1
|
Zanin J, Rance G. Objective Determination of Site-of-Lesion in Auditory Neuropathy. Ear Hear 2024:00003446-990000000-00348. [PMID: 39294863 DOI: 10.1097/aud.0000000000001589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
OBJECTIVE Auditory neuropathy (AN), a complex hearing disorder, presents challenges in diagnosis and management due to limitations of current diagnostic assessment. This study aims to determine whether diffusion-weighted magnetic resonance imaging (MRI) can be used to identify the site and severity of lesions in individuals with AN. METHODS This case-control study included 10 individuals with AN of different etiologies, 7 individuals with neurofibromatosis type 1 (NF1), 5 individuals with cochlear hearing loss, and 37 control participants. Participants were recruited through the University of Melbourne's Neuroaudiology Clinic and the Murdoch Children's Research Institute specialist outpatient clinics. Diffusion-weighted MRI data were collected for all participants and the auditory pathways were evaluated using the fixel-based analysis metric of apparent fiber density. Data on each participant's auditory function were also collected including hearing thresholds, otoacoustic emissions, auditory evoked potentials, and speech-in-noise perceptual ability. RESULTS Analysis of diffusion-weighted MRI showed abnormal white matter fiber density in distinct locations within the auditory system depending on etiology. Compared with controls, individuals with AN due to perinatal oxygen deprivation showed no white matter abnormalities ( p > 0.05), those with a neurodegenerative conditions known/predicted to cause VIII cranial nerve axonopathy showed significantly lower white matter fiber density in the vestibulocochlear nerve ( p < 0.001), while participants with NF1 showed lower white matter fiber density in the auditory brainstem tracts ( p = 0.003). In addition, auditory behavioral measures of speech perception in noise and gap detection were correlated with fiber density results of the VIII nerve. CONCLUSIONS Diffusion-weighted MRI reveals different patterns of anatomical abnormality within the auditory system depending on etiology. This technique has the potential to guide management recommendations for individuals with peripheral and central auditory pathway abnormality.
Collapse
Affiliation(s)
- Julien Zanin
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Melbourne, Australia
- The HEARing Cooperative Research Centre, Melbourne, Victoria, Australia
| | - Gary Rance
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Melbourne, Australia
- The HEARing Cooperative Research Centre, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Barnes-Davis ME, Williamson BJ, Kline JE, Kline-Fath BM, Tkach J, He L, Yuan W, Parikh NA. Structural connectivity at term equivalent age and language in preterm children at 2 years corrected. Brain Commun 2024; 6:fcae126. [PMID: 38665963 PMCID: PMC11043656 DOI: 10.1093/braincomms/fcae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
We previously reported interhemispheric structural hyperconnectivity bypassing the corpus callosum in children born extremely preterm (<28 weeks) versus term children. This increased connectivity was positively associated with language performance at 4-6 years of age in our prior work. In the present study, we aim to investigate whether this extracallosal connectivity develops in extremely preterm infants at term equivalent age by leveraging a prospective cohort study of 350 very and extremely preterm infants followed longitudinally in the Cincinnati Infant Neurodevelopment Early Prediction Study. For this secondary analysis, we included only children born extremely preterm and without significant brain injury (n = 95). We use higher-order diffusion modelling to assess the degree to which extracallosal pathways are present in extremely preterm infants and predictive of later language scores at 22-26 months corrected age. We compare results obtained from two higher-order diffusion models: generalized q-sampling imaging and constrained spherical deconvolution. Advanced MRI was obtained at term equivalent age (39-44 weeks post-menstrual age). For structural connectometry analysis, we assessed the level of correlation between white matter connectivity at the whole-brain level at term equivalent age and language scores at 2 years corrected age, controlling for post-menstrual age, sex, brain abnormality score and social risk. For our constrained spherical deconvolution analyses, we performed connectivity-based fixel enhancement, using probabilistic tractography to inform statistical testing of the hypothesis that fibre metrics at term equivalent age relate to language scores at 2 years corrected age after adjusting for covariates. Ninety-five infants were extremely preterm with no significant brain injury. Of these, 53 had complete neurodevelopmental and imaging data sets that passed quality control. In the connectometry analyses adjusted for covariates and multiple comparisons (P < 0.05), the following tracks were inversely correlated with language: bilateral cerebellar white matter and middle cerebellar peduncles, bilateral corticospinal tracks, posterior commissure and the posterior inferior fronto-occipital fasciculus. No tracks from the constrained spherical deconvolution/connectivity-based fixel enhancement analyses remained significant after correction for multiple comparisons. Our findings provide critical information about the ontogeny of structural brain networks supporting language in extremely preterm children. Greater connectivity in more posterior tracks that include the cerebellum and connections to the regions of the temporal lobes at term equivalent age appears to be disadvantageous for language development.
Collapse
Affiliation(s)
- Maria E Barnes-Davis
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brady J Williamson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Julia E Kline
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Beth M Kline-Fath
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jean Tkach
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lili He
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Children’s Hospital Medical Center, Pediatric Neuroimaging Research Consortium, Cincinnati, OH, USA
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Lapidaire W, Clayden JD, Fewtrell MS, Clark CA. Increased white matter fibre dispersion and lower IQ scores in adults born preterm. Hum Brain Mapp 2024; 45:e26545. [PMID: 38070181 PMCID: PMC10789207 DOI: 10.1002/hbm.26545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Preterm birth has been associated with altered microstructural properties of the white matter and lower cognitive ability in childhood and adulthood. Due to methodological limitations of the diffusion tensor model, it is not clear whether alterations in myelination or variation in fibre orientation are driving these differences. Novel models applied to multi-shell diffusion imaging have been used to disentangle these effects, but to date this has not been used to study the preterm brain in adulthood. This study investigated whether novel advanced diffusion MRI metrics such as microscopic anisotropy and orientation dispersion are altered in adults born preterm, and whether this was associated with cognitive performance. Seventy-two preterm born participants (<37 weeks gestational age) were recruited from a 1982-1984 cohort (33 males, mean age 33.5 ± 1.0 years). Seventy-two term born (>37 weeks gestational age) controls (34 males, mean age 30.9 ± 4.0 years) were recruited from the general population. Tensor FA was calculated with FSL, while microscopic FA and orientation dispersion entropy (ODE) were estimated using the Spherical Mean Technique (SMT). Estimated Full Scale IQ (FSIQ), Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) were obtained from the WASI-II (abbreviated) IQ test. Voxel-wise comparisons using FSL's tract-based spatial statistics were performed to test between-group differences in diffusion MRI metrics as well as within-group associations of diffusion MRI metrics and IQ outcomes. The preterm group had significantly lower FSIQ, VCI and PRI scores. Preterm subjects demonstrated widespread decreases in ODE reflecting increased fibre dispersion, but no differences in microscopic FA. Tensor FA was increased in a small area in the anterior corona radiata. Lower FA values in the preterm population were associated with lower FSIQ and PRI scores. An increase in fibre dispersion in white matter and lower IQ scores after preterm birth exist in adulthood. Advanced diffusion MRI metrics such as the orientation dispersion entropy can be used to monitor white matter alterations across the lifespan in preterm born individuals. Although not significantly different between preterm and term groups, tensor FA values in the preterm group were associated with cognitive outcome.
Collapse
Affiliation(s)
- Winok Lapidaire
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Jonathan D. Clayden
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Mary S. Fewtrell
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Christopher A. Clark
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
4
|
Zheng W, Wang X, Liu T, Hu B, Wu D. Preterm-birth alters the development of nodal clustering and neural connection pattern in brain structural network at term-equivalent age. Hum Brain Mapp 2023; 44:5372-5386. [PMID: 37539754 PMCID: PMC10543115 DOI: 10.1002/hbm.26442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Preterm-born neonates are prone to impaired neurodevelopment that may be associated with disrupted whole-brain structural connectivity. The present study aimed to investigate the longitudinal developmental pattern of the structural network from preterm birth to term-equivalent age (TEA), and identify how prematurity influences the network topological organization and properties of local brain regions. Multi-shell diffusion-weighted MRI of 28 preterm-born scanned a short time after birth (PB-AB) and at TEA (PB-TEA), and 28 matched term-born (TB) neonates in the Developing Human Connectome Project (dHCP) were used to construct structural networks through constrained spherical deconvolution tractography. Structural network development from preterm birth to TEA showed reduced shortest path length, clustering coefficient, and modularity, and more "connector" hubs linking disparate communities. Furthermore, compared with TB newborns, premature birth significantly altered the nodal properties (i.e., clustering coefficient, within-module degree, and participation coefficient) in the limbic/paralimbic, default-mode, and subcortical systems but not global topology at TEA, and we were able to distinguish the PB from TB neonates at TEA based on the nodal properties with 96.43% accuracy. Our findings demonstrated a topological reorganization of the structural network occurs during the perinatal period that may prioritize the optimization of global network organization to form a more efficient architecture; and local topology was more vulnerable to premature birth-related factors than global organization of the structural network, which may underlie the impaired cognition and behavior in PB infants.
Collapse
Affiliation(s)
- Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of SemiconductorsChinese Academy of SciencesLanzhouChina
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Pretzel P, Wilke M, Tournier JD, Goelz R, Lidzba K, Hauser TK, Groeschel S. Reduced structural connectivity in non-motor networks in children born preterm and the influence of early postnatal human cytomegalovirus infection. Front Neurol 2023; 14:1241387. [PMID: 37849834 PMCID: PMC10577195 DOI: 10.3389/fneur.2023.1241387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Preterm birth is increasingly recognized to cause lifelong functional deficits, which often show no correlate in conventional MRI. In addition, early postnatal infection with human cytomegalovirus (hCMV) is being discussed as a possible cause for further impairments. In the present work, we used fixel-based analysis of diffusion-weighted MRI to assess long-term white matter alterations associated with preterm birth and/or early postnatal hCMV infection. Materials and methods 36 former preterms (PT, median age 14.8 years, median gestational age 28 weeks) and 18 healthy term-born controls (HC, median age 11.1 years) underwent high angular resolution DWI scans (1.5 T, b = 2 000 s/mm2, 60 directions) as well as clinical assessment. All subjects showed normal conventional MRI and normal motor function. Early postnatal hCMV infection status (CMV+ and CMV-) had been determined from repeated screening, ruling out congenital infections. Whole-brain analysis was performed, yielding fixel-wise metrics for fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC). Group differences were identified in a whole-brain analysis, followed by an analysis of tract-averaged metrics within a priori selected tracts associated with cognitive function. Both analyses were repeated while differentiating for postnatal hCMV infection status. Results PT showed significant reductions of fixel metrics bilaterally in the cingulum, the genu corporis callosum and forceps minor, the capsula externa, and cerebellar and pontine structures. After including intracranial volume as a covariate, reductions remained significant in the cingulum. The tract-specific investigation revealed further reductions bilaterally in the superior longitudinal fasciculus and the uncinate fasciculus. When differentiating for hCMV infection status, no significant differences were found between CMV+ and CMV-. However, comparing CMV+ against HC, fixel metric reductions were of higher magnitude and of larger spatial extent than in CMV- against HC. Conclusion Preterm birth can lead to long-lasting alterations of WM micro- and macrostructure, not visible on conventional MRI. Alterations are located predominantly in WM structures associated with cognitive function, likely underlying the cognitive deficits observed in our cohort. These observed structural alterations were more pronounced in preterms who suffered from early postnatal hCMV infection, in line with previous studies suggesting an additive effect.
