motor cortex (M1) and medial prefrontal cortex (mPFC) using the sSPECIAL (TR/TE = 4000/16 ms) and MEGA-sSPECIAL sequences (TR/TE = 4000/80 ms). The metabolites were quantified using LCModel with unsuppressed water spectra. The concentrations are reported in institutional units. The test-retest reproducibility was evaluated by scanning each subject twice. Between-session reproducibility was assessed using coefficients of variation (CVs), Pearson's r correlation coefficients, and intraclass correlation coefficients (ICCs). Intersequence agreement was evaluated using Pearson's r correlation coefficients and Bland-Altman plots. Regarding GABA measurements by sSPECIAL, the GABA concentrations were 0.92 ± 0.31 (IU) in the M1 and 1.56 ± 0.49 (IU) in the mPFC. This demonstrated strong between-session correlation across both regions (r = 0.81, p < 0.01; ICC = 0.82). The CVs between the two scans were 21.8% in the M1 and 10.2% in the mPFC. On the other hand, the GABA measurements by MEGA-sSPECIAL were 0.52 ± 0.04 (IU) in the M1 and 1.04 ± 0.24 (IU) in the mPFC. MEGA-sSPECIAL demonstrated strong between-session correlation across the two regions (r = 0.98, p < 0.001; ICC = 0.98) and lower CVs than sSPECIAL, providing 4.1% in the M1 and 5.8% in the mPFC. The MEGA-editing method showed better reproducibility of GABA measurements in both brain regions compared with the short-TE sSPECIAL method. Thus it is a more sensitive method with which to detect small changes in areas with low GABA concentrations. In GABA-rich brain regions, GABA measurements can be achieved reproducibly using both methods.
Collapse
Affiliation(s)
- Song‐I Lim
- Laboratory of Functional and Metabolic ImagingÉcole polytechnique fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Lijing Xin
- CIBM Center for Biomedical ImagingSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
8
|
Finkelman T, Furman-Haran E, Paz R, Tal A. Quantifying the excitatory-inhibitory balance: A comparison of SemiLASER and MEGA-SemiLASER for simultaneously measuring GABA and glutamate at 7T. Neuroimage 2021; 247:118810. [PMID: 34906716 DOI: 10.1016/j.neuroimage.2021.118810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022] Open
Abstract
The importance of the excitatory-inhibitory (E/I) balance in a wide range of cognitive and behavioral processes has prompted a commensurate interest in methods for reliably quantifying it. Proton Magnetic Resonance Spectroscopy (1H-MRS) remains the only method capable of safely and non-invasively measuring the concentrations of the brain's major excitatory (glutamate) and inhibitory (γ-aminobutyric-acid, GABA) neurotransmitters in-vivo. MRS relies on spectral Mescher-Garwood (MEGA) editing techniques at 3T to distinguish GABA from its overlapping resonances. However, with the increased spectral resolution at ultrahigh field strengths of 7T and above, non-edited spectroscopic techniques become potential viable alternatives to MEGA based approaches, and also address some of their shortcomings, such as signal loss, sensitivity to transmitter inhomogeneities and temporal resolution. We present a comprehensive comparison of both edited and non-edited strategies at 7T for simultaneously quantifying glutamate and GABA from the dorsal anterior cingulate cortex (dACC), and evaluate their reproducibility and relative bias. The combined root-mean-square test-retest reproducibility of Glu and GABA (CVE/I) was as low as 13.3% for unedited MRS at TE=80 ms using SemiLASER localization, while edited MRS at TE=80 ms yielded CVE/I=20% and 21% for asymmetric and symmetric MEGA editing, respectively. An unedited SemiLASER acquisition using a shorter echo time of TE=42 ms yielded CVE/I as low as 24.9%. Our results show that non-edited sequences at an echo time of 80 ms provide better reproducibility than either edited sequences at the same TE, or non-edited sequences at a shorter TE of 42 ms. This is supported by numerical simulations and is driven in part by a pseudo-singlet appearance of the GABA multiplets at TE=80 ms, and the excellent spectral resolution at 7T. Our results uphold a transition to non-edited MRS for monitoring the E/I balance at ultrahigh fields, and stress the importance of using a properly-optimized echo time.
