1
|
Yoon MJ, Kim H, Yoo YJ, Im S, Kim TW, Dhaher YY, Kim D, Lim SH. In silico modeling of electric field modulation by transcranial direct current stimulation in stroke patients with skull burr holes: Implications for safe clinical application. Comput Biol Med 2024; 184:109366. [PMID: 39549527 DOI: 10.1016/j.compbiomed.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a promising tool for stroke rehabilitation, supported by evidence demonstrating its beneficial effects on post-stroke recovery. However, patients with skull defects, such as burr holes, have been excluded from tDCS due to limited knowledge regarding the effect of skull defects on the electric field. OBJECTIVE We investigated the effect of burr holes on the electric field induced by tDCS and identified the electrode location that modulates the electric field. METHODS We generated mesh models of the heads of five patients with burr holes and five age-matched control patients who had never undergone brain surgery, based on magnetic resonance imaging. Then we conducted tDCS simulations, with the cathode fixed in one position and the anode in various positions. Regression analysis was employed to investigate the relationship between the electric field at the burr hole and the distance from the burr hole to the anode. RESULTS In patients with burr holes, the electric field intensity increased as the anode approached the burr hole, reaching a maximum electric field when the anode covered it, with this pattern remaining consistent across all patient models. Assuming the holes were filled with cerebrospinal fluid, the maximum electric field was 1.20 ± 0.20 V/m (mean ± standard deviation, SD). When the anode was positioned more than 60 mm away from the burr hole, the electric field at the burr hole remained low and constant, with an average value of 0.29 ± 0.04V/m (mean ± SD). In contrast, for all patients without burr holes, the electric field intensity stayed constant regardless of the anode's position, with a maximum amplitude of 0.36 ± 0.04 V/m (mean ± SD). Furthermore, when the burr hole was assumed to be filled with scar tissue, the mean peak electric field was 0.93 ± 0.16 V/m, indicating that the electric field strength varies depending on the conductivity of the tissue filling the burr hole. CONCLUSION Based on the simulations, the minimum recommended distance from the burr hole to the anode is 60 mm to prevent unintended stimulation of the brain cortex during tDCS. These findings will contribute to the development of safe and effective tDCS treatments for patients with burr holes.
Collapse
Affiliation(s)
- Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Hyungtaek Kim
- Research Institute, Neurophet Inc., Seoul, Republic of Korea; Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, United States
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Gyeongki-do, Republic of Korea
| | - Yasin Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, United States
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul, Republic of Korea.
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea; CMC Institute for Basic Medical Science, The Catholic Medical Center, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
2
|
Wischnewski M, Shirinpour S, Alekseichuk I, Lapid MI, Nahas Z, Lim KO, Croarkin PE, Opitz A. Real-time TMS-EEG for brain state-controlled research and precision treatment: a narrative review and guide. J Neural Eng 2024; 21:061001. [PMID: 39442548 PMCID: PMC11528152 DOI: 10.1088/1741-2552/ad8a8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Transcranial magnetic stimulation (TMS) modulates neuronal activity, but the efficacy of an open-loop approach is limited due to the brain state's dynamic nature. Real-time integration with electroencephalography (EEG) increases experimental reliability and offers personalized neuromodulation therapy by using immediate brain states as biomarkers. Here, we review brain state-controlled TMS-EEG studies since the first publication several years ago. A summary of experiments on the sensorimotor mu rhythm (8-13 Hz) shows increased cortical excitability due to TMS pulse at the trough and decreased excitability at the peak of the oscillation. Pre-TMS pulse mu power also affects excitability. Further, there is emerging evidence that the oscillation phase in theta and beta frequency bands modulates neural excitability. Here, we provide a guide for real-time TMS-EEG application and discuss experimental and technical considerations. We consider the effects of hardware choice, signal quality, spatial and temporal filtering, and neural characteristics of the targeted brain oscillation. Finally, we speculate on how closed-loop TMS-EEG potentially could improve the treatment of neurological and mental disorders such as depression, Alzheimer's, Parkinson's, schizophrenia, and stroke.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Psychology, Experimental Psychology, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States of America
| | - Maria I Lapid
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Paul E Croarkin
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
3
|
Lo HKY, Fong TKH, Cheung T, Ngan STJ, Lui WYV, Chan WC, Wong CSM, Wong TKT, Cheng CPW. Enhanced Cognition and Modulation of Brain Connectivity in Mild Neurocognitive Disorder: The Promise of Transcranial Pulse Stimulation. Biomedicines 2024; 12:2081. [PMID: 39335594 PMCID: PMC11428234 DOI: 10.3390/biomedicines12092081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Existing pharmacological treatments for mild neurocognitive disorder (NCD) offer limited effectiveness and adverse side effects. Transcranial pulse stimulation (TPS) utilizing ultrashort ultrasound pulses reaches deep brain regions and may circumvent conductivity issues associated with brain stimulation. This study addresses the gap in TPS research for mild NCD during a critical intervention period before irreversible cognitive degradation. Our objective was to explore the effectiveness and tolerability of TPS in older adults with mild NCD. In an open-label study, 17 older adults (including 10 females and 7 males) with mild NCD underwent TPS for two weeks with three sessions per week. Cognitive evaluations and fMRI scans were conducted pre- and post-intervention. The results indicated changes in functional connectivity in key brain regions, correlating with cognitive improvement at B = 0.087 (CI, 0.007-0.167; p = 0.038). However, cortical thickness measurements showed no significant differences. Here we show that TPS can enhance cognitive function within mild NCD. This proof-of-concept study suggests that TPS has potential as a non-invasive therapy used to attenuate cognitive decline, encouraging further investigation in larger randomized trials. The findings could influence clinical practice by introducing TPS as an adjunctive treatment option and potentially impact policy by promoting its inclusion in new treatment strategies for mild NCD.
Collapse
Affiliation(s)
- Heidi Ka-Ying Lo
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
| | | | | | - Wai-Chi Chan
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Corine Sau-Man Wong
- Division of Community Medicine and Public Health Practice, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
4
|
Gomez-Tames J, Fernández-Corazza M. Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans. J Clin Med 2024; 13:3084. [PMID: 38892794 PMCID: PMC11172989 DOI: 10.3390/jcm13113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Transcranial electrical stimulation (tES) generates an electric field (or current density) in the brain through surface electrodes attached to the scalp. Clinical significance has been demonstrated, although with moderate and heterogeneous results partly due to a lack of control of the delivered electric currents. In the last decade, computational electric field analysis has allowed the estimation and optimization of the electric field using accurate anatomical head models. This review examines recent tES computational studies, providing a comprehensive background on the technical aspects of adopting computational electric field analysis as a standardized procedure in medical applications. Methods: Specific search strategies were designed to retrieve papers from the Web of Science database. The papers were initially screened based on the soundness of the title and abstract and then on their full contents, resulting in a total of 57 studies. Results: Recent trends were identified in individual- and population-level analysis of the electric field, including head models from non-neurotypical individuals. Advanced optimization techniques that allow a high degree of control with the required focality and direction of the electric field were also summarized. There is also growing evidence of a correlation between the computationally estimated electric field and the observed responses in real experiments. Conclusions: Computational pipelines and optimization algorithms have reached a degree of maturity that provides a rationale to improve tES experimental design and a posteriori analysis of the responses for supporting clinical studies.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Mariano Fernández-Corazza
- LEICI Institute of Research in Electronics, Control and Signal Processing, National University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
5
|
Cheung T, Yee BK, Chau B, Lam JYT, Fong KH, Lo H, Li TMH, Li AM, Sun L, Beisteiner R, Cheng CPW. Efficacy and safety of transcranial pulse stimulation in young adolescents with attention-deficit/hyperactivity disorder: a pilot, randomized, double-blind, sham-controlled trial. Front Neurol 2024; 15:1364270. [PMID: 38784916 PMCID: PMC11112118 DOI: 10.3389/fneur.2024.1364270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background This is the first study to evaluate the efficacy and safety of transcranial pulse stimulation (TPS) for the treatment of attention-deficit/hyperactivity disorder (ADHD) among young adolescents in Hong Kong. Methods This double-blind, randomized, sham-controlled trial included a TPS group and a sham TPS group, encompassing a total of 30 subjects aged 12-17 years who were diagnosed with ADHD. Baseline measurements SNAP-IV, ADHD RS-IV, CGI and executive functions (Stroop tests, Digit Span) and post-TPS evaluation were collected. Both groups were assessed at baseline, immediately after intervention, and at 1-month and 3-month follow-ups. Repeated-measures ANOVAs were used to analyze data. Results The TPS group exhibited a 30% reduction in the mean SNAP-IV score at postintervention that was maintained at 1- and 3-month follow-ups. Conclusion TPS is an effective and safe adjunct treatment for the clinical management of ADHD. Clinical trial registration ClinicalTrials.Gov, identifier NCT05422274.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Benjamin K. Yee
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bolton Chau
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Joyce Yuen Ting Lam
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kwan Hin Fong
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Herman Lo
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tim Man Ho Li
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Albert Martin Li
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | | | - Calvin Pak Wing Cheng
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
6
|
Yatsuda K, Yu W, Gomez-Tames J. Population-level insights into temporal interference for focused deep brain neuromodulation. Front Hum Neurosci 2024; 18:1308549. [PMID: 38708141 PMCID: PMC11066208 DOI: 10.3389/fnhum.2024.1308549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The ability to stimulate deep brain regions in a focal manner brings new opportunities for treating brain disorders. Temporal interference (TI) stimulation has been suggested as a method to achieve focused stimulation in deep brain targets. Individual-level knowledge of the interferential currents has permitted personalizing TI montage via subject-specific digital human head models, facilitating the estimation of interferential electric currents in the brain. While this individual approach offers a high degree of personalization, the significant intra-and inter-individual variability among specific head models poses challenges when comparing electric-field doses. Furthermore, MRI acquisition to develop a personalized head model, followed by precise methods for placing the optimized electrode positions, is complex and not always available in various clinical settings. Instead, the registration of individual electric fields into brain templates has offered insights into population-level effects and enabled montage optimization using common scalp landmarks. However, population-level knowledge of the interferential currents remains scarce. This work aimed to investigate the effectiveness of targeting deep brain areas using TI in different populations. The results showed a trade-off between deep stimulation and unwanted cortical neuromodulation, which is target-dependent at the group level. A consistent modulated electric field appeared in the deep brain target when the same montage was applied in different populations. However, the performance in terms of focality and variability varied when the same montage was used among populations. Also, group-level TI exhibited greater focality than tACS, reducing unwanted neuromodulation volume in the cortical part by at least 1.5 times, albeit with higher variability. These results provide valuable population-level insights when considering TI montage selection.
Collapse
Affiliation(s)
- Kanata Yatsuda
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Wenwei Yu
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Jose Gomez-Tames
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Yoon MJ, Park HJ, Yoo YJ, Oh HM, Im S, Kim TW, Lim SH. Electric field simulation and appropriate electrode positioning for optimized transcranial direct current stimulation of stroke patients: an in Silico model. Sci Rep 2024; 14:2850. [PMID: 38310134 PMCID: PMC10838316 DOI: 10.1038/s41598-024-52874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has benefits for motor rehabilitation in stroke patients, but its clinical application is limited due to inter-individual heterogeneous effects. Recently, optimized tDCS that considers individual brain structure has been proposed, but the utility thereof has not been studied in detail. We explored whether optimized tDCS provides unique electrode positions for each patient and creates a higher target electric field than the conventional approach. A comparative within-subject simulation study was conducted using data collected for a randomized controlled study evaluating the effect of optimized tDCS on upper extremity function in stroke patients. Using Neurophet tES LAB 3.0 software, individual brain models were created based on magnetic resonance images and tDCS simulations were performed for each of the conventional and optimized configurations. A comparison of electrode positions between conventional tDCS and optimized tDCS was quantified by calculation of Euclidean distances. A total of 21 stroke patients were studied. Optimized tDCS produced a higher electric field in the hand motor region than conventional tDCS, with an average improvement of 20% and a maximum of 52%. The electrode montage for optimized tDCS was unique to each patient and exhibited various configurations that differed from electrode placement of conventional tDCS. Optimized tDCS afforded a higher electric field in the target of a stroke patient compared to conventional tDCS, which was made possible by appropriately positioning the electrodes. Our findings may encourage further trials on optimized tDCS for motor rehabilitation after stroke.