Collapse
Affiliation(s)
- Pablo Pretzel
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Marko Wilke
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Rangmar Goelz
- Department of Neonatology, University Children’s Hospital, Tübingen, Germany
| | - Karen Lidzba
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Samuel Groeschel
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| |
Collapse
|
6
|
Sa de Almeida J, Baud O, Fau S, Barcos-Munoz F, Courvoisier S, Lordier L, Lazeyras F, Hüppi PS. Music impacts brain cortical microstructural maturation in very preterm infants: A longitudinal diffusion MR imaging study. Dev Cogn Neurosci 2023; 61:101254. [PMID: 37182337 DOI: 10.1016/j.dcn.2023.101254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
Preterm birth disrupts important neurodevelopmental processes occurring from mid-fetal to term-age. Musicotherapy, by enriching infants' sensory input, might enhance brain maturation during this critical period of activity-dependent plasticity. To study the impact of music on preterm infants' brain structural changes, we recruited 54 very preterm infants randomized to receive or not a daily music intervention, that have undergone a longitudinal multi-shell diffusion MRI acquisition, before the intervention (at 33 weeks' gestational age) and after it (at term-equivalent-age). Using whole-brain fixel-based (FBA) and NODDI analysis (n = 40), we showed a longitudinal increase of fiber cross-section (FC) and fiber density (FD) in all major cerebral white matter fibers. Regarding cortical grey matter, FD decreased while FC and orientation dispersion index (ODI) increased, reflecting intracortical multidirectional complexification and intracortical myelination. The music intervention resulted in a significantly higher longitudinal increase of FC and ODI in cortical paralimbic regions, namely the insulo-orbito-temporopolar complex, precuneus/posterior cingulate gyrus, as well as the auditory association cortex. Our results support a longitudinal early brain macro and microstructural maturation of white and cortical grey matter in preterm infants. The music intervention led to an increased intracortical complexity in regions important for socio-emotional development, known to be impaired in preterm infants.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland.
| | - Olivier Baud
- Division of Neonatal and Intensive Care, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Sebastien Fau
- Division of Neonatal and Intensive Care, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Francisca Barcos-Munoz
- Division of Neonatal and Intensive Care, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Sebastien Courvoisier
- Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland; Department of Radiology and Medical Informatics, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland; Department of Radiology and Medical Informatics, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Zito GA, Tarrano C, Ouarab S, Jegatheesan P, Ekmen A, Béranger B, Valabregue R, Hubsch C, Sangla S, Bonnet C, Delorme C, Méneret A, Degos B, Bouquet F, Apoil Brissard M, Vidailhet M, Hasboun D, Worbe Y, Roze E, Gallea C. Fixel-Based Analysis Reveals Whole-Brain White Matter Abnormalities in Cervical Dystonia. Mov Disord 2023. [PMID: 37148555 DOI: 10.1002/mds.29425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Cervical dystonia (CD) is a form of isolated focal dystonia typically associated to abnormal head, neck, and shoulder movements and postures. The complexity of the clinical presentation limits the investigation of its pathophysiological mechanisms, and the neural networks associated to specific motor manifestations are still the object of debate. OBJECTIVES We investigated the morphometric properties of white matter fibers in CD and explored the networks associated with motor symptoms, while regressing out nonmotor scores. METHODS Nineteen patients affected by CD and 21 healthy controls underwent diffusion-weighted magnetic resonance imaging. We performed fixel-based analysis, a novel method evaluating fiber orientation within specific fiber bundles, and compared fiber morphometric properties between groups. Moreover, we correlated fiber morphometry with the severity of motor symptoms in patients. RESULTS Compared to controls, patients exhibited decreased white matter fibers in the right striatum. Motor symptom severity negatively correlated with white matter fibers passing through inferior parietal areas and the head representation area of the motor cortex. CONCLUSIONS Abnormal white matter integrity at the basal ganglia level may affect several functional networks involved, for instance, in motor preparation and execution, visuomotor coordination, and multimodal integration. This may result in progressive maladaptive plasticity, culminating in overt symptoms of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Clément Tarrano
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Salim Ouarab
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Prasanthi Jegatheesan
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Asya Ekmen
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Benoît Béranger
- Center for NeuroImaging Research (CENIR), Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Romain Valabregue
- Center for NeuroImaging Research (CENIR), Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Cécile Hubsch
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Sophie Sangla
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Cécilia Bonnet
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Cécile Delorme
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | - Aurélie Méneret
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- DMU Neurosciences, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bertrand Degos
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- Neurology Unit, AP-HP, Avicenne University Hospital, Sorbonne Paris Nord, Bobigny, France
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, Université PSL, Paris, France
| | - Floriane Bouquet
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| | | | - Marie Vidailhet
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- DMU Neurosciences, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dominique Hasboun
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Yulia Worbe
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Roze
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
- DMU Neurosciences, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Gallea
- Movement Investigation and Therapeutics Team, Paris Brain Institute, Sorbonne University, Inserm U1127, CNRS UMR7225, Paris, France
| |
Collapse
|
8
|
Gilchrist CP, Kelly CE, Cumberland A, Dhollander T, Treyvaud K, Lee K, Cheong JLY, Doyle LW, Inder TE, Thompson DK, Tolcos M, Anderson PJ. Fiber-Specific Measures of White Matter Microstructure and Macrostructure Are Associated With Internalizing and Externalizing Symptoms in Children Born Very Preterm and Full-term. Biol Psychiatry 2023; 93:575-585. [PMID: 36481064 DOI: 10.1016/j.biopsych.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Tensor-based investigations suggest that delayed or disrupted white matter development may relate to adverse behavioral outcomes in individuals born very preterm (VP); however, metrics derived from such models lack specificity. Here, we applied a fixel-based analysis framework to examine white matter microstructural and macrostructural correlates of concurrent internalizing and externalizing problems in VP and full-term (FT) children at 7 and 13 years. METHODS Diffusion imaging data were collected in a longitudinal cohort of VP and FT individuals (130 VP and 29 FT at 7 years, 125 VP and 44 FT at 13 years). Fixel-based measures of fiber density, fiber-bundle cross-section, and fiber density and cross-section were extracted from 21 white matter tracts previously implicated in psychopathology. Internalizing and externalizing symptoms were assessed using the Strengths and Difficulties Questionnaire parent report at 7 and 13 years. RESULTS At age 7 years, widespread reductions in fiber-bundle cross-section and fiber density and cross-section and tract-specific reductions in fiber density were related to more internalizing and externalizing symptoms irrespective of birth group. At age 13 years, fixel-based measures were not related to internalizing symptoms, while tract-specific reductions in fiber density, fiber-bundle cross-section, and fiber density and cross-section measures were related to more externalizing symptoms in the FT group only. CONCLUSIONS Age-specific neurobiological markers of internalizing and externalizing problems identified in this study extend previous tensor-based findings to inform pathophysiological models of behavior problems and provide the foundation for investigations into novel preventative and therapeutic interventions to mitigate risk in VP and other high-risk infant populations.
Collapse
Affiliation(s)
- Courtney P Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia; Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Claire E Kelly
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karli Treyvaud
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Psychology and Counselling, La Trobe University, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Katherine Lee
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Terrie E Inder
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Deanne K Thompson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
10
|
Boyd RN, Novak I, Morgan C, Bora S, Sakzewski L, Ware RS, Comans T, Fahey MC, Whittingham K, Trost S, Pannek K, Pagnozzi A, Mcintyre S, Badawi N, Smithers Sheedy H, Palmer KR, Burgess A, Keramat A, Bell K, Hines A, Benfer K, Gascoigne-Pees L, Leishman S, Oftedal S. School readiness of children at high risk of cerebral palsy randomised to early neuroprotection and neurorehabilitation: protocol for a follow-up study of participants from four randomised clinical trials. BMJ Open 2023; 13:e068675. [PMID: 36849209 PMCID: PMC9972445 DOI: 10.1136/bmjopen-2022-068675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
INTRODUCTION School readiness includes cognitive, socio-emotional, language and physical growth and development domains which share strong associations with life-course opportunities. Children with cerebral palsy (CP) are at increased risk of poor school readiness compared with their typically developing peers. Recently, earlier diagnosis of CP has allowed interventions to commence sooner, harnessing neuroplasticity. First, we hypothesise that early referral to intervention for children at-risk of CP will lead to improved school readiness at 4-6 years relative to placebo or care as usual. Second, we hypothesise that receipt of early diagnosis and early intervention will lead to cost-savings in the form of reduced healthcare utilisation. METHODS AND ANALYSIS Infants identified as at-risk of CP ≤6 months corrected age (n=425) recruited to four randomised trials of neuroprotectants (n=1), early neurorehabilitation (n=2) or early parenting support (n=1) will be re-recruited to one overarching follow-up study at age 4-6 years 3 months. A comprehensive battery of standardised assessments and questionnaires will be administered to assess all domains of school readiness and associated risk factors. Participants will be compared with a historical control group of children (n=245) who were diagnosed with CP in their second year of life. Mixed-effects regression models will be used to compare school readiness outcomes between those referred for early intervention versus placebo/care-as-usual. We will also compare health-resource use associated with early diagnosis and intervention versus later diagnosis and intervention. ETHICS AND DISSEMINATION The Children's Health Queensland Hospital and Health Service, The University of Queensland, University of Sydney, Monash University and Curtin University Human Research Ethics Committees have approved this study. Informed consent will be sought from the parent or legal guardian of every child invited to participate. Results will be disseminated in peer-reviewed journals, scientific conferences and professional organisations, and to people with lived experience of CP and their families. TRIAL REGISTRATION NUMBER ACTRN12621001253897.