Collapse
Affiliation(s)
- Tal Finkelman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel.
| |
Collapse
|
9
|
Dobson GP, Morris JL, Biros E, Davenport LM, Letson HL. Major surgery leads to a proinflammatory phenotype: Differential gene expression following a laparotomy. Ann Med Surg (Lond) 2021; 71:102970. [PMID: 34745602 PMCID: PMC8554464 DOI: 10.1016/j.amsu.2021.102970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The trauma of surgery is a neglected area of research. Our aim was to examine the differential expression of genes of stress, metabolism and inflammation in the major organs of a rat following a laparotomy. MATERIALS AND METHODS Anaesthetised Sprague-Dawley rats were randomised into baseline, 6-hr and 3-day groups (n = 6 each), catheterised and laparotomy performed. Animals were sacrificed at each timepoint and tissues collected for gene and protein analysis. Blood stress hormones, cytokines, endothelial injury markers and coagulation were measured. RESULTS Stress hormone corticosterone significantly increased and was accompanied by significant increases in inflammatory cytokines, endothelial markers, increased neutrophils (6-hr), higher lactate (3-days), and coagulopathy. In brain, there were significant increases in M1 muscarinic (31-fold) and α-1A-adrenergic (39-fold) receptor expression. Cortical expression of metabolic genes increased ∼3-fold, and IL-1β by 6-fold at 3-days. Cardiac β-1-adrenergic receptor expression increased up to 8.4-fold, and M2 and M1 muscarinic receptors by 2 to 4-fold (6-hr). At 3-days, cardiac mitochondrial gene expression (Tfam, Mtco3) and inflammation (IL-1α, IL-4, IL-6, MIP-1α, MCP-1) were significantly elevated. Haemodynamics remained stable. In liver, there was a dramatic suppression of adrenergic and muscarinic receptor expression (up to 90%) and increased inflammation. Gut also underwent autonomic suppression with 140-fold increase in IL-1β expression (3-days). CONCLUSIONS A single laparotomy led to a surgical-induced proinflammatory phenotype involving neuroendocrine stress, cortical excitability, immune activation, metabolic changes and coagulopathy. The pervasive nature of systemic and tissue inflammation was noteworthy. There is an urgent need for new therapies to prevent hyper-inflammation and restore homeostasis following major surgery.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Jodie L. Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Erik Biros
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Lisa M. Davenport
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Hayley L. Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| |
Collapse
|
10
|
Dolfen N, Veldman MP, Gann MA, von Leupoldt A, Puts NAJ, Edden RAE, Mikkelsen M, Swinnen S, Schwabe L, Albouy G, King BR. A role for GABA in the modulation of striatal and hippocampal systems under stress. Commun Biol 2021; 4:1033. [PMID: 34475515 PMCID: PMC8413374 DOI: 10.1038/s42003-021-02535-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
Previous research has demonstrated that stress modulates the competitive interaction between the hippocampus and striatum, two structures known to be critically involved in motor sequence learning. These earlier investigations, however, have largely focused on blood oxygen-level dependent (BOLD) responses. No study to date has examined the link between stress, motor learning and levels of striatal and hippocampal gamma-aminobutyric acid (GABA). This knowledge gap is surprising given the known role of GABA in neuroplasticity subserving learning and memory. The current study thus examined: a) the effects of motor learning and stress on striatal and hippocampal GABA levels; and b) how learning- and stress-induced changes in GABA relate to the neural correlates of learning. To do so, fifty-three healthy young adults were exposed to a stressful or non-stressful control intervention before motor sequence learning. Striatal and hippocampal GABA levels were assessed at baseline and post-intervention/learning using magnetic resonance spectroscopy. Regression analyses indicated that stress modulated the link between striatal GABA levels and functional plasticity in both the hippocampus and striatum during learning as measured with fMRI. This study provides evidence for a role of GABA in the stress-induced modulation of striatal and hippocampal systems.
Collapse
Affiliation(s)
- Nina Dolfen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Menno P Veldman
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Mareike A Gann
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | | | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA.
| | - Bradley R King
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Cooper JA, Nuutinen MR, Lawlor VM, DeVries BAM, Barrick EM, Hossein S, Cole DJ, Leonard CV, Hahn EC, Teer AP, Shields GS, Slavich GM, Ongur D, Jensen JE, Du F, Pizzagalli DA, Treadway MT. Reduced adaptation of glutamatergic stress response is associated with pessimistic expectations in depression. Nat Commun 2021; 12:3166. [PMID: 34039978 PMCID: PMC8155144 DOI: 10.1038/s41467-021-23284-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 04/19/2021] [Indexed: 01/20/2023] Open
Abstract
Stress is a significant risk factor for the development of major depressive disorder (MDD), yet the underlying mechanisms remain unclear. Preclinically, adaptive and maladaptive stress-induced changes in glutamatergic function have been observed in the medial prefrontal cortex (mPFC). Here, we examine stress-induced changes in human mPFC glutamate using magnetic resonance spectroscopy (MRS) in two healthy control samples and a third sample of unmedicated participants with MDD who completed the Maastricht acute stress task, and one sample of healthy control participants who completed a no-stress control manipulation. In healthy controls, we find that the magnitude of mPFC glutamate response to the acute stressor decreases as individual levels of perceived stress increase. This adaptative glutamate response is absent in individuals with MDD and is associated with pessimistic expectations during a 1-month follow-up period. Together, this work shows evidence for glutamatergic adaptation to stress that is significantly disrupted in MDD.