Collapse
Affiliation(s)
- Mi-Jeong Yoon
- Department of Rehabilitation Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Oh
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Jungang-Ro 260, Yangpyeong-EupGyeongki-Do, Yangpyeong-Goon, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Jungang-Ro 260, Yangpyeong-EupGyeongki-Do, Yangpyeong-Goon, Republic of Korea.
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
- Institute for Basic Medical Science, Catholic Medical Center, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Chen X, You J, Ma H, Zhou M, Huang C. Transcranial pulse stimulation in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14372. [PMID: 37469252 PMCID: PMC10848065 DOI: 10.1111/cns.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Transcranial pulse stimulation (TPS) is a novel noninvasive ultrasonic brain stimulation that can increase cortical and corticospinal excitability, induce neuroplasticity, and increase functional connectivity within the brain. Several trials have confirmed its potential in treating Alzheimer's disease (AD). OBJECTIVE To investigate the effect and safety of TPS on AD. DESIGN A systematic review. METHODS PubMed, Embase via Ovid, Web of Science, Cochrane Library, CNKI (China National Knowledge Infrastructure), VIP (China Science and Technology Journal Database), and WanFang were searched from inception to April 1, 2023. Study selection, data extraction, and quality evaluation of the studies were conducted by two reviewers independently, with any controversy resolved by consensus. The Methodological Index for Nonrandomized Studies was used to assess the risk of bias. RESULTS Five studies were included in this review, with a total of 99 patients with AD. For cognitive performance, TPS significantly improved the scores of the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) test battery, Alzheimer's Disease Assessment Scale (cognitive), Montreal Cognitive Assessment, and Mini-Mental Status Examination. For depressive symptoms, TPS significantly reduced the scores of the Alzheimer's Disease Assessment Scale (affective), Geriatric Depression Score, and Beck Depression Inventory. By functional magnetic resonance imaging, studies have shown that TPS improved cognitive performance in AD patients by increasing functional connectivity in the hippocampus, parahippocampal cortex, precuneus, and parietal cortex, and activating cortical activity in the bilateral hippocampus. TPS alleviated depressive symptoms in AD patients by decreasing functional connectivity between the ventromedial network (left frontal orbital cortex) and the salience network (right anterior insula). Adverse events in this review, including headache, worsening mood, jaw pain, nausea, and drowsiness, were reversible and lasted no longer than 1 day. No serious adverse events or complications were observed. CONCLUSIONS TPS is promising in improving cognitive performance and reducing depressive symptoms in patients with AD. TPS may be a safe adjunct therapy in the treatment of AD. However, these findings lacked a sham control and were limited by the small sample size of the included studies. Further research may be needed to better explore the potential of TPS. PATIENT AND PUBLIC INVOLVEMENT Patients and the public were not involved in this study.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Jiuhong You
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Hui Ma
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Mei Zhou
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Cheng Huang
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
9
|
Evans C, Johnstone A, Zich C, Lee JSA, Ward NS, Bestmann S. The impact of brain lesions on tDCS-induced electric fields. Sci Rep 2023; 13:19430. [PMID: 37940660 PMCID: PMC10632455 DOI: 10.1038/s41598-023-45905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can enhance motor and language rehabilitation after stroke. Though brain lesions distort tDCS-induced electric field (E-field), systematic accounts remain limited. Using electric field modelling, we investigated the effect of 630 synthetic lesions on E-field magnitude in the region of interest (ROI). Models were conducted for two tDCS montages targeting either primary motor cortex (M1) or Broca's area (BA44). Absolute E-field magnitude in the ROI differed by up to 42% compared to the non-lesioned brain depending on lesion size, lesion-ROI distance, and lesion conductivity value. Lesion location determined the sign of this difference: lesions in-line with the predominant direction of current increased E-field magnitude in the ROI, whereas lesions located in the opposite direction decreased E-field magnitude. We further explored how individualised tDCS can control lesion-induced effects on E-field. Lesions affected the individualised electrode configuration needed to maximise E-field magnitude in the ROI, but this effect was negligible when prioritising the maximisation of radial inward current. Lesions distorting tDCS-induced E-field, is likely to exacerbate inter-individual variability in E-field magnitude. Individualising electrode configuration and stimulator output can minimise lesion-induced variability but requires improved estimates of lesion conductivity. Individualised tDCS is critical to overcome E-field variability in lesioned brains.
Collapse
Affiliation(s)
- Carys Evans
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Ainslie Johnstone
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Catharina Zich
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
- Nuffield Department of Clinical Neurosciences, FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jenny S A Lee
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nick S Ward
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
- UCLP Centre for Neurorehabilitation, London, UK
| | - Sven Bestmann
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
10
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
11
|
Fong TKH, Cheung T, Ngan STJ, Tong K, Lui WYV, Chan WC, Wong CSM, Cheng CPW. Transcranial pulse stimulation in the treatment of mild neurocognitive disorders. Ann Clin Transl Neurol 2023; 10:1885-1890. [PMID: 37607114 PMCID: PMC10578878 DOI: 10.1002/acn3.51882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
OBJECTIVE There are limited effectiveness and potential side effects of existing pharmacological approach in treating mild neurocognitive disorder (NCD). Transcranial pulse stimulation (TPS) applies repetitive single high-pressure ultrashort shockwave pulses to stimulate the brain, which has been shown to effectively improve cognition in major NCD. However, the effectiveness of TPS in mild NCD patients remained unknown. This study aims to assess the effectiveness and tolerability of TPS with neuro-navigation in old-age adults with mild NCD by both clinical and biochemical assessments. METHODS An open-label study recruited older adults with mild NCD to receive neuro-navigated TPS intervention for two weeks with three sessions per week. Assessments included detailed cognitive assessments, APOE genotype, and brain-derived neurotrophic factor (BDNF). RESULTS Nineteen participants (12 females and 7 males) completed the whole TPS interventions with no serious adverse effects reported. Repeated measures ANOVA showed statistically significant effects of time on HK-MoCA (F (3, 54) = 4.99, P = 0.004), 30-sec interval of Verbal Fluency Test (F (3, 54) = 2.94, P = 0.041), Stroop interference (F (3, 54) = 3.46, P = 0.023), and Chinese IADL (F (3, 54) = 2.78, P = 0.050) after receiving the intervention. Bonferroni post hoc comparisons on HK-MoCA showed a significant improvement after intervention. There was no significant change in serum BDNF level. INTERPRETATION TPS has brought significant improvement in cognition of elderly with mild NCD. It has a great potential to delay the deterioration of cognition in older adults. The long-term effect of TPS in cognition would benefit from further large-scale, randomized, sham-controlled trials.
Collapse
Affiliation(s)
| | - Teris Cheung
- School of NursingThe Hong Kong Polytechnic UniversityHong KongChina
| | | | - Kelvin Tong
- Department of PsychiatryThe University of Hong KongHong KongChina
| | | | - Wai Chi Chan
- Department of PsychiatryThe University of Hong KongHong KongChina
| | - Corine Sau Man Wong
- Division of Community Medicine and Public Health PracticeThe University of Hong KongHong KongChina
| | | |
Collapse
|
12
|
Thibaut A, Fregni F, Estraneo A, Fiorenza S, Noe E, Llorens R, Ferri J, Formisano R, Morone G, Bender A, Rosenfelder M, Lamberti G, Kodratyeva E, Kondratyev S, Legostaeva L, Suponeva N, Krewer C, Müller F, Dardenne N, Jedidi H, Laureys S, Gosseries O, Lejeune N, Martens G. Sham-controlled randomized multicentre trial of transcranial direct current stimulation for prolonged disorders of consciousness. Eur J Neurol 2023; 30:3016-3031. [PMID: 37515394 DOI: 10.1111/ene.15974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND AND PURPOSE Transcranial direct current stimulation (tDCS) has been shown to improve signs of consciousness in a subset of patients with disorders of consciousness (DoC). However, no multicentre study confirmed its efficacy when applied during rehabilitation. In this randomized controlled double-blind study, the effects of tDCS whilst patients were in rehabilitation were tested at the group level and according to their diagnosis and aetiology to better target DoC patients who might repond to tDCS. METHODS Patients received 2 mA tDCS or sham applied over the left prefrontal cortex for 4 weeks. Behavioural assessments were performed weekly and up to 3 months' follow-up. Analyses were conducted at the group and subgroup levels based on the diagnosis (minimally conscious state [MCS] and unresponsive wakefulness syndrome) and the aetiology (traumatic or non-traumatic). Interim analyses were planned to continue or stop the trial. RESULTS The trial was stopped for futility when 62 patients from 10 centres were enrolled (44 ± 14 years, 37 ± 24.5 weeks post-injury, 18 women, 32 MCS, 39 non-traumatic). Whilst, at the group level, no treatment effect was found, the subgroup analyses at 3 months' follow-up revealed a significant improvement for patients in MCS and with traumatic aetiology. CONCLUSIONS Transcranial direct current stimulation during rehabilitation does not seem to enhance patients' recovery. However, diagnosis and aetiology appear to be important factors leading to a response to the treatment. These findings bring novel insights into possible cortical plasticity changes in DoC patients given these differential results according to the subgroups of patients.
Collapse
Affiliation(s)
- Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| | - Felipe Fregni
- Neuromodulation Lab, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Estraneo
- Neurorehabilitation Department, Scientific Institute for Research and Health Care, Don Carlo Gnocchi Foundation, Sant'Angelo dei Lombardi, Florence, Italy
| | - Salvatore Fiorenza
- Neurorehabilitation Department, Scientific Institute for Research and Health Care, Don Carlo Gnocchi Foundation, Sant'Angelo dei Lombardi, Florence, Italy
| | - Enrique Noe
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
| | - Roberto Llorens
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
- Neurorehabilitation and Brain Research Group, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Joan Ferri
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
| | - Rita Formisano
- Santa Lucia Foundation, Neurorehabilitation and Scientific Institute for Research, Rome, Italy
| | - Giovanni Morone
- Santa Lucia Foundation, Neurorehabilitation and Scientific Institute for Research, Rome, Italy
| | - Andreas Bender
- Therapiezentrum Burgau, Burgau, Germany
- Department of Neurology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Martin Rosenfelder
- Therapiezentrum Burgau, Burgau, Germany
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Gianfranco Lamberti
- Neurorehabilitation Department AUSL Piacenza - University of Parma, Piacenza, Italy
| | | | | | | | | | - Carmen Krewer
- Department for Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Friedemann Müller
- Department for Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Nadia Dardenne
- University and Hospital Biostatistics Center (B-STAT), Faculty of Medicine, University of Liège, Liège, Belgium
| | | | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, CIUSS, University Laval, Quebec, Canada
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
- Centre Hospitalier Neurologique William Lennox, Ottignies-Louvain-la-Neuve, Belgium
| | - Géraldine Martens
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
13
|
Cho JY, Van Hoornweder S, Sege CT, Antonucci MU, McTeague LM, Caulfield KA. Template MRI scans reliably approximate individual and group-level tES and TMS electric fields induced in motor and prefrontal circuits. Front Neural Circuits 2023; 17:1214959. [PMID: 37736398 PMCID: PMC10510202 DOI: 10.3389/fncir.2023.1214959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
Background Electric field (E-field) modeling is a valuable method of elucidating the cortical target engagement from transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), but it is typically dependent on individual MRI scans. In this study, we systematically tested whether E-field models in template MNI-152 and Ernie scans can reliably approximate group-level E-fields induced in N = 195 individuals across 5 diagnoses (healthy, alcohol use disorder, tobacco use disorder, anxiety, depression). Methods We computed 788 E-field models using the CHARM-SimNIBS 4.0.0 pipeline with 4 E-field models per participant (motor and prefrontal targets for TMS and tES). We additionally calculated permutation analyses to determine the point of stability of E-fields to assess whether the 152 brains represented in the MNI-152 template is sufficient. Results Group-level E-fields did not significantly differ between the individual vs. MNI-152 template and Ernie scans for any stimulation modality or location (p > 0.05). However, TMS-induced E-field magnitudes significantly varied by diagnosis; individuals with generalized anxiety had significantly higher prefrontal and motor E-field magnitudes than healthy controls and those with alcohol use disorder and depression (p < 0.001). The point of stability for group-level E-field magnitudes ranged from 42 (motor tES) to 52 participants (prefrontal TMS). Conclusion MNI-152 and Ernie models reliably estimate group-average TMS and tES-induced E-fields transdiagnostically. The MNI-152 template includes sufficient scans to control for interindividual anatomical differences (i.e., above the point of stability). Taken together, using the MNI-152 and Ernie brains to approximate group-level E-fields is a valid and reliable approach.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Sybren Van Hoornweder
- Faculty of Rehabilitation Sciences, REVAL–Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Christopher T. Sege
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Michael U. Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Kevin A. Caulfield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
14
|
Lu H, Li J, Zhang L, Meng L, Ning Y, Jiang T. Pinpointing the precise stimulation targets for brain rehabilitation in early-stage Parkinson's disease. BMC Neurosci 2023; 24:24. [PMID: 36991320 PMCID: PMC10061909 DOI: 10.1186/s12868-023-00791-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is increasingly used as a promising non-pharmacological treatment for Parkinson's disease (PD). Scalp-to-cortex distance (SCD), as a key technical parameter of TMS, plays a critical role in determining the locations of treatment targets and corresponding dosage. Due to the discrepancies in TMS protocols, the optimal targets and head models have yet to be established in PD patients. OBJECTIVE To investigate the SCDs of the most popular used targets in left dorsolateral prefrontal cortex (DLPFC) and quantify its impact on the TMS-induced electric fields (E-fields) in early-stage PD patients. METHODS Structural magnetic resonance imaging scans from PD patients (n = 47) and normal controls (n = 36) were drawn from the NEUROCON and Tao Wu datasets. SCD of left DLPFC was measured by Euclidean Distance in TMS Navigation system. The intensity and focality of SCD-dependent E-fields were examined and quantified using Finite Element Method. RESULTS Early-stage PD patients showed an increased SCDs, higher variances in the SCDs and SCD-dependent E-fields across the seven targets of left DLPFC than normal controls. The stimulation targets located on gyral crown had more focal and homogeneous E-fields. The SCD of left DLPFC had a better performance in differentiating early-stage PD patients than global cognition and other brain measures. CONCLUSION SCD and SCD-dependent E-fields could determine the optimal TMS treatment targets and may also be used as a novel marker to differentiate early-stage PD patients. Our findings have important implications for developing optimal TMS protocols and personalized dosimetry in real-world clinical practice.
Collapse
Affiliation(s)
- Hanna Lu
- G27, Multi-Centre, Department of Psychiatry, The Chinese University of Hong Kong, Tai Po Hospital, Hong Kong SAR, China.
- Centre for Neuromodulation and Rehabilitation, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Li
- G27, Multi-Centre, Department of Psychiatry, The Chinese University of Hong Kong, Tai Po Hospital, Hong Kong SAR, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, 311100, China
| |
Collapse
|
15
|
Cheung T, Chau B, Fong KH, Lam JYT, Lo H, Li MH, Li AMMC, Beisteiner R, Lei S, Yee BK, Cheng CPW. Evaluating the efficacy and safety of transcranial pulse stimulation on adolescents with attention deficit hyperactivity disorder: Study protocol of a pilot randomized, double-blind, sham-controlled trial. Front Neurol 2023; 14:1076086. [PMID: 37056363 PMCID: PMC10086174 DOI: 10.3389/fneur.2023.1076086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundTraditional treatment alone might not effectively control the severity of attention deficit hyperactivity disorder (ADHD) symptoms. Transcranial pulse stimulation (TPS) is a non-invasive brain stimulation (NIBS) technology used on older adults with mild neurocognitive disorders and adults with major depressive disorder. However, there has been no study conducted on young adolescents with ADHD. This will be the first nationwide study evaluating the efficacy and safety of TPS in the treatment of ADHD among young adolescents in Hong Kong.MethodsThis study proposes a double-blinded, randomized, sham-controlled trial including TPS as an intervention group and a sham TPS group. Both groups will be measured at baseline (T1), immediately after the intervention (T2), and at the 1-month (T3) and 3-month follow-ups (T4).RecruitmentA total of 30 subjects aged between 12 and 17 years, diagnosed with attention deficit hyperactivity disorder (ADHD), will be recruited in this study. All subjects will be computer randomized into either the intervention group or the sham TPS group on a 1:1 ratio.InterventionAll subjects in each group will have to undertake functional MRI (fMRI) before and after six 30-min TPS sessions, which will be completed in 2 weeks' time.OutcomesBaseline measurements and post-TPS evaluation of the ADHD symptoms and executive functions will also be conducted on all participants. The 1- and 3-month follow-up periods will be used to assess the long-term sustainability of the TPS intervention. For statistical analysis, ANOVA with repeated measures will be used to analyze data. Missing data were managed by multiple imputations. The level of significance will be set to p < 0.05.Significance of the studyResults emerging from this study will generate new knowledge to ascertain whether TPS can be used as a top-on treatment for ADHD.Clinical trial registrationclinicaltrails.gov, identifier: NCT05422274.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Teris Cheung
| | - Bolton Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kwan Hin Fong
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Joyce Yuen Ting Lam
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Herman Lo
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Man Ho Li
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | - Sun Lei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Benjamin K. Yee
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Calvin Pak Wing Cheng
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Calvin Pak Wing Cheng
| |
Collapse
|
16
|
Kolmos M, Madsen MJ, Liu ML, Karabanov A, Johansen KL, Thielscher A, Gandrup K, Lundell H, Fuglsang S, Thade E, Christensen H, Iversen HK, Siebner HR, Kruuse C. Patient-tailored transcranial direct current stimulation to improve stroke rehabilitation: study protocol of a randomized sham-controlled trial. Trials 2023; 24:216. [PMID: 36949490 PMCID: PMC10035265 DOI: 10.1186/s13063-023-07234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Many patients do not fully regain motor function after ischemic stroke. Transcranial direct current stimulation (TDCS) targeting the motor cortex may improve motor outcome as an add-on intervention to physical rehabilitation. However, beneficial effects on motor function vary largely among patients within and across TDCS trials. In addition to a large heterogeneity of study designs, this variability may be caused by the fact that TDCS was given as a one-size-fits-all protocol without accounting for anatomical differences between subjects. The efficacy and consistency of TDCS might be improved by a patient-tailored design that ensures precise targeting of a physiologically relevant area with an appropriate current strength. METHODS In a randomized, double-blinded, sham-controlled trial, patients with subacute ischemic stroke and residual upper-extremity paresis will receive two times 20 min of focal TDCS of ipsilesional primary motor hand area (M1-HAND) during supervised rehabilitation training three times weekly for 4 weeks. Anticipated 60 patients will be randomly assigned to active or sham TDCS of ipsilesional M1-HAND, using a central anode and four equidistant cathodes. The placement of the electrode grid on the scalp and current strength at each cathode will be personalized based on individual electrical field models to induce an electrical current of 0.2 V/m in the cortical target region resulting in current strengths between 1 and 4 mA. Primary endpoint will be the difference in change of Fugl-Meyer Assessment of Upper Extremity (FMA-UE) score between active TDCS and sham at the end of the intervention. Exploratory endpoints will include UE-FMA at 12 weeks. Effects of TDCS on motor network connectivity and interhemispheric inhibition will be assessed with functional MRI and transcranial magnetic stimulation. DISCUSSION The study will show the feasibility and test the efficacy of personalized, multi-electrode anodal TDCS of M1-HAND in patients with subacute stroke patients with upper-extremity paresis. Concurrent multimodal brain mapping will shed light into the mechanisms of action of therapeutic personalized TDCS of M1-HAND. Together, the results from this trial may inform future personalized TDCS studies in patients with focal neurological deficits after stroke.
Collapse
Affiliation(s)
- Mia Kolmos
- Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital -Herlev and Gentofte, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Mads Just Madsen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marie Louise Liu
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Anke Karabanov
- Department of Nutrition, Exercise and Sport (NEXS), Copenhagen University, Copenhagen, Denmark
| | - Katrine Lyders Johansen
- Department of Physiotherapy and Occupational Therapy, Copenhagen University Hospital Herlev and Gentofte, Copenhagen, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Karen Gandrup
- Department of Radiology, Copenhagen University Hospital Herlev and Gentofte, Copenhagen, Denmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Søren Fuglsang
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Esben Thade
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Hanne Christensen
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital -Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Nemanich ST, Lench DH, Sutter EN, Kowalski JL, Francis SM, Meekins GD, Krach LE, Feyma T, Gillick BT. Safety and feasibility of transcranial direct current stimulation stratified by corticospinal organization in children with hemiparesis. Eur J Paediatr Neurol 2023; 43:27-35. [PMID: 36878110 PMCID: PMC10117060 DOI: 10.1016/j.ejpn.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Children with hemiparesis (CWH) due to stroke early in life face lifelong impairments in motor function. Transcranial direct current stimulation (tDCS) may be a safe and feasible adjuvant therapy to augment rehabilitation. Given the variability in outcomes following tDCS, tailored protocols of tDCS are required. We evaluated the safety, feasibility, and preliminary effects of a single session of targeted anodal tDCS based on individual corticospinal tract organization on corticospinal excitability. Fourteen CWH (age = 13.8 ± 3.63) were stratified into two corticospinal organization subgroups based on transcranial magnetic stimulation (TMS)-confirmed motor evoked potentials (MEP): ipsilesional MEP presence (MEPIL+) or absence (MEPIL-). Subgroups were randomized to real anodal or sham tDCS (1.5 mA, 20 min) applied to the ipsilesional (MEPIL + group) or contralesional (MEPIL- group) hemisphere combined with hand training. Safety was assessed with questionnaires and motor function evaluation, and corticospinal excitability was assessed at baseline and every 15 min for 1 h after tDCS. No serious adverse events occurred and anticipated minor side effects were reported and were self-limiting. Six of 14 participants had consistent ipsilesional MEPs (MEPIL + group). Paretic hand MEP amplitude increased in 5/8 participants who received real anodal tDCS to either the ipsilesional or contralesional hemisphere (+80% change). Application of tDCS based on individual corticospinal organization was safe and feasible with expected effects on excitability, indicating the potential for tailored tDCS protocols for CWH. Additional research involving expanded experimental designs is needed to confirm these effects and to determine if this approach can be translated into a clinically relevant intervention.
Collapse
Affiliation(s)
- Samuel T Nemanich
- Department of Occupational Therapy, Marquette University, 1700 West Wells St., Room 140, Milwaukee, WI, 53201, USA.
| | - Daniel H Lench
- Department of Neurology, Medical University of South Carolina, 208B Rutledge Avenue, Charleston, SC, 29425, USA
| | - Ellen N Sutter
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA
| | - Jesse L Kowalski
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, 79/96 13th Street, Charlestown, MA, United States
| | - Sunday M Francis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 2312 S. 6th St.Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Gregg D Meekins
- Department of Neurology, University of Minnesota, 420 Delaware St SE, MMC 295, Minneapolis, MN, 55455, USA
| | - Linda E Krach
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA; Rehabilitation Medicine, Gillette Children's Specialty Healthcare, 200 University Ave E, St Paul, MN, 55101, USA
| | - Tim Feyma
- Neurology, Gillette Children's Specialty Healthcare, 200 University Ave E, St Paul, MN, 55101, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA; Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
18
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. A Systematic Review and Large-Scale tES and TMS Electric Field Modeling Study Reveals How Outcome Measure Selection Alters Results in a Person- and Montage-Specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529540. [PMID: 36865243 PMCID: PMC9980068 DOI: 10.1101/2023.02.22.529540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Background Electric field (E-field) modeling is a potent tool to examine the cortical effects of transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the high variability in efficacy observed in the literature. However, outcome measures used to report E-field magnitude vary considerably and have not yet been compared in detail. Objectives The goal of this two-part study, encompassing a systematic review and modeling experiment, was to provide an overview of the different outcome measures used to report the magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures across different stimulation montages. Methods Three electronic databases were searched for tES and/or TMS studies reporting E-field magnitude. We extracted and discussed outcome measures in studies meeting the inclusion criteria. Additionally, outcome measures were compared via models of four common tES and two TMS modalities in 100 healthy younger adults. Results In the systematic review, we included 118 studies using 151 outcome measures related to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-based whole-brain analyses were used most often. In the modeling analyses, we found that there was an average of only 6% overlap between ROI and percentile-based whole-brain analyses in the investigated volumes within the same person. The overlap between ROI and whole-brain percentiles was montage- and person-specific, with more focal montages such as 4Ã-1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap between ROI and percentile approaches respectively. However, even in these cases, 27% or more of the analyzed volume still differed between outcome measures in every analyses. Conclusions The choice of outcome measures meaningfully alters the interpretation of tES and TMS E-field models. Well-considered outcome measure selection is imperative for accurate interpretation of results, valid between-study comparisons, and depends on stimulation focality and study goals. We formulated four recommendations to increase the quality and rigor of E-field modeling outcome measures. With these data and recommendations, we hope to guide future studies towards informed outcome measure selection, and improve the comparability of studies.
Collapse
|
19
|
Carlson HL, Giuffre A, Ciechanski P, Kirton A. Electric field simulations of transcranial direct current stimulation in children with perinatal stroke. Front Hum Neurosci 2023; 17:1075741. [PMID: 36816507 PMCID: PMC9932338 DOI: 10.3389/fnhum.2023.1075741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Perinatal stroke (PS) is a focal vascular brain injury and the leading cause of hemiparetic cerebral palsy. Motor impairments last a lifetime but treatments are limited. Transcranial direct-current stimulation (tDCS) may enhance motor learning in adults but tDCS effects on motor learning are less studied in children. Imaging-based simulations of tDCS-induced electric fields (EF) suggest differences in the developing brain compared to adults but have not been applied to common pediatric disease states. We created estimates of tDCS-induced EF strength using five tDCS montages targeting the motor system in children with PS [arterial ischemic stroke (AIS) or periventricular infarction (PVI)] and typically developing controls (TDC) aged 6-19 years to explore associates between simulation values and underlying anatomy. Methods Simulations were performed using SimNIBS https://simnibs.github.io/simnibs/build/html/index.html using T1, T2, and diffusion-weighted images. After tissue segmentation and tetrahedral mesh generation, tDCS-induced EF was estimated based on the finite element model (FEM). Five 1mA tDCS montages targeting motor function in the paretic (non-dominant) hand were simulated. Estimates of peak EF strength, EF angle, field focality, and mean EF in motor cortex (M1) were extracted for each montage and compared between groups. Results Simulations for eighty-three children were successfully completed (21 AIS, 30 PVI, 32 TDC). Conventional tDCS montages utilizing anodes over lesioned cortex had higher peak EF strength values for the AIS group compared to TDC. These montages showed lower mean EF strength within target M1 regions suggesting that peaks were not necessarily localized to motor network-related targets. EF angle was lower for TDC compared to PS groups for a subset of montages. Montages using anodes over lesioned cortex were more sensitive to variations in underlying anatomy (lesion and tissue volumes) than those using cathodes over non-lesioned cortex. Discussion Individualized patient-centered tDCS EF simulations are prudent for clinical trial planning and may provide insight into the efficacy of tDCS interventions in children with PS.
Collapse
Affiliation(s)
- Helen L. Carlson
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada,*Correspondence: Helen L. Carlson,
| | - Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Patrick Ciechanski
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada,Department of Clinical Neuroscience and Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci 2023; 27:189-205. [PMID: 36543610 PMCID: PMC9852081 DOI: 10.1016/j.tics.2022.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) can modulate human neural activity and behavior. Accordingly, tACS has vast potential for cognitive research and brain disorder therapies. The stimulation generates oscillating electric fields in the brain that can bias neural spike timing, causing changes in local neural oscillatory power and cross-frequency and cross-area coherence. tACS affects cognitive performance by modulating underlying single or nested brain rhythms, local or distal synchronization, and metabolic activity. Clinically, stimulation tailored to abnormal neural oscillations shows promising results in alleviating psychiatric and neurological symptoms. We summarize the findings of tACS mechanisms, its use for cognitive applications, and novel developments for personalized stimulation.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
21
|
Lee J, Lee M, Lee J, Kim REY, Lim SH, Kim D. Fine-grained brain tissue segmentation for brain modeling of stroke patient. Comput Biol Med 2023; 153:106472. [PMID: 36603436 DOI: 10.1016/j.compbiomed.2022.106472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
Brain segmentation of stroke patients can facilitate brain modeling for electrical non-invasive brain stimulation, a therapy for stimulating brain function using an electric current. However, it remains challenging owing to its time-consuming, labor-dependent, and complicated pipeline. In addition, conventional tools that define lesions into one region rather than distinguishing between the stroke-affected regions and cerebrospinal fluid can lead to inaccurate treatment results. In this study, we first define a novel stroke-affected region as a detailed sub-region of the conventionally defined lesion. Subsequently, a novel comprehensive framework is proposed to segment head-brain and fine-level stroke-affected regions for normal controls and chronic stroke patients. The proposed framework consists of a time-efficient and precise deep learning-based segmentation model. The experiment results indicate that the proposed method perform better than the conventional deep learning-based segmentation model in terms of the evaluation metrics. The proposed method would be a valuable addition to brain modeling for non-invasive neuromodulation.
Collapse
Affiliation(s)
- Jiyeon Lee
- Research Institute, Neurophet Inc., Seoul, 06234, South Korea
| | - Minho Lee
- Research Institute, Neurophet Inc., Seoul, 06234, South Korea
| | - Jongseung Lee
- Research Institute, Neurophet Inc., Seoul, 06234, South Korea
| | - Regina E Y Kim
- Research Institute, Neurophet Inc., Seoul, 06234, South Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul, 06234, South Korea.
| |
Collapse
|
22
|
Cheung T, Li TMH, Ho YS, Kranz G, Fong KNK, Leung SF, Lam SC, Yeung WF, Lam JYT, Fong KH, Beisteiner R, Xiang YT, Cheng CPW. Effects of Transcranial Pulse Stimulation (TPS) on Adults with Symptoms of Depression-A Pilot Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032333. [PMID: 36767702 PMCID: PMC9915638 DOI: 10.3390/ijerph20032333] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/29/2023]
Abstract
Transcranial pulse stimulation (TPS) is a recent development in non-invasive brain stimulations (NIBS) that has been proven to be effective in terms of significantly improving Alzheimer patients' cognition, memory, and execution functions. Nonetheless, there is, currently, no trial evaluating the efficacy of TPS on adults with major depression disorder (MDD) nationwide. In this single-blinded, randomized controlled trial, a 2-week TPS treatment comprising six 30 min TPS sessions were administered to participants. Participants were randomized into either the TPS group or the Waitlist Control (WC) group, stratified by gender and age according to a 1:1 ratio. Our primary outcome was evaluated by the Hamilton depression rating scale-17 (HDRS-17). We recruited 30 participants that were aged between 18 and 54 years, predominantly female (73%), and ethnic Chinese from 1 August to 31 October 2021. Moreover, there was a significant group x time interaction (F(1, 28) = 18.8, p < 0.001). Further, when compared with the WC group, there was a significant reduction in the depressive symptom severity in the TPS group (mean difference = -6.60, p = 0.02, and Cohen's d = -0.93). The results showed a significant intervention effect; in addition, the effect was large and sustainable at the 3-month follow-up. In this trial, it was found that TPS is effective in reducing depressive symptoms among adults with MDD.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim Man Ho Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuen Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sau Fong Leung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Wing Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Joyce Yuen Ting Lam
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kwan Hin Fong
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Roland Beisteiner
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, University of Macau, Macao SAR, China
| | | |
Collapse
|
23
|
Yuan K, Ti CHE, Wang X, Chen C, Lau CCY, Chu WCW, Tong RKY. Individual electric field predicts functional connectivity changes after anodal transcranial direct-current stimulation in chronic stroke. Neurosci Res 2023; 186:21-32. [PMID: 36220454 DOI: 10.1016/j.neures.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
The neuromodulation effect of anodal tDCS is not thoroughly studied, and the heterogeneous profile of stroke individuals with brain lesions would further complicate the stimulation outcomes. This study aimed to investigate the functional changes in sensorimotor areas induced by anodal tDCS and whether individual electric field could predict the functional outcomes. Twenty-five chronic stroke survivors were recruited and divided into tDCS group (n = 12) and sham group (n = 13). Increased functional connectivity (FC) within the surrounding areas of ipsilesional primary motor cortex (M1) was only observed after anodal tDCS. Averaged FC among the ipsilesional sensorimotor regions was observed to be increased after anodal tDCS (t(11) = 2.57, p = 0.026), but not after sham tDCS (t(12) = 0.69, p = 0.50). Partial least square analysis identified positive correlations between electric field (EF) strength normal to the ipsilesional M1 surface and individual FC changes in tDCS group (r = 0.84, p < 0.001) but not in sham group (r = 0.21, p = 0.5). Our results indicated anodal tDCS facilitates the FC within the ipsilesional sensorimotor network in chronic stroke subjects, and individual electric field predicts the functional outcomes.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chun-Hang Eden Ti
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xin Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cheng Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cathy Choi-Yin Lau
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
24
|
Huntley JH, Rezvani Habibabadi R, Vaishnavi S, Khoshpouri P, Kraut MA, Yousem DM. Transcranial Magnetic Stimulation and its Imaging Features in Patients With Depression, Post-traumatic Stress Disorder, and Traumatic Brain Injury. Acad Radiol 2023; 30:103-112. [PMID: 35437218 DOI: 10.1016/j.acra.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a type of noninvasive neurostimulation used increasingly often in clinical medicine. While most studies to date have focused on TMS's ability to treat major depressive disorder, it has shown promise in several other conditions including post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI). As different treatment protocols are often used across studies, the ability to predict patient outcomes and evaluate immediate and long-term changes using imaging becomes increasingly important. Several imaging features, such as thickness, connectedness, and baseline activity of a variety of cortical and subcortical areas, have been found to be correlated with a greater response to TMS therapy. Intrastimulation imaging can reveal in real time how TMS applied to superficial areas activates or inhibits activity in deeper brain regions. Functional imaging performed weeks to months after treatment can offer an understanding of how long-term effects on brain activity relate to clinical improvement. Further work should be done to expand our knowledge of imaging features relevant to TMS therapy and how they vary across patients with different neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Joseph H Huntley
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandeep Vaishnavi
- MindPath Care Centers Clinical Research Institute, Raleigh, North Carolina
| | - Parisa Khoshpouri
- Department of Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael A Kraut
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
25
|
Yoo YJ, Park HJ, Kim TY, Yoon MJ, Oh HM, Lee YJ, Hong BY, Kim D, Kim TW, Lim SH. MRI-Based Personalized Transcranial Direct Current Stimulation to Enhance the Upper Limb Function in Patients with Stroke: Study Protocol for a Double-Blind Randomized Controlled Trial. Brain Sci 2022; 12:1673. [PMID: 36552133 PMCID: PMC9775341 DOI: 10.3390/brainsci12121673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to have the potential to improve the motor recovery of the affected upper limbs in patients with stroke, and recently, several optimized tDCS methods have been proposed to magnify its effectiveness. This study aims to determine the effectiveness of personalized tDCS using brain MRI-based electrical field simulation and optimization, to enhance motor recovery of the upper limbs in the patients. This trial is a double-blind, randomized controlled trial in the subacute to chronic rehabilitation phase. Forty-two adult stroke patients with unilateral upper limb involvement will be randomly allocated to three groups: (1) personalized tDCS with MRI-based electrical field simulation and optimized stimulation, (2) conventional tDCS with bihemispheric stimulation of the primary motor cortex, and (3) sham tDCS. All three groups will undergo 10 intervention sessions with 30 min of 2-mA intensity stimulation, during a regular upper limb rehabilitation program over two weeks. The primary outcome measure for the motor recovery of the upper limb impairment is the Fugl-Meyer assessment for the upper extremity score at the end of the intervention, and the secondary measures include changes in the motor evoked potentials, the frequency power and coherence of the electroencephalography, performance in activities of daily living, and adverse events with a 1-month follow-up assessment. The primary outcome will be analyzed on the intention-to-treat principle. There is a paucity of studies regarding the effectiveness of personalized and optimized tDCS that considers individual brain lesions and electrical field characteristics in the real world. No feasibility or pivotal studies have been performed in stroke patients using brain MRI, to determine a lesion-specific tDCS simulation and optimization that considers obstacles in the segmentation and analysis of the affected brain tissue, such as ischemic and hemorrhagic lesions. This trial will contribute to addressing the effectiveness and safety of personalized tDCS, using brain MRI-based electrical field simulation and optimization, to enhance the motor recovery of the upper limbs in patients with stroke.
Collapse
Affiliation(s)
- Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong 12564, Republic of Korea
| | - Tae Yeong Kim
- Research Institute, NEUROPHET Inc., Seoul 06234, Republic of Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| | - Hyun-Mi Oh
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong 12564, Republic of Korea
| | - Yoon Jung Lee
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| | - Bo Young Hong
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul 06234, Republic of Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong 12564, Republic of Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| |
Collapse
|
26
|
daSilva Morgan K, Schumacher J, Collerton D, Colloby S, Elder GJ, Olsen K, Ffytche DH, Taylor JP. Transcranial Direct Current Stimulation in the Treatment of Visual Hallucinations in Charles Bonnet Syndrome: A Randomized Placebo-Controlled Crossover Trial. Ophthalmology 2022; 129:1368-1379. [PMID: 35817197 DOI: 10.1016/j.ophtha.2022.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To investigate the potential therapeutic benefits and tolerability of inhibitory transcranial direct current stimulation (tDCS) on the remediation of visual hallucinations in Charles Bonnet syndrome (CBS). DESIGN Randomized, double-masked, placebo-controlled crossover trial. PARTICIPANTS Sixteen individuals diagnosed with CBS secondary to visual impairment caused by eye disease experiencing recurrent visual hallucinations. INTERVENTION All participants received 4 consecutive days of active and placebo cathodal stimulation (current density: 0.29 mA/cm2) to the visual cortex (Oz) over 2 defined treatment weeks, separated by a 4-week washout period. MAIN OUTCOME MEASURES Ratings of visual hallucination frequency and duration following active and placebo stimulation, accounting for treatment order, using a 2 × 2 repeated-measures model. Secondary outcomes included impact ratings of visual hallucinations and electrophysiological measures. RESULTS When compared with placebo treatment, active inhibitory stimulation of visual cortex resulted in a significant reduction in the frequency of visual hallucinations measured by the North East Visual Hallucinations Interview, with a moderate-to-large effect size. Impact measures of visual hallucinations improved in both placebo and active conditions, suggesting support and education for CBS may have therapeutic benefits. Participants who demonstrated greater occipital excitability on electroencephalography assessment at the start of treatment were more likely to report a positive treatment response. Stimulation was found to be tolerable in all participants, with no significant adverse effects reported, including no deterioration in preexisting visual impairment. CONCLUSIONS Findings indicate that inhibitory tDCS of visual cortex may reduce the frequency of visual hallucinations in people with CBS, particularly individuals who demonstrate greater occipital excitability prior to stimulation. tDCS may offer a feasible intervention option for CBS with no significant side effects, warranting larger-scale clinical trials to further characterize its efficacy.
Collapse
Affiliation(s)
- Katrina daSilva Morgan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Julia Schumacher
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Collerton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sean Colloby
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Greg J Elder
- Northumbria Sleep Research, Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kirsty Olsen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dominic H Ffytche
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
27
|
Jiang H, Wang M, Wu D, Zhang J, Zhang S. In Vivo Measurements of Transcranial Electrical Stimulation in Lesioned Human Brain: A Case Report. Brain Sci 2022; 12:1455. [PMID: 36358381 PMCID: PMC9688390 DOI: 10.3390/brainsci12111455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
Transcranial electrical stimulation (tES) has been utilized widely in populations with brain lesions, such as stroke patients. The tES-generated electric field (EF) within the brain is considered as one of the most important factors for physiological effects. However, it is still unclear how brain lesions may influence EF distribution induced by tES. In this case study, we reported in vivo measurements of EF in one epilepsy participant with brain lesions during different tES montages. With the in vivo EF data measured by implanted stereo-electroencephalography (sEEG) electrodes, the simulation model was investigated and validated. Our results demonstrate that the prediction ability of the current simulation model may be degraded in the lesioned human brain.
Collapse
Affiliation(s)
- Hongjie Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310030, China
| | - Minmin Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310051, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Dan Wu
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310051, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310030, China
- Binjiang Institute of Zhejiang University, Hangzhou 310051, China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
28
|
Chupina I, Sierpowska J, Zheng XY, Dewenter A, Piastra M, Piai V. Time course of right-hemisphere recruitment during word production following left-hemisphere damage: A single case of young stroke. Eur J Neurosci 2022; 56:5235-5259. [PMID: 36028218 PMCID: PMC9826534 DOI: 10.1111/ejn.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Our understanding of post-stroke language function is largely based on older age groups, who show increasing age-related brain pathology and neural reorganisation. To illustrate language outcomes in the young-adult brain, we present the case of J., a 23-year-old woman with chronic aphasia from a left-hemisphere stroke affecting the temporal lobe. Diffusion MRI-based tractography indicated that J.'s language-relevant white-matter structures were severely damaged. Employing magnetoencephalography (MEG), we explored J.'s conceptual preparation and word planning abilities using context-driven and bare picture-naming tasks. These revealed naming deficits, manifesting as word-finding difficulties and semantic paraphasias about half of the time. Naming was however facilitated by semantically constraining lead-in sentences. Altogether, this pattern indicates disrupted lexical-semantic and phonological retrieval abilities. MEG revealed that J.'s conceptual and naming-related neural responses were supported by the right hemisphere, compared to the typical left-lateralised brain response of a matched control. Differential recruitment of right-hemisphere structures (330-440 ms post-picture onset) was found concurrently during successful naming (right mid-to-posterior temporal lobe) and word-finding attempts (right inferior frontal gyrus). Disconnection of the temporal lobes via corpus callosum was not critical for recruitment of the right hemisphere in visually guided naming, possibly due to neural activity right lateralising from the outset. Although J.'s right hemisphere responded in a timely manner during word planning, its lexical and phonological retrieval abilities remained modest.
Collapse
Affiliation(s)
- Irina Chupina
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands
| | - Joanna Sierpowska
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands,Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational PsychologyInstitut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Xiaochen Y. Zheng
- Donders Centre for Cognitive NeuroimagingRadboud UniversityNijmegenThe Netherlands
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD)University Hospital, LMU MunichMunichGermany
| | - Maria‐Carla Piastra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands,Department of Neuroinformatics, Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands,Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Vitória Piai
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands,Department of Medical Psychology, Donders Centre for Medical NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
29
|
Radjenovic S, Dörl G, Gaal M, Beisteiner R. Safety of Clinical Ultrasound Neuromodulation. Brain Sci 2022; 12:1277. [PMID: 36291211 PMCID: PMC9599299 DOI: 10.3390/brainsci12101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Transcranial ultrasound holds much potential as a safe, non-invasive modality for navigated neuromodulation, with low-intensity focused ultrasound (FUS) and transcranial pulse stimulation (TPS) representing the two main modalities. While neuroscientific and preclinical applications have received much interest, clinical applications are still relatively scarce. For safety considerations, the current literature is largely based on guidelines for ultrasound imaging that uses various physical parameters to describe the ultrasound pulse form and expected bioeffects. However, the safety situation for neuromodulation is inherently different. This article provides an overview of relevant ultrasound parameters with a focus on bioeffects relevant for safe clinical applications. Further, a retrospective analysis of safety data for clinical TPS applications in patients is presented.
Collapse
Affiliation(s)
| | | | | | - Roland Beisteiner
- Functional Brain Diagnostics and Therapy, Department of Neurology, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| |
Collapse
|
30
|
van der Cruijsen J, Dooren RF, Schouten AC, Oostendorp TF, Frens MA, Ribbers GM, van der Helm FCT, Kwakkel G, Selles RW. Addressing the inconsistent electric fields of tDCS by using patient-tailored configurations in chronic stroke: Implications for treatment. Neuroimage Clin 2022; 36:103178. [PMID: 36084558 PMCID: PMC9465435 DOI: 10.1016/j.nicl.2022.103178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/04/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising tool to improve and speed up motor rehabilitation after stroke, but inconsistent clinical effects refrain tDCS from clinical implementation. Therefore, this study aimed to assess the need for individualized tDCS configurations in stroke, considering interindividual variability in brain anatomy and motor function representation. We simulated tDCS in individualized MRI-based finite element head models of 21 chronic stroke subjects and 10 healthy age-matched controls. An anatomy-based stimulation target, i.e. the motor hand knob, was identified with MRI, whereas a motor function-based stimulation target was identified with EEG. For each subject, we simulated conventional anodal tDCS electrode configurations and optimized electrode configurations to maximize stimulation strength within the anatomical and functional target. The normal component of the electric field was extracted and compared between subjects with stroke and healthy, age-matched controls, for both targets, during conventional and optimized tDCS. Electrical field strength was significantly lower, more variable and more frequently in opposite polarity for subjects with stroke compared to healthy age-matched subjects, both for the anatomical and functional target with conventional, i.e. non-individualized, electrode configurations. Optimized, i.e. individualized, electrode configurations increased the electrical field strength in the anatomical and functional target for subjects with stroke but did not reach the same levels as in healthy subjects. Considering individual brain structure and motor function is crucial for applying tDCS in subjects with stroke. Lack of individualized tDCS configurations in subjects with stroke results in lower electric fields in stimulation targets, which may partially explain the inconsistent clinical effects of tDCS in stroke trials.
Collapse
Affiliation(s)
- Joris van der Cruijsen
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands; Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands; Radboud University Medical Center, dept. of Rehabilitation, Reinier Postlaan 2, 6525 GC, Nijmegen, The Netherlands.
| | - Renée F Dooren
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands; Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Alfred C Schouten
- Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands; University of Twente, dept. of Biomechanical Engineering, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Thom F Oostendorp
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Maarten A Frens
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Gerard M Ribbers
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands; Rijndam Rehabilitation, Westersingel 300, 3015 LJ, Rotterdam, The Netherlands
| | - Frans C T van der Helm
- Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands; Northwestern University of Chicago, dept. of Physical Therapy and Movement Sciences, 420 E Superior St, Chicago, IL 60611, United States
| | - Gert Kwakkel
- Northwestern University of Chicago, dept. of Physical Therapy and Movement Sciences, 420 E Superior St, Chicago, IL 60611, United States; Amsterdam University Medical Centre, dept. of Rehabilitation Medicine, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Ruud W Selles
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Piastra MC, Oostenveld R, Schoffelen JM, Piai V. Estimating the influence of stroke lesions on MEG source reconstruction. Neuroimage 2022; 260:119422. [PMID: 35781078 DOI: 10.1016/j.neuroimage.2022.119422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/20/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022] Open
Abstract
Source reconstruction of magnetoencephalography (MEG) has been used to assess brain reorganization after brain damage, such as stroke. Lesions result in parts of the brain having an electrical conductivity that differs from the normal values. The effect this has on the forward solutions (i.e., the propagation of electric currents and magnetic fields generated by cortical activity) is well predictable. However, their influence on source localization results is not well characterized and understood. This is specifically a concern for patient studies with asymmetric (i.e., within one hemisphere) lesions focusing on asymmetric and lateralized brain activity, such as language. In particular, it is good practice to consider the level of geometrical detail that is necessary to compute and interpret reliable source reconstruction results. To understand the effect of lesions on source estimates and propose recommendations to researchers working with clinical data, in this study we consider the trade off between improved accuracy and the additional effort to compute more realistic head models, with the aim to answer the question whether the additional effort is worth it. We simulated and analyzed the effects of a stroke lesion (i.e., an asymmetrically distributed CSF-filled cavity) in the head model with three different sizes and locations when performing MEG source reconstruction using a finite element method (FEM). We compared the effect of the lesion with a homogeneous head model that neglects the lesion. We computed displacement and attenuation/amplification maps to quantify the localization errors and signal magnitude modulation. We conclude that brain lesions leading to asymmetrically distributed CSF-filled cavities should be modeled when performing MEG source reconstruction, especially when investigating deep sources or post-stroke hemispheric lateralization of functions. The strongest effects are not only visible in perilesional areas, but can extend up to 20 mm from the lesion. Bigger lesions lead to stronger effects impacting larger areas, independently from the lesion location. Lastly, we conclude that more priority should be given to usability and accessibility of the required computational tools, to allow researchers with less technical expertise to use the improved methods that are available but currently not widely adopted yet.
Collapse
Affiliation(s)
- Maria Carla Piastra
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Robert Oostenveld
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mathijs Schoffelen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Vitória Piai
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Medical Psychology, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Kalloch B, Weise K, Lampe L, Bazin PL, Villringer A, Hlawitschka M, Sehm B. The influence of white matter lesions on the electric field in transcranial electric stimulation. Neuroimage Clin 2022; 35:103071. [PMID: 35671557 PMCID: PMC9168230 DOI: 10.1016/j.nicl.2022.103071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Sensitivity analysis allows the simulation of tDCS with uncertain conductivities. White matter lesions (WML) have no global influence on the electric field in tDCS. In subjects with a high lesion load, a local influence can be observed. In low to medium lesion load subjects, explicit modeling of WML is not required.
Background Transcranial direct current stimulation (tDCS) is a promising tool to enhance therapeutic efforts, for instance, after a stroke. The achieved stimulation effects exhibit high inter-subject variability, primarily driven by perturbations of the induced electric field (EF). Differences are further elevated in the aging brain due to anatomical changes such as atrophy or lesions. Informing tDCS protocols by computer-based, individualized EF simulations is a suggested measure to mitigate this variability. Objective While brain anatomy in general and specifically atrophy as well as stroke lesions are deemed influential on the EF in simulation studies, the influence of the uncertainty in the change of the electrical properties of the white matter due to white matter lesions (WMLs) has not been quantified yet. Methods A group simulation study with 88 subjects assigned into four groups of increasing lesion load was conducted. Due to the lack of information about the electrical conductivity of WMLs, an uncertainty analysis was employed to quantify the variability in the simulation when choosing an arbitrary conductivity value for the lesioned tissue. Results The contribution of WMLs to the EF variance was on average only one tenth to one thousandth of the contribution of the other modeled tissues. While the contribution of the WMLs significantly increased (p≪.01) in subjects exhibiting a high lesion load compared to low lesion load subjects, typically by a factor of 10 and above, the total variance of the EF didnot change with the lesion load. Conclusion Our results suggest that WMLs do not perturb the EF globally and can thus be omitted when modeling subjects with low to medium lesion load. However, for high lesion load subjects, the omission of WMLs may yield less robust local EF estimations in the vicinity of the lesioned tissue. Our results contribute to the efforts of accurate modeling of tDCS for treatment planning.
Collapse
Affiliation(s)
- Benjamin Kalloch
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; Leipzig University of Applied Science, Faculty of Computer Science and Media, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Methods and Development Group "Brain Networks", Leipzig, Germany; Technische Universität Ilmenau, Instiute of Biomedical Engineering and Informatics, Ilmenau, Germany.
| | - Konstantin Weise
- Max Planck Institute for Human Cognitive and Brain Sciences, Methods and Development Group "Brain Networks", Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics Group, Ilmenau, Germany
| | - Leonie Lampe
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Pierre-Louis Bazin
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; University of Amsterdam, Faculty of Social and Behavioural Sciences, Amsterdam, The Netherlands
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Mario Hlawitschka
- Leipzig University of Applied Science, Faculty of Computer Science and Media, Leipzig, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; Department of Neurology, Martin Luther University of Halle-Wittenberg, Germany
| |
Collapse
|
33
|
Ojala J, Vanhanen J, Harno H, Lioumis P, Vaalto S, Kaunisto MA, Putaala J, Kangasniemi M, Kirveskari E, Mäkelä JP, Kalso E. A Randomized, Sham-Controlled Trial of Repetitive Transcranial Magnetic Stimulation Targeting M1 and S2 in Central Poststroke Pain: A Pilot Trial. Neuromodulation 2022; 25:538-548. [PMID: 35670063 DOI: 10.1111/ner.13496] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Central poststroke pain (CPSP), a neuropathic pain condition, is difficult to treat. Repetitive transcranial magnetic stimulation (rTMS) targeted to the primary motor cortex (M1) can alleviate the condition, but not all patients respond. We aimed to assess a promising alternative rTMS target, the secondary somatosensory cortex (S2), for CPSP treatment. MATERIALS AND METHODS This prospective, randomized, double-blind, sham-controlled three-arm crossover trial assessed navigated rTMS (nrTMS) targeted to M1 and S2 (10 sessions, 5050 pulses per session at 10 Hz). Participants were evaluated for pain, depression, anxiety, health-related quality of life, upper limb function, and three plasticity-related gene polymorphisms including Dopamine D2 Receptor (DRD2). We monitored pain intensity and interference before and during stimulations and at one month. A conditioned pain modulation test was performed using the cold pressor test. This assessed the efficacy of the descending inhibitory system, which may transmit TMS effects in pain control. RESULTS We prescreened 73 patients, screened 29, and included 21, of whom 17 completed the trial. NrTMS targeted to S2 resulted in long-term (from baseline to one-month follow-up) pain intensity reduction of ≥30% in 18% (3/17) of participants. All stimulations showed a short-term effect on pain (17-20% pain relief), with no difference between M1, S2, or sham stimulations, indicating a strong placebo effect. Only nrTMS targeted to S2 resulted in a significant long-term pain intensity reduction (15% pain relief). The cold pressor test reduced CPSP pain intensity significantly (p = 0.001), indicating functioning descending inhibitory controls. The homozygous DRD2 T/T genotype is associated with the M1 stimulation response. CONCLUSIONS S2 is a promising nrTMS target in the treatment of CPSP. The DRD2 T/T genotype might be a biomarker for M1 nrTMS response, but this needs confirmation from a larger study.
Collapse
Affiliation(s)
- Juhani Ojala
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Jukka Vanhanen
- HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna Harno
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pantelis Lioumis
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Selja Vaalto
- HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jukka Putaala
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marko Kangasniemi
- HUS Diagnostic Center, Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Erika Kirveskari
- HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Functional Specificity of TPS Brain Stimulation Effects in Patients with Alzheimer's Disease: A Follow-up fMRI Analysis. Neurol Ther 2022; 11:1391-1398. [PMID: 35633496 PMCID: PMC9338196 DOI: 10.1007/s40120-022-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Transcranial pulse stimulation (TPS) has been recently introduced as a novel clinical brain stimulation technique based on highly focused ultrasound pressure pulses. In a first pilot study on clinical effects of navigated and focused ultrasound neuromodulation, a dichotomy of functional effects was found: patients with Alzheimer’s disease improved cognition and language but deteriorated with visuo-constructive functions. Methods We analyzed changes in functional connectivity measured with functional magnetic resonance imaging (fMRI) using graph analysis of a visuo-constructive network in 18 patients with Alzheimer’s disease. We calculated the network’s global efficiency and tested for correlation with visuo-constructive test scores to explain this dichotomy. Results Important visuo-constructive network nodes were not stimulated in the pilot setting and correspondingly global efficiency of a visuo-constructive network was decreased after TPS therapy, compatible with a natural progress of the disease. A correlation between visuo-constructive scores and changes in global efficiency was found. Conclusion Results argue for a high functional specificity of ultrasound-based neuromodulation with TPS. Over the last decade, there has been growing interest in ultrasound-based non-invasive brain stimulation techniques in neuroscience and as a potential therapy for disorders of the brain. Transcranial pulse stimulation (TPS) has been introduced as an innovative neuromodulation technique, applying ultrashort pressure pulses through the skull into neural tissue with 3D navigation in real time. In the first clinical pilot study, patients suffering from Alzheimer’s disease showed an increase in memory and language functions for up to 3 months after TPS therapy. However, visuo-constructive capacities (e.g., copying a geometrical figure) worsened. Notably, brain areas relevant for such processes had been left out during stimulation. This begged the question whether the brain areas that were targeted for brain stimulation as well as functional changes could explain this diverse response pattern. We therefore analyzed functional magnetic resonance data from patients. Specifically, we compared graph theoretical functional connectivity measures in a visuo-constructive network before and after TPS therapy. We found a decrease in connectivity in a central network node, which also correlated with visuo-constructive test scores. This deterioration is likely associated with normal disease progression. Together with the already reported improvement in global cognitive functions, these results argue for a functional specific effect of TPS.
Collapse
|
35
|
Van Hoornweder S, Meesen R, Caulfield KA. On the importance of using both T1-weighted and T2-weighted structural magnetic resonance imaging scans to model electric fields induced by non-invasive brain stimulation in SimNIBS. Brain Stimul 2022; 15:641-644. [PMID: 35436593 DOI: 10.1016/j.brs.2022.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
36
|
Turnbull C, Boomsma A, Milte R, Stanton TR, Hordacre B. Safety and Adverse Events following Non-invasive Electrical Brain Stimulation in Stroke: A Systematic Review. Top Stroke Rehabil 2022; 30:355-367. [PMID: 35353649 DOI: 10.1080/10749357.2022.2058294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Noninvasive electrical stimulation (ES) could have therapeutic potential in stroke recovery. However, there is no comprehensive evaluation of adverse events. This study systematically searched the literature to document frequency and prevalence of adverse events. A secondary aim was to explore associations between adverse events and ES parameters or participant characteristics.Methods: Databases were searched for studies evaluating ES in adults with stroke. All included studies were required to report on adverse events. Extracted data were: (1) study design; (2) adverse events; (3) participant characteristics; (4) ES parameters. RESULTS Seventy-five studies were included. Adverse events were minor in nature. The most frequently reported adverse events were tingling (37.3% of papers), burning (18.7%), headaches (14.7%) and fatigue (14.7%). Cathodal stimulation was associated with greater frequency of itching (p = .02), intensities of 1-2 mA with increased tingling (p = .04) and discomfort (p = .03), and current density <0.4mA/cm2 with greater discomfort (p = .03). Tingling was the most prevalent adverse event (18.1% of participants), with prevalence data not differing between active and control conditions (all p ≥ 0.37). Individual participants were more likely to report adverse events with increasing current density (r = 0.99, p = .001). Two severe adverse events were noted (a seizure and percutaneous endoscopic gastrostomy placement). CONCLUSION ES appears safe in people with stroke as reported adverse events were predominantly minor in nature. An adverse events questionnaire is proposed to enable a more comprehensive and nuanced analysis of the frequency and prevalence of adverse events.
Collapse
Affiliation(s)
- Clare Turnbull
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Aafke Boomsma
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Rachel Milte
- Health and Social Care Economics Group College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Tasha R Stanton
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
37
|
Cheung T, Ho YS, Yeung JWF, Leung SF, Fong KNK, Fong T, Kranz GS, Beisteiner R, Cheng CPW. Effects of Transcranial Pulse Stimulation (TPS) on Young Adults With Symptom of Depression: A Pilot Randomised Controlled Trial Protocol. Front Neurol 2022; 13:861214. [PMID: 35401418 PMCID: PMC8990306 DOI: 10.3389/fneur.2022.861214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Background Since the emergence of the COVID-19 pandemic, there have been lots of published work examining the association between COVID-19 and mental health, particularly, anxiety and depression in the general populations and disease subpopulations globally. Depression is a debilitating disorder affecting individuals' level of bio-psychological-social functioning across different age groups. Since almost all studies were cross-sectional studies, there seems to be a lack of robust, large-scale, and technological-based interventional studies to restore the general public's optimal psychosocial wellbeing amidst the COVID-19 pandemic. Transcranial pulse stimulation (TPS) is a relatively new non-intrusive brain stimulation (NIBS) technology, and only a paucity of studies was conducted related to the TPS treatment on older adults with mild neurocognitive disorders. However, there is by far no study conducted on young adults with major depressive disorder nationwide. This gives us the impetus to execute the first nationwide study evaluating the efficacy of TPS on the treatment of depression among young adults in Hong Kong. Methods This study proposes a two-armed single-blinded randomised controlled trial including TPS as an intervention group and a waitlist control group. Both groups will be measured at baseline (T1), immediately after the intervention (T2), and at the 3- month follow-up (T3). Recruitment A total of 30 community-dwelling subjects who are aged 18 and above and diagnosed with major depressive disorder (MDD) will be recruited in this study. All subjects will be computer randomised into either the intervention group or the waitlist control group, balanced by gender and age on a 1:1 ratio. Intervention All subjects in each group will have to undertake functional MRI (fMRI) before and after six 30-min TPS sessions, which will be completed in 2 weeks' time. Outcomes Baseline measurements and post-TPS evaluation of the psychological outcomes (i.e., depression, cognition, anhedonia, and instrumental activities of daily living) will also be conducted on all participants. A 3-month follow-up period will be usedto assess the long-term sustainability of the TPS intervention. For statistical analysis, ANOVA with repeated measures will be used to analyse data. Missing data were managed by multiple mutations. The level of significance will be set to p < 0.05. Significance of the Study Results of this study will be used to inform health policy to determine whether TPS could be considered as a top treatment option for MDD. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT05006365.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yuen Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jerry Wing-Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sau Fong Leung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tommy Fong
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Roland Beisteiner
- Department of Neurology, Functional Diagnostics and Therapy, Medical University of Vienna, Vienna, Austria
| | - Calvin Pak Wing Cheng
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
38
|
Gomez-Feria J, Fernandez-Corazza M, Martin-Rodriguez JF, Mir P. TMS intensity and focality correlation with coil orientation at three non-motor regions. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4ef9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. The aim of this study is to define the best coil orientations for transcranial magnetic stimulation (TMS) for three clinically relevant brain areas: pre-supplementary motor area (pre-SMA), inferior frontal gyrus (IFG), and posterior parietal cortex (PPC), by means of simulations in 12 realistic head models of the electric field (E-field). Methods. We computed the E-field generated by TMS in our three volumes of interest (VOI) that were delineated based on published atlases. We then analysed the maximum intensity and spatial focality for the normal and absolute components of the E-field considering different percentile thresholds. Lastly, we correlated these results with the different anatomical properties of our VOIs. Results. Overall, the spatial focality of the E-field for the three VOIs varied depending on the orientation of the coil. Further analysis showed that differences in individual brain anatomy were related to the amount of focality achieved. In general, a larger percentage of sulcus resulted in better spatial focality. Additionally, a higher normal E-field intensity was achieved when the coil axis was placed perpendicular to the predominant orientations of the gyri of each VOI. A positive correlation between spatial focality and E-field intensity was found for PPC and IFG but not for pre-SMA. Conclusions. For a rough approximation, better coil orientations can be based on the individual’s specific brain morphology at the VOI. Moreover, TMS computational models should be employed to obtain better coil orientations in non-motor regions of interest. Significance. Finding better coil orientations in non-motor regions is a challenge in TMS and seeks to reduce interindividual variability. Our individualized TMS simulation pipeline leads to fewer inter-individual variability in the focality, likely enhancing the efficacy of the stimulation and reducing the risk of stimulating adjacent, non-targeted areas.
Collapse
|
39
|
Khan A, Yuan K, Bao SC, Ti CHE, Tariq A, Anjum N, Tong RKY. Can Transcranial Electrical Stimulation Facilitate Post-stroke Cognitive Rehabilitation? A Systematic Review and Meta-Analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795737. [PMID: 36188889 PMCID: PMC9397778 DOI: 10.3389/fresc.2022.795737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
Background Non-invasive brain stimulation methods have been widely utilized in research settings to manipulate and understand the functioning of the human brain. In the last two decades, transcranial electrical stimulation (tES) has opened new doors for treating impairments caused by various neurological disorders. However, tES studies have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no consensus on the effectiveness of tES devices in improving cognitive skills after the onset of stroke. Objectives We aim to systematically investigate the efficacy of tES in improving post-stroke global cognition, attention, working memory, executive functions, visual neglect, and verbal fluency. Furthermore, we aim to provide a pathway to an effective use of stimulation paradigms in future studies. Methods Preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed. Randomized controlled trials (RCTs) were systematically searched in four different databases, including Medline, Embase, Pubmed, and PsychInfo. Studies utilizing any tES methods published in English were considered for inclusion. Standardized mean difference (SMD) for each cognitive domain was used as the primary outcome measure. Results The meta-analysis includes 19 studies assessing at least one of the six cognitive domains. Five RCTs studying global cognition, three assessing visual neglect, five evaluating working memory, three assessing attention, and nine studies focusing on aphasia were included for meta-analysis. As informed by the quantitative analysis of the included studies, the results favor the efficacy of tES in acute improvement in aphasic deficits (SMD = 0.34, CI = 0.02-0.67, p = 0.04) and attention deficits (SMD = 0.59, CI = -0.05-1.22, p = 0.07), however, no improvement was observed in any other cognitive domains. Conclusion The results favor the efficacy of tES in an improvement in aphasia and attentive deficits in stroke patients in acute, subacute, and chronic stages. However, the outcome of tES cannot be generalized across cognitive domains. The difference in the stimulation montages and parameters, diverse cognitive batteries, and variable number of training sessions may have contributed to the inconsistency in the outcome. We suggest that in future studies, experimental designs should be further refined, and standardized stimulation protocols should be utilized to better understand the therapeutic effect of stimulation.
Collapse
Affiliation(s)
- Ahsan Khan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Yuan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Chun Hang Eden Ti
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Abdullah Tariq
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Nimra Anjum
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Raymond Kai-Yu Tong
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China,Hong Kong Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China,*Correspondence: Raymond Kai-Yu Tong
| |
Collapse
|
40
|
Matt E, Kaindl L, Tenk S, Egger A, Kolarova T, Karahasanović N, Amini A, Arslan A, Sariçiçek K, Weber A, Beisteiner R. First evidence of long-term effects of transcranial pulse stimulation (TPS) on the human brain. J Transl Med 2022; 20:26. [PMID: 35033118 PMCID: PMC8760674 DOI: 10.1186/s12967-021-03222-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background With the high spatial resolution and the potential to reach deep brain structures, ultrasound-based brain stimulation techniques offer new opportunities to non-invasively treat neurological and psychiatric disorders. However, little is known about long-term effects of ultrasound-based brain stimulation. Applying a longitudinal design, we comprehensively investigated neuromodulation induced by ultrasound brain stimulation to provide first sham-controlled evidence of long-term effects on the human brain and behavior. Methods Twelve healthy participants received three sham and three verum sessions with transcranial pulse stimulation (TPS) focused on the cortical somatosensory representation of the right hand. One week before and after the sham and verum TPS applications, comprehensive structural and functional resting state MRI investigations and behavioral tests targeting tactile spatial discrimination and sensorimotor dexterity were performed. Results Compared to sham, global efficiency significantly increased within the cortical sensorimotor network after verum TPS, indicating an upregulation of the stimulated functional brain network. Axial diffusivity in left sensorimotor areas decreased after verum TPS, demonstrating an improved axonal status in the stimulated area. Conclusions TPS increased the functional and structural coupling within the stimulated left primary somatosensory cortex and adjacent sensorimotor areas up to one week after the last stimulation. These findings suggest that TPS induces neuroplastic changes that go beyond the spatial and temporal stimulation settings encouraging further clinical applications.
Collapse
Affiliation(s)
- Eva Matt
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Lisa Kaindl
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Saskia Tenk
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anicca Egger
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Teodora Kolarova
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Nejla Karahasanović
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Ahmad Amini
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Andreas Arslan
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Kardelen Sariçiçek
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Alexandra Weber
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Roland Beisteiner
- Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
41
|
Bhattacharjee S, Kashyap R, Goodwill AM, O'Brien BA, Rapp B, Oishi K, Desmond JE, Chen SHA. Sex difference in tDCS current mediated by changes in cortical anatomy: A study across young, middle and older adults. Brain Stimul 2022; 15:125-140. [PMID: 34826627 PMCID: PMC9041842 DOI: 10.1016/j.brs.2021.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION The observed variability in the effects of transcranial direct current stimulation (tDCS) is influenced by the amount of current reaching the targeted region-of-interest (ROI). Age and sex might affect current density at target ROI due to their impact on cortical anatomy. The present tDCS simulation study investigates the effects of cortical anatomical parameters (volumes, dimension, and torque) on simulated tDCS current density in healthy young, middle-aged, and older males and females. METHODOLOGY Individualized head models from 240 subjects (120 males, 18-87 years of age) were used to identify the estimated current density (2 mA current intensity, 25 cm2 electrode) from two simulated tDCS montages (CP5_CZ and F3_FP2) targeting the inferior parietal lobule (IPL) and middle frontal gyrus (MFG), respectively. Cortical parameters including segmented brain volumes (cerebrospinal fluid [CSF], grey and white matter), cerebral-dimensions (length/width &length/height) and brain-torque (front and back shift, petalia, and bending) were measured using the magnetic resonance images (MRIs) from each subject. The present study estimated sex differences in current density at these target ROIs mediated by these cortical parameters within each age group. RESULTS For both tDCS montages, females in the older age group received higher current density than their male counterparts at the target ROIs. No sex differences were observed in the middle-aged group. Males in the younger age group had a higher current density than females, only for the parietal montage. Across all age groups, CSF, and grey matter volumes significantly predicted the current intensity estimated at the target sites. In the older age group only, brain-torque was a significant mediator of the sex difference. CONCLUSIONS Our findings demonstrate the presence of sex differences in the simulated tDCS current density, however this pattern differed across age groups and stimulation locations. Future studies should consider influence of age and sex on individual cortical anatomy and tailor tDCS stimulation parameters accordingly.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore.
| | - Alicia M Goodwill
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore; Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore.
| | - Beth Ann O'Brien
- Centre for Research in Child Development (CRCD), National Institute of Education, Singapore.
| | - Brenda Rapp
- The Johns Hopkins University, Krieger School of Arts and Sciences, Baltimore, United States.
| | - Kenichi Oishi
- The Johns Hopkins University School of Medicine, Baltimore, United States.
| | - John E Desmond
- The Johns Hopkins University School of Medicine, Baltimore, United States.
| | - S H Annabel Chen
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore.
| |
Collapse
|
42
|
A Future of Current Flow Modelling for Transcranial Electrical Stimulation? Curr Behav Neurosci Rep 2021. [DOI: 10.1007/s40473-021-00238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Purpose of Review
Transcranial electrical stimulation (tES) is used to non-invasively modulate brain activity in health and disease. Current flow modeling (CFM) provides estimates of where and how much electrical current is delivered to the brain during tES. It therefore holds promise as a method to reduce commonplace variability in tES delivery and, in turn, the outcomes of stimulation. However, the adoption of CFM has not yet been widespread and its impact on tES outcome variability is unclear. Here, we discuss the potential barriers to effective, practical CFM-informed tES use.
Recent Findings
CFM has progressed from models based on concentric spheres to gyri-precise head models derived from individual MRI scans. Users can now estimate the intensity of electrical fields (E-fields), their spatial extent, and the direction of current flow in a target brain region during tES. Here. we consider the multi-dimensional challenge of implementing CFM to optimise stimulation dose: this requires informed decisions to prioritise E-field characteristics most likely to result in desired stimulation outcomes, though the physiological consequences of the modelled current flow are often unknown. Second, we address the issue of a disconnect between predictions of E-field characteristics provided by CFMs and predictions of the physiological consequences of stimulation which CFMs are not designed to address. Third, we discuss how ongoing development of CFM in conjunction with other modelling approaches could overcome these challenges while maintaining accessibility for widespread use.
Summary
The increasing complexity and sophistication of CFM is a mandatory step towards dose control and precise, individualised delivery of tES. However, it also risks counteracting the appeal of tES as a straightforward, cost-effective tool for neuromodulation, particularly in clinical settings.
Collapse
|
43
|
van der Cruijsen J, Piastra MC, Selles RW, Oostendorp TF. A Method to Experimentally Estimate the Conductivity of Chronic Stroke Lesions: A Tool to Individualize Transcranial Electric Stimulation. Front Hum Neurosci 2021; 15:738200. [PMID: 34712128 PMCID: PMC8546262 DOI: 10.3389/fnhum.2021.738200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The inconsistent response to transcranial electric stimulation in the stroke population is attributed to, among other factors, unknown effects of stroke lesion conductivity on stimulation strength at the targeted brain areas. Volume conduction models are promising tools to determine optimal stimulation settings. However, stroke lesion conductivity is often not considered in these models as a source of inter-subject variability. The goal of this study is to propose a method that combines MRI, EEG, and transcranial stimulation to estimate the conductivity of cortical stroke lesions experimentally. In this simulation study, lesion conductivity was estimated from scalp potentials during transcranial electric stimulation in 12 chronic stroke patients. To do so, first, we determined the stimulation configuration where scalp potentials are maximally affected by the lesion. Then, we calculated scalp potentials in a model with a fixed lesion conductivity and a model with a randomly assigned conductivity. To estimate the lesion conductivity, we minimized the error between the two models by varying the conductivity in the second model. Finally, to reflect realistic experimental conditions, we test the effect rotation of measurement electrode orientation and the effect of the number of electrodes used. We found that the algorithm converged to the correct lesion conductivity value when noise on the electrode positions was absent for all lesions. Conductivity estimation error was below 5% with realistic electrode coregistration errors of 0.1° for lesions larger than 50 ml. Higher lesion conductivities and lesion volumes were associated with smaller estimation errors. In conclusion, this method can experimentally estimate stroke lesion conductivity, improving the accuracy of volume conductor models of stroke patients and potentially leading to more effective transcranial electric stimulation configurations for this population.
Collapse
Affiliation(s)
- Joris van der Cruijsen
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Maria Carla Piastra
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruud W. Selles
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Thom F. Oostendorp
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
44
|
Focality-Oriented Selection of Current Dose for Transcranial Direct Current Stimulation. J Pers Med 2021; 11:jpm11090940. [PMID: 34575717 PMCID: PMC8466113 DOI: 10.3390/jpm11090940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022] Open
Abstract
Background: In transcranial direct current stimulation (tDCS), the injected current becomes distributed across the brain areas. The objective is to stimulate the target region of interest (ROI) while minimizing the current in non-target ROIs (the 'focality' of tDCS). For this purpose, determining the appropriate current dose for an individual is difficult. Aim: To introduce a dose-target determination index (DTDI) to quantify the focality of tDCS and examine the dose-focality relationship in three different populations. Method: Here, we extended our previous toolbox i-SATA to the MNI reference space. After a tDCS montage is simulated for a current dose, the i-SATA(MNI) computes the average (over voxels) current density for every region in the brain. DTDI is the ratio of the average current density at the target ROI to the ROI with a maximum value (the peak region). Ideally, target ROI should be the peak region, so DTDI shall range from 0 to 1. The higher the value, the better the dose. We estimated the variation of DTDI within and across individuals using T1-weighted brain images of 45 males and females distributed equally across three age groups: (a) young adults (20 ≤ x ˂ 40 years), (b) mid adults (40 ≤ x ˂ 60 years), and (c) older adults (60 ≤ x ˂ 80 years). DTDI's were evaluated for the frontal montage with electrodes at F3 and the right supraorbital for three current doses of 1 mA, 2 mA, and 3 mA, with the target ROI at the left middle frontal gyrus. Result: As the dose is incremented, DTDI may show (a) increase, (b) decrease, and (c) no change across the individuals depending on the relationship (nonlinear or linear) between the injected tDCS current and the distribution of current density in the target ROI. The nonlinearity is predominant in older adults with a decrease in focality. The decline is stronger in males. Higher current dose at older age can enhance the focality of stimulation. Conclusion: DTDI provides information on which tDCS current dose will optimize the focality of stimulation. The recommended DTDI dose should be prioritized based on the age (>40 years) and sex (especially for males) of an individual. The toolbox i-SATA(MNI) is freely available.
Collapse
|
45
|
Antonenko D, Grittner U, Puonti O, Flöel A, Thielscher A. Estimation of individually induced e-field strength during transcranial electric stimulation using the head circumference. Brain Stimul 2021; 14:1055-1058. [PMID: 34246820 PMCID: PMC8497040 DOI: 10.1016/j.brs.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Head and brain anatomy have been related to e-field strength induced by transcranial electrical stimulation (tES). Individualization based on anatomic factors require high-quality structural magnetic resonance images, which are not always available. Head circumference (HC) can serve as an alternative means, but its linkage to electric field strength has not yet been established. METHODS We simulated electric fields induced by tES based on individual T1w- and T2w-images of 47 healthy adults, for four conventional ("standard") and four corresponding focal ("4x1") electrode montages. Associations of electric field strength with individual HC were calculated using linear mixed models. RESULTS Larger HC was associated with lower electric field strength across montages. We provide mathematical equations to estimate individual electric field strength based on the HC. CONCLUSION HC can be used as an alternative to estimate interindividual differences of the tES-induced electric field strength and to prospectively individualize stimulation dose, e.g., in the clinical context.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.
| | - Ulrike Grittner
- Berlin Institute of Health, Berlin, Germany; Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin, Berlin, Germany.
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark; Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany.
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark; Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
46
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
47
|
Hordacre B, McCambridge AB, Ridding MC, Bradnam LV. Can Transcranial Direct Current Stimulation Enhance Poststroke Motor Recovery? Development of a Theoretical Patient-Tailored Model. Neurology 2021; 97:170-180. [PMID: 33986136 DOI: 10.1212/wnl.0000000000012187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
New treatments that can facilitate neural repair and reduce persistent impairments have significant value in promoting recovery following stroke. One technique that has gained interest is transcranial direct current stimulation (tDCS) as early research suggested it could enhance plasticity and enable greater behavioral recovery. However, several studies have now identified substantial intersubject variability in response to tDCS and clinical trials revealed insufficient evidence of treatment effectiveness. A possible explanation for the varied and negative findings is that the physiologic model of stroke recovery that researchers have used to guide the application of tDCS-based treatments in stroke is overly simplistic and does not account for stroke heterogeneity or known determinants that affect the tDCS response. Here, we propose that tDCS could have a more clearly beneficial role in enhancing stroke recovery if greater consideration is given to individualizing treatment. By critically reviewing the proposed mechanisms of tDCS, stroke physiology across the recovery continuum, and known determinants of tDCS response, we propose a new, theoretical, patient-tailored approach to delivering tDCS after stroke. The proposed model includes a step-by-step principled selection strategy for identifying optimal neuromodulation targets and outlines key areas for further investigation. Tailoring tDCS treatment to individual neuroanatomy and physiology is likely our best chance at producing robust and meaningful clinical benefit for people with stroke and would therefore accelerate opportunities for clinical translation.
Collapse
Affiliation(s)
- Brenton Hordacre
- From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand.
| | - Alana B McCambridge
- From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand
| | - Michael C Ridding
- From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand
| | - Lynley V Bradnam
- From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand
| |
Collapse
|
48
|
Carla Piastra M, van der Cruijsen J, Piai V, Jeukens FEM, Manoochehri M, Schouten AC, Selles RW, Oostendorp T. ASH: an Automatic pipeline to generate realistic and individualized chronic Stroke volume conduction Head models. J Neural Eng 2021; 18. [PMID: 33735847 DOI: 10.1088/1741-2552/abf00b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
Objective.Large structural brain changes, such as chronic stroke lesions, alter the current pathways throughout the patients' head and therefore have to be taken into account when performing transcranial direct current stimulation simulations.Approach.We implement, test and distribute the first MATLAB pipeline that automatically generates realistic and individualized volume conduction head models of chronic stroke patients, by combining the already existing software SimNIBS, for the mesh generation, and lesion identification with neighborhood data analysis, for the lesion identification. To highlight the impact of our pipeline, we investigated the sensitivity of the electric field distribution to the lesion location and lesion conductivity in 16 stroke patients' datasets.Main results.Our pipeline automatically generates 1 mm-resolution tetrahedral meshes including the lesion compartment in less than three hours. Moreover, for large lesions, we found a high sensitivity of the electric field distribution to the lesion conductivity value and location.Significance.This work facilitates optimizing electrode configurations with the goal to obtain more focal brain stimulations of the target volumes in rehabilitation for chronic stroke patients.
Collapse
Affiliation(s)
- Maria Carla Piastra
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Neuroinformatics, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joris van der Cruijsen
- Department of Rehabilitation Medicine, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Vitória Piai
- Department of Medical Psychology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Nijmegen, The Netherlands.,Donders Centre for Cognition, Radboud University, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Floor E M Jeukens
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Mana Manoochehri
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Ruud W Selles
- Department of Rehabilitation Medicine, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands.,Department of Plastic and Reconstructive Surgery, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Thom Oostendorp
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Piastra MC, Nüßing A, Vorwerk J, Clerc M, Engwer C, Wolters CH. A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources. Hum Brain Mapp 2021; 42:978-992. [PMID: 33156569 PMCID: PMC7856654 DOI: 10.1002/hbm.25272] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Signal-to-noise ratio (SNR) maps are a good way to visualize electroencephalography (EEG) and magnetoencephalography (MEG) sensitivity. SNR maps extend the knowledge about the modulation of EEG and MEG signals by source locations and orientations and can therefore help to better understand and interpret measured signals as well as source reconstruction results thereof. Our work has two main objectives. First, we investigated the accuracy and reliability of EEG and MEG finite element method (FEM)-based sensitivity maps for three different head models, namely an isotropic three and four-compartment and an anisotropic six-compartment head model. As a result, we found that ignoring the cerebrospinal fluid leads to an overestimation of EEG SNR values. Second, we examined and compared EEG and MEG SNR mappings for both cortical and subcortical sources and their modulation by source location and orientation. Our results for cortical sources show that EEG sensitivity is higher for radial and deep sources and MEG for tangential ones, which are the majority of sources. As to the subcortical sources, we found that deep sources with sufficient tangential source orientation are recordable by the MEG. Our work, which represents the first comprehensive study where cortical and subcortical sources are considered in highly detailed FEM-based EEG and MEG SNR mappings, sheds a new light on the sensitivity of EEG and MEG and might influence the decision of brain researchers or clinicians in their choice of the best modality for their experiment or diagnostics, respectively.
Collapse
Affiliation(s)
- Maria Carla Piastra
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
- Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical CenterNijmegenThe Netherlands
| | - Andreas Nüßing
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, University for Health SciencesMedical Informatics and TechnologyHall in TirolAustria
| | - Maureen Clerc
- Inria Sophia Antipolis‐MediterranéeBiotFrance
- Université Côte d'AzurNiceFrance
| | - Christian Engwer
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
- Cluster of Excellence EXC 1003, Cells in Motion, CiM, University of MünsterMünsterGermany
| | - Carsten H. Wolters
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| |
Collapse
|
50
|
Popescu T, Pernet C, Beisteiner R. Transcranial ultrasound pulse stimulation reduces cortical atrophy in Alzheimer's patients: A follow-up study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12121. [PMID: 33681449 PMCID: PMC7906128 DOI: 10.1002/trc2.12121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Ultrasound for the brain is a revolutionary therapeutic concept. The first clinical data indicate that 2-4 weeks of therapy with transcranial pulse stimulation (TPS) improve functional networks and cognitive performance of Alzheimer's disease (AD) patients for up to 3 months. No data currently exist on possible benefits concerning brain morphology, namely the cortical atrophy characteristic of AD. METHODS We performed a pre-/post-therapy analysis of cortical thickness in a group of N = 17 AD patients. RESULTS We found a significant correlation between neuropsychological improvement and cortical thickness increase in AD-critical brain areas. DISCUSSION AD patients who benefit from TPS appear to manifest reduced cortical atrophy within the default mode network in particular, whose memory-related subsystems are believed to be disrupted in AD. TPS may therefore hold promise as a new add-on therapy for AD.
Collapse
Affiliation(s)
- Tudor Popescu
- Department of Behavioural and Cognitive BiologyUniversity of ViennaViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Cyril Pernet
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | | |
Collapse
|