Collapse
Affiliation(s)
- Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Catherine Morgan
- Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Samudragupta Bora
- Case Western Reserve University School of Medicine, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Faculty of Medicine, Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Leanne Sakzewski
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University, Nathan, Queensland, Australia
| | - Tracy Comans
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Collingwood Fahey
- Paediatric Neurology, Monash Medical Centre Clayton, Clayton, Victoria, Australia
- Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Koa Whittingham
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Stewart Trost
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Kerstin Pannek
- The Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Alex Pagnozzi
- The Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Sarah Mcintyre
- Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Hayley Smithers Sheedy
- Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kirsten Rebecca Palmer
- Obstetrics and Gynaecology, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| | - Andrea Burgess
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Afroz Keramat
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Kristie Bell
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
- Dietetics and Food Services, Children's Health Queensland, South Brisbane, Queensland, Australia
| | - Ashleigh Hines
- Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Benfer
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Laura Gascoigne-Pees
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Shaneen Leishman
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| | - Stina Oftedal
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland Child Health Research Centre, South Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Pagnozzi AM, van Eijk L, Pannek K, Boyd RN, Saha S, George J, Bora S, Bradford D, Fahey M, Ditchfield M, Malhotra A, Liley H, Colditz PB, Rose S, Fripp J. Early brain morphometrics from neonatal MRI predict motor and cognitive outcomes at 2-years corrected age in very preterm infants. Neuroimage 2023; 267:119815. [PMID: 36529204 DOI: 10.1016/j.neuroimage.2022.119815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Infants born very preterm face a range of neurodevelopmental challenges in cognitive, language, behavioural and/or motor domains. Early accurate identification of those at risk of adverse neurodevelopmental outcomes, through clinical assessment and Magnetic Resonance Imaging (MRI), enables prognostication of outcomes and the initiation of targeted early interventions. This study utilises a prospective cohort of 181 infants born <31 weeks gestation, who had 3T MRIs acquired at 29-35 weeks postmenstrual age and a comprehensive neurodevelopmental evaluation at 2 years corrected age (CA). Cognitive, language and motor outcomes were assessed using the Bayley Scales of Infant and Toddler Development - Third Edition and functional motor outcomes using the Neuro-sensory Motor Developmental Assessment. By leveraging advanced structural MRI pre-processing steps to standardise the data, and the state-of-the-art developing Human Connectome Pipeline, early MRI biomarkers of neurodevelopmental outcomes were identified. Using Least Absolute Shrinkage and Selection Operator (LASSO) regression, significant associations between brain structure on early MRIs with 2-year outcomes were obtained (r = 0.51 and 0.48 for motor and cognitive outcomes respectively) on an independent 25% of the data. Additionally, important brain biomarkers from early MRIs were identified, including cortical grey matter volumes, as well as cortical thickness and sulcal depth across the entire cortex. Adverse outcome on the Bayley-III motor and cognitive composite scores were accurately predicted, with an Area Under the Curve of 0.86 for both scores. These associations between 2-year outcomes and patient prognosis and early neonatal MRI measures demonstrate the utility of imaging prior to term equivalent age for providing earlier commencement of targeted interventions for infants born preterm.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia.
| | - Liza van Eijk
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia; Department of Psychology, James Cook University, Townsville, Queensland, Australia
| | - Kerstin Pannek
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia
| | - Roslyn N Boyd
- Child Health Research Centre, Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Susmita Saha
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia
| | - Joanne George
- Child Health Research Centre, Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Physiotherapy Department, Queensland Children's Hospital, Children's Health Queensland Hospital and Health Service, Brisbane, Australia
| | - Samudragupta Bora
- Mothers, Babies and Women's Health Program, Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - DanaKai Bradford
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia
| | - Michael Fahey
- Monash Health Paediatric Neurology Unit and Department of Paediatrics, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Michael Ditchfield
- Monash Imaging, Monash Health, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Atul Malhotra
- Monash Health Paediatric Neurology Unit and Department of Paediatrics, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia
| | - Helen Liley
- Mothers, Babies and Women's Health Program, Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul B Colditz
- Perinatal Research Centre, Faculty of Medicine, The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia
| |
Collapse
|
12
|
Spatiotemporal Developmental Gradient of Thalamic Morphology, Microstructure, and Connectivity fromthe Third Trimester to Early Infancy. J Neurosci 2023; 43:559-570. [PMID: 36639904 PMCID: PMC9888512 DOI: 10.1523/jneurosci.0874-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/19/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Thalamus is a critical component of the limbic system that is extensively involved in both basic and high-order brain functions. However, how the thalamic structure and function develops at macroscopic and microscopic scales during the perinatal period development is not yet well characterized. Here, we used multishell high-angular resolution diffusion MRI of 144 preterm-born and full-term infants in both sexes scanned at 32-44 postmenstrual weeks (PMWs) from the Developing Human Connectome Project database to investigate the thalamic development in morphology, microstructure, associated connectivity, and subnucleus division. We found evident anatomic expansion and linear increases of fiber integrity in the lateral side of thalamus compared with the medial part. The tractography results indicated that thalamic connection to the frontal cortex developed later than the other thalamocortical connections (parieto-occipital, motor, somatosensory, and temporal). Using a connectivity-based segmentation strategy, we revealed that functional partitions of thalamic subdivisions were formed at 32 PMWs or earlier, and the partition developed toward the adult pattern in a lateral-to-medial pattern. Collectively, these findings revealed faster development of the lateral thalamus than the central part as well as a posterior-to-anterior developmental gradient of thalamocortical connectivity from the third trimester to early infancy.SIGNIFICANCE STATEMENT This is the first study that characterizes the spatiotemporal developmental pattern of thalamus during the third trimester to early infancy. We found that thalamus develops in a lateral-to-medial pattern for both thalamic microstructures and subdivisions; and thalamocortical connectivity develops in a posterior-to-anterior gradient that thalamofrontal connectivity appears later than the other thalamocortical connections. These findings may enrich our understanding of the developmental principles of thalamus and provide references for the atypical brain growth in neurodevelopmental disorders.
Collapse
|
13
|
Butera CD, Rhee C, Kelly CE, Dhollander T, Thompson DK, Wisnowski J, Molinini RM, Sargent B, Lepore N, Vorona G, Bessom D, Shall MS, Burnsed J, Stevenson RD, Brown S, Harper A, Hendricks-Muñoz KD, Dusing SC. Effect of a NICU to Home Physical Therapy Intervention on White Matter Trajectories, Motor Skills, and Problem-Solving Skills of Infants Born Very Preterm: A Case Series. J Pers Med 2022; 12:2024. [PMID: 36556244 PMCID: PMC9784100 DOI: 10.3390/jpm12122024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Infants born very preterm (VPT; ≤29 weeks of gestation) are at high risk of developmental disabilities and abnormalities in neural white matter characteristics. Early physical therapy interventions such as Supporting Play Exploration and Early Development Intervention (SPEEDI2) are associated with improvements in developmental outcomes. Six VPT infants were enrolled in a randomised clinical trial of SPEEDI2 during the transition from the neonatal intensive care unit to home over four time points. Magnetic resonance imaging scans and fixel-based analysis were performed, and fibre density (FD), fibre cross-section (FC), and fibre density and cross-section values (FDC) were computed. Changes in white matter microstructure and macrostructure were positively correlated with cognitive, motor, and motor-based problem solving over time on developmental assessments. In all infants, the greatest increase in FD, FC, and FDC occurred between Visit 1 and 2 (mean chronological age: 2.68-6.22 months), suggesting that this is a potential window of time to optimally support adaptive development. Results warrant further studies with larger groups to formally compare the impact of intervention and disparity on neurodevelopmental outcomes in infants born VPT.
Collapse
Affiliation(s)
- Christiana Dodd Butera
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire Rhee
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire E. Kelly
- Victorian Infant Brain Studies and Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Deanne K. Thompson
- Victorian Infant Brain Studies and Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Jessica Wisnowski
- Departments of Radiology and Pediatrics (Neonatology), Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Rebecca M. Molinini
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Barbara Sargent
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Natasha Lepore
- CIBORG Laboratory, Department of Radiology, University of Southern California, Los Angeles, CA 90089, USA
- Departments of Pediatrics and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Greg Vorona
- Department of Radiology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Dave Bessom
- Department of Radiology, Children’s Hospital of Richmond at VCU, Richmond, VA 23284, USA
| | - Mary S. Shall
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jennifer Burnsed
- Division of Neonatology, Departments of Pediatrics and Neurology, University of Virginia, Charlottesville, VA 22903, USA
| | - Richard D. Stevenson
- Division of Neurodevelopmental and Behavioral Pediatrics, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Shaaron Brown
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Karen D. Hendricks-Muñoz
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children’s Hospital of Richmond at VCU, Richmond, VA 23284, USA
| | - Stacey C. Dusing
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
14
|
Ali TS, Lv J, Calamante F. Gradual changes in microarchitectural properties of cortex and juxtacortical white matter: Observed by anatomical and diffusion MRI. Magn Reson Med 2022; 88:2485-2503. [PMID: 36045582 DOI: 10.1002/mrm.29413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Characterization of cerebral cortex is challenged by the complexity and heterogeneity of its cyto- and myeloarchitecture. This study evaluates quantitative MRI metrics, measured across two cortical depths and in subcortical white matter (WM) adjacent to cortex (juxtacortical WM), indicative of myelin content, neurite density, and diffusion microenvironment, for a comprehensive characterization of cortical microarchitecture. METHODS High-quality structural and diffusion MRI data (N = 30) from the Human Connectome Project were processed to compute myelin index, neurite density index, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from superficial cortex, deep cortex, and juxtacortical WM. The distributional patterns of these metrics were analyzed individually, correlated to one another, and were compared to established parcellations. RESULTS Our results supported that myeloarchitectonic and the coexisting cytoarchitectonic structures influence the diffusion properties of water molecules residing in cortex. Full cortical thickness showed myelination patterns similar to those previously observed in humans. Higher myelin indices with similar distributional patterns were observed in deep cortex whereas lower myelin indices were observed in superficial cortex. Neurite density index and other diffusion MRI derived parameters provided complementary information to myelination. Reliable and reproducible correlations were identified among the cortical microarchitectural properties and fiber distributional patterns in proximal WM structures. CONCLUSION We demonstrated gradual changes across the cortical sheath by assessing depth-specific cortical micro-architecture using anatomical and diffusion MRI. Mutually independent but coexisting features of cortical layers and juxtacortical WM provided new insights towards structural organizational units and variabilities across cortical regions and through depth.
Collapse
Affiliation(s)
- Tonima S Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Jinglei Lv
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Vishnubhotla RV, Zhao Y, Wen Q, Dietrich J, Sokol GM, Sadhasivam S, Radhakrishnan R. Brain structural connectome in neonates with prenatal opioid exposure. Front Neurosci 2022; 16:952322. [PMID: 36188457 PMCID: PMC9523134 DOI: 10.3389/fnins.2022.952322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionInfants with prenatal opioid exposure (POE) are shown to be at risk for poor long-term neurobehavioral and cognitive outcomes. Early detection of brain developmental alterations on neuroimaging could help in understanding the effect of opioids on the developing brain. Recent studies have shown altered brain functional network connectivity through the application of graph theoretical modeling, in infants with POE. In this study, we assess global brain structural connectivity through diffusion tensor imaging (DTI) metrics and apply graph theoretical modeling to brain structural connectivity in infants with POE.MethodsIn this prospective observational study in infants with POE and control infants, brain MRI including DTI was performed before completion of 3 months corrected postmenstrual age. Tractography was performed on the whole brain using a deterministic fiber tracking algorithm. Pairwise connectivity and network measure were calculated based on fiber count and fractional anisotropy (FA) values. Graph theoretical metrics were also derived.ResultsThere were 11 POE and 18 unexposed infants included in the analysis. Pairwise connectivity based on fiber count showed alterations in 32 connections. Pairwise connectivity based on FA values showed alterations in 24 connections. Connections between the right superior frontal gyrus and right paracentral lobule and between the right superior occipital gyrus and right fusiform gyrus were significantly different after adjusting for multiple comparisons between POE infants and unexposed controls. Additionally, alterations in graph theoretical network metrics were identified with fiber count and FA value derived tracts.ConclusionComparisons show significant differences in fiber count in two structural connections. The long-term clinical outcomes related to these findings may be assessed in longitudinal follow-up studies.
Collapse
Affiliation(s)
- Ramana V. Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan Dietrich
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gregory M. Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Rupa Radhakrishnan,
| |
Collapse
|
16
|
Liu T, Wu J, Zhao Z, Li M, Lv Y, Li M, Gao F, You Y, Zhang H, Ji C, Wu D. Developmental pattern of association fibers and their interaction with associated cortical microstructures in 0-5-month-old infants. Neuroimage 2022; 261:119525. [PMID: 35908606 DOI: 10.1016/j.neuroimage.2022.119525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Association fibers connect the cortical regions and experience rapid development involving myelination and axonal growth during infancy. Yet, the spatiotemporal patterns of microstructural changes along these tracts, as well as the developmental interaction between the white matter (WM) tracts and the cortical gray matter (cGM) connected to them, are mostly unknown during infancy. In this study, we performed a diffusion MRI-based tractography and microstructure study in a cohort of 89 healthy preterm-born infants with gestational age at birth between 28.1∼36.4 weeks and postmenstrual age at scan between 39.9∼59.9 weeks. Results revealed that several C-shaped fibers, such as the arcuate fasciculus, cingulum, and uncinate fasciculus, demonstrated symmetrical along-tract profiles; and the horizontally oriented running fibers, including the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus, demonstrated an anterior-posterior developmental gradient. This study characterized the along-tract profiles using fixel-based analysis and revealed that the fiber cross-section (FC) of all five association fibers demonstrated a fluctuating increase with age, while the fiber density (FD) monotonically increase with age. NODDI was utilized to analyze the microstructural development of cGM and indicated cGM connected to the anterior end of the association fibers developed faster than that of the posterior end during 0-5 months. Notably, a mediation analysis was used to explore the relation between the development of WM and associated cGM, and demonstrated a partial mediation effect of FD in WM on the development of intracellular volume (ICV) in cGM and a full mediation effect of ICV on the growth of FD in most fibers, suggesting a predominant mediation of cGM on the WM development. Furthermore, for assessing whether those results were biased by prematurity, we compared preterm- and term-born neonates with matched scan age, gender, and multiple births from the developing human connectome project (dHCP) dataset to assess the effect of preterm-birth, and the results indicated a similar developmental pattern of the association fibers and their attached cGM. These findings presented a comprehensive picture of the major association fibers during early infancy and deciphered the developmental interaction between WM and cGM in this period.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jiani Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Ying Lv
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyan Li
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing You
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chai Ji
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
17
|
Taskin HO, Qiao Y, Sydnor VJ, Cieslak M, Haggerty EB, Satterthwaite TD, Morgan JI, Shi Y, Aguirre GK. Retinal ganglion cell endowment is correlated with optic tract fiber cross section, not density. Neuroimage 2022; 260:119495. [PMID: 35868617 PMCID: PMC10362491 DOI: 10.1016/j.neuroimage.2022.119495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
There is substantial variation between healthy individuals in the number of retinal ganglion cells (RGC) in the eye, with commensurate variation in the number of axons in the optic tracts. Fixel-based analysis of diffusion MR produces estimates of fiber density (FD) and cross section (FC). Using these fixel measurements along with retinal imaging, we asked if individual differences in RGC tissue volume are correlated with individual differences in FD and FC measurements obtained from the optic tracts, and subsequent structures along the cortical visual pathway. We find that RGC endowment is correlated with optic tract FC, but not with FD. RGC volume had a decreasing relationship with measurements from subsequent regions of the visual system (LGN volume, optic radiation FC/FD, and V1 surface area). However, we also found that the variations in each visual area were correlated with the variations in its immediately adjacent visual structure. We only observed these serial correlations when FC is used as the measure of interest for the optic tract and radiations, but no significant relationship was found when FD represented these white matter structures. From these results, we conclude that the variations in RGC endowment, LGN volume, and V1 surface area are better predicted by the overall cross section of the optic tract and optic radiations as compared to the intra-axonal restricted signal component of these white matter pathways. Additionally, the presence of significant correlations between adjacent, but not distant, anatomical structures suggests that there are multiple, local sources of anatomical variation along the visual pathway.
Collapse
Affiliation(s)
- Huseyin O Taskin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yuchuan Qiao
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Valerie J Sydnor
- Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew Cieslak
- Department of Neuropsychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Edda B Haggerty
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Theodore D Satterthwaite
- Department of Psychiatry, Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jessica Iw Morgan
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yonggang Shi
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
| |
Collapse
|
18
|
Wang J, Wen C, Li J, Chen J, Feng Y. Automated quantification of brain connectivity in Alzheimer's disease using ClusterMetric. Neurosci Lett 2022; 785:136724. [PMID: 35697157 DOI: 10.1016/j.neulet.2022.136724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Diffusion magnetic resonance imaging tractography allows investigating brain structural connections in a noninvasive way and has been widely used for understanding neurological disease. Quantification of brain connectivity along with its length by dividing a fiber bundle into multiple segments (node) is a powerful approach to assess biological properties, which is termed as tractometry. However, current tractometry methods face challenges in node identification along with the length of complex bundles whose morphology is difficult to summarize. In addition, the anatomic measure reflecting the macroscopic fiber cross-section has not been followed in previous tractometry. In this paper, we propose an automated fiber bundle quantification, which we refer to as ClusterMetric. The ClusterMetric uses a data-driven approach to identify fiber clusters corresponding to subdivisions of the white matter anatomy and identify consistent space nodes along the length of clusters across individuals. The proposed method is demonstrated by applicating to our collected dataset including 23 Alzheimer's disease (AD) patients and 22 healthy controls (HCs) and a public dataset of ADNI including 53 AD patients and 85 HCs. The altered white matter tracts in AD group are observed using both datasets, which involve several major fiber tracts including the corpus callosum, corona-radiata-frontal, arcuate fasciculus, inferior occipito-frontal fasciculus, uncinate fasciculus, thalamo-frontal, superior longitudinal fasciculus, inferior cerebellar peduncle, cingulum bundle, and extreme capsule. These fiber clusters represent the white matter connections that could be most affected in AD, suggesting the ability of our method in identifying potential abnormalities specific to local regions within a fiber cluster.
Collapse
Affiliation(s)
- Jingqiang Wang
- Institution of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Caiyun Wen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinwen Li
- Institution of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | | | - Yuanjing Feng
- Institution of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
19
|
Zhang F, Wells WM, O'Donnell LJ. Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1454-1467. [PMID: 34968177 PMCID: PMC9273049 DOI: 10.1109/tmi.2021.3139507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we present a deep learning method, DDMReg, for accurate registration between diffusion MRI (dMRI) datasets. In dMRI registration, the goal is to spatially align brain anatomical structures while ensuring that local fiber orientations remain consistent with the underlying white matter fiber tract anatomy. DDMReg is a novel method that uses joint whole-brain and tract-specific information for dMRI registration. Based on the successful VoxelMorph framework for image registration, we propose a novel registration architecture that leverages not only whole brain information but also tract-specific fiber orientation information. DDMReg is an unsupervised method for deformable registration between pairs of dMRI datasets: it does not require nonlinearly pre-registered training data or the corresponding deformation fields as ground truth. We perform comparisons with four state-of-the-art registration methods on multiple independently acquired datasets from different populations (including teenagers, young and elderly adults) and different imaging protocols and scanners. We evaluate the registration performance by assessing the ability to align anatomically corresponding brain structures and ensure fiber spatial agreement between different subjects after registration. Experimental results show that DDMReg obtains significantly improved registration performance compared to the state-of-the-art methods. Importantly, we demonstrate successful generalization of DDMReg to dMRI data from different populations with varying ages and acquired using different acquisition protocols and different scanners.
Collapse
|
20
|
Bells S, Longoni G, Berenbaum T, de Medeiros CB, Narayanan S, Banwell BL, Arnold DL, Mabbott DJ, Ann Yeh E. Patterns of white and gray structural abnormality associated with paediatric demyelinating disorders. Neuroimage Clin 2022; 34:103001. [PMID: 35381508 PMCID: PMC8980471 DOI: 10.1016/j.nicl.2022.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
A multi-modal approach was used to evaluate the visual pathway from anterior (retina) to posterior (visual cortex) in both paediatric MOGAD and MS patients. MS patients exhibited more widespread white matter abnormalities; MOGAD patients exhibited white matter changes primarily within the optic radiation. The pattern of cortical thinning differed in MS and MOGAD patients. Reduced RNFLT was associated with lower axonal density in MOGAD and tortuosity in MS.
The impact of multiple sclerosis (MS) and myelin oligodendrocyte glycoprotein (MOG) - associated disorders (MOGAD) on brain structure in youth remains poorly understood. Reductions in cortical mantle thickness on structural MRI and abnormal diffusion-based white matter metrics (e.g., diffusion tensor parameters) have been well documented in MS but not in MOGAD. Characterizing structural abnormalities found in children with these disorders can help clarify the differences and similarities in their impact on neuroanatomy. Importantly, while MS and MOGAD affect the entire CNS, the visual pathway is of particular interest in both groups, as most patients have evidence for clinical or subclinical involvement of the anterior visual pathway. Thus, the visual pathway is of key interest in analyses of structural abnormalities in these disorders and may distinguish MOGAD from MS patients. In this study we collected MRI data on 18 MS patients, 14 MOGAD patients and 26 age- and sex-matched typically developing children (TDC). Full-brain group differences in fixel diffusion measures (fibre-bundle populations) and cortical thickness measures were tested using age and sex as covariates. Visual pathway analysis was performed by extracting mean diffusion measures within lesion free optic radiations, cortical thickness within the visual cortex, and retinal nerve fibre layer (RNFL) and ganglion cell layer thickness measures from optical coherence tomography (OCT). Fixel based analysis (FBA) revealed MS patients have widespread abnormal white matter within the corticospinal tract, inferior longitudinal fasciculus, and optic radiations, while within MOGAD patients, non-lesional impact on white matter was found primarily in the right optic radiation. Cortical thickness measures were reduced predominately in the temporal and parietal lobes in MS patients and in frontal, cingulate and visual cortices in MOGAD patients. Additionally, our findings of associations between reduced RNFLT and axonal density in MOGAD and TORT in MS patients in the optic radiations imply widespread axonal and myelin damage in the visual pathway, respectively. Overall, our approach of combining FBA, cortical thickness and OCT measures has helped evaluate similarities and differences in brain structure in MS and MOGAD patients in comparison to TDC.
Collapse
Affiliation(s)
- Sonya Bells
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada; Pediatric Neurology, Spectrum Health Helen Devos Children's Hospital, Grand Rapids, USA; Department of Pediatrics and Human Development, Michigan State University, East Lansing, USA
| | - Giulia Longoni
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada; Department of Neurology, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Tara Berenbaum
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Cynthia B de Medeiros
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Sridar Narayanan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Brenda L Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, USA
| | - Douglas L Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| | - E Ann Yeh
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada; Department of Neurology, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
Chandwani R, Harpster K, Kline JE, Mehta V, Wang H, Merhar SL, Schwartz TL, Parikh NA. Brain microstructural antecedents of visual difficulties in infants born very preterm. Neuroimage Clin 2022; 34:102987. [PMID: 35290855 PMCID: PMC8918861 DOI: 10.1016/j.nicl.2022.102987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Infants born very preterm (VPT) are at risk of later visual problems. Although neonatal screening can identify ophthalmologic abnormalities, subtle perinatal brain injury and/or delayed brain maturation may be significant contributors to complex visual-behavioral problems. Our aim was to assess the micro and macrostructural antecedents of early visual-behavioral difficulties in VPT infants by using diffusion MRI (dMRI) at term-equivalent age. We prospectively recruited a cohort of 262 VPT infants (≤32 weeks gestational age [GA]) from five neonatal intensive care units. We obtained structural and diffusion MRI at term-equivalent age and administered the Preverbal Visual Assessment (PreViAs) questionnaire to parents at 3-4 months corrected age. We used constrained spherical deconvolution to reconstruct nine white matter tracts of the visual pathways with high reliability and performed fixel-based analysis to derive fiber density (FD), fiber-bundle cross-section (FC), and combined fiber density and cross-section (FDC). In multiple logistic regression analyses, we related these tract metrics to visual-behavioral function. Of 262 infants, 191 had both high-quality dMRI and completed PreViAs, constituting the final cohort: mean (SD) GA was 29.3 (2.4) weeks, 90 (47.1%) were males, and postmenstrual age (PMA) at MRI was 42.8 (1.3) weeks. FD and FC of several tracts were altered in infants with (N = 59) versus those without retinopathy of prematurity (N = 132). FDC of the left posterior thalamic radiations (PTR), left inferior longitudinal fasciculus (ILF), right superior longitudinal fasciculus (SLF), and left inferior fronto-occipital fasciculus (IFOF) were significantly associated with visual attention scores, prior to adjusting for confounders. After adjustment for PMA at MRI, GA, severe retinopathy of prematurity, and total brain volume, FDC of the left PTR, left ILF, and left IFOF remained significantly associated with visual attention. Early visual-behavioral difficulties in VPT infants are preceded by micro and macrostructural abnormalities in several major visual pathways at term-equivalent age.
Collapse
Affiliation(s)
- Rahul Chandwani
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Karen Harpster
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Rehabilitation, Exercise, and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Julia E Kline
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ved Mehta
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Hui Wang
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; MR Clinical Science, Philips, Cincinnati, OH, United States
| | - Stephanie L Merhar
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Terry L Schwartz
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nehal A Parikh
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
22
|
Neonatal encephalopathy prediction of poor outcome with diffusion-weighted imaging connectome and fixel-based analysis. Pediatr Res 2022; 91:1505-1515. [PMID: 33966055 PMCID: PMC9053106 DOI: 10.1038/s41390-021-01550-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Better biomarkers of eventual outcome are needed for neonatal encephalopathy. To identify the most potent neonatal imaging marker associated with 2-year outcomes, we retrospectively performed diffusion-weighted imaging connectome (DWIC) and fixel-based analysis (FBA) on magnetic resonance imaging (MRI) obtained in the first 4 weeks of life in term neonatal encephalopathy newborns. METHODS Diffusion tractography was available in 15 out of 24 babies with MRI, five each with normal, abnormal motor outcome, or death. All 15 except one underwent hypothermia as initial treatment. In abnormal motor and death groups, DWIC found 19 white matter pathways with severely disrupted fiber orientation distributions. RESULTS Using random forest classification, these disruptions predicted the follow-up outcomes with 89-99% accuracy. These pathways showed reduced integrity in abnormal motor and death vs. normal tone groups (p < 10-6). Using ranked supervised multi-view canonical correlation and depicting just three of the five dimensions of the analysis, the abnormal motor and death were clearly differentiated from each other and the normal tone group. CONCLUSIONS This study suggests that a machine-learning model for prediction using early DWIC and FBA could be a possible way of developing biomarkers in large MRI datasets having clinical outcomes. IMPACT Early connectome and FBA of clinically acquired DWI provide a new noninvasive imaging tool to predict the long-term motor outcomes after birth, based on the severity of white matter injury. Disrupted white matter connectivity as a novel neonatal marker achieves high accuracy of 89-99% to predict 2-year motor outcomes using conventional machine-learning classification. The proposed neonatal marker may allow better prognostication that is important to elucidate neural repair mechanisms and evaluate treatment modalities in neonatal encephalopathy.
Collapse
|
23
|
Kelly C, Dhollander T, Harding IH, Khan W, Beare R, Cheong JL, Doyle LW, Seal M, Thompson DK, Inder TE, Anderson PJ. Brain tissue microstructural and free-water composition 13 years after very preterm birth. Neuroimage 2022; 254:119168. [PMID: 35367651 DOI: 10.1016/j.neuroimage.2022.119168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/27/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
There have been many studies demonstrating children born very preterm exhibit brain white matter microstructural alterations, which have been related to neurodevelopmental difficulties. These prior studies have often been based on diffusion MRI modelling and analysis techniques, which commonly focussed on white matter microstructural properties in very preterm-born children. However, there have been relatively fewer studies investigating the free-water content of the white matter, and also the microstructure and free-water content of the cortical grey matter, in very preterm-born children. These biophysical properties of the brain change rapidly during fetal and neonatal brain development, and therefore such properties are likely also adversely affected by very preterm birth. In this study, we investigated the relationship of very preterm birth (<30 weeks' gestation) to both white matter and cortical grey matter microstructure and free-water content in childhood using advanced diffusion MRI analyses. A total of 130 very preterm participants and 45 full-term control participants underwent diffusion MRI at age 13 years. Diffusion tissue signal fractions derived by Single-Shell 3-Tissue Constrained Spherical Deconvolution were used to investigate brain tissue microstructural and free-water composition. The tissue microstructural and free-water composition metrics were analysed using a bespoke voxel-based analysis and cortical region-of-interest analysis approach. Very preterm 13-year-olds exhibited reduced white matter microstructural density and increased free-water content across widespread regions of the white matter compared with controls. Additionally, very preterm 13-year-olds exhibited reduced microstructural density and increased free-water content in specific temporal, sensorimotor, occipital and cingulate cortical regions. These brain tissue composition alterations were strongly associated with cerebral white matter abnormalities identified in the neonatal period, and concurrent adverse cognitive and motor outcomes in very preterm children. The findings demonstrate brain microstructural and free-water alterations up to thirteen years from neonatal brain abnormalities in very preterm children that relate to adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Claire Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Thijs Dhollander
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Wasim Khan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richard Beare
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Marc Seal
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
24
|
Kelly C, Ball G, Matthews LG, Cheong JL, Doyle LW, Inder TE, Thompson DK, Anderson PJ. Investigating brain structural maturation in children and adolescents born very preterm using the brain age framework. Neuroimage 2021; 247:118828. [PMID: 34923131 DOI: 10.1016/j.neuroimage.2021.118828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Very preterm (VP) birth is associated with an increased risk for later neurodevelopmental and behavioural challenges. Although the neurobiological underpinnings of such challenges continue to be explored, previous studies have reported brain volume and morphology alterations in children and adolescents born VP compared with full-term (FT)-born controls. How these alterations relate to the trajectory of brain maturation, with potential implications for later brain ageing, remains unclear. In this longitudinal study, we investigate the relationship between VP birth and brain development during childhood and adolescence. We construct a normative 'brain age' model to predict age over childhood and adolescence based on measures of brain cortical and subcortical volumes and cortical morphology from structural MRI of a dataset of typically developing children aged 3-21 years (n = 768). Using this model, we examined deviations from normative brain development in a separate dataset of children and adolescents born VP (<30 weeks' gestation) at two timepoints (ages 7 and 13 years) compared with FT-born controls (120 VP and 29 FT children at age 7 years; 140 VP and 47 FT children at age 13 years). Brain age delta (brain-predicted age minus chronological age) was, on average, higher in the VP group at both timepoints compared with controls, however this difference had a small to medium effect size and was not statistically significant. Variance in brain age delta was higher in the VP group compared with controls; this difference was significant at the 13-year timepoint. Within the VP group, there was little evidence of associations between brain age delta and perinatal risk factors or cognitive and motor outcomes. Under the brain age framework, our results may suggest that children and adolescents born VP have similar brain structural developmental trajectories to term-born peers between 7 and 13 years of age.
Collapse
Affiliation(s)
- Claire Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Lillian G Matthews
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
25
|
Sairanen V, Ocampo-Pineda M, Granziera C, Schiavi S, Daducci A. Incorporating outlier information into diffusion-weighted MRI modeling for robust microstructural imaging and structural brain connectivity analyses. Neuroimage 2021; 247:118802. [PMID: 34896584 DOI: 10.1016/j.neuroimage.2021.118802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
The white matter structures of the human brain can be represented using diffusion-weighted MRI tractography. Unfortunately, tractography is prone to find false-positive streamlines causing a severe decline in its specificity and limiting its feasibility in accurate structural brain connectivity analyses. Filtering algorithms have been proposed to reduce the number of invalid streamlines but the currently available filtering algorithms are not suitable to process data that contains motion artefacts which are typical in clinical research. We augmented the Convex Optimization Modelling for Microstructure Informed Tractography (COMMIT) algorithm to adjust for these signals drop-out motion artefacts. We demonstrate with comprehensive Monte-Carlo whole brain simulations and in vivo infant data that our robust algorithm is capable of properly filtering tractography reconstructions despite these artefacts. We evaluated the results using parametric and non-parametric statistics and our results demonstrate that if not accounted for, motion artefacts can have severe adverse effects in human brain structural connectivity analyses as well as in microstructural property mappings. In conclusion, the usage of robust filtering methods to mitigate motion related errors in tractogram filtering is highly beneficial, especially in clinical studies with uncooperative patient groups such as infants. With our presented robust augmentation and open-source implementation, robust tractogram filtering is readily available.
Collapse
Affiliation(s)
- Viljami Sairanen
- Department of Computer Science, University of Verona, Verona, Italy; Translational Imaging in Neurology, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Neurologic Clinic and Policlinic, Basel, Switzerland; BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | | | - Cristina Granziera
- Translational Imaging in Neurology, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Neurologic Clinic and Policlinic, Basel, Switzerland
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | | |
Collapse
|
26
|
The structural connectome and internalizing and externalizing symptoms at 7 and 13 years in individuals born very preterm and full-term. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:424-434. [PMID: 34655805 DOI: 10.1016/j.bpsc.2021.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Children born very preterm (VP) are at higher risk of emotional and behavioral problems compared with full-term (FT) children. We investigated the neurobiological basis of internalizing and externalizing symptoms in individuals born VP and FT by applying a graph theory approach. METHODS Structural and diffusion MRI data were combined to generate structural connectomes and calculate measures of network integration and segregation at 7 (VP:72; FT:17) and 13 years (VP:125; FT:44). Internalizing and externalizing were assessed at 7 and 13 years using the Strengths and Difficulties Questionnaire. Linear regression models were used to relate network measures and internalizing and externalizing symptoms concurrently at 7 and 13 years. RESULTS Lower network integration (characteristic path length and global efficiency) was associated with higher internalizing symptoms in VP and FT children at 7 years, but not at 13 years. The association between network integration (characteristic path length) and externalizing symptoms at 7 years was weaker, but there was some evidence for differential associations between groups, with lower integration in the VP and higher integration in the FT group associated with higher externalizing symptoms. At 13 years, there was some evidence that associations between network segregation (average clustering coefficient, transitivity, local efficiency) and externalizing differed between the VP and FT groups, with stronger positive associations in the VP group. CONCLUSIONS This study provides insights into the neurobiological basis of emotional and behavioral problems following preterm birth, highlighting the role of the structural connectome in internalizing and externalizing symptoms in childhood and adolescence.