Collapse
Affiliation(s)
| | | | | | | | - Elyssa M Barrick
- Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Shabnam Hossein
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Daniel J Cole
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | | - Evan C Hahn
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Andrew P Teer
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - George M Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Dost Ongur
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - J Eric Jensen
- McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Fei Du
- McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School, Belmont, MA, USA
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Kaiser LF, Gruendler TOJ, Speck O, Luettgau L, Jocham G. Dissociable roles of cortical excitation-inhibition balance during patch-leaving versus value-guided decisions. Nat Commun 2021; 12:904. [PMID: 33568654 PMCID: PMC7875994 DOI: 10.1038/s41467-020-20875-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
In a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.
Collapse
Affiliation(s)
- Luca F. Kaiser
- grid.411327.20000 0001 2176 9917Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| | - Theo O. J. Gruendler
- grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany ,Center for Military Mental Health, Military Hospital Berlin, Berlin, Germany
| | - Oliver Speck
- grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department of Biomedical Magnetic Resonance, Institute for Physics, Otto von Guericke University, Magdeburg, Germany
| | - Lennart Luettgau
- grid.411327.20000 0001 2176 9917Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| | - Gerhard Jocham
- grid.411327.20000 0001 2176 9917Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
13
|
Batelaan NM, Seldenrijk A, van den Heuvel OA, van Balkom AJLM, Kaiser A, Reneman L, Tan HL. Anxiety, Mental Stress, and Sudden Cardiac Arrest: Epidemiology, Possible Mechanisms and Future Research. Front Psychiatry 2021; 12:813518. [PMID: 35185641 PMCID: PMC8850954 DOI: 10.3389/fpsyt.2021.813518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
Sudden cardiac arrest (SCA) is a leading cause of mortality and morbidity in affluent societies, which underscores the need to identify persons at risk. The etiology of SCA is however complex, with predisposing and precipitating factors interacting. Although anxiety and mental stress have been linked to SCA for decades, their precise role and impact remain unclear and the biological underpinnings are insufficiently understood. In this paper, we systematically reviewed various types of observational studies (total n = 20) examining the association between anxiety or mental stress and SCA. Multiple methodological considerations challenged the summarizing and interpretation of the findings. For anxiety, the overall picture suggests that it predisposes for SCA in physically healthy populations (unadjusted OR = 2.44; 95% CI: 1.06-5.59; n = 3). However, in populations at risk for SCA (n = 4), associations were heterogeneous but not significant. Anxiety may partly predispose to SCA by contributing to other risk factors such as cardiovascular disease and diabetes mellitus via mechanisms such as unhealthy lifestyle and metabolic abnormalities. Mental stress appears to precipitate SCA, presumably by more directly impacting on the cardiac ion channels that control the heart's electrical properties. This may lead to ventricular fibrillation, the arrhythmia that underlies SCA. To advance this field of research, experimental studies that unravel the underlying biological mechanisms are deemed important, and most easily designed for mental stress as a precipitating factor because of the short timeframe. These proof-of-concept studies should examine the whole pathway from the brain to the autonomic nervous system, and eventually to cardiac ion channels. Ultimately, such studies may facilitate the identification of persons at risk and the development of novel preventive strategies.
Collapse
Affiliation(s)
- Neeltje M Batelaan
- Department of Psychiatry, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Adrie Seldenrijk
- Department of Psychiatry, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam Neuroscience Research Institute, Amsterdam, Netherlands.,Department of Anatomy and Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anton J L M van Balkom
- Department of Psychiatry, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Antonia Kaiser
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Psychiatry, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
14
|
Hou X, Rong C, Wang F, Liu X, Sun Y, Zhang HT. GABAergic System in Stress: Implications of GABAergic Neuron Subpopulations and the Gut-Vagus-Brain Pathway. Neural Plast 2020; 2020:8858415. [PMID: 32802040 PMCID: PMC7416252 DOI: 10.1155/2020/8858415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Stress can cause a variety of central nervous system disorders, which are critically mediated by the γ-aminobutyric acid (GABA) system in various brain structures. GABAergic neurons have different subsets, some of which coexpress certain neuropeptides that can be found in the digestive system. Accumulating evidence demonstrates that the gut-brain axis, which is primarily regulated by the vagus nerve, is involved in stress, suggesting a communication between the "gut-vagus-brain" pathway and the GABAergic neuronal system. Here, we first summarize the evidence that the GABAergic system plays an essential role in stress responses. In addition, we review the effects of stress on different brain regions and GABAergic neuron subpopulations, including somatostatin, parvalbumin, ionotropic serotonin receptor 5-HT3a, cholecystokinin, neuropeptide Y, and vasoactive intestinal peptide, with regard to signaling events, behavioral changes, and pathobiology of neuropsychiatric diseases. Finally, we discuss the gut-brain bidirectional communications and the connection of the GABAergic system and the gut-vagus-brain pathway.
Collapse
Affiliation(s)
- Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Cuiping Rong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fugang Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xiaoqian Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Yi Sun
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
15
|
Plieger T, Reuter M. Stress & executive functioning: A review considering moderating factors. Neurobiol Learn Mem 2020; 173:107254. [PMID: 32485224 DOI: 10.1016/j.nlm.2020.107254] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
A multitude of studies investigating the effects of stress on cognition has produced an inconsistent picture on whether - and under which conditions - stress has advantageous or disadvantageous effects on executive functions (EF). This review provides a short introduction to the concept of stress and its neurobiology, before discussing the need to consider moderating factors in the association between stress and EF. Three core domains are described and discussed in relation to the interplay between stress and cognition: the influence of different paradigms on physiological stress reactivity, individual differences in demographic and biological factors, and task-related features of cognitive tasks. Although some moderating variables such as the endocrine stress response have frequently been considered in single studies, no attempt of a holistic overview has been made so far. Therefore, we propose a more nuanced and systematic framework to study the effects of stress on executive functioning, comprising a holistic overview from the induction of stress, via biological mechanisms and interactions with individual differences, to the influence of stress on cognitive performance.
Collapse
Affiliation(s)
- Thomas Plieger
- Department of Psychology, Laboratory of Neurogenetics University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany.
| | - Martin Reuter
- Department of Psychology, Laboratory of Neurogenetics University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany
| |
Collapse
|
16
|
Corcoran M, Hawkins EL, O'Hora D, Whalley HC, Hall J, Lawrie SM, Dauvermann MR. Are working memory and glutamate concentrations involved in early-life stress and severity of psychosis? Brain Behav 2020; 10:e01616. [PMID: 32385970 PMCID: PMC7303391 DOI: 10.1002/brb3.1616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Occurrences of early-life stress (ELS) are associated with the severity of psychotic symptoms and working memory (WM) deficits in patients with psychosis (PSY). This study investigated potential mediation roles of WM behavioral performance and glutamate concentrations in prefrontal brain regions on the association between ELS and psychotic symptom severity in PSY. METHOD Forty-seven patients with PSY (established schizophrenia, n = 30; bipolar disorder, n = 17) completed measures of psychotic symptom severity. In addition, data on ELS and WM performance were collected in both patients with PSY and healthy controls (HC; n = 41). Resting-state glutamate concentrations in the bilateral dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) were also assessed with proton magnetic resonance spectroscopy for both PSY and HC groups. t tests, analyses of variance, and regression analyses were utilized. RESULTS Participants with PSY reported significantly more ELS occurrences and showed poorer WM performance than HC. Furthermore, individuals with PSY displayed lower glutamate concentrations in the left DLPFC than HC. Neither ELS nor WM performance were predictive of severity of psychotic symptoms in participants with PSY. However, we found a significant negative correlation between glutamate concentrations in the left DLPFC and ELS occurrence in HC only. CONCLUSION In individuals with PSY, the current study found no evidence that the association between ELS and psychotic symptoms is mediated by WM performance or prefrontal glutamate concentrations. In HC, the association between ELS experience and glutamate concentrations may indicate a neurometabolite effect of ELS that is independent of an illness effect in psychosis.
Collapse
Affiliation(s)
- Mark Corcoran
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Denis O'Hora
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | | | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | | | - Maria R Dauvermann
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Savic I. MRS Shows Regionally Increased Glutamate Levels among Patients with Exhaustion Syndrome Due to Occupational Stress. Cereb Cortex 2020; 30:3759-3770. [PMID: 32195540 DOI: 10.1093/cercor/bhz340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Despite the rapid increase of reports of exhaustion syndrome (ES) due to daily occupational stress, the mechanisms underlying ES are unknown. We used voxel-based 1H-MR spectroscopy to examine the potential role of glutamate in this condition. The levels of glutamate were found to be elevated among ES patients (n = 30, 16 females) compared with controls (n = 31, 15 females). Notably, this increase was detected only in the anterior cingulate and mesial prefrontal cortex (ACC/mPFC), and the glutamate levels were linearly correlated with the degree of perceived stress. Furthermore, there was a sex by group interaction, as the glutamate elevation was present only in female patients. Female but not male ES patients also showed an increase in N-acetyl aspartate (NAA) levels in the amygdala. No group differences were detected in glutamine concentration (also measured). These data show the key role of glutamate in stress-related neuronal signaling and the specific roles of the amygdala and ACC/mPFC. The data extend previous reports about the neurochemical basis of stress and identify a potential neural marker and mediator of ES due to occupational stress. The observation of specific sex differences provides a tentative explanation to the well-known female predominance in stress-related psychopathology.
Collapse
Affiliation(s)
- Ivanka Savic
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.,Department of Neurology, UCLA, Los Angeles, CA 90095-1769, USA
| |
Collapse
|
18
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
19
|
Hong D, Rohani Rankouhi S, Thielen JW, van Asten JJA, Norris DG. A comparison of sLASER and MEGA-sLASER using simultaneous interleaved acquisition for measuring GABA in the human brain at 7T. PLoS One 2019; 14:e0223702. [PMID: 31603925 PMCID: PMC6788718 DOI: 10.1371/journal.pone.0223702] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter, is challenging to measure using proton spectroscopy due to its relatively low concentration, J-coupling and overlapping signals from other metabolites. Currently, the prevalent methods for detecting GABA at ultrahigh field strengths (≥ 7 T) are GABA-editing and model fitting of non-editing single voxel spectra. These two acquisition approaches have their own advantages: the GABA editing approach directly measures the GABA resonance at 3 ppm, whereas the fitting approach on the non-editing spectrum allows the detection of multiple metabolites, and has an SNR advantage over longer echo time (TE) acquisitions. This study aims to compare these approaches for estimating GABA at 7 T. We use an interleaved sequence of semi-LASER (sLASER: TE = 38 ms) and MEGA-sLASER (TE = 80 ms). This simultaneous interleaved acquisition minimizes the differential effect of extraneous factors, and enables an accurate comparison of the two acquisition methods. Spectra were acquired with an 8 ml isotropic voxel at six different brain regions: anterior-cingulate cortex, dorsolateral-prefrontal cortex, motor cortex, occipital cortex, posterior cingulate cortex, and precuneus. Spectral fitting with LCModel quantified the GABA to total Cr (tCr: Creatine + Phosphocreatine) concentration ratio. After correcting the T2 relaxation time variation, GABA/tCr ratios were similar between the two acquisition approaches. GABA editing showed smaller spectral fitting error according to Cramér-Rao lower bound than the sLASER approach for all regions examined. We conclude that both acquisition methods show similar accuracy but the precision of the MEGA-editing approach is higher for GABA measurement. In addition, the 2.28 ppm GABA resonance was found to be important for estimating GABA concentration without macromolecule contamination in the GABA-edited acquisition, when utilizing spectral fitting with LCModel.
Collapse
Affiliation(s)
- Donghyun Hong
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | | | - Jan-Willem Thielen
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jack J. A. van Asten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - David G. Norris
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
20
|
Thielen J, Gancheva S, Hong D, Rohani Rankouhi S, Chen B, Apostolopoulou M, Anadol‐Schmitz E, Roden M, Norris DG, Tendolkar I. Higher GABA concentration in the medial prefrontal cortex of Type 2 diabetes patients is associated with episodic memory dysfunction. Hum Brain Mapp 2019; 40:4287-4295. [PMID: 31264324 PMCID: PMC6865552 DOI: 10.1002/hbm.24702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/18/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with an accelerated episodic memory decline, but the underlying pathophysiological mechanisms are not well understood. Hallmarks of T2D comprise impairment of insulin secretion and insulin sensitivity. Insulin signaling modulates cerebral neurotransmitter activity, including the excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) systems. Here we tested the hypothesis that the glutamate and GABA systems are altered in T2D patients and this relates to memory decline and insulin resistance. Using 1 H-magnetic resonance spectroscopy (MRS), we examined glutamate and GABA concentrations in episodic memory relevant brain regions (medial prefrontal cortex and precuneus) of T2D patients and matched controls. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps and memory performance was assessed using a face-profession associations test. T2D patients exhibited peripheral insulin resistance and had a decreased memory for face-profession associations as well as elevated GABA concentration in the medial prefrontal cortex but not precuneus. In addition, medial prefrontal cortex GABA concentration was negatively associated with memory performance suggesting that abnormal GABA levels in the medial prefrontal cortex are linked to the episodic memory decline that occurs in T2D patients.
Collapse
Affiliation(s)
- Jan‐Willem Thielen
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- Department for Psychiatry and Psychotherapy, Faculty of MedicineUniversity of Duisburg‐EssenEssenGermany
| | - Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Donghyun Hong
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
| | | | - Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Evrim Anadol‐Schmitz
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - David G. Norris
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- MIRA Institute for Biomedical Technology and Technical Medicine, University of TwenteEnschedethe Netherlands
| | - Indira Tendolkar
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
21
|
Stanojlovic M, Pallais Yllescas JP, Vijayakumar A, Kotz C. Early Sociability and Social Memory Impairment in the A53T Mouse Model of Parkinson's Disease Are Ameliorated by Chemogenetic Modulation of Orexin Neuron Activity. Mol Neurobiol 2019; 56:8435-8450. [PMID: 31250383 DOI: 10.1007/s12035-019-01682-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is a multi-layered progressive neurodegenerative disease. Signature motor system impairments are accompanied by a variety of other symptoms such as mood, sleep, metabolic, and cognitive disorders. Interestingly, social cognition impairments can be observed from the earliest stages of the disease, prior to the onset of the motor symptoms. In this study, we investigated age-related reductions in sociability and social memory in the A53T mouse model of PD. Since inflammation and astrogliosis are an integral part of PD pathology and impair proper neuronal function, we examined astrogliosis and inflammation markers and parvalbumin expression in medial pre-frontal cortex (mPFC), part of the brain responsible for social cognition regulation. Finally, we used DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) for the stimulation and inhibition of orexin neuronal activity to modulate sociability and social memory in A53T mice. We observed that social cognition impairment in A53T mice is accompanied by an increase in astrogliosis and inflammation markers, in addition to loss of parvalbumin neurons and inhibitory pre-synaptic terminals in the mPFC. Moreover, DREADD-induced activation of orexin neurons restores social cognition in the A53T mouse model of PD. SIGNIFICANCE STATEMENT: Social cognition is severely affected in the early stages of Parkinson's disease. In this study, we identified the A53T mouse as a model of social cognitive impairment in PD. Observed alterations in sociability and social memory are accompanied by loss of parvalbumin positive neurons and loss of inhibitory input to mPFC. Stimulating orexin neurons using a chemogenetic approach (DREADDs) ameliorated social cognitive impairment. This study identifies a role for orexin neurons in social cognition in PD and suggests potential therapeutic targets for PD-related social cognition impairments.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| | | | - Aarthi Vijayakumar
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Catherine Kotz
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.,GRECC, Minneapolis VA Health Care System, Minneapolis, MN, USA
| |
Collapse
|
22
|
Affiliation(s)
- Gaurav Verma
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
23
|
Strasser A, Xin L, Gruetter R, Sandi C. Nucleus accumbens neurochemistry in human anxiety: A 7 T 1H-MRS study. Eur Neuropsychopharmacol 2019; 29:365-375. [PMID: 30600114 DOI: 10.1016/j.euroneuro.2018.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
Individual differences in anxiety provide a differential predisposition to develop neuropsychiatric disorders. The neurochemical underpinnings of anxiety remain elusive, particularly in deep structures, such as the nucleus accumbens (NAc) whose involvement in anxiety is being increasingly recognized. We examined the associations between the neurochemical profile of human NAc metabolites involved in neural excitation and inhibition and inter-individual variation in temperamental and situational anxiety. Twenty-seven healthy 20-30 years-old human males were phenotyped with questionnaires for state and trait anxiety (State-Trait Anxiety Inventory, STAI), social anxiety (Liebowitz Social Anxiety Scale), negative mood (Beck Depression Inventory, BDI) and fatigue (Mental and Physical State Energy and Fatigue Scales, SEF). Using proton magnetic resonance spectroscopy (1H-MRS) at 7 Tesla (7T), we measured metabolite levels for glutamate, glutamine, GABA and taurine in the NAc. Salivary cortisol was also measured. Strikingly, trait anxiety was negatively associated with NAc taurine content. Perceived situational stress was negatively associated with NAc GABA, while positively with the Glu/GABA ratio. No correlation was observed between NAc taurine or GABA and other phenotypic variables examined (i.e., state anxiety, social anxiety, negative mood, or cortisol), except for a negative correlation between taurine and state physical fatigue. This first 7T study of NAc neurochemistry shows relevant metabolite associations with individual variation in anxiety traits and situational stress and state anxiety measurements. The novel identified association between NAc taurine levels and trait anxiety may pave the way for clinical studies aimed at identifying new treatments for anxiety and related disorders.
Collapse
Affiliation(s)
- Alina Strasser
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology, University of Lausanne, Lausanne, Switzerland; Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
24
|
van Leeuwen JMC, Vink M, Fernández G, Hermans EJ, Joëls M, Kahn RS, Vinkers CH. At-risk individuals display altered brain activity following stress. Neuropsychopharmacology 2018; 43:1954-1960. [PMID: 29483659 PMCID: PMC6046038 DOI: 10.1038/s41386-018-0026-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
Stress is a major risk factor for almost all psychiatric disorders, however, the underlying neurobiological mechanisms remain largely elusive. In healthy individuals, a successful stress response involves an adequate neuronal adaptation to a changing environment. This adaptive response may be dysfunctional in vulnerable individuals, potentially contributing to the development of psychopathology. In the current study, we investigated brain responses to emotional stimuli following stress in healthy controls and at-risk individuals. An fMRI study was conducted in healthy male controls (N = 39) and unaffected healthy male siblings of schizophrenia patients (N = 39) who are at increased risk for the development of a broad range of psychiatric disorders. Brain responses to pictures from the International Affective Picture System (IAPS) were measured 33 min after exposure to stress induced by the validated trier social stress test (TSST) or a control condition. Stress-induced levels of cortisol, alpha-amylase, and subjective stress were comparable in both groups. Yet, stress differentially affected brain responses of schizophrenia siblings versus controls. Specifically, control subjects, but not schizophrenia siblings, showed reduced brain activity in key nodes of the default mode network (PCC/precuneus and mPFC) and salience network (anterior insula) as well as the STG, MTG, MCC, vlPFC, precentral gyrus, and cerebellar vermis in response to all pictures following stress. These results indicate that even in the absence of a psychiatric disorder, at-risk individuals display abnormal functional activation following stress, which in turn may increase their vulnerability and risk for adverse outcomes.
Collapse
Affiliation(s)
- J M C van Leeuwen
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - M Vink
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - G Fernández
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - E J Hermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - M Joëls
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R S Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C H Vinkers
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Zhao J, Verwer RWH, Gao SF, Qi XR, Lucassen PJ, Kessels HW, Swaab DF. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. J Psychiatr Res 2018; 102:261-274. [PMID: 29753198 DOI: 10.1016/j.jpsychires.2018.04.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022]
Abstract
People that committed suicide were reported to have enhanced levels of gene transcripts for synaptic proteins in their prefrontal cortex (PFC). Given the close association of suicide with major depressive disorder (MDD), we here assessed whether these changes are related to suicide or rather to depression per se. We used quantitative PCR to determine mRNA levels of 32 genes encoding for proteins directly involved in glutamatergic or GABAergic synaptic transmission in postmortem samples of the anterior cingulate cortex (ACC) and the dorsolateral PFC (DLPFC). Seventy-two brain samples from 3 groups of subjects were derived from the Stanley Medical Research Institute (SMRI): i) patients with MDD who committed suicide (MDD-S), ii) MDD patients who died of non-suicidal causes (MDD-NS) and iii) age-matched, non-psychiatric control subjects. In the ACC, a significantly enhanced expression of genes related to glutamatergic or GABAergic synaptic transmission was found only in MDD-S patients, whereas in MDD-NS patients, decreased levels for these transcripts were found. Moreover, in the DLPFC, expression of these genes was decreased in MDD-S, relative to MDD-NS patients, whereas both groups showed increased expression compared to control subjects. In conclusion, our findings indicate that MDD is associated with increases in GABA and glutamate related genes in the DLPFC (irrespective of suicide), while in the ACC, the increase in GABA and glutamate related genes may relate to suicide, rather than to MDD per se.
Collapse
Affiliation(s)
- J Zhao
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - R W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - S-F Gao
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - X-R Qi
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - P J Lucassen
- Center for Neuroscience, SILS, University of Amsterdam, Amsterdam, The Netherlands
| | - H W Kessels
- Synaptic Plasticity & Behavior Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - D F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Prescot A, Sheth C, Legarreta M, Renshaw PF, McGlade E, Yurgelun-Todd D. Altered Cortical GABA in Female Veterans with Suicidal Behavior: Sex Differences and Clinical Correlates. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2018; 2:2470547018768771. [PMID: 29756082 PMCID: PMC5947869 DOI: 10.1177/2470547018768771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/14/2018] [Indexed: 11/21/2022]
Abstract
Background Suicide is a public health concern in the civilian and veteran populations. Stressful life events are precipitating factors for suicide. The neurochemical underpinnings of the association between stress/trauma and suicide risk are unclear, especially in regards to sex differences. We hypothesized that gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter may be a neurochemical candidate that is critical in the association between stress and suicide risk in veterans. Methods Proton magnetic resonance spectroscopy (1H MRS) at 3.0 Tesla was used to measure in vivo neurochemistry in the anterior cingulate cortex (ACC; predominantly the dorsal ACC) of 81 veterans (16 females), including 57 (11 females) who endorsed past suicidal ideation (SI) and/or suicide attempt (SA) and 24 (5 females) with no history of SI and/or SA. Suicidal behavior (SB) was defined as the presence of SI and/or SA. Results We observed no significant differences in GABA/ Creatine+phosphocreatine (Cr+PCr) between veterans with SB (SB+) and without SB (SB-). However, the female SB+ group showed significantly reduced GABA/Cr+PCr vs. the female SB- group. We observed a trend-level significant negative correlation between GABA/Cr+PCr and the defensive avoidance (DA) subscale on the Trauma Symptom Inventory (TSI) in the SB+ group. In contrast, the SB- group exhibited a positive relationship between the two variables. Furthermore, we found significant negative correlations between GABA/Cr+PCr and Hamilton Rating Scale for Depression (HAM-D) scores as well as between GABA/Cr+PCr and several subscales of the TSI in female veterans. Conclusions This study suggests that reduced GABA/Cr+ PCr ratio in the ACC, which may be related to altered inhibitory capacity, may underlie suicide risk in female veterans. Further, the negative association between GABA/Cr+PCr and stress symptomatology and depression scores suggests that MRS studies may shed light on intermediate phenotypes of SB.
Collapse
Affiliation(s)
- Andrew Prescot
- Department of Radiology, University of Utah School of
Medicine, Salt Lake City, UT, USA
| | - Chandni Sheth
- Department of Psychiatry, University of Utah School of
Medicine, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
| | - Margaret Legarreta
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans
Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical
Center, Salt Lake City, UT, USA
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah School of
Medicine, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans
Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical
Center, Salt Lake City, UT, USA
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of
Medicine, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans
Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical
Center, Salt Lake City, UT, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of
Medicine, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans
Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical
Center, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Benvenutti MJ, Alves EDS, Michael S, Ding D, Stamatakis E, Edwards KM. A single session of hatha yoga improves stress reactivity and recovery after an acute psychological stress task-A counterbalanced, randomized-crossover trial in healthy individuals. Complement Ther Med 2017; 35:120-126. [PMID: 29154056 DOI: 10.1016/j.ctim.2017.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/11/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Yoga is promoted as an anti-stress activity, however, little is known about the mechanisms through which it acts. The present study investigated the acute effects of a hatha yoga session, displayed on a video, on the response to and recovery from an acute psychological stressor. METHODS Twenty-four healthy young adults took part in a counterbalanced, randomized-crossover trial, with a yoga and a control condition (watching TV). Participants attended the laboratory in the afternoon on two days and each session comprised a baseline, control or yoga task, stress task and recovery. Blood pressure (BP), heart rate (HR) and salivary cortisol responses were measured. State cognitive- and somatic-anxiety along with self-confidence were assessed before and after the stressor. RESULTS Although no difference in the BP or HR responses to stress were found between conditions, systolic BP (p=0.047) and diastolic BP (p=0.018) recovery from stress were significantly accelerated and salivary cortisol reactivity was significantly lower (p=0.01) in the yoga condition. A yoga session also increased self-confidence (p=0.006) in preparation for the task and after completion. Moreover, self-confidence reported after the stress task was considered debilitative towards performance in the control condition, but remained facilitative in the yoga condition. CONCLUSION Our results show that a single video-instructed session of hatha yoga was able to improve stress reactivity and recovery from an acute stress task in healthy individuals. These positive preliminary findings encourage further investigation in at-risk populations in which the magnitude of effects may be greater, and support the use of yoga for stress reactivity and recovery.
Collapse
Affiliation(s)
- Mateus J Benvenutti
- The Faculty of Health Sciences and Charles Perkins Centre, University of Sydney, Sydney, Australia; Departmento de Medicina, Universidade Estadual de Maringá, UEM, Maringá, Brazil
| | - Eduardo da Sliva Alves
- The Faculty of Health Sciences and Charles Perkins Centre, University of Sydney, Sydney, Australia; Departmento de Esportes, Universidade Federal de Minas Gerais, UFMG, BELO HORIZONTE, Brazil
| | - Scott Michael
- The Faculty of Health Sciences and Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Ding Ding
- Prevention Research Collaboration, School of Public Health, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Emmanuel Stamatakis
- Prevention Research Collaboration, School of Public Health, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Epidemiology & Public Health, Institute of Epidemiology and Healthcare, University College London, London, UK
| | - Kate M Edwards
- The Faculty of Health Sciences and Charles Perkins Centre, University of Sydney, Sydney, Australia.
| |
Collapse
|
28
|
Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 2017; 168:181-198. [PMID: 28712992 DOI: 10.1016/j.neuroimage.2017.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei (1H, 31P, 13C).
Collapse
Affiliation(s)
- Anke Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany; Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|