1
|
Chen K, Sun M, Zhuang H. Effect of theta burst stimulation on lower extremity motor function improvement and balance recovery in patients with stroke: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e40098. [PMID: 39495989 PMCID: PMC11537599 DOI: 10.1097/md.0000000000040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND To investigate the therapeutic benefits of theta burst stimulation on lower-limb motor dysfunction and balance recovery in patients with stroke. METHODS A literature search was performed across CNKI, CBM, WanFang, VIP, PubMed, Embase, Cochrane Library, and Web of Science until November 2023. The Methodological quality of included studies was assessed by using the Cochrane risk-of-bias tool and the PEDro scale, and the meta-analysis was performed by using RevMan 5.3 software. Two independent researchers screened the literature and extracted basic information on participants, interventions, comparisons, outcomes, and studies. RESULTS Eight studies, including cTBS and iTBS, with 290 participants meeting the inclusion criteria for this systematic review, and 7 studies including only iTBS with 230 participants were included in this meta-analysis. The methodological quality of the studies included ranged from moderate to high. The results showed iTBS had significantly higher scores on the Berg Balance Scale (BBS) than the control group. (MD = 4.57, 95% CI: 1.76 to 7.38, Z = 3.19, P = .001). Subgroup analysis showed CRB-iTBS markedly improved BBS scores (MD = 4.52, 95% CI: 1.78 to 7.27, Z = 3.23, P = .001), whereas LE M1-iTBS did not exhibit a significant enhancement in BBS scores (MD = 6.10, 95% CI: -7.34 to 19.53, Z = 0.89, P = .37); iTBS showed no significant increase in lower-limb motor function (FMA-LE) (MD = 1.80, 95% CI: -1.10 to 4.69, Z = 1.22, P = .22). Subgroup analysis revealed both CRB-iTBS and LE M1-iTBS interventions were not effective in improving FMA-LE (MD = 3.15, 95% CI: -4.70 to 11.00, Z = .79, P = .43; MD = 1.05, 95% CI: -2.20 to 4.30, Z = .63, P = .53); iTBS significantly reduced the MEP latency (P = .004), but did not show a significant improvement in walking performance (10 MWT), mobility (TUG), or activities of daily living [M(BI)] (P > .05). CONCLUSION Based the current study, iTBS can increase patients' balance function. The CRB-iTBS protocol is more effective than the LE M1-iTBS protocol. Additionally, iTBS may be a promising therapy tending to enhance lower-limb motor function, walking performance, mobility, and activities of daily living.
Collapse
Affiliation(s)
- Kang Chen
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meixia Sun
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - He Zhuang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Lu J, Huang J, Ye A, Xie C, Bu P, Kang J, Hu J, Wen Y, Huang H. Effect of intermittent theta burst stimulation on upper limb function in stroke patients: a systematic review and meta-analysis. Front Neurol 2024; 15:1450435. [PMID: 39463790 PMCID: PMC11505115 DOI: 10.3389/fneur.2024.1450435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background Stroke is a serious health issue that affects individuals, families, and society. Particularly, the upper limb dysfunction caused by stroke significantly reduces the quality of life for patients and may lead to psychological issues. Current treatment modalities are not fully effective in helping patients regain upper limb motor function to optimal levels. Therefore, there is an urgent need to explore new rehabilitation methods to address this issue. Objective The purpose of this meta-analysis and systematic review is to explore the effects of intermittent theta burst stimulation (iTBS) on upper limb function in stroke patients. Methods We searched PubMed, Cochrane Library, Embase, Web of Science, PEDro and China National Knowledge Internet as of April 8, 2024. Retrieved a total of 100 articles. Standardized mean differences (SMDs) and 95% confidence intervals (CI) were calculated. Results The study included a total of 9 trials and involved 224 patients. The results demonstrate that compared to the control group, iTBS therapy significantly improved Fugl-Meyer assessment-upper extremity (FMA-UE) scores (SMD = 0.88; 95% CI = 0.11-1.66; P = 0.03, I 2 = 84%), Action Research Arm Test (ARAT) scores (SMD = 0.83; 95% CI = 0.16-1.50; P = 0.02, I 2 = 57%), and Barthel Index (BI) scores (SMD = 0.93; 95% CI = 0.53-1.32; P < 0.0001, I 2 = 0%) in stroke patients. Conclusions The comprehensive evidence suggests that iTBS has superior effects in improving upper limb function and activities of daily living in stroke patients.
Collapse
Affiliation(s)
- Junyue Lu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jiahao Huang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Anqi Ye
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Chen Xie
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Pan Bu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jiliang Kang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jiaxuan Hu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Youliang Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Haoyuan Huang
- Third Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Zhang JJ, Sui Y, Sack AT, Bai Z, Kwong PWH, Sanchez Vidana DI, Xiong L, Fong KNK. Theta burst stimulation for enhancing upper extremity motor functions after stroke: a systematic review of clinical and mechanistic evidence. Rev Neurosci 2024; 35:679-695. [PMID: 38671584 DOI: 10.1515/revneuro-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
This systematic review aimed to evaluate the effects of different theta burst stimulation (TBS) protocols on improving upper extremity motor functions in patients with stroke, their associated modulators of efficacy, and the underlying neural mechanisms. We conducted a meta-analytic review of 29 controlled trials published from January 1, 2000, to August 29, 2023, which investigated the effects of TBS on upper extremity motor, neurophysiological, and neuroimaging outcomes in poststroke patients. TBS significantly improved upper extremity motor impairment (Hedge's g = 0.646, p = 0.003) and functional activity (Hedge's g = 0.500, p < 0.001) compared to controls. Meta-regression revealed a significant relationship between the percentage of patients with subcortical stroke and the effect sizes of motor impairment (p = 0.015) and functional activity (p = 0.018). Subgroup analysis revealed a significant difference in the improvement of upper extremity motor impairment between studies using 600-pulse and 1200-pulse TBS (p = 0.002). Neurophysiological studies have consistently found that intermittent TBS increases ipsilesional corticomotor excitability. However, evidence to support the regional effects of continuous TBS, as well as the remote and network effects of TBS, is still mixed and relatively insufficient. In conclusion, TBS is effective in enhancing poststroke upper extremity motor function. Patients with preserved cortices may respond better to TBS. Novel TBS protocols with a higher dose may lead to superior efficacy compared with the conventional 600-pulse protocol. The mechanisms of poststroke recovery facilitated by TBS can be primarily attributed to the modulation of corticomotor excitability and is possibly caused by the recruitment of corticomotor networks connected to the ipsilesional motor cortex.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, 26680 The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Youxin Sui
- Department of Rehabilitation Sciences, 26680 The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zhongfei Bai
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Patrick W H Kwong
- Department of Rehabilitation Sciences, 26680 The Hong Kong Polytechnic University , Hong Kong SAR, China
| | | | - Li Xiong
- Clinical Trials Centre, 26469 The Eighth Affiliated Hospital of Sun Yat-Sen University , Shenzhen, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, 26680 The Hong Kong Polytechnic University , Hong Kong SAR, China
| |
Collapse
|
4
|
Ge Q, Lock M, Yang X, Ding Y, Yue J, Zhao N, Hu YS, Zhang Y, Yao M, Zang YF. Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T. Neuroinformatics 2024:10.1007/s12021-024-09667-5. [PMID: 38780699 DOI: 10.1007/s12021-024-09667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
US Food and Drug Administration (FDA) cleared a Transcranial Magnetic Stimulation (TMS) system with functional Magnetic Resonance Imaging-guided (fMRI) individualized treatment protocol for major depressive disorder, which employs resting state-fMRI (RS-fMRI) functional connectivity (FC) to pinpoint the target individually to increase the accuracy and effeteness of the stimulation. Furthermore, task activation-guided TMS, as well as the use of RS-fMRI local metrics for targeted the specific abnormal brain regions, are considered a precise scheme for TMS targeting. Since 1.5 T MRI is more available in hospitals, systematic evaluation of the test-retest reliability and sensitivity of fMRI metrics on 1.5 T and 3 T MRI may provide reference for the application of fMRI-guided individualized-precise TMS stimulation. Twenty participants underwent three RS-fMRI scans and one scan of finger-tapping task fMRI with self-initiated (SI) and visual-guided (VG) conditions at both 3 T and 1.5 T. Then the location reliability derived by FC (with three seed regions) and peak activation were assessed by intra-individual distance. The test-retest reliability and sensitivity of five RS-fMRI local metrics were evaluated using intra-class correlation and effect size, separately. The intra-individual distance of peak activation location between 1.5 T and 3 T was 15.8 mm and 19 mm for two conditions, respectively. The intra-individual distance for the FC derived targets at 1.5 T was 9.6-31.2 mm, compared to that of 3 T (7.6-31.1 mm). The test-retest reliability and sensitivity of RS-fMRI local metrics showed similar trends on 1.5 T and 3 T. These findings hasten the application of fMRI-guided individualized TMS treatment in clinical practice.
Collapse
Affiliation(s)
- Qiu Ge
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Matthew Lock
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Xue Yang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yuejiao Ding
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Juan Yue
- Hangzhou Normal University Affiliated Deqing Hospital, TMS Center, Zhejiang Province, Hangzhou, China
| | - Na Zhao
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yun-Song Hu
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | | | - Minliang Yao
- Hangzhou Normal University Affiliated Deqing Hospital, TMS Center, Zhejiang Province, Hangzhou, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China.
- Institute of Psychological Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China.
- Hangzhou Normal University Affiliated Deqing Hospital, TMS Center, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Boerwinkle VL, Sussman BL, de Lima Xavier L, Wyckoff SN, Reuther W, Kruer MC, Arhin M, Fine JM. Motor network dynamic resting state fMRI connectivity of neurotypical children in regions affected by cerebral palsy. Front Hum Neurosci 2024; 18:1339324. [PMID: 38835646 PMCID: PMC11148452 DOI: 10.3389/fnhum.2024.1339324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background Normative childhood motor network resting-state fMRI effective connectivity is undefined, yet necessary for translatable dynamic resting-state-network-informed evaluation in pediatric cerebral palsy. Methods Cross-spectral dynamic causal modeling of resting-state-fMRI was investigated in 50 neurotypically developing 5- to 13-year-old children. Fully connected six-node network models per hemisphere included primary motor cortex, striatum, subthalamic nucleus, globus pallidus internus, thalamus, and contralateral cerebellum. Parametric Empirical Bayes with exhaustive Bayesian model reduction and Bayesian modeling averaging informed the model; Purdue Pegboard Test scores of hand motor behavior were the covariate at the group level to determine the effective-connectivity-functional behavior relationship. Results Although both hemispheres exhibited similar effective connectivity of motor cortico-basal ganglia-cerebellar networks, magnitudes were slightly greater on the right, except for left-sided connections of the striatum which were more numerous and of opposite polarity. Inter-nodal motor network effective connectivity remained consistent and robust across subjects. Age had a greater impact on connections to the contralateral cerebellum, bilaterally. Motor behavior, however, affected different connections in each hemisphere, exerting a more prominent effect on the left modulatory connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Discussion This study revealed a consistent pattern of directed resting-state effective connectivity in healthy children aged 5-13 years within the motor network, encompassing cortical, subcortical, and cerebellar regions, correlated with motor skill proficiency. Both hemispheres exhibited similar effective connectivity within motor cortico-basal ganglia-cerebellar networks reflecting inter-nodal signal direction predicted by other modalities, mainly differing from task-dependent studies due to network differences at rest. Notably, age-related changes were more pronounced in connections to the contralateral cerebellum. Conversely, motor behavior distinctly impacted connections in each hemisphere, emphasizing its role in modulating left sided connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Motor network effective connectivity was correlated with motor behavior, validating its physiological significance. This study is the first to evaluate a normative effective connectivity model for the pediatric motor network using resting-state functional MRI correlating with behavior and serves as a foundation for identifying abnormal findings and optimizing targeted interventions like deep brain stimulation, potentially influencing future therapeutic approaches for children with movement disorders.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bethany L Sussman
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Division of Neonatology, Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Laura de Lima Xavier
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah N Wyckoff
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Brainbox Inc., Baltimore, MD, United States
| | - William Reuther
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael C Kruer
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Martin Arhin
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Justin M Fine
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Wunderle V, Kuzu TD, Tscherpel C, Fink GR, Grefkes C, Weiss PH. Age- and sex-related changes in motor functions: a comprehensive assessment and component analysis. Front Aging Neurosci 2024; 16:1368052. [PMID: 38813530 PMCID: PMC11133706 DOI: 10.3389/fnagi.2024.1368052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Age-related motor impairments often cause caregiver dependency or even hospitalization. However, comprehensive investigations of the different motor abilities and the changes thereof across the adult lifespan remain sparse. We, therefore, extensively assessed essential basic and complex motor functions in 444 healthy adults covering a wide age range (range 21 to 88 years). Basic motor functions, here defined as simple isolated single or repetitive movements in one direction, were assessed by means of maximum grip strength (GS) and maximum finger-tapping frequency (FTF). Complex motor functions, comprising composite sequential movements involving both proximal and distal joints/muscle groups, were evaluated with the Action Research Arm Test (ARAT), the Jebsen-Taylor Hand Function Test (JTT), and the Purdue Pegboard Test. Men achieved higher scores than women concerning GS and FTF, whereas women stacked more pins per time than men during the Purdue Pegboard Test. There was no significant sex effect regarding JTT. We observed a significant but task-specific reduction of basic and complex motor performance scores across the adult lifespan. Linear regression analyses significantly predicted the participants' ages based on motor performance scores (R2 = 0.502). Of note, the ratio between the left- and right-hand performance remained stable across ages for all tests. Principal Component Analysis (PCA) revealed three motor components across all tests that represented dexterity, force, and speed. These components were consistently present in young (21-40 years), middle-aged (41-60 years), and older (61-88 years) adults, as well as in women and men. Based on the three motor components, K-means clustering analysis differentiated high- and low-performing participants across the adult life span. The rich motor data set of 444 healthy participants revealed age- and sex-dependent changes in essential basic and complex motor functions. Notably, the comprehensive assessment allowed for generating robust motor components across the adult lifespan. Our data may serve as a reference for future studies of healthy subjects and patients with motor deficits. Moreover, these findings emphasize the importance of comprehensively assessing different motor functions, including dexterity, force, and speed, to characterize human motor abilities and their age-related decline.
Collapse
Affiliation(s)
- Veronika Wunderle
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Taylan D. Kuzu
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gereon R. Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Peter H. Weiss
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
7
|
Marzetti L, Basti A, Guidotti R, Baldassarre A, Metsomaa J, Zrenner C, D’Andrea A, Makkinayeri S, Pieramico G, Ilmoniemi RJ, Ziemann U, Romani GL, Pizzella V. Exploring Motor Network Connectivity in State-Dependent Transcranial Magnetic Stimulation: A Proof-of-Concept Study. Biomedicines 2024; 12:955. [PMID: 38790917 PMCID: PMC11118810 DOI: 10.3390/biomedicines12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
State-dependent non-invasive brain stimulation (NIBS) informed by electroencephalography (EEG) has contributed to the understanding of NIBS inter-subject and inter-session variability. While these approaches focus on local EEG characteristics, it is acknowledged that the brain exhibits an intrinsic long-range dynamic organization in networks. This proof-of-concept study explores whether EEG connectivity of the primary motor cortex (M1) in the pre-stimulation period aligns with the Motor Network (MN) and how the MN state affects responses to the transcranial magnetic stimulation (TMS) of M1. One thousand suprathreshold TMS pulses were delivered to the left M1 in eight subjects at rest, with simultaneous EEG. Motor-evoked potentials (MEPs) were measured from the right hand. The source space functional connectivity of the left M1 to the whole brain was assessed using the imaginary part of the phase locking value at the frequency of the sensorimotor μ-rhythm in a 1 s window before the pulse. Group-level connectivity revealed functional links between the left M1, left supplementary motor area, and right M1. Also, pulses delivered at high MN connectivity states result in a greater MEP amplitude compared to low connectivity states. At the single-subject level, this relation is more highly expressed in subjects that feature an overall high cortico-spinal excitability. In conclusion, this study paves the way for MN connectivity-based NIBS.
Collapse
Affiliation(s)
- Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Alessio Basti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Johanna Metsomaa
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany (U.Z.)
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada
| | - Antea D’Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Saeed Makkinayeri
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giulia Pieramico
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Risto J. Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland
| | - Ulf Ziemann
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany (U.Z.)
- Department of Neurology & Stroke, University of Tübingen, 72076 Tübingen, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
8
|
Jiang T, Wei X, Wang M, Xu J, Xia N, Lu M. Theta burst stimulation: what role does it play in stroke rehabilitation? A systematic review of the existing evidence. BMC Neurol 2024; 24:52. [PMID: 38297193 PMCID: PMC10832248 DOI: 10.1186/s12883-023-03492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024] Open
Abstract
Various post-stroke dysfunctions often result in poor long-term outcomes for stroke survivors, but the effect of conventional treatments is limited. In recent years, lots of studies have confirmed the effect of repetitive transcranial magnetic stimulation (rTMS) in stroke rehabilitation. As a new pattern of rTMS, theta burst stimulation (TBS) was proved recently to yield more pronounced and long-lasting after-effects than the conventional pattern at a shorter stimulation duration. To explore the role of TBS in stroke rehabilitation, this review summarizes the existing evidence from all the randomized controlled trials (RCTs) so far on the efficacy of TBS applied to different post-stroke dysfunctions, including cognitive impairment, visuospatial neglect, aphasia, dysphagia, spasticity, and motor dysfunction. Overall, TBS promotes the progress of stroke rehabilitation and may serve as a preferable alternative to traditional rTMS. However, it's hard to recommend a specific paradigm of TBS due to the limited number of current studies and their heterogeneity. Further high-quality clinical RCTs are needed to determine the optimal technical settings and intervention time in stroke survivors.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingzhu Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Lu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Dai L, Zhang W, Zhang H, Fang L, Chen J, Li X, Yu H, Song J, Chen S, Zheng B, Zhang Y, Li Z. Effects of robot-assisted upper limb training combined with intermittent theta burst stimulation (iTBS) on cortical activation in stroke patients: A functional near-infrared spectroscopy study. NeuroRehabilitation 2024; 54:421-434. [PMID: 38640179 DOI: 10.3233/nre-230355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
BACKGROUND The therapeutic effect and mechanism of robot-assisted upper limb training (RT) combined with intermittent theta burst stimulation (iTBS) for stroke patients are unclear. OBJECTIVE The purpose of this study was to evaluate changes in brain activation after combination therapy and RT alone using functional near-infrared spectroscopy (fNIRS). METHODS Patients were randomly assigned to two groups (iTBS + RT Group, n = 18, and RT Group, n = 18). Training was conducted five times a week for four weeks. fNIRS was used to measure changes in oxyhemoglobin in both the primary motor cortex (M1) and pre-motor and supplementary motor area (pSMA) during affected limb movement. Fugl-Meyer Assessment-Upper Extremity (FMA-UE) was employed for evaluating the function of upper limbs. RESULTS Thirty-two patients with subacute stroke completed the study. The cortex of both hemispheres was extensively activated prior to treatment in the RT group. After training, overactivation decreased. The brain activation of the combined treatment group transferred to the affected side after the treatment. There was a notable enhancement in the FMA-UE scores for both groups, with the combined group's progress significantly surpassing that of the RT group. CONCLUSION RT combined with iTBS can improve the motor function of stroke patients and promote the balance between cerebral hemispheres.
Collapse
Affiliation(s)
- Lei Dai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wanying Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huihuang Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Linjie Fang
- Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Jianer Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xiang Li
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Yu
- Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Jianfei Song
- Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Shishi Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beisi Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyi Li
- Hangzhou Innovation Institute, Beihang University, Hangzhou, China
| |
Collapse
|
10
|
Jiang S, Han T, Zhang Z, Wen M, Li Y. Effects of central intermittent theta-burst stimulation combined with repetitive peripheral magnetic stimulation on upper limb function in stroke patients. Colomb Med (Cali) 2023; 54:e2005766. [PMID: 39184958 PMCID: PMC11341120 DOI: 10.25100/cm.v54i4.5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/13/2023] [Accepted: 12/16/2023] [Indexed: 08/27/2024] Open
Abstract
Background Intermittent theta-burst stimulation and repetitive peripheral magnetic stimulation can improve motor function in poststroke patients, but the therapeutic effect of this combination remains unclear. Objective To determine the effects of central intermittent theta-burst stimulation and repetitive peripheral magnetic stimulation on upper limb function. Methods Fifty-six subacute stroke patients were randomly assigned to three groups: the CMS (n = 18), peripheral magnetic stimulation (PMS) (n = 19) and CPS (n = 19) groups. The CMS group received intermittent theta-burst stimulation and peripheral false stimulation, while the PMS group received repetitive peripheral magnetic stimulation and central false stimulation once a day for five days a week over four weeks. The CPS group received intermittent theta-burst stimulation and repetitive peripheral magnetic stimulation simultaneously once daily for four weeks. The Fugl-Meyer Assessment, Action Research Arm Test, Modified Barthel Index and Modified Ashworth Scale evaluated outcomes before and after four weeks of treatment. Results The motor function scores of all groups were significantly increased after treatment compared with before treatment, while the Modified Ashworth Scale score showed no significant change. There was a significant difference in the motor function score of the CPS group compared with that of the CMS and PMS groups, but there was no significant improvement in the Modified Ashworth Scale score. Conclusion Combining the two treatment methods can improve patients' motor function and daily living abilities but cannot improve muscle tone.
Collapse
Affiliation(s)
- Shangrong Jiang
- Gansu Provincial Hospital, Second Ward of Neurology Department, Lanzhou, China
| | - Tingtin Han
- Gansu Provincial Hospital, Second Ward of Neurology Department, Lanzhou, China
| | - Zhijie Zhang
- Gansu Provincial Hospital, Second Ward of Neurology Department, Lanzhou, China
| | - Mingming Wen
- Gansu Provincial Hospital, Second Ward of Neurology Department, Lanzhou, China
| | - Yongping Li
- Gansu Provincial Hospital, Second Ward of Neurology Department, Lanzhou, China
| |
Collapse
|
11
|
Chu T, Lee S, Jung IY, Song Y, Kim HA, Shin JW, Tak S. Task-residual effective connectivity of motor network in transient ischemic attack. Commun Biol 2023; 6:843. [PMID: 37580508 PMCID: PMC10425379 DOI: 10.1038/s42003-023-05212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Transient ischemic attack (TIA) is a temporary episode of neurological dysfunction that results from focal brain ischemia. Although TIA symptoms are quickly resolved, patients with TIA have a high risk of stroke and persistent impairments in multiple domains of cognitive and motor functions. In this study, using spectral dynamic causal modeling, we investigate the changes in task-residual effective connectivity of patients with TIA during fist-closing movements. 28 healthy participants and 15 age-matched patients with TIA undergo functional magnetic resonance imaging at 7T. Here we show that during visually cued motor movement, patients with TIA have significantly higher effective connectivity toward the ipsilateral primary motor cortex and lower connectivity to the supplementary motor area than healthy controls. Our results imply that TIA patients have aberrant connections among motor regions, and these changes may reflect the decreased efficiency of primary motor function and disrupted control of voluntary movement in patients with TIA.
Collapse
Affiliation(s)
- Truc Chu
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seonjin Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Il-Young Jung
- Department of Rehabilitation Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, Republic of Korea
| | - Youngkyu Song
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Hyun-Ah Kim
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Jong Wook Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, 30099, Republic of Korea.
| | - Sungho Tak
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
12
|
Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY, Xu JG. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci 2023; 13:brainsci13030451. [PMID: 36979261 PMCID: PMC10046557 DOI: 10.3390/brainsci13030451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zong-Lei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| |
Collapse
|
13
|
Li H, Deng ZD, Oathes D, Fan Y. Computation of transcranial magnetic stimulation electric fields using self-supervised deep learning. Neuroimage 2022; 264:119705. [PMID: 36280099 PMCID: PMC9854270 DOI: 10.1016/j.neuroimage.2022.119705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Electric fields (E-fields) induced by transcranial magnetic stimulation (TMS) can be modeled using partial differential equations (PDEs). Using state-of-the-art finite-element methods (FEM), it often takes tens of seconds to solve the PDEs for computing a high-resolution E-field, hampering the wide application of the E-field modeling in practice and research. To improve the E-field modeling's computational efficiency, we developed a self-supervised deep learning (DL) method to compute precise TMS E-fields. Given a head model and the primary E-field generated by TMS coils, a DL model was built to generate a E-field by minimizing a loss function that measures how well the generated E-field fits the governing PDE. The DL model was trained in a self-supervised manner, which does not require any external supervision. We evaluated the DL model using both a simulated sphere head model and realistic head models of 125 individuals and compared the accuracy and computational speed of the DL model with a state-of-the-art FEM. In realistic head models, the DL model obtained accurate E-fields that were significantly correlated with the FEM solutions. The DL model could obtain precise E-fields within seconds for whole head models at a high spatial resolution, faster than the FEM. The DL model built for the simulated sphere head model also obtained an accurate E-field whose average difference from the analytical E-fields was 0.0054, comparable to the FEM solution. These results demonstrated that the self-supervised DL method could obtain precise E-fields comparable to the FEM solutions with improved computational speed.
Collapse
Affiliation(s)
- Hongming Li
- Center for Biomedical Image Computation and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, MD 20892, USA
| | - Desmond Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Fan
- Center for Biomedical Image Computation and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Hu YS, Yue J, Ge Q, Feng ZJ, Wang J, Zang YF. Test-retest reliability of peak location in the sensorimotor network of resting state fMRI for potential rTMS targets. Front Neuroinform 2022; 16:882126. [PMID: 36262839 PMCID: PMC9574049 DOI: 10.3389/fninf.2022.882126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Most stroke repetitive transcranial magnetic stimulation (rTMS) studies have used hand motor hotspots as rTMS stimulation targets; in addition, recent studies demonstrated that functional magnetic resonance imaging (fMRI) task activation could be used to determine suitable targets due to its ability to reveal individualized precise and stronger functional connectivity with motor-related brain regions. However, rTMS is unlikely to elicit motor evoked potentials in the affected hemisphere, nor would activity be detected when stroke patients with severe hemiplegia perform an fMRI motor task using the affected limbs. The current study proposed that the peak voxel in the resting-state fMRI (RS-fMRI) motor network determined by independent component analysis (ICA) could be a potential stimulation target. Twenty-one healthy young subjects underwent RS-fMRI at three visits (V1 and V2 on a GE MR750 scanner and V3 on a Siemens Prisma) under eyes-open (EO) and eyes-closed (EC) conditions. Single-subject ICA with different total number of components (20, 30, and 40) were evaluated, and then the locations of peak voxels on the left and right sides of the sensorimotor network (SMN) were identified. While most ICA RS-fMRI studies have been carried out on the group level, that is, Group-ICA, the current study performed individual ICA because only the individual analysis could guide the individual target of rTMS. The intra- (test-retest) and inter-scanner reliabilities of the peak location were calculated. The use of 40 components resulted in the highest test-retest reliability of the peak location in both the left and right SMN compared with that determined when 20 and 30 components were used for both EC and EO conditions. ICA with 40 components might be another way to define a potential target in the SMN for poststroke rTMS treatment.
Collapse
Affiliation(s)
- Yun-Song Hu
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Juan Yue
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiu Ge
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zi-Jian Feng
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- *Correspondence: Jue Wang
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Yu-Feng Zang
| |
Collapse
|
15
|
Khademi F, Naros G, Nicksirat A, Kraus D, Gharabaghi A. Rewiring Cortico-Muscular Control in the Healthy and Poststroke Human Brain with Proprioceptive β-Band Neurofeedback. J Neurosci 2022; 42:6861-6877. [PMID: 35940874 PMCID: PMC9463986 DOI: 10.1523/jneurosci.1530-20.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022] Open
Abstract
In severely affected stroke survivors, cortico-muscular control is disturbed and volitional upper limb movements often absent. Mental rehearsal of the impaired movement in conjunction with sensory feedback provision are suggested as promising rehabilitation exercises. Knowledge about the underlying neural processes, however, remains vague. In male and female chronic stroke patients with hand paralysis, a brain-computer interface controlled a robotic orthosis and turned sensorimotor β-band desynchronization during motor imagery (MI) of finger extension into contingent hand opening. Healthy control subjects performed the same task and received the same proprioceptive feedback with a robotic orthosis or visual feedback only. Only when proprioceptive feedback was provided, cortico-muscular coherence (CMC) increased with a predominant information flow from the sensorimotor cortex to the finger extensors. This effect (1) was specific to the β frequency band, (2) transferred to a motor task (MT), (3) was proportional to subsequent corticospinal excitability (CSE) and correlated with behavioral changes in the (4) healthy and (5) poststroke condition; notably, MI-related enhancement of β-band CMC in the ipsilesional premotor cortex correlated with motor improvements after the intervention. In the healthy and injured human nervous system, synchronized activation of motor-related cortical and spinal neural pools facilitates, in accordance with the communication-through-coherence hypothesis, cortico-spinal communication and may, thereby, be therapeutically relevant for functional restoration after stroke, when voluntary movements are no longer possible.SIGNIFICANCE STATEMENT This study provides insights into the neural processes that transfer effects of brain-computer interface neurofeedback to subsequent motor behavior. Specifically, volitional control of cortical oscillations and proprioceptive feedback enhances both cortical activity and behaviorally relevant connectivity to the periphery in a topographically circumscribed and frequency-specific way. This enhanced cortico-muscular control can be induced in the healthy and poststroke brain. Thereby, activating the motor cortex with mental rehearsal of the impaired movement and closing the loop by robot-assisted feedback synchronizes ipsilesional premotor cortex and spinal neural pools in the β frequency band. This facilitates, in accordance with the communication-through-coherence hypothesis, cortico-spinal communication and may, thereby, be therapeutically relevant for functional restoration after stroke, when voluntary movements are no longer possible.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| | - Georgios Naros
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| | - Ali Nicksirat
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| | - Dominic Kraus
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
16
|
Yu H, Liu S, Dai P, Wang Z, Liu C, Zhang H. Effects of Repetitive Transcranial Magnetic Stimulation on Gait and Postural Control Ability of Patients with Executive Dysfunction after Stroke. Brain Sci 2022; 12:brainsci12091185. [PMID: 36138921 PMCID: PMC9497186 DOI: 10.3390/brainsci12091185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on the gait and postural control ability of patients with executive dysfunction (ED) after stroke. Methods: A total of 18 patients with ED after stroke were randomly assigned into two groups, including an experimental group and a sham group. Patients in both groups received routine rehabilitation therapy, and patients in the experimental group underwent rTMS on the left dorsolateral prefrontal cortex (DLPFC) for 2 weeks (5 HZ, 80%MT, 1200 pulses). In the sham group, patients experienced sham stimulation treatment, in which the coil was placed vertically with the head. Before and after treatment, patients in both groups were subjected to Montreal cognitive assessment (MoCA) scoring, Fugl−Meyer assessment of lower extremity (L-FMA), Stroop color-word test (SCWT), gait analysis, foot plantar pressure test, 10-m walking test (10MWT), Berg balance scale (BBS), and timed up and go test (TUGT). In the SCWT, it was attempted to record the time of each card (SCWT-T), the correct number (SCWT-C), Stroop interference effect-time (SIE-T), and SIE correct count (SIE-C). The TUGT was categorized into four stages: getting up (GT), walking straight (WT), turning around (TT), and sitting down (ST), in which the total time of TUGT was calculated. Results: After two weeks of treatment, the evaluation indexes were improved in the two groups, some of which were statistically significant. In the experimental group, SCWT-T, SIE-T, SIE-C, GT, WT, TT, ST, and TUGT were significantly improved after treatment (p < 0.05). SCWT-C, L-FMA score, 10MWT, GT, WT, stride length, step width, foot plantar pressure, pressure center curve, and activities of daily living were not statistically different from those before treatment (p > 0.05). After treatment, SCWT-T, SIE-C, SIE-T, BBS score, TT, and ST in the experimental group were significantly shorter than those before treatment, with statistical differences (p < 0.05). Compared with the sham group, SCWT-C, L-FMA score, 10MWT, GT, WT, TUGT, stride length, step width, foot plantar pressure, pressure center curve, and motor skills were not significantly improved (p > 0.05). Conclusion: It was revealed that post-stroke rTMS treatment of patients with ED could improve executive function, improve postural control function, and reduce the risk of falling. In addition, rTMS of DLPFC could be a therapeutic target for improving postural control ability and reducing the risk of falling.
Collapse
Affiliation(s)
- Huixian Yu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100060, China
- School of Rehabilitation, China Rehabilitation Research Center, Capital Medical University, Beijing 100068, China
| | - Sihao Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100060, China
| | - Pei Dai
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100060, China
- School of Rehabilitation, China Rehabilitation Research Center, Capital Medical University, Beijing 100068, China
| | - Zhaoxia Wang
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100060, China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100060, China
| | - Hao Zhang
- School of Rehabilitation, China Rehabilitation Research Center, Capital Medical University, Beijing 100068, China
- Correspondence: ; Tel./Fax: +86-010-8756-9345
| |
Collapse
|
17
|
Huang YJ, Wang SM, Chen C, Chen CA, Wu CW, Chen JJ, Peng CW, Lin CW, Huang SW, Chen SC. High-Definition Transcranial Direct Current with Electrical Theta Burst on Post-Stroke Motor Rehabilitation: A Pilot Randomized Controlled Trial. Neurorehabil Neural Repair 2022; 36:645-654. [PMID: 36047662 DOI: 10.1177/15459683221121751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND High-definition transcranial electrical theta burst superimposing direct current stimulation (HD-tDCS-eTBS) not only incorporates the therapeutic advantages of tDCS and TBS but enhances stimulation focality and practicality. However, the applicability of this innovative neuromodulatory device in post-stroke rehabilitation remains uncertain. OBJECTIVE This study aimed to assess the efficacy and safety of the HD-tDCS-eTBS on upper extremity (UE) motor function in patients with chronic stroke. METHODS A patient-blinded, randomized controlled study was conducted. Twenty-four participants were randomly assigned into either the active HD-tDCS-eTBS group or sham HD-tDCS-eTBS group. Both groups received 20 minutes of active/sham HD-tDCS-eTBS combined with 30 minutes of conventional UE rehabilitation each time, 3 times a week for 4 weeks. Outcome measures including the Fugl-Meyer Assessment of Upper Extremity, Wolf Motor Function Test, Jebsen-Taylor Hand Function Test, Finger-Nose Test, and Modified Ashworth Scale were assessed before and immediately after the intervention period. RESULTS Spasticity of shoulder adductor (P = .05), elbow extensor (P = .04), and thumb flexor (P < .01) were significantly reduced in the active HD-tDCS-eTBS group versus the sham group. Nonsignificant trends in the improvements of most other outcome measures were in favor of the active HD-tDCS-eTBS group with moderate to large effect sizes (P = .06-.26, ηp2 = 0.06-0.16). No severe adverse events except for slight skin redness under the stimulus electrode was detected after the HD-tDCS-eTBS. CONCLUSIONS Our findings support that HD-tDCS-eTBS is safe and has therapeutic potential for post-stroke UE motor rehabilitation. TRIAL REGISTRATION ClinicalTrials.gov (ID: NCT04278105).
Collapse
Affiliation(s)
- Yi-Jing Huang
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei
| | - Shun-Min Wang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan
| | - Chieh Chen
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei
| | - Chien-An Chen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan
| | - Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei
| | - Jia-Jin Chen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei.,School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei
| | - Che-Wei Lin
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan.,Medical Device Innovation Center, National Cheng Kung University, Tainan.,Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan.,Institute of Medical Informatics, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| |
Collapse
|
18
|
Gao B, Wang Y, Zhang D, Wang Z, Wang Z. Intermittent theta-burst stimulation with physical exercise improves poststroke motor function: A systemic review and meta-analysis. Front Neurol 2022; 13:964627. [PMID: 36110393 PMCID: PMC9468864 DOI: 10.3389/fneur.2022.964627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intermittent theta-burst stimulation (iTBS) is an optimized rTMS modality that could modulate the excitability of neural structures. Several studies have been conducted to investigate the efficacy of iTBS in improving the motor function of stroke patients. However, the specific role of iTBS in motor function recovery after stroke is unclear. Hence, in our study, we performed a meta-analysis to investigate the efficacy of iTBS for the motor function improvement of stroke patients. Methods MEDLINE, Embase, and Cochrane Library were searched until May 2022 for randomized controlled trials (RCTs). Results Thirteen RCTs with 334 patients were finally included in our study. The primary endpoints were the Fugl-Meyer assessment scale (FMA) and Motor Assessment Scale (MAS) change from baseline. We found that iTBS led to a significant reduction in FMA score (P = 0.002) but not in MAS score (P = 0.24) compared with the sham group. Moreover, standard 600-pulse stimulation showed a better effect on motor function improvement than the sham group (P = 0.004), however, 1200-pulse iTBS showed no effect on motor function improvement after stroke (P = 0.23). The effect of iTBS for improving motor function only exists in chronic stroke patients (P = 0.02) but not in subacute patients (P = 0.27). Conclusion This study supports that iTBS has good efficacy for improving motor function in stroke patients. Therefore, standard 600-pulse stimulation iTBS therapy is proper management and treatment for chronic stroke.
Collapse
Affiliation(s)
- Bixi Gao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Yunjiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
- Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, China
| | - Dingding Zhang
- Department of Anesthesia, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zongqi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
- *Correspondence: Zongqi Wang
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Huang W, Chen J, Zheng Y, Zhang J, Li X, Su L, Li Y, Dou Z. The Effectiveness of Intermittent Theta Burst Stimulation for Stroke Patients With Upper Limb Impairments: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:896651. [PMID: 35873775 PMCID: PMC9298981 DOI: 10.3389/fneur.2022.896651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Upper limb impairments are one of the most common health problems of stroke, affecting both motor function and independence in daily life. It has been demonstrated that intermittent theta burst stimulation (iTBS) increases brain excitability and improves upper limb function. Our study sought to determine the role of iTBS in stroke recovery. Objective The purpose of this study was to determine the efficacy of iTBS in individuals with upper limb impairments following stroke. Methods The databases used included Cumulative Index to PubMed, EMBASE, ESCBOhost, The Cochrane Library, Chinese Biomedical Database, Web of Science, China Biology Medicine (CBM), China National Knowledge Infrastructure (CNKI), Technology Periodical Database (VIP), and WanFang Database. Studies published before November 2021 were included. Each participant received an iTBS-based intervention aimed at improving activity levels or impairment, which was compared to usual care, a sham intervention, or another intervention. The primary outcome measure was a change in upper limb function assessment. Secondary outcomes included impairment, participation, and quality of life measures. Result A total of 18 studies (n = 401 participants) that met the inclusion criteria were included in this study. There was a slight change in the upper limb function of the iTBS group compared with the control group, as measured by the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score (mean difference 2.70, 95% CI −0.02 to 5.42, p = 0.05). Significant improvement in resting motor threshold (RMT) and motor-evoked potential (MEP) was also observed in the meta-analysis of iTBS (MD 3.46, 95% CI 2.63 to 4.28, p < 0.00001); (MD 1.34, 95% CI 1.17 to 1.51, P < 0.00001). In addition, we got similar results when the studies were using the Modified Barthel Index (MBI) assessment (mean difference of 7.34, 95% CI 0.47 to 14.21, p = 0.04). Conclusion Our study established the efficacy of iTBS in improving motor cortical plasticity, motor function, and daily functioning in stroke patients. However, the review requires evidence from additional randomized controlled trials and high-quality research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiayi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yadan Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liujie Su
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinying Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Wang L, Huang G, Zhang L, Yang J, Ren C, Liang C, Shen Y, Su B. Effects of the Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Balance Recovery After Stroke: A Study Protocol for a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:881311. [PMID: 35572148 PMCID: PMC9099377 DOI: 10.3389/fnagi.2022.881311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background The recovery of balance function is a critical segment in the rehabilitation treatment of stroke. The cerebellum is considered as the key structure involved in balance and motor control. The cerebellar vermis plays an important role in integrating vision, proprioception, and sensory skin input and may be a candidate stimulation target for regulating the motor network related with balance. However, evidence that the intermittent theta burst stimulation (iTBS) of cerebellar vermis can promote the recovery of balance function after stroke remains insufficient. Therefore, this study aims to explore the efficacy of the cerebellar vermis iTBS for the treatment of balance function in patients with stroke. Methods and Analysis Forty patients with stroke will be recruited in this prospective, randomized, sham-controlled trial. Participants will be randomized in a 1:1 ratio to receive either 15 sessions of cerebellar vermis iTBS (600 pulses) or sham stimulation. Additionally, a routine rehabilitation therapy follows the intervention. The primary outcome is the Berg Balance Scale, and the secondary outcomes are the Fugl–Meyer assessment of the lower extremity and modified Barthel index. The above outcomes will be assessed before intervention and at the end of each week. Pre- and post-iTBS resting-state functional magnetic resonance imaging (rs-fMRI) will be acquired, and the regional homogeneity, fractional amplitude of low-frequency fluctuation and functional connectivity will be calculated and analyzed. Discussion This protocol holds promise as a potential method to improve balance function in patients with stroke. If the outcomes of patients improve after the intervention, the study will provide new insights into improving balance function. Ethics and Dissemination This study has been approved by the Medical Research Ethics Committee of Wuxi Mental Health Center (Wuxi Tongren Rehabilitation Hospital). Results will be disseminated through (open-access) peer-reviewed publications, networks of scientists, professionals, and the public and presented at conferences. Clinical Trial Registration Number www.chictr.org.cn, identifier ChiCTR2100052590.
Collapse
Affiliation(s)
- Lin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Guilan Huang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Jinyu Yang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Chengpan Liang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ying Shen,
| | - Bin Su
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- Bin Su,
| |
Collapse
|
21
|
Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 2022; 19:24. [PMID: 35193624 PMCID: PMC8862292 DOI: 10.1186/s12984-022-00999-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Transcranial magnetic stimulation (TMS) has attracted plenty of attention as it has been proved to be effective in facilitating motor recovery in patients with stroke. The aim of this study was to systematically review the effects of repetitive TMS (rTMS) and theta burst stimulation (TBS) protocols in modulating cortical excitability after stroke. Methods A literature search was carried out using PubMed, Medline, EMBASE, CINAHL, and PEDro, to identify studies that investigated the effects of four rTMS protocols—low and high frequency rTMS, intermittent and continuous TBS, on TMS measures of cortical excitability in stroke. A random-effects model was used for all meta-analyses. Results Sixty-one studies were included in the current review. Low frequency rTMS was effective in decreasing individuals’ resting motor threshold and increasing the motor-evoked potential of the non-stimulated M1 (affected M1), while opposite effects occurred in the stimulated M1 (unaffected M1). High frequency rTMS enhanced the cortical excitability of the affected M1 alone. Intermittent TBS also showed superior effects in rebalancing bilateral excitability through increasing and decreasing excitability within the affected and unaffected M1, respectively. Due to the limited number of studies found, the effects of continuous TBS remained inconclusive. Motor impairment was significantly correlated with various forms of TMS measures. Conclusions Except for continuous TBS, it is evident that these protocols are effective in modulating cortical excitability in stroke. Current evidence does support the effects of inhibitory stimulation in enhancing the cortical excitability of the affected M1. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-00999-4.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.,Department of Occupational Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China.,Department of Rehabilitation Sciences, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
22
|
Hildesheim FE, Silver AN, Dominguez-Vargas AU, Andrushko JW, Edwards JD, Dancause N, Thiel A. Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795335. [PMID: 36188894 PMCID: PMC9397689 DOI: 10.3389/fresc.2022.795335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022]
Abstract
Background Rehabilitation is critical for reducing stroke-related disability and improving quality-of-life post-stroke. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique used as stand-alone or adjunct treatment to physiotherapy, may be of benefit for motor recovery in subgroups of stroke patients. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) seeks to advance the use of these techniques to improve post-stroke recovery through clinical trials and pre-clinical studies using standardized research protocols. Here, we review existing clinical trials for demographic, clinical, and neurobiological factors which may predict treatment response to identify knowledge gaps which need to be addressed before implementing these parameters for patient stratification in clinical trial protocols. Objective To provide a review of clinical rTMS trials of stroke recovery identifying factors associated with rTMS response in stroke patients with motor deficits and develop research perspectives for pre-clinical and clinical studies. Methods A literature search was performed in PubMed, using the Boolean search terms stroke AND repetitive transcranial magnetic stimulation OR rTMS AND motor for studies investigating the use of rTMS for motor recovery in stroke patients at any recovery phase. A total of 1,676 articles were screened by two blinded raters, with 26 papers identified for inclusion in this review. Results Multiple possible factors associated with rTMS response were identified, including stroke location, cortical thickness, brain-derived neurotrophic factor (BDNF) genotype, initial stroke severity, and several imaging and clinical factors associated with a relatively preserved functional motor network of the ipsilesional hemisphere. Age, sex, and time post-stroke were generally not related to rTMS response. Factors associated with greater response were identified in studies of both excitatory ipsilesional and inhibitory contralesional rTMS. Heterogeneous study designs and contradictory data exemplify the need for greater protocol standardization and high-quality controlled trials. Conclusion Clinical, brain structural and neurobiological factors have been identified as potential predictors for rTMS response in stroke patients with motor impairment. These factors can inform the design of future clinical trials, before being considered for optimization of individual rehabilitation therapy for stroke patients. Pre-clinical models for stroke recovery, specifically developed in a clinical context, may accelerate this process.
Collapse
Affiliation(s)
- Franziska E. Hildesheim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alexander N. Silver
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Justin W. Andrushko
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jodi D. Edwards
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- *Correspondence: Alexander Thiel
| |
Collapse
|
23
|
Ursino M, Ricci G, Astolfi L, Pichiorri F, Petti M, Magosso E. A Novel Method to Assess Motor Cortex Connectivity and Event Related Desynchronization Based on Mass Models. Brain Sci 2021; 11:brainsci11111479. [PMID: 34827478 PMCID: PMC8615480 DOI: 10.3390/brainsci11111479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of motor cortex connectivity is of great value in cognitive neuroscience, in order to provide a better understanding of motor organization and its alterations in pathological conditions. Traditional methods provide connectivity estimations which may vary depending on the task. This work aims to propose a new method for motor connectivity assessment based on the hypothesis of a task-independent connectivity network, assuming nonlinear behavior. The model considers six cortical regions of interest (ROIs) involved in hand movement. The dynamics of each region is simulated using a neural mass model, which reproduces the oscillatory activity through the interaction among four neural populations. Parameters of the model have been assigned to simulate both power spectral densities and coherences of a patient with left-hemisphere stroke during resting condition, movement of the affected, and movement of the unaffected hand. The presented model can simulate the three conditions using a single set of connectivity parameters, assuming that only inputs to the ROIs change from one condition to the other. The proposed procedure represents an innovative method to assess a brain circuit, which does not rely on a task-dependent connectivity network and allows brain rhythms and desynchronization to be assessed on a quantitative basis.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
- Correspondence:
| | - Giulia Ricci
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
| | - Laura Astolfi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Roma, Italy; (L.A.); (M.P.)
- Fondazione Santa Lucia, IRCCS Via Ardeatina 306/354, 00179 Roma, Italy;
| | | | - Manuela Petti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Roma, Italy; (L.A.); (M.P.)
- Fondazione Santa Lucia, IRCCS Via Ardeatina 306/354, 00179 Roma, Italy;
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
| |
Collapse
|
24
|
Mittal N, Majdic BC, Sima AP, Peterson CL. The effect of intermittent theta burst stimulation on corticomotor excitability of the biceps brachii in nonimpaired individuals. Neurosci Lett 2021; 764:136220. [PMID: 34499999 PMCID: PMC8572155 DOI: 10.1016/j.neulet.2021.136220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Intermittent theta burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation (TMS) that can increase corticomotor excitability in distal upper limb muscles, but the effect on the more proximal biceps is unknown. The study objective was to determine the effect of iTBS on corticomotor excitability of the biceps brachii in non-impaired individuals. Ten individuals completed three sessions, and an additional ten individuals completed one session in a secondary study; each session included sham and active iTBS. Resting and active motor thresholds (RMT, AMT) were determined prior to sham and active iTBS. Motor evoked potentials (MEPs) in response to single pulse TMS served as our measure of corticomotor excitability. In our primary cohort, MEPs were recorded with biphasic stimulation to accurately capture the same neurons affected by biphasic iTBS. MEPs were recorded at an intensity of 120% of RMT, or for instances of high RMTs, 100% of the maximum stimulator output (MSO), at baseline, and 10, 20, and 30 minutes after iTBS. MEPs were normalized by the maximum voluntary isometric muscle activity. In the secondary, MEPs were recorded with monophasic stimulation, which increased our ability to record MEPs at 120% of RMT. Linear mixed effects models were used to determine the effect of iTBS on normalized MEPs (nMEPs), with analyses to evaluate the interaction of the biceps AMT:RMT ratio as a measure of corticomotor conductance. Change in nMEPs from baseline did not differ for the active and sham conditions (p = 0.915 ) when MEPs were assessed with biphasic stimulation. With MEPs assessed by monophasic stimulation, there was an increase in biceps nMEPs after active iTBS, and no change in nMEPs after sham. Our results suggest that when RMTs are expected to be high when measured with biphasic stimulation, monophasic stimulation can better capture changes in MEPs induced by iTBS, and biphasic stimulation appears limited in its ability to capture changes in biceps MEPs in nonimpaired individuals. In both cohorts, increased corticomotor excitability after iTBS occurred when the biceps AMT:RMT ratio was high. Thus, the AMT:RMT ratio may be a predictive measure to evaluate the potential for iTBS to increase biceps corticomotor excitability.
Collapse
Affiliation(s)
- Neil Mittal
- Virginia Commonwealth University, Biomedical Engineering, College of Engineering, Virginia Commonwealth University, College of Engineering, Rehabilitation Engineering to Advance Ability Lab, Biotech Eight, 737 N 5(th) Street, Richmond, VA 23219, United States.
| | - Blaize C Majdic
- Virginia Commonwealth University, Biomedical Engineering, College of Engineering, Virginia Commonwealth University, College of Engineering, Rehabilitation Engineering to Advance Ability Lab, Biotech Eight, 737 N 5(th) Street, Richmond, VA 23219, United States
| | - Adam P Sima
- Virginia Commonwealth University, Department of Biostatistics, Virginia Commonwealth University, VCU School of Medicine, Department of Biostatistics, Box 980032, Richmond, VA 23298-0032, United States
| | - Carrie L Peterson
- Virginia Commonwealth University, Biomedical Engineering, College of Engineering, Virginia Commonwealth University, College of Engineering, Rehabilitation Engineering to Advance Ability Lab, Biotech Eight, 737 N 5(th) Street, Richmond, VA 23219, United States
| |
Collapse
|
25
|
Wang D, Liang S. Dynamic Causal Modeling on the Identification of Interacting Networks in the Brain: A Systematic Review. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2299-2311. [PMID: 34714747 DOI: 10.1109/tnsre.2021.3123964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dynamic causal modeling (DCM) has long been used to characterize effective connectivity within networks of distributed neuronal responses. Previous reviews have highlighted the understanding of the conceptual basis behind DCM and its variants from different aspects. However, no detailed summary or classification research on the task-related effective connectivity of various brain regions has been made formally available so far, and there is also a lack of application analysis of DCM for hemodynamic and electrophysiological measurements. This review aims to analyze the effective connectivity of different brain regions using DCM for different measurement data. We found that, in general, most studies focused on the networks between different cortical regions, and the research on the networks between other deep subcortical nuclei or between them and the cerebral cortex are receiving increasing attention, but far from the same scale. Our analysis also reveals a clear bias towards some task types. Based on these results, we identify and discuss several promising research directions that may help the community to attain a clear understanding of the brain network interactions under different tasks.
Collapse
|
26
|
Predictive models for response to non-invasive brain stimulation in stroke: A critical review of opportunities and pitfalls. Brain Stimul 2021; 14:1456-1466. [PMID: 34560317 DOI: 10.1016/j.brs.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Noninvasive brain stimulation has been successfully applied to improve stroke-related impairments in different behavioral domains. Yet, clinical translation is limited by heterogenous outcomes within and across studies. It has been proposed to develop and apply noninvasive brain stimulation in a patient-tailored, precision medicine-guided fashion to maximize response rates and effect magnitude. An important prerequisite for this task is the ability to accurately predict the expected response of the individual patient. OBJECTIVE This review aims to discuss current approaches studying noninvasive brain stimulation in stroke and challenges associated with the development of predictive models of responsiveness to noninvasive brain stimulation. METHODS Narrative review. RESULTS Currently, the field largely relies on in-sample associational studies to assess the impact of different influencing factors. However, the associational approach is not valid for making claims of prediction, which generalize out-of-sample. We will discuss crucial requirements for valid predictive modeling in particular the presence of sufficiently large sample sizes. CONCLUSION Modern predictive models are powerful tools that must be wielded with great care. Open science, including data sharing across research units to obtain sufficiently large and unbiased samples, could provide a solid framework for addressing the task of building robust predictive models for noninvasive brain stimulation responsiveness.
Collapse
|
27
|
Paul T, Hensel L, Rehme AK, Tscherpel C, Eickhoff SB, Fink GR, Grefkes C, Volz LJ. Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation. Hum Brain Mapp 2021; 42:5230-5243. [PMID: 34346531 PMCID: PMC8519876 DOI: 10.1002/hbm.25612] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
Motor recovery after stroke relies on functional reorganization of the motor network, which is commonly assessed via functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (rsFC) or task-related effective connectivity (trEC). Measures of either connectivity mode have been shown to successfully explain motor impairment post-stroke, posing the question whether motor impairment is more closely reflected by rsFC or trEC. Moreover, highly similar changes in ipsilesional and interhemispheric motor network connectivity have been reported for both rsFC and trEC after stroke, suggesting that altered rsFC and trEC may capture similar aspects of information integration in the motor network reflecting principle, state-independent mechanisms of network reorganization rather than state-specific compensation strategies. To address this question, we conducted the first direct comparison of rsFC and trEC in a sample of early subacute stroke patients (n = 26, included on average 7.3 days post-stroke). We found that both rsFC and trEC explained motor impairment across patients, stressing the clinical potential of fMRI-based connectivity. Importantly, intrahemispheric connectivity between ipsilesional M1 and premotor areas depended on the activation state, whereas interhemispheric connectivity between homologs was state-independent. From a mechanistic perspective, our results may thus arise from two distinct aspects of motor network plasticity: task-specific compensation within the ipsilesional hemisphere and a more fundamental form of reorganization between hemispheres.
Collapse
Affiliation(s)
- Theresa Paul
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lukas Hensel
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Anne K Rehme
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
28
|
Kearney-Ramos T, Haney M. Repetitive transcranial magnetic stimulation as a potential treatment approach for cannabis use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110290. [PMID: 33677045 PMCID: PMC9165758 DOI: 10.1016/j.pnpbp.2021.110290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/22/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023]
Abstract
The expanding legalization of cannabis across the United States is associated with increases in cannabis use, and accordingly, an increase in the number and severity of individuals with cannabis use disorder (CUD). The lack of FDA-approved pharmacotherapies and modest efficacy of psychotherapeutic interventions means that many of those who seek treatment for CUD relapse within the first few months. Consequently, there is a pressing need for innovative, evidence-based treatment development for CUD. Preliminary evidence suggests that repetitive transcranial magnetic stimulation (rTMS) may be a novel, non-invasive therapeutic neuromodulation tool for the treatment of a variety of substance use disorders (SUDs), including recently receiving FDA clearance (August 2020) for use as a smoking cessation aid in tobacco cigarette smokers. However, the potential of rTMS for CUD has not yet been reviewed. This paper provides a primer on therapeutic neuromodulation techniques for SUDs, with a particular focus on reviewing the current status of rTMS research in people who use cannabis. Lastly, future directions are proposed for rTMS treatment development in CUD, with suggestions for study design parameters and clinical endpoints based on current gold-standard practices for therapeutic neuromodulation research.
Collapse
Affiliation(s)
- Tonisha Kearney-Ramos
- New York State Psychiatric Institute, New York, NY, USA; Columbia University Irving Medical Center, New York, NY, USA.
| | - Margaret Haney
- New York State Psychiatric Institute, New York, New York, USA,Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
29
|
Chen SC, Yang LY, Adeel M, Lai CH, Peng CW. Transcranial electrostimulation with special waveforms enhances upper-limb motor function in patients with chronic stroke: a pilot randomized controlled trial. J Neuroeng Rehabil 2021; 18:106. [PMID: 34193179 PMCID: PMC8244182 DOI: 10.1186/s12984-021-00901-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) and intermittent theta burst stimulation (iTBS) were both demonstrated to have therapeutic potentials to rapidly induce neuroplastic effects in various rehabilitation training regimens. Recently, we developed a novel transcranial electrostimulation device that can flexibly output an electrical current with combined tDCS and iTBS waveforms. However, limited studies have determined the therapeutic effects of this special waveform combination on clinical rehabilitation. Herein, we investigated brain stimulation effects of tDCS-iTBS on upper-limb motor function in chronic stroke patients. Methods Twenty-four subjects with a chronic stroke were randomly assigned to a real non-invasive brain stimulation (NIBS; who received the real tDCS + iTBS output) group or a sham NIBS (who received sham tDCS + iTBS output) group. All subjects underwent 18 treatment sessions of 1 h of a conventional rehabilitation program (3 days a week for 6 weeks), where a 20-min NIBS intervention was simultaneously applied during conventional rehabilitation. Outcome measures were assessed before and immediately after the intervention period: Fugl-Meyer Assessment-Upper Extremity (FMA-UE), Jebsen-Taylor Hand Function Test (JTT), and Finger-to-Nose Test (FNT). Results Both groups showed improvements in FMA-UE, JTT, and FNT scores after the 6-week rehabilitation program. Notably, the real NIBS group had greater improvements in the JTT (p = 0. 016) and FNT (p = 0. 037) scores than the sham NIBS group, as determined by the Mann–Whitney rank-sum test. Conclusions Patients who underwent the combined ipsilesional tDCS-iTBS stimulation with conventional rehabilitation exhibited greater impacts than did patients who underwent sham stimulation-conventional rehabilitation in statistically significant clinical responses of the total JTT time and FNT after the stroke. Preliminary results of upper-limb functional recovery suggest that tDCS-iTBS combined with a conventional rehabilitation intervention may be a promising strategy to enhance therapeutic benefits in future clinical settings. Trial registration: ClinicalTrials.gov Identifier: NCT04369235. Registered on 30 April 2020.
Collapse
Affiliation(s)
- Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ling-Yu Yang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,School of Gerontology Health Management, College of Nursing, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
30
|
Tzvi E, Loens S, Donchin O. Mini-review: The Role of the Cerebellum in Visuomotor Adaptation. THE CEREBELLUM 2021; 21:306-313. [PMID: 34080132 PMCID: PMC8993777 DOI: 10.1007/s12311-021-01281-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
The incredible capability of the brain to quickly alter performance in response to ever-changing environment is rooted in the process of adaptation. The core aspect of adaptation is to fit an existing motor program to altered conditions. Adaptation to a visuomotor rotation or an external force has been well established as tools to study the mechanisms underlying sensorimotor adaptation. In this mini-review, we summarize recent findings from the field of visuomotor adaptation. We focus on the idea that the cerebellum plays a central role in the process of visuomotor adaptation and that interactions with cortical structures, in particular, the premotor cortex and the parietal cortex, may be crucial for this process. To this end, we cover a range of methodologies used in the literature that link cerebellar functions and visuomotor adaptation; behavioral studies in cerebellar lesion patients, neuroimaging and non-invasive stimulation approaches. The mini-review is organized as follows: first, we provide evidence that sensory prediction errors (SPE) in visuomotor adaptation rely on the cerebellum based on behavioral studies in cerebellar patients. Second, we summarize structural and functional imaging studies that provide insight into spatial localization as well as visuomotor adaptation dynamics in the cerebellum. Third, we discuss premotor — cerebellar interactions and how these may underlie visuomotor adaptation. And finally, we provide evidence from transcranial direct current and magnetic stimulation studies that link cerebellar activity, beyond correlational relationships, to visuomotor adaptation .
Collapse
Affiliation(s)
- Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Sebastian Loens
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Opher Donchin
- Motor Learning Lab, Ben Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
31
|
Chen YH, Chen CL, Huang YZ, Chen HC, Chen CY, Wu CY, Lin KC. Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial. J Neuroeng Rehabil 2021; 18:91. [PMID: 34059090 PMCID: PMC8166006 DOI: 10.1186/s12984-021-00885-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/25/2021] [Indexed: 11/11/2022] Open
Abstract
Background Virtual reality and arm cycling have been reported as effective treatments for improving upper limb motor recovery in patients with stroke. Intermittent theta burst stimulation (iTBS) can increase ipsilesional cortical excitability, and has been increasingly used in patients with stroke. However, few studies examined the augmented effect of iTBS on neurorehabilitation program. In this study, we investigated the augmented effect of iTBS on virtual reality-based cycling training (VCT) for upper limb function in patients with stroke. Methods In this randomized controlled trial, 23 patients with stroke were recruited. Each patient received either 15 sessions of iTBS or sham stimulation in addition to VCT on the same day. Outcome measures were assessed before and after the intervention. Primary outcome measures for the improvement of upper limb motor function and spasticity were Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and Modified Ashworth Scale Upper-Extremity (MAS-UE). Secondary outcome measures for activity and participation were Action Research Arm Test (ARAT), Nine Hole Peg Test (NHPT), Box and Block Test (BBT) and Motor Activity Log (MAL), and Stroke Impact Scale (SIS). Wilcoxon signed-rank tests were performed to evaluate the effectiveness after the intervention and Mann–Whitney U tests were conducted to compare the therapeutic effects between two groups. Results At post-treatment, both groups showed significant improvement in FMA-UE and ARAT, while only the iTBS + VCT group demonstrated significant improvement in MAS-UE, BBT, NHPT, MAL and SIS. The Mann–Whitney U tests revealed that the iTBS + VCT group has presented greater improvement than the sham group significantly in MAS-UE, MAL-AOU and SIS. However, there were no significant differences in the changes of the FMA-UE, ARAT, BBT, NHPT and MAL-QOM between groups. Conclusions Intermittent TBS showed augmented efficacy on VCT for reducing spasticity, increasing actual use of the affected upper limb, and improving participation in daily life in stroke patients. This study provided an integrated innovative intervention, which may be a promising therapy to improve upper limb function recovery in stroke rehabilitation. However, this study has a small sample size, and thus a further larger-scale study is warranted to confirm the treatment efficacy. Trial registration This trial was registered under ClinicalTrials.gov ID No. NCT03350087, retrospectively registered, on November 22, 2017
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan. .,Graduate Institute of Early Intervention, Chang Gung University, Taoyuan, Taiwan.
| | - Ying-Zu Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Hsieh-Ching Chen
- Department of Industrial and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Chung-Yao Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ching-Yi Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Chen Q, Shen D, Sun H, Ke J, Wang H, Pan S, Liu H, Wang D, Su M, Fang Q. Effects of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation on motor recovery in patients following acute cerebral infarction. NeuroRehabilitation 2021; 48:83-96. [PMID: 33361618 DOI: 10.3233/nre-201606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The treatment for patients suffering from motor dysfunction following stroke using continuous repetitive transcranial magnetic stimulation (rTMS) has the potential to be beneficial for recovery. However, the impact of explicit results on the coupling of various rTMS protocols on motor treatment in patients following acute cerebral infarction remain unexplored. OBJECTIVE The current study aims to design a sham-controlled randomized report to explore the capability of consecutive suppressive-facilitatory rTMS method to increase the motor results following acute stroke. METHODS A hundred ischemic stroke patients suffering from motor disorder were randomly assigned to obtain 4 week sessions of (1)10 Hz over the ipsilesional primary motor cortex (M1) and next 1 Hz over the contralesional M1; (2) contralesional sham stimulation and next ipsilesional real 10 Hz; (3) contralesional real 1 Hz rTMS and next ipsilesional sham stimulation; or (4) bilateral sham-control procedures. At 24 hours before and after the intervention, we obtained cortical excitability data from study subjects. At baseline, after treatment and 3 months follow up, we additionally evaluated patients with the clinical assessments. RESULTS At post-intervention, group A showed greater motor improvements in FMA, FMA-UL, NIHSS, ADL and mRS values than group B, group C and group D, that were continued for at least 3 months after the completion of the treatment time. Specifically, it is shown in the cortical excitability study that the motor-evoked potential (MEP) amplitude and resting motor threshold (rMT) more significantly improved in group A than other groups. The improvement in motor function and change in motor cortex excitability exhibit a significant correlation in the affected hemisphere. The combined 1 Hz and 10 Hz stimulation treatment showed a synergistic effect. CONCLUSIONS Facilitatory rTMS and coupling inhibitory produced extra satisfactory results in facilitating the motor's recovery in the subacute and acute phase following stroke compared to that acquired from alone single-course modulation.
Collapse
Affiliation(s)
- Qingmei Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dan Shen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiwei Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Ke
- Department of Medical Imaging, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hongxia Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shenjie Pan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haoyu Liu
- Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dapeng Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Min Su
- Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
33
|
Meng Y, Zhang D, Hai H, Zhao YY, Ma YW. Efficacy of coupling intermittent theta-burst stimulation and 1 Hz repetitive transcranial magnetic stimulation to enhance upper limb motor recovery in subacute stroke patients: A randomized controlled trial. Restor Neurol Neurosci 2021; 38:109-118. [PMID: 32039879 DOI: 10.3233/rnn-190953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Both 1 Hz repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) are reported to benefit upper limb motor function rehabilitation in patients with stroke. However, the efficacy of combining 1 Hz rTMS and iTBS has not been adequately explored. OBJECTIVE We aimed to compare the effects of 1 Hz rTMS and the combination of 1 Hz rTMS and iTBS on the upper limb motor function in the subacute phase post-stroke. METHODS Twenty-eight participants were randomly assigned to three groups: Group A (1 Hz rTMS over the contralesional primary motor cortex (M1) and iTBS over the ipsilesional M1), Group B (contralesional 1 Hz rTMS and ipsilesional sham iTBS), and Group C (contralesional sham 1 Hz rTMS and ipsilesional sham iTBS). The participants received the same conventional rehabilitation accompanied by sessions of transcranial magnetic stimulation for two weeks (5 days one week). Motor-evoked potential (MEP), upper extremity Fugl-Meyer Assessment (UE-FMA), and Barthel Index (BI) were performed before and after the sessions. RESULTS Group A showed greater UE-FMA, BI, and MEP amplitude improvement and more significant decrement in MEP latency compared to Group B and Group C in testable patients. Correlation analyses in Group A revealed a close relation between ipsilesional MEP amplitude increment and UE-FMA gain. CONCLUSIONS The combining of 1 Hz rTMS and iTBS protocol in the present study is tolerable and more beneficial for motor improvement than the single use of 1 Hz rTMS in patients with subacute stroke.
Collapse
Affiliation(s)
- Ying Meng
- Department of Rehabilitation Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dai Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Hai
- Department of Rehabilitation Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying-Yu Zhao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue-Wen Ma
- Department of Rehabilitation Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Human Theta Burst Stimulation Combined with Subsequent Electroacupuncture Increases Corticospinal Excitability. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8824530. [PMID: 33424994 PMCID: PMC7773446 DOI: 10.1155/2020/8824530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
Objective Intermittent theta burst stimulation (iTBS) is a widely used noninvasive brain stimulation for the facilitation of corticospinal excitability (CSE). Previous studies have shown that acupuncture applied to acupoints associated with motor function in healthy people can reduce the amplitude of the motor-evoked potentials (MEPs), which reflects the inhibition of CSE. In our work, we wanted to test whether the combination of iTBS and electroacupuncture (EA) would have different effects on CSE in humans. Methods A single-blind sham-controlled crossover design study was conducted on 20 healthy subjects. Subjects received 20 minutes' sham or real EA stimulation immediately after sham or real iTBS. MEPs, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), cortical silent period (CSP), and central motor conduction time (CMCT) were recorded before each trial, and immediately, 20 minutes, and 40 minutes after the end of stimulation. Results In the sham iTBS group, EA produced a reduction in MEPs amplitude, lasting approximately 40 minutes, while in the real iTBS group, EA significantly increased MEPs amplitude beyond 40 minutes after the end of stimulation. In sham EA group, the recorded MEPs amplitude showed no significant trend over time compared to baseline. Among all experiments, there were no significant changes in SICI, ICF, CSP, CMCT, etc. Conclusion These data indicate that immediate application of EA after iTBS significantly increased corticospinal excitability. This trial was registered in the Chinese Clinical Trial Registry (registration no. ChiCTR1900025348).
Collapse
|
35
|
Veldema J, Engelhardt A, Jansen P. Does anodal tDCS improve basketball performance? A randomized controlled trial. Eur J Sport Sci 2021; 22:126-135. [PMID: 33297843 DOI: 10.1080/17461391.2020.1862306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Shooting precision as well as dribbling and agility are crucial components of performance in basketball. We examined the effects of anodal tDCS over the dominant primary motor cortex in supporting these basketball specific abilities. Fifty-two sports students were enrolled in a double-blind, randomized, placebo-controlled, crossover trial with two interventions. Twenty minutes of anodal 1 mA tDCS/sham tDCS were applied over the primary motor cortex of the dominant hemisphere. Basketball shooting precision (basketball shooting accuracy test) and basketball specific dribbling and agility (Illinois ball-dribbling test) were tested prior and after each intervention. Basketball shooting precision and basketball specific dribbling and agility improved after real tDCS but not after sham tDCS. ANOVAs show significant intervention*time effects on both the shooting accuracy test (F1,51 = 5.6; P = 0.022) and on the Illinois ball-dribbling test (F1,51 = 4.5; P = 0.038). Anodal 1 mA tDCS over the dominant primary motor cortex is effective in supporting short-term performance in basketball. However, the available data is insufficient for application of this novel method within the framework of conventional sports training.
Collapse
Affiliation(s)
- Jitka Veldema
- Faculty of Human Sciences, University of Regensburg, Regensburg, Germany
| | - Arne Engelhardt
- Faculty of Human Sciences, University of Regensburg, Regensburg, Germany
| | - Petra Jansen
- Faculty of Human Sciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Tscherpel C, Grefkes C. Funktionserholung nach Schlaganfall und die therapeutische Rolle der nicht-invasiven Hirnstimulation. KLIN NEUROPHYSIOL 2020. [DOI: 10.1055/a-1272-9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungIm Bereich der non-invasiven Hirnstimulation stellen die transkranielle Magnetstimulation (engl. transcranial magnetic stimulation, TMS) sowie die transkranielle Gleichstromstimulation (engl. transcranial direct current stimulation, tDCS) bis heute die wichtigsten Techniken zur Modulation kortikaler Erregbarkeit dar. Beide Verfahren induzieren Nacheffekte, welche die Zeit der reinen Stimulation überdauern, und ebnen damit den Weg für ihren therapeutischen Einsatz beim Schlaganfall. In diesem Übersichtsartikel diskutieren wir die aktuelle Datenlage TMS- und tDCS-vermittelter Therapien für die häufigsten schlaganfallbedingten Defizite wie Hemiparese, Aphasie und Neglect. Darüber hinaus adressieren wir mögliche Einschränkungen der gegenwärtigen Ansätze und zeigen Ansatzpunkte auf, um Neuromodulation nach Schlaganfall effektiver zu gestalten und damit das Outcome der Patienten zu verbessern.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
- Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
| | - Christian Grefkes
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
- Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
| |
Collapse
|
37
|
Hensel L, Tscherpel C, Freytag J, Ritter S, Rehme AK, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Connectivity-Related Roles of Contralesional Brain Regions for Motor Performance Early after Stroke. Cereb Cortex 2020; 31:993-1007. [DOI: 10.1093/cercor/bhaa270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Hemiparesis after stroke is associated with increased neural activity not only in the lesioned but also in the contralesional hemisphere. While most studies have focused on the role of contralesional primary motor cortex (M1) activity for motor performance, data on other areas within the unaffected hemisphere are scarce, especially early after stroke. We here combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to elucidate the contribution of contralesional M1, dorsal premotor cortex (dPMC), and anterior intraparietal sulcus (aIPS) for the stroke-affected hand within the first 10 days after stroke. We used “online” TMS to interfere with neural activity at subject-specific fMRI coordinates while recording 3D movement kinematics. Interfering with aIPS activity improved tapping performance in patients, but not healthy controls, suggesting a maladaptive role of this region early poststroke. Analyzing effective connectivity parameters using a Lasso prediction model revealed that behavioral TMS effects were predicted by the coupling of the stimulated aIPS with dPMC and ipsilesional M1. In conclusion, we found a strong link between patterns of frontoparietal connectivity and TMS effects, indicating a detrimental influence of the contralesional aIPS on motor performance early after stroke.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Stella Ritter
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Anne K Rehme
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Simon B Eickhoff
- Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Brain and Behaviour, Institute of Neuroscience and Medicine, (INM-7), Research Centre Jülich, 52428 Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Christian Grefkes
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| |
Collapse
|
38
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|
39
|
Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract 2020; 2:17. [PMID: 33324923 PMCID: PMC7650109 DOI: 10.1186/s42466-020-00060-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Stroke is a leading cause of acquired, permanent disability worldwide. Although the treatment of acute stroke has been improved considerably, the majority of patients to date are left disabled with a considerable impact on functional independence and quality of life. As the absolute number of stroke survivors is likely to further increase due to the demographic changes in our aging societies, new strategies are needed in order to improve neurorehabilitation. The most critical driver of functional recovery post-stroke is neural reorganization. For developing novel, neurobiologically informed strategies to promote recovery of function, an improved understanding of the mechanisms enabling plasticity and recovery is mandatory. This review provides a comprehensive survey of recent developments in the field of stroke recovery using neuroimaging and non-invasive brain stimulation. We discuss current concepts of how the brain reorganizes its functional architecture to overcome stroke-induced deficits, and also present evidence for maladaptive effects interfering with recovery. We demonstrate that the combination of neuroimaging and neurostimulation techniques allows a better understanding of how brain plasticity can be modulated to promote the reorganization of neural networks. Finally, neurotechnology-based treatment strategies allowing patient-tailored interventions to achieve enhanced treatment responses are discussed. The review also highlights important limitations of current models, and finally closes with possible solutions and future directions.
Collapse
Affiliation(s)
- Christian Grefkes
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
- Medical Faculty, University of Cologne & Department of Neurology, University Hospital Cologne, 50924 Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
- Medical Faculty, University of Cologne & Department of Neurology, University Hospital Cologne, 50924 Cologne, Germany
| |
Collapse
|
40
|
Nagy M, Aranyi C, Opposits G, Papp T, Lánczi L, Berényi E, Vér C, Csiba L, Katona P, Spisák T, Emri M. Effective connectivity differences in motor network during passive movement of paretic and non-paretic ankles in subacute stroke patients. PeerJ 2020; 8:e8942. [PMID: 32518713 PMCID: PMC7258895 DOI: 10.7717/peerj.8942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/18/2020] [Indexed: 11/20/2022] Open
Abstract
Background A better understanding of the neural changes associated with paresis in stroke patients could have important implications for therapeutic approaches. Dynamic Causal Modeling (DCM) for functional magnetic resonance imaging (fMRI) is commonly used for analyzing effective connectivity patterns of brain networks due to its significant property of modeling neural states behind fMRI signals. We applied this technique to analyze the differences between motor networks (MNW) activated by continuous passive movement (CPM) of paretic and non-paretic ankles in subacute stroke patients. This study aimed to identify CPM induced connectivity characteristics of the primary sensory area (S1) and the differences in extrinsic directed connections of the MNW and to explain the hemodynamic differences of brain regions of MNW. Methods For the network analysis, we used ten stroke patients’ task fMRI data collected under CPMs of both ankles. Regions for the MNW, the primary motor cortex (M1), the premotor cortex (PM), the supplementary motor area (SMA) and the S1 were defined in a data-driven way, by independent component analysis. For the network analysis of both CPMs, we compared twelve models organized into two model-families, depending on the S1 connections and input stimulus modeling. Using DCM, we evaluated the extrinsic connectivity strengths and hemodynamic parameters of both stimulations of all patients. Results After a statistical comparison of the extrinsic connections and their modulations of the “best model”, we concluded that three contralateral self-inhibitions (cM1, cS1 and cSMA), one contralateral inter-regional connection (cSMA→cM1), and one interhemispheric connection (cM1→iM1) were significantly different. Our research shows that hemodynamic parameters can be estimated with the Balloon model using DCM but the parameters do not change with stroke. Conclusions Our results confirm that the DCM-based connectivity analyses combined with Bayesian model selection may be a useful technique for quantifying the alteration or differences in the characteristics of the motor network in subacute stage stroke patients and in determining the degree of MNW changes.
Collapse
Affiliation(s)
- Marianna Nagy
- Faculty of Medicine, Department of Medical Imaging, Division of Radiology and Imaging Science, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Csaba Aranyi
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Gábor Opposits
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Tamás Papp
- Faculty of Medicine, Department of Medical Imaging, Division of Radiology and Imaging Science, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Levente Lánczi
- Faculty of Medicine, Department of Medical Imaging, Division of Radiology and Imaging Science, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary.,Department of Diagnostic Radiology, Kenézy University Hospital, Debrecen, Hajdú-Bihar, Hungary
| | - Ervin Berényi
- Faculty of Medicine, Department of Medical Imaging, Division of Radiology and Imaging Science, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Csilla Vér
- Clinical Center, Department of Neurology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - László Csiba
- Clinical Center, Department of Neurology, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| | - Péter Katona
- Department of Diagnostic Radiology, Kenézy University Hospital, Debrecen, Hajdú-Bihar, Hungary
| | - Tamás Spisák
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Miklós Emri
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Debrecen, Hajdú-Bihar, Hungary
| |
Collapse
|
41
|
Coscia M, Wessel MJ, Chaudary U, Millán JDR, Micera S, Guggisberg A, Vuadens P, Donoghue J, Birbaumer N, Hummel FC. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain 2020; 142:2182-2197. [PMID: 31257411 PMCID: PMC6658861 DOI: 10.1093/brain/awz181] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/14/2019] [Accepted: 05/12/2019] [Indexed: 01/27/2023] Open
Abstract
Upper limb motor deficits in severe stroke survivors often remain unresolved over extended time periods. Novel neurotechnologies have the potential to significantly support upper limb motor restoration in severely impaired stroke individuals. Here, we review recent controlled clinical studies and reviews focusing on the mechanisms of action and effectiveness of single and combined technology-aided interventions for upper limb motor rehabilitation after stroke, including robotics, muscular electrical stimulation, brain stimulation and brain computer/machine interfaces. We aim at identifying possible guidance for the optimal use of these new technologies to enhance upper limb motor recovery especially in severe chronic stroke patients. We found that the current literature does not provide enough evidence to support strict guidelines, because of the variability of the procedures for each intervention and of the heterogeneity of the stroke population. The present results confirm that neurotechnology-aided upper limb rehabilitation is promising for severe chronic stroke patients, but the combination of interventions often lacks understanding of single intervention mechanisms of action, which may not reflect the summation of single intervention’s effectiveness. Stroke rehabilitation is a long and complex process, and one single intervention administrated in a short time interval cannot have a large impact for motor recovery, especially in severely impaired patients. To design personalized interventions combining or proposing different interventions in sequence, it is necessary to have an excellent understanding of the mechanisms determining the effectiveness of a single treatment in this heterogeneous population of stroke patients. We encourage the identification of objective biomarkers for stroke recovery for patients’ stratification and to tailor treatments. Furthermore, the advantage of longitudinal personalized trial designs compared to classical double-blind placebo-controlled clinical trials as the basis for precise personalized stroke rehabilitation medicine is discussed. Finally, we also promote the necessary conceptual change from ‘one-suits-all’ treatments within in-patient clinical rehabilitation set-ups towards personalized home-based treatment strategies, by adopting novel technologies merging rehabilitation and motor assistance, including implantable ones.
Collapse
Affiliation(s)
- Martina Coscia
- Wyss Center for Bio and Neuroengineering, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - Maximilian J Wessel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland.,Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), School of Life Sciences, Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Ujwal Chaudary
- Wyss Center for Bio and Neuroengineering, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - José Del R Millán
- Defitech Chair in Brain-Machine Interface, Center for Neuroprosthetics, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.,Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, 56025, Italy
| | - Adrian Guggisberg
- Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland
| | | | - John Donoghue
- Wyss Center for Bio and Neuroengineering, Chemin des Mines 9, 1202 Geneva, Switzerland.,Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Niels Birbaumer
- Wyss Center for Bio and Neuroengineering, Chemin des Mines 9, 1202 Geneva, Switzerland.,Institute of Medical Psychology and Behavioral Neurobiology, University Tuebingen, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland.,Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), School of Life Sciences, Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland
| |
Collapse
|
42
|
Goh HT, Connolly K, Hardy J, McCain K, Walker-Batson D. Single session of repetitive transcranial magnetic stimulation to left dorsolateral prefrontal cortex increased dual-task gait speed in chronic stroke: A pilot study. Gait Posture 2020; 78:1-5. [PMID: 32146157 DOI: 10.1016/j.gaitpost.2020.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with stroke often experience difficulty in dual-task walking and are prone to falling when walking and talking. Previous studies in other populations have suggested that non-invasive brain stimulation could enhance dual-task gait performance by stimulating dorsolateral prefrontal cortex (DLPFC) or supplementary motor area (SMA). It was unclear if the benefits of brain stimulation would be observed in individuals with stroke. RESEARCH QUESTION Would single-session 5 Hz rTMS applied to DLPFC or SMA improve dual-task gait performance in individuals with stroke? METHODS This single group repeated measure study included fifteen individuals with left chronic stroke (mean age = 58 years). Participants received 5 Hz rTMS to either DLPFC, SMA, or M1 of the left lesioned hemisphere across three different sessions. Single- and dual-task gait speed was assessed before and after rTMS with the dualtask gait being walking and counting backward by 3 s. RESULTS We observed that rTMS to left DLPFC resulted in a greater increase in dual-task gait speed, but not single-task gait speed, compared to the other two stimulation sites (M1 and SMA) but the difference was not statistically significant (p = 0.06). Five out of fifteen participants demonstrated a clinically significant improvement in dual-task gait speed (> 0.1 m/s) after rTMS to DLPFC. SIGNIFICANCES The results suggest that DLPFC could be a potential treatment target to improve dual-task gait performance in persons with chronic stroke.
Collapse
Affiliation(s)
- Hui-Ting Goh
- School of Physical Therapy, Texas Woman's University, Dallas Texas 75235 United States.
| | - Kendall Connolly
- School of Physical Therapy, Texas Woman's University, Dallas Texas 75235 United States
| | - Jenna Hardy
- School of Physical Therapy, Texas Woman's University, Dallas Texas 75235 United States
| | - Karen McCain
- Department of Physical Therapy, School of Health Professions, University of Texas Southwestern Medical Center, Dallas Texas 75235 United States
| | - Delaina Walker-Batson
- Department of Communication Sciences and Disorders, Texas Woman's University, Denton Texas 76204 United States; The Stroke Center-Dallas, Dallas Texas 75235 United States
| |
Collapse
|
43
|
Peters JC, Reithler J, Graaf TAD, Schuhmann T, Goebel R, Sack AT. Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity. Commun Biol 2020; 3:40. [PMID: 31969657 PMCID: PMC6976670 DOI: 10.1038/s42003-020-0764-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
Despite growing interest, the causal mechanisms underlying human neural network dynamics remain elusive. Transcranial Magnetic Stimulation (TMS) allows to noninvasively probe neural excitability, while concurrent fMRI can log the induced activity propagation through connected network nodes. However, this approach ignores ongoing oscillatory fluctuations which strongly affect network excitability and concomitant behavior. Here, we show that concurrent TMS-EEG-fMRI enables precise and direct monitoring of causal dependencies between oscillatory states and signal propagation throughout cortico-subcortical networks. To demonstrate the utility of this multimodal triad, we assessed how pre-TMS EEG power fluctuations influenced motor network activations induced by subthreshold TMS to right dorsal premotor cortex. In participants with adequate motor network reactivity, strong pre-TMS alpha power reduced TMS-evoked hemodynamic activations throughout the bilateral cortico-subcortical motor system (including striatum and thalamus), suggesting shunted network connectivity. Concurrent TMS-EEG-fMRI opens an exciting noninvasive avenue of subject-tailored network research into dynamic cognitive circuits and their dysfunction.
Collapse
Affiliation(s)
- Judith C Peters
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Joel Reithler
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Tom A de Graaf
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Teresa Schuhmann
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Alexander T Sack
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| |
Collapse
|
44
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1007] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
45
|
Hensel L, Grefkes C, Tscherpel C, Ringmaier C, Kraus D, Hamacher S, Volz LJ, Fink GR. Intermittent theta burst stimulation applied during early rehabilitation after stroke: study protocol for a randomised controlled trial. BMJ Open 2019; 9:e034088. [PMID: 31892668 PMCID: PMC6955550 DOI: 10.1136/bmjopen-2019-034088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Intermittent theta burst stimulation (iTBS) applied to primary motor cortex (M1) has been shown to modulate both the excitability and connectivity of the motor system. A recent proof-of-principle study, based on a small group of hospitalised patients with acute ischemic stroke, suggested that iTBS applied to the ipsilesional M1 combined with physical therapy early after stroke can amplify motor recovery with lasting after effects. A randomised controlled clinical trial using a double-blind design is warranted to justify the implementation of iTBS-assisted motor rehabilitation in neurorehabilitation from an acute ischaemic stroke. METHODS/DESIGN We investigate the effects of daily iTBS on early motor rehabilitation after stroke in an investigator-initiated, longitudinal randomised controlled trial. Patients (n=150) with hemiparesis receive either iTBS (600 pulses) applied to the ipsilesional motor cortex (M1) or a control stimulation (ie, coil placement over the parieto-occipital vertex in parallel to the interhemispheric fissure and with a tilt of 45°). On 8 consecutive workdays, a 45 min arm-centred motor training follows the intervention . The relative grip strength, defined as the grip force ratios of the affected and unaffected hands, serves as the primary outcome parameter. Secondary outcome parameters are measures of arm function (Action Research Arm Test, Fugl-Meyer Motor Scale), stroke severity (National Institutes of Health Stroke Scale), stroke-induced disability (modified Rankin Scale, Barthel Index), duration of inpatient rehabilitation, quality of life (EuroQol 5D), motor evoked potentials and the resting motor threshold of the ipsilesional M1. ETHICS AND DISSEMINATION The study was approved by the Ethics Commission of the Medical Faculty, University of Cologne, Germany (reference number 15-343). Data will be disseminated through peer-reviewed publications and presentations at conferences. Study title: Theta-Burst Stimulation in Early Rehabilitation after Stroke (acronym: TheSiReS). Study registration at German Registry for Clinical Trials (DRKS00008963) and at ClinicalTrials.gov (NCT02910024).
Collapse
Affiliation(s)
- Lukas Hensel
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christian Grefkes
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine-3, Research Centre Jülich, Jülich, Germany
| | - Caroline Tscherpel
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine-3, Research Centre Jülich, Jülich, Germany
| | - Corinna Ringmaier
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daria Kraus
- Clinical Trials Center Cologne, University of Cologne, Cologne, Germany, Cologne, Germany
| | - Stefanie Hamacher
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lukas J Volz
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine-3, Research Centre Jülich, Jülich, Germany
| |
Collapse
|
46
|
Wang J, Meng HJ, Ji GJ, Jing Y, Wang HX, Deng XP, Feng ZJ, Zhao N, Zang YF, Zhang J. Finger Tapping Task Activation vs. TMS Hotspot: Different Locations and Networks. Brain Topogr 2019; 33:123-134. [PMID: 31691912 PMCID: PMC6943404 DOI: 10.1007/s10548-019-00741-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Both functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have been used to non-invasively localize the human motor functional area. These locations can be clinically used as stimulation target of TMS treatment. However, it has been reported that the finger tapping fMRI activation and TMS hotspot were not well-overlapped. The aim of the current study was to measure the distance between the finger tapping fMRI activation and the TMS hotspot, and more importantly, to compare the network difference by using resting-state fMRI. Thirty healthy participants underwent resting-state fMRI, task fMRI, and then TMS hotspot localization. We found significant difference of locations between finger tapping fMRI activation and TMS hotspot. Specifically, the finger tapping fMRI activation was more lateral than the TMS hotspot in the premotor area. The fMRI activation peak and TMS hotspot were taken as seeds for resting-state functional connectivity analyses. Compared with TMS hotspot, finger tapping fMRI activation peak showed more intensive functional connectivity with, e.g., the bilateral premotor, insula, putamen, and right globus pallidus. The findings more intensive networks of finger tapping activation than TMS hotspot suggest that TMS treatment targeting on the fMRI activation area might result in more remote effects and would be more helpful for TMS treatment on movement disorders.
Collapse
Affiliation(s)
- Jue Wang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Hai-Jiang Meng
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Gong-Jun Ji
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230032, Anhui, China
| | - Ying Jing
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Hong-Xiao Wang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Xin-Ping Deng
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Zi-Jian Feng
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Na Zhao
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Yu-Feng Zang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China. .,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
47
|
Kindred JH, Kautz SA, Wonsetler EC, Bowden MG. Single Sessions of High-Definition Transcranial Direct Current Stimulation Do Not Alter Lower Extremity Biomechanical or Corticomotor Response Variables Post-stroke. Front Neurosci 2019; 13:286. [PMID: 31031579 PMCID: PMC6470292 DOI: 10.3389/fnins.2019.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/11/2019] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate cortical activity. However, measured effects on clinically relevant assessments have been inconsistent, possibly due to the non-focal dispersion of current from traditional two electrode configurations. High-definition (HD)-tDCS uses a small array of electrodes (N = 5) to improve targeted current delivery. The purpose of this study was to determine the effects of a single session of anodal and cathodal HD-tDCS on gait kinematics and kinetics and the corticomotor response to transcranial magnetic stimulation (TMS) in individuals post-stroke. We hypothesized that ipsilesional anodal stimulation would increase the corticomotor response to TMS leading to beneficial changes in gait. Eighteen participants post-stroke (average age: 64.8 years, SD: 12.5; average months post-stroke: 54, SD: 42; average lower extremity Fugl-Meyer score: 26, SD: 6) underwent biomechanical and corticomotor response testing on three separate occasions prior to and after HD-tDCS stimulation. In a randomized order, anodal, cathodal, and sham HD-tDCS were applied to the ipsilesional motor cortex for 20 min while participants pedaled on a recumbent cycle ergometer. Gait kinetic and kinematic data were collected while walking on an instrumented split-belt treadmill with motion capture. The corticomotor response of the paretic and non-paretic tibialis anterior (TA) muscles were measured using neuronavigated TMS. Repeated measures ANOVAs using within-subject factors of time point (pre, post) and stimulation type (sham, anodal, cathodal) were used to compare effects of HD-tDCS stimulation on measured variables. HD-tDCS had no effect on over ground walking speed (P > 0.41), or kinematic variables (P > 0.54). The corticomotor responses of the TA muscles were also unaffected by HD-tDCS (resting motor threshold, P = 0.15; motor evoked potential (MEP) amplitude, P = 0.25; MEP normalized latency, P = 0.66). A single session of anodal or cathodal HD-tDCS delivered to a standardized ipsilesional area of the motor cortex does not appear to alter gait kinematics or corticomotor response post-stroke. Repeated sessions and individualized delivery of HD-tDCS may be required to induce beneficial plastic effects. Contralesional stimulation should also be investigated due to the altered interactions between the cerebral hemispheres post-stroke.
Collapse
Affiliation(s)
- John Harvey Kindred
- Ralph H. Johnson, Veteran's Administration Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Steven A Kautz
- Ralph H. Johnson, Veteran's Administration Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth Carr Wonsetler
- Ralph H. Johnson, Veteran's Administration Medical Center, Charleston, SC, United States.,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.,Department of Physical Therapy, School of Health Sciences, High Point University, High Point, NC, United States
| | - Mark Goodman Bowden
- Ralph H. Johnson, Veteran's Administration Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
48
|
Different Brain Connectivity between Responders and Nonresponders to Dual-Mode Noninvasive Brain Stimulation over Bilateral Primary Motor Cortices in Stroke Patients. Neural Plast 2019; 2019:3826495. [PMID: 31093270 PMCID: PMC6476041 DOI: 10.1155/2019/3826495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/23/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Noninvasive brain stimulation (NBS), such as repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS), has been used in stroke patients with motor impairment. NBS can help recovery from brain damage by modulating cortical excitability. However, the efficacy of NBS varies among individuals. To obtain insights of responsiveness to the efficacy of NBS, we investigated characteristic changes of the motor network in responders and nonresponders of NBS over the primary motor cortex (M1). A total of 21 patients with subacute stroke (13 males, mean age 59.6 ± 11.5 years) received NBS in the same manner: 1 Hz rTMS on the contralesional M1 and anodal tDCS on the ipsilesional M1. Participants were classified into responders and nonresponders based on the functional improvement of the affected upper extremity after applying NBS. Twelve age-matched healthy controls (8 males, mean age 56.1 ± 14.3 years) were also recruited. Motor networks were constructed using resting-state functional magnetic resonance imaging. M1 intrahemispheric connectivity, interhemispheric connectivity, and network efficiency were measured to investigate differences in network characteristics between groups. The motor network characteristics were found to differ between both groups. Specifically, M1 intrahemispheric connectivity in responders showed a noticeable imbalance between affected and unaffected hemispheres, which was markedly restored after NBS. The responders also showed greater interhemispheric connectivity and higher efficiency of the motor network than the nonresponders. These results may provide insight on patient-specific NBS treatment based on the brain network characteristics in neurorehabilitation of patients with stroke. This trial is registered with trial registration number NCT03390192.
Collapse
|
49
|
Larsen LH, Zibrandtsen IC, Wienecke T, Kjaer TW, Langberg H, Nielsen JB, Christensen MS. Modulation of task-related cortical connectivity in the acute and subacute phase after stroke. Eur J Neurosci 2018; 47:1024-1032. [PMID: 29465793 DOI: 10.1111/ejn.13874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Abstract
The functional relevance of cortical reorganization post-stroke is still not well understood. In this study, we investigated task-specific modulation of cortical connectivity between neural oscillations in key motor regions during the early phase after stroke. EEG and EMG recordings were examined from 15 patients and 18 controls during a precision grip task using the affected hand. Each patient attended two sessions in the acute and subacute phase (median of 3 and 34 days) post-stroke. Dynamic causal modelling (DCM) for induced responses was used to investigate task-specific modulations of oscillatory couplings in a bilateral network comprising supplementary motor area (SMA), dorsal premotor cortex (PMd) and primary motor cortex (M1). Fourteen models were constructed for each subject, and the input induced by the experimental manipulation (task) was set to inferior parietal lobule (IPL). Bayesian model selection favoured a fully connected model. A reduced coupling from SMA and intact M1 in the γ-band (31-48 Hz) to lesioned M1 in the β-band (15-30 Hz) was observed in patients in the acute phase compared to controls. Behavioural performance improved significantly in the subacute phase, while an increased positive coupling from intact PMd to lesioned M1 and a less negative modulation from lesioned M1 to intact M1 were observed for patients compared to controls both from the γ-band to the β-band. We infer that the observed differences in cross-frequency cortical interactions are important for functional recovery.
Collapse
Affiliation(s)
- Lisbeth H Larsen
- CopenRehab, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,Department for Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Ivan C Zibrandtsen
- Faculty of Health and Medical Sciences, Department of Neurology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Troels Wienecke
- Faculty of Health and Medical Sciences, Department of Neurology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Troels W Kjaer
- Department for Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Department of Neurology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Henning Langberg
- CopenRehab, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jens B Nielsen
- Department for Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Mark S Christensen
- Department for Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
50
|
Pool EM, Leimbach M, Binder E, Nettekoven C, Eickhoff SB, Fink GR, Grefkes C. Network dynamics engaged in the modulation of motor behavior in stroke patients. Hum Brain Mapp 2017; 39:1078-1092. [PMID: 29193484 DOI: 10.1002/hbm.23872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023] Open
Abstract
Stroke patients with motor deficits typically feature enhanced neural activity in several cortical areas when moving their affected hand. However, also healthy subjects may show higher levels of neural activity in tasks with higher motor demands. Therefore, the question arises to what extent stroke-related overactivity reflects performance-level-associated recruitment of neural resources rather than stroke-induced neural reorganization. We here investigated which areas in the lesioned brain enable the flexible adaption to varying motor demands compared to healthy subjects. Accordingly, eleven well-recovered left-hemispheric chronic stroke patients were scanned using functional magnetic resonance imaging. Motor system activity was assessed for fist closures at increasing movement frequencies performed with the affected/right or unaffected/left hand. In patients, an increasing movement rate of the affected hand was associated with stronger neural activity in ipsilesional/left primary motor cortex (M1) but unlike in healthy controls also in contralesional/right dorsolateral premotor cortex (PMd) and contralesional/right superior parietal lobule (SPL). Connectivity analyses using dynamic causal modeling revealed stronger coupling of right SPL onto affected/left M1 in patients but not in controls when moving the affected/right hand independent of the movement speed. Furthermore, coupling of right SPL was positively coupled with the "active" ipsilesional/left M1 when stroke patients moved their affected/right hand with increasing movement frequency. In summary, these findings are compatible with a supportive role of right SPL with respect to motor function of the paretic hand in the reorganized brain.
Collapse
Affiliation(s)
- Eva-Maria Pool
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Martha Leimbach
- Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Ellen Binder
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Charlotte Nettekoven
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| |
Collapse
|