Collapse
|
27
|
Collins SE, Thompson DK, Kelly CE, Yang JYM, Pascoe L, Inder TE, Doyle LW, Cheong JLY, Burnett AC, Anderson PJ. Development of brain white matter and math computation ability in children born very preterm and full-term. Dev Cogn Neurosci 2021; 51:100987. [PMID: 34273749 PMCID: PMC8319459 DOI: 10.1016/j.dcn.2021.100987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/08/2022] Open
Abstract
Children born very preterm (VPT; <32 weeks' gestation) have alterations in brain white matter and poorer math ability than full-term (FT) peers. Diffusion-weighted magnetic resonance imaging studies suggest a link between white matter microstructure and math in VPT and FT children, although longitudinal studies using advanced modelling are lacking. In a prospective longitudinal cohort of VPT and FT children we used Fixel-Based Analysis to investigate associations between maturation of white matter fibre density (FD), fibre-bundle cross-section (FC), and combined fibre density and cross-section (FDC) and math computation ability at 7 (n = 136 VPT; n = 32 FT) and 13 (n = 130 VPT; n = 44 FT) years, as well as between change in white matter and math computation ability from 7 to 13 years (n = 103 VPT; n = 21 FT). In both VPT and FT children, higher FD, FC and FDC in visual, sensorimotor and cortico-thalamic/thalamo-cortical white matter tracts were associated with better math computation ability at 7 and 13 years. Longitudinally, accelerated maturation of the posterior body of the corpus callosum (FDC) was associated with greater math computation development. White matter-math associations were similar for VPT and FT children. In conclusion, white matter maturation is associated with math computation ability across late childhood, irrespective of birth group.
Collapse
Affiliation(s)
- Simonne E Collins
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Deanne K Thompson
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Claire E Kelly
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Joseph Y M Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neuroscience Advanced Clinical Imaging Suite (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Leona Pascoe
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| | - Terrie E Inder
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lex W Doyle
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Premature Infant Follow-Up Program, Royal Women's Hospital, Melbourne, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Premature Infant Follow-Up Program, Royal Women's Hospital, Melbourne, Australia
| | - Alice C Burnett
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Premature Infant Follow-Up Program, Royal Women's Hospital, Melbourne, Australia; Neonatal Medicine, Royal Children's Hospital, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
28
|
Zhang J, Zheng W, Shang D, Chen Y, Zhong S, Ye J, Li L, Yu Y, Zhang L, Cheng R, He F, Wu D, Ye X, Luo B. Fixel-based evidence of microstructural damage in crossing pathways improves language mapping in Post-stroke aphasia. NEUROIMAGE-CLINICAL 2021; 31:102774. [PMID: 34371239 PMCID: PMC8358698 DOI: 10.1016/j.nicl.2021.102774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022]
Abstract
FBA shows greater specificity in mapping injured fibers in post-stroke aphasia. Intra-axonal volume of axons in dual streams is reduced in post-stroke aphasia. FBA could locate more precise segments associated with language defects. FBA could attribute language subdomain scores to fiber density of distinct tracts.
Background The complex crossing-fiber characteristics in the dual-stream system have been ignored by traditional diffusion tensor models regarding disconnections in post-stroke aphasia. It is valuable to identify microstructural damage of crossing-fiber pathways and reveal accurate fiber-specific language mapping in patients with aphasia. Methods This cross-sectional study collected magnetic resonance imaging data from 29 participants with post-stroke aphasia in the subacute stage and from 33 age- and sex-matched healthy controls. Fixel-based analysis was performed to examine microstructural fiber density (FD) and bundle cross-section alterations of specific fiber populations in crossing-fiber regions. Group comparisons were performed, and relationships with language scores were assessed. Results The aphasic group exhibited significant fixel-wise FD reductions in the dual-stream tracts, including the left inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus, and superior longitudinal fasciculus (SLF) III (family-wise-error-corrected p < 0.05). Voxel- and fixel-wise comparisons revealed mismatched distributions in regions with crossing-fiber nexuses. Fixel-wise correlation analyses revealed significant associations between comprehension impairment and reduced FD in the temporal and frontal segments of the left IFOF, and also mapped naming ability to the IFOF. Average features along the whole course of dominant tracts assessed with tract-wise analyses attributed word-level comprehension to the IFOF (r = 0.723, p < 0.001) and revealed a trend-level correlation between sentence-level comprehension and FD of the SLF III (r = 0.451, p = 0.021). The mean FD of the uncinate fasciculus (UF) and IFOF correlated with total and picture naming scores, and the IFOF also correlated with responsive naming subdomains (Bonferroni corrected p < 0.05). Conclusions FD reductions of dual streams suggest that intra-axonal volume reduction constitutes the microstructural damage of white matter integrity in post-stroke aphasia. Fixel-based analysis provides a complementary method of language mapping that identifies fiber-specific tracts in the left hemisphere language network with greater specificity than voxel-based analysis. It precisely locates the precise segments of the IFOF for comprehension, yields fiber-specific evidence for the debated UF-naming association, and reveals dissociative subdomain associations with distinct tracts.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weihao Zheng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Desheng Shang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yating Chen
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuchang Zhong
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jing Ye
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lingling Li
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yamei Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Zhang
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ruidong Cheng
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fangping He
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiangming Ye
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Benyan Luo
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, China.
| |
Collapse
|
29
|
Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. Neuroimage 2021; 241:118417. [PMID: 34298083 DOI: 10.1016/j.neuroimage.2021.118417] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.
Collapse
|
30
|
Uus A, Grigorescu I, Pietsch M, Batalle D, Christiaens D, Hughes E, Hutter J, Cordero Grande L, Price AN, Tournier JD, Rutherford MA, Counsell SJ, Hajnal JV, Edwards AD, Deprez M. Multi-Channel 4D Parametrized Atlas of Macro- and Microstructural Neonatal Brain Development. Front Neurosci 2021; 15:661704. [PMID: 34220423 PMCID: PMC8248811 DOI: 10.3389/fnins.2021.661704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
Structural (also known as anatomical) and diffusion MRI provide complimentary anatomical and microstructural characterization of early brain maturation. However, the existing models of the developing brain in time include only either structural or diffusion MRI channels. Furthermore, there is a lack of tools for combined analysis of structural and diffusion MRI in the same reference space. In this work, we propose a methodology to generate a multi-channel (MC) continuous spatio-temporal parametrized atlas of the brain development that combines multiple MRI-derived parameters in the same anatomical space during 37-44 weeks of postmenstrual age range. We co-align structural and diffusion MRI of 170 normal term subjects from the developing Human Connectomme Project using MC registration driven by both T2-weighted and orientation distribution functions channels and fit the Gompertz model to the signals and spatial transformations in time. The resulting atlas consists of 14 spatio-temporal microstructural indices and two parcellation maps delineating white matter tracts and neonatal transient structures. In order to demonstrate applicability of the atlas for quantitative region-specific studies, a comparison analysis of 140 term and 40 preterm subjects scanned at the term-equivalent age is performed using different MRI-derived microstructural indices in the atlas reference space for multiple white matter regions, including the transient compartments. The atlas and software will be available after publication of the article.
Collapse
Affiliation(s)
- Alena Uus
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Irina Grigorescu
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Emer Hughes
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Lucilio Cordero Grande
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
- Biomedical Image Technologies, ETSI Telecomunicacion, Universidad Politécnica de Madrid, CIBER-BBN, Madrid, Spain
| | - Anthony N. Price
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Mary A. Rutherford
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Joseph V. Hajnal
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - A. David Edwards
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Maria Deprez
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| |
Collapse
|
31
|
Dibble M, Ang JZ, Mariga L, Molloy EJ, Bokde ALW. Diffusion Tensor Imaging in Very Preterm, Moderate-Late Preterm and Term-Born Neonates: A Systematic Review. J Pediatr 2021; 232:48-58.e3. [PMID: 33453200 DOI: 10.1016/j.jpeds.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine white matter abnormalities, measured by diffusion tensor imaging, in very preterm (<32 weeks) and moderate-late preterm neonates (32-37 weeks) at term-equivalent age, compared with healthy full-term controls (≥37 weeks). STUDY DESIGN A search of Medline (PubMed) was conducted to identify studies with diffusion data collected on very preterm, moderate-late preterm and full-term neonates, using the guidelines from the Meta-analysis of Observational Studies in Epidemiology and PRISMA statements. RESULTS Eleven studies were included with diffusion tensor imaging data from 554 very preterm, 575 moderate-late preterm, and 318 full-term neonates. Widespread statistically significant diffusion measures were found in all preterm subgroups at term-equivalent age compared with full-term neonates, and this difference was more marked for the very preterm group. These abnormalities are suggestive of changes in the white matter microstructure in the preterm groups. The corpus callosum was a region of interest in both early and moderate-late preterm groups, which showed statistically significant diffusion measures in all 11 studies. CONCLUSIONS Microstructural white matter changes may underpin the increased risk of neurodevelopmental disability seen in preterm infants in later life. diffusion tensor imaging may therefore be a useful prognostic tool for neuro-disability in preterm neonates.
Collapse
Affiliation(s)
- Megan Dibble
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| | - Jin Zhe Ang
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Liam Mariga
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Pediatrics and Child Health, Trinity College Dublin, Dublin, Ireland; Neonatologist and Pediatrician, CHI at Crumlin and Tallaght, Coombe Women and Infants University Hospital, Dublin, Ireland; Trinity Translational Medicine Institute (TTMI) & Trinity Research in Childhood Centre (TRICC), Trinity College Dublin, Dublin, Ireland
| | - Arun L W Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 2021; 41:689-706. [PMID: 33099576 DOI: 10.1038/s41372-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.
Collapse
|
33
|
Lee HJ, Kwon H, Kim JI, Lee JY, Lee JY, Bang S, Lee JM. The cingulum in very preterm infants relates to language and social-emotional impairment at 2 years of term-equivalent age. NEUROIMAGE-CLINICAL 2020; 29:102528. [PMID: 33338967 PMCID: PMC7750449 DOI: 10.1016/j.nicl.2020.102528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Maturation of specific WM tracts in preterm individuals differs from those of term controls. The elastic net logistic regression model was used to identify altered white matter tracts in the preterm brain. The alteration of the cingulum in the preterm at near-term correlate with neurodevelopmental scores at 18–22 months of age.
Background Relative to full-term infants, very preterm infants exhibit disrupted white matter (WM) maturation and problems related to development, including motor, cognitive, social-emotional, and receptive and expressive language processing. Objective The present study aimed to determine whether regional abnormalities in the WM microstructure of very preterm infants, as defined relative to those of full-term infants at a near-term age, are associated with neurodevelopmental outcomes at the age of 18–22 months. Methods We prospectively enrolled 89 very preterm infants (birth weight < 1500 g) and 43 normal full-term control infants born between 2016 and 2018. All infants underwent a structural brain magnetic resonance imaging scan at near-term age. The diffusion tensor imaging (DTI) metrics of the whole-brain WM tracts were extracted based on the neonatal probabilistic WM pathway. The elastic net logistic regression model was used to identify altered WM tracts in the preterm brain. We evaluated the associations between the altered WM microstructure at near-term age and motor, cognitive, social-emotional, and receptive and expressive language developments at 18–22 months of age, as measured using the Bayley Scales of Infant Development, Third Edition. Results We found that the elastic net logistic regression model could classify preterm and full-term neonates with an accuracy of 87.9% (corrected p < 0.008) using the DTI metrics in the pathway of interest with a 10% threshold level. The fractional anisotropy (FA) values of the body and splenium of the corpus callosum, middle cerebellar peduncle, left and right uncinate fasciculi, and right portion of the pathway between the premotor and primary motor cortices (premotor-PMC), as well as the mean axial diffusivity (AD) values of the left cingulum, were identified as contributive features for classification. Increased adjusted AD values in the left cingulum pathway were significantly correlated with language scores after false discovery rate (FDR) correction (r = 0.217, p = 0.043). The expressive language and social-emotional composite scores showed a significant positive correlation with the AD values in the left cingulum pathway (r = 0.226 [p = 0.036] and r = 0.31 [p = 0.003], respectively) after FDR correction. Conclusion Our approach suggests that the cingulum pathways of very preterm infants differ from those of full-term infants and significantly contribute to the prediction of the subsequent development of the language and social-emotional domains. This finding could improve our understanding of how specific neural substrates influence neurodevelopment at later ages, and individual risk prediction, thus helping to inform early intervention strategies that address developmental delay.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Hyeokjin Kwon
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University College of Medicine, Seoul, South Korea
| | - SungKyu Bang
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
34
|
Fuelscher I, Hyde C, Efron D, Silk TJ. Manual dexterity in late childhood is associated with maturation of the corticospinal tract. Neuroimage 2020; 226:117583. [PMID: 33221438 DOI: 10.1016/j.neuroimage.2020.117583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Despite the important role of manual dexterity in child development, the neurobiological mechanisms associated with manual dexterity in childhood remain unclear. We leveraged fixel-based analysis (FBA) to examine the longitudinal association between manual dexterity and the development of white matter structural properties in the corticospinal tract (CST). METHODS High angular diffusion weighted imaging (HARDI) data were acquired for 44 right-handed typically developing children (22 female) aged 9-13 across two timepoints (timepoint 1: mean age 10.5 years ± 0.5 years, timepoint 2: 11.8 ± 0.5 years). Manual dexterity was assessed using the Grooved Pegboard Test, a widely used measure of manual dexterity. FBA-derived measures of fiber density and morphology were generated for the CST at each timepoint. Connectivity-based fixel enhancement and mixed linear modelling were used to examine the longitudinal association between manual dexterity and white matter structural properties of the CST. RESULTS Longitudinal mixed effects models showed that greater manual dexterity of the dominant hand was associated with increased fiber cross-section in the contralateral CST. Analyses further demonstrated that the rate of improvement in manual dexterity was associated with the rate of increase in fiber cross-section in the contralateral CST between the two timepoints. CONCLUSION Our longitudinal data suggest that the development of manual dexterity in late childhood is associated with maturation of the CST. These findings significantly enhance our understanding of the neurobiological systems that subserve fine motor development and provide an important step toward mapping normative trajectories of fine motor function against microstructural and morphological development in childhood.
Collapse
Affiliation(s)
- Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Daryl Efron
- The Royal Children's Hospital, Parkville, Australia; Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Timothy J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
35
|
Pannek K, George JM, Boyd RN, Colditz PB, Rose SE, Fripp J. Brain microstructure and morphology of very preterm-born infants at term equivalent age: Associations with motor and cognitive outcomes at 1 and 2 years. Neuroimage 2020; 221:117163. [DOI: 10.1016/j.neuroimage.2020.117163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
|
36
|
Menegaux A, Hedderich DM, Bäuml JG, Manoliu A, Daamen M, Berg RC, Preibisch C, Zimmer C, Boecker H, Bartmann P, Wolke D, Sorg C, Stämpfli P. Reduced apparent fiber density in the white matter of premature-born adults. Sci Rep 2020; 10:17214. [PMID: 33057208 PMCID: PMC7560721 DOI: 10.1038/s41598-020-73717-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Premature-born adults exhibit lasting white matter alterations as demonstrated by widespread reduction in fractional anisotropy (FA) based on diffusion-weighted imaging (DWI). FA reduction, however, is non-specific for microscopic underpinnings such as aberrant myelination or fiber density (FD). Using recent advances in DWI, we tested the hypothesis of reduced FD in premature-born adults and investigated its link with the degree of prematurity and cognition. 73 premature- and 89 mature-born adults aged 25-27 years underwent single-shell DWI, from which a FD measure was derived using convex optimization modeling for microstructure informed tractography (COMMIT). Premature-born adults exhibited lower FD in numerous tracts including the corpus callosum and corona radiata compared to mature-born adults. These FD alterations were associated with both the degree of prematurity, as assessed via gestational age and birth weight, as well as with reduced cognition as measured by full-scale IQ. Finally, lower FD overlapped with lower FA, suggesting lower FD underlie unspecific FA reductions. Results provide evidence that premature birth leads to lower FD in adulthood which links with lower full-scale IQ. Data suggest that lower FD partly underpins FA reductions of premature birth but that other processes such as hypomyelination might also take place.
Collapse
Affiliation(s)
- Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany. .,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef G Bäuml
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Centre for Computational Psychiatry and Ageing Research, Max Planck University College London, London, UK
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany.,Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Ronja C Berg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,MR-Center of the Department of Psychiatry, Psychotherapy, and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric Hospital of the University of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Sa de Almeida J, Meskaldji DE, Loukas S, Lordier L, Gui L, Lazeyras F, Hüppi PS. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns. Neuroimage 2020; 225:117440. [PMID: 33039621 DOI: 10.1016/j.neuroimage.2020.117440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Prematurity disrupts brain development during a critical period of brain growth and organization and is known to be associated with an increased risk of neurodevelopmental impairments. Investigating whole-brain structural connectivity alterations accompanying preterm birth may provide a better comprehension of the neurobiological mechanisms related to the later neurocognitive deficits observed in this population. Using a connectome approach, we aimed to study the impact of prematurity on neonatal whole-brain structural network organization at term-equivalent age. In this cohort study, twenty-four very preterm infants at term-equivalent age (VPT-TEA) and fourteen full-term (FT) newborns underwent a brain MRI exam at term age, comprising T2-weighted imaging and diffusion MRI, used to reconstruct brain connectomes by applying probabilistic constrained spherical deconvolution whole-brain tractography. The topological properties of brain networks were quantified through a graph-theoretical approach. Furthermore, edge-wise connectivity strength was compared between groups. Overall, VPT-TEA infants' brain networks evidenced increased segregation and decreased integration capacity, revealed by an increased clustering coefficient, increased modularity, increased characteristic path length, decreased global efficiency and diminished rich-club coefficient. Furthermore, in comparison to FT, VPT-TEA infants had decreased connectivity strength in various cortico-cortical, cortico-subcortical and intra-subcortical networks, the majority of them being intra-hemispheric fronto-paralimbic and fronto-limbic. Inter-hemispheric connectivity was also decreased in VPT-TEA infants, namely through connections linking to the left precuneus or left dorsal cingulate gyrus - two regions that were found to be hubs in FT but not in VPT-TEA infants. Moreover, posterior regions from Default-Mode-Network (DMN), namely precuneus and posterior cingulate gyrus, had decreased structural connectivity in VPT-TEA group. Our finding that VPT-TEA infants' brain networks displayed increased modularity, weakened rich-club connectivity and diminished global efficiency compared to FT infants suggests a delayed transition from a local architecture, focused on short-range connections, to a more distributed architecture with efficient long-range connections in those infants. The disruption of connectivity in fronto-paralimbic/limbic and posterior DMN regions might underlie the behavioral and social cognition difficulties previously reported in the preterm population.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Djalel-Eddine Meskaldji
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Serafeim Loukas
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
38
|
Long-term development of white matter fibre density and morphology up to 13 years after preterm birth: A fixel-based analysis. Neuroimage 2020; 220:117068. [DOI: 10.1016/j.neuroimage.2020.117068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
|
39
|
Kirkovski M, Fuelscher I, Hyde C, Donaldson PH, Ford TC, Rossell SL, Fitzgerald PB, Enticott PG. Fixel Based Analysis Reveals Atypical White Matter Micro- and Macrostructure in Adults With Autism Spectrum Disorder: An Investigation of the Role of Biological Sex. Front Integr Neurosci 2020; 14:40. [PMID: 32903660 PMCID: PMC7438780 DOI: 10.3389/fnint.2020.00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Atypical white matter (WM) microstructure is commonly implicated in the neuropathophysiology of autism spectrum disorder (ASD). Fixel based analysis (FBA), at the cutting-edge of diffusion-weighted imaging, can account for crossing WM fibers and can provide indices of both WM micro- and macrostructure. We applied FBA to investigate WM structure between 25 (12 males, 13 females) adults with ASD and 24 (12 males, 12 females) matched controls. As the role of biological sex on the neuropathophysiology of ASD is of increasing interest, this was also explored. There were no significant differences in WM micro- or macrostructure between adults with ASD and matched healthy controls. When data were stratified by sex, females with ASD had reduced fiber density and cross-section (FDC), a combined metric comprised of micro- and macrostructural measures, in the corpus callosum, a finding not detected between the male sub-groups. We conclude that micro- and macrostructural WM aberrations are present in ASD, and may be influenced by biological sex.
Collapse
Affiliation(s)
- Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Health Care and Central Clinical School Monash University, Melbourne, VIC, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Radhakrishnan H, Stark SM, Stark CEL. Microstructural Alterations in Hippocampal Subfields Mediate Age-Related Memory Decline in Humans. Front Aging Neurosci 2020; 12:94. [PMID: 32327992 PMCID: PMC7161377 DOI: 10.3389/fnagi.2020.00094] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Aging, even in the absence of clear pathology of dementia, is associated with cognitive decline. Neuroimaging, especially diffusion-weighted imaging, has been highly valuable in understanding some of these changes in live humans, non-invasively. Traditional tensor techniques have revealed that the integrity of the fornix and other white matter tracts significantly deteriorates with age, and that this deterioration is highly correlated with worsening cognitive performance. However, traditional tensor techniques are still not specific enough to indict explicit microstructural features that may be responsible for age-related cognitive decline and cannot be used to effectively study gray matter properties. Here, we sought to determine whether recent advances in diffusion-weighted imaging, including Neurite Orientation Dispersion and Density Imaging (NODDI) and Constrained Spherical Deconvolution, would provide more sensitive measures of age-related changes in the microstructure of the medial temporal lobe. We evaluated these measures in a group of young (ages 20-38 years old) and older (ages 59-84 years old) adults and assessed their relationships with performance on tests of cognition. We found that the fiber density (FD) of the fornix and the neurite density index (NDI) of the fornix, hippocampal subfields (DG/CA3, CA1, and subiculum), and parahippocampal cortex, varied as a function of age in a cross-sectional cohort. Moreover, in the fornix, DG/CA3, and CA1, these changes correlated with memory performance on the Rey Auditory Verbal Learning Test (RAVLT), even after regressing out the effect of age, suggesting that they were capturing neurobiological properties directly related to performance in this task. These measures provide more details regarding age-related neurobiological properties. For example, a change in fiber density could mean a reduction in axonal packing density or myelination, and the increase in NDI observed might be explained by changes in dendritic complexity or even sprouting. These results provide a far more comprehensive view than previously determined on the possible system-wide processes that may be occurring because of healthy aging and demonstrate that advanced diffusion-weighted imaging is evolving into a powerful tool to study more than just white matter properties.
Collapse
Affiliation(s)
- Hamsanandini Radhakrishnan
- Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, CA, United States
| | - Shauna M. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Craig E. L. Stark
- Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
41
|
Malhotra A, Sepehrizadeh T, Dhollander T, Wright D, Castillo-Melendez M, Sutherland AE, Pham Y, Ditchfield M, Polglase GR, de Veer M, Jenkin G, Pannek K, Shishegar R, Miller SL. Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. NEUROIMAGE-CLINICAL 2019; 24:101991. [PMID: 31473545 PMCID: PMC6728876 DOI: 10.1016/j.nicl.2019.101991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Background Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased risk of adverse neurodevelopment and neuromorbidity. Current imaging techniques, including conventional magnetic resonance imaging (MRI), are not sensitive enough to detect subtle structural abnormalities in the FGR brain. We examined whether advanced MRI analysis techniques have the capacity to detect brain injury (particularly white matter injury) caused by chronic hypoxia-induced fetal growth restriction in newborn preterm lambs. Methods Surgery was undertaken in twin bearing pregnant ewes at 88–90 days gestation (term = 150 days) to induce FGR in one fetus. At 127 days gestation (~32 weeks human brain development), FGR and control (appropriate for gestational age, AGA) lambs were delivered by caesarean section, intubated and ventilated. Conventional and advanced brain imaging was conducted within the first two hours of life using a 3T MRI scanner. T1-weighted (T1w) and T2-weighted (T2w) structural imaging, magnetic resonance spectroscopy (MRS), and diffusion MRI (dMRI) data were acquired. Diffusion tensor imaging (DTI) modelling and analysis of dMRI data included the following regions of interest (ROIs): subcortical white matter, periventricular white matter, cerebellum, hippocampus, corpus callosum and thalamus. Fixel-based analysis of 3-tissue constrained spherical deconvolution (CSD) of the dMRI data was performed and compared between FGR and AGA lambs. Lambs were euthanised immediately after the scans and brain histology performed in the regions of interest to correlate with imaging. Results FGR and AGA lamb (body weight, mean (SD): 2.2(0.5) vs. 3.3(0.3) kg, p = .002) MRI brain scans were analysed. There were no statistically significant differences observed between the groups in conventional T1w, T2w or MRS brain data. Mean, axial and radial diffusivity, and fractional anisotropy indices obtained from DTI modelling also did not show any statistically significant differences between groups in the ROIs. Fixel-based analysis of 3-tissue CSD, however, did reveal a decrease in fibre cross-section (FC, p < .05) but not in fibre density (FD) or combined fibre density and cross-section (FDC) in FGR vs. AGA lamb brains. The specific tracts that showed a decrease in FC were in the regions of the periventricular white matter, hippocampus and cerebellar white matter, and were supported by histological evidence of white matter hypomyelination and disorganisation in corresponding FGR lamb brain regions. Conclusions The neuropathology associated with FGR in neonatal preterm lambs is subtle and imaging detection may require advanced MRI and tract-based analysis techniques. Fixel-based analysis of 3-tissue CSD demonstrates that the preterm neonatal FGR brain shows evidence of macrostructural (cross-sectional) deficits in white matter subsequent to altered antenatal development. These findings can inform analysis of similar brain pathology in neonatal infants. FGR brain injury can be subtle, and not easily detected on conventional imaging. Fixel-based analysis showed differences in fibre content of FGR lamb brain tracts. Histological stain confirmed myelination deficits in corresponding brain regions.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.
| | | | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - David Wright
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Kerstin Pannek
- Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Rosita Shishegar
- Monash Biomedical Imaging, Monash University, Melbourne, Australia; The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; CSIRO Health and Biosecurity, Parkville, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| |
Collapse
|
42
|
White matter microstructure correlates with mathematics but not word reading performance in 13-year-old children born very preterm and full-term. NEUROIMAGE-CLINICAL 2019; 24:101944. [PMID: 31426019 PMCID: PMC6706654 DOI: 10.1016/j.nicl.2019.101944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/24/2023]
Abstract
Individuals born very preterm (VPT; <32 weeks' gestational age) are at increased risk of impaired mathematics and word reading performance, as well as widespread white matter microstructural alterations compared with individuals born full term (FT; ≥37 weeks' gestational age). To date, the link between academic performance and white matter microstructure is not well understood. This study aimed to investigate the associations between mathematics and reading performance with white matter microstructure in 114 VPT and 36 FT 13-year-old children. Additionally, we aimed to investigate whether the association of mathematics and reading performance with white matter microstructure in VPT children varied as a function of impairment. To do this, we used diffusion tensor imaging and advanced diffusion modelling techniques (Neurite Orientation Dispersion and Density Imaging and the Spherical Mean Technique), combined with a whole-brain analysis approach (Tract-Based Spatial Statistics). Mathematics performance across VPT and FT groups was positively associated with white matter microstructural measurements of fractional anisotropy and neurite density, and negatively associated with radial and mean diffusivities in widespread, bilateral regions. Furthermore, VPT children with a mathematics impairment (>1 standard deviation below FT mean) had significantly reduced neurite density compared with VPT children without an impairment. Reading performance was not significantly associated with any of the white matter microstructure parameters. Additionally, the associations between white matter microstructure and mathematics and reading performance did not differ significantly between VPT and FT groups. Our findings suggest that alterations in white matter microstructure, and more specifically lower neurite density, are associated with poorer mathematics performance in 13-year-old VPT and FT children. More research is required to understand the association between reading performance and white matter microstructure in 13-year-old children. Diffusion tensor and neurite density metrics were associated with mathematics. Associations were present in very preterm and full-term children. Associations were widespread throughout the white matter microstructure. Decreased neurite density was evident in children with a mathematics impairment. Limited evidence of associations between white matter microstructure and reading.
Collapse
|
43
|
Pecheva D, Tournier JD, Pietsch M, Christiaens D, Batalle D, Alexander DC, Hajnal JV, Edwards AD, Zhang H, Counsell SJ. Fixel-based analysis of the preterm brain: Disentangling bundle-specific white matter microstructural and macrostructural changes in relation to clinical risk factors. Neuroimage Clin 2019; 23:101820. [PMID: 30991305 PMCID: PMC6462822 DOI: 10.1016/j.nicl.2019.101820] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
Abstract
Diffusion MRI (dMRI) studies using the tensor model have identified abnormal white matter development associated with perinatal risk factors in preterm infants studied at term equivalent age (TEA). However, this model is an oversimplification of the underlying neuroanatomy. Fixel-based analysis (FBA) is a novel quantitative framework, which identifies microstructural and macrostructural changes in individual fibre populations within voxels containing crossing fibres. The aim of this study was to apply FBA to investigate the relationship between fixel-based measures of apparent fibre density (FD), fibre bundle cross-section (FC), and fibre density and cross-section (FDC) and perinatal risk factors in preterm infants at TEA. We studied 50 infants (28 male) born at 24.0-32.9 (median 30.4) weeks gestational age (GA) and imaged at 38.6-47.1 (median 42.1) weeks postmenstrual age (PMA). dMRI data were acquired in non-collinear directions with b-value 2500 s/mm2 on a 3 Tesla system sited on the neonatal intensive care unit. FBA was performed to assess the relationship between FD, FC, FDC and PMA at scan, GA at birth, days on mechanical ventilation, days on total parenteral nutrition (TPN), birthweight z-score, and sex. FBA reveals fibre population-specific alterations in FD, FC and FDC associated with clinical risk factors. FD was positively correlated with GA at birth and was negatively correlated with number of days requiring ventilation. FC was positively correlated with GA at birth, birthweight z-scores and was higher in males. FC was negatively correlated with number of days on ventilation and days on TPN. FDC was positively correlated with GA at birth and birthweight z-scores, negatively correlated with days on ventilation and days on TPN and higher in males. We demonstrate that these relationships are fibre-specific even within regions of crossing fibres. These results show that aberrant white matter development involves both microstructural changes and macrostructural alterations.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King''s College London, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King''s College London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King''s College London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King''s College London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King''s College London, UK; Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King''s College London, UK
| | - Daniel C Alexander
- Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King''s College London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King''s College London, UK
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King''s College London, UK.
| |
Collapse
|
44
|
Pietsch M, Christiaens D, Hutter J, Cordero-Grande L, Price AN, Hughes E, Edwards AD, Hajnal JV, Counsell SJ, Tournier JD. A framework for multi-component analysis of diffusion MRI data over the neonatal period. Neuroimage 2019; 186:321-337. [PMID: 30391562 PMCID: PMC6347572 DOI: 10.1016/j.neuroimage.2018.10.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
We describe a framework for creating a time-resolved group average template of the developing brain using advanced multi-shell high angular resolution diffusion imaging data, for use in group voxel or fixel-wise analysis, atlas-building, and related applications. This relies on the recently proposed multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) technique. We decompose the signal into one isotropic component and two anisotropic components, with response functions estimated from cerebrospinal fluid and white matter in the youngest and oldest participant groups, respectively. We build an orientationally-resolved template of those tissue components from data acquired from 113 babies between 33 and 44 weeks postmenstrual age, imaged as part of the Developing Human Connectome Project. These data were split into weekly groups, and registered to the corresponding group average templates using a previously-proposed non-linear diffeomorphic registration framework, designed to align orientation density functions (ODF). This framework was extended to allow the use of the multiple contrasts provided by the multi-tissue decomposition, and shown to provide superior alignment. Finally, the weekly templates were registered to the same common template to facilitate investigations into the evolution of the different components as a function of age. The resulting multi-tissue atlas provides insights into brain development and accompanying changes in microstructure, and forms the basis for future longitudinal investigations into healthy and pathological white matter maturation.
Collapse
Affiliation(s)
- Maximilian Pietsch
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK.
| | - Daan Christiaens
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| |
Collapse
|
45
|
Altered transcallosal inhibition evidenced by transcranial magnetic stimulation highlights neurophysiological consequences of premature birth in early adulthood. J Neurol Sci 2018; 393:18-23. [PMID: 30098499 DOI: 10.1016/j.jns.2018.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE A very preterm birth can induce deleterious neurophysiological consequences beyond childhood; alterations of the corpus callosum (CC) are reported in adolescents born very preterm along with cognitive impairments. The question remains whether neurophysiological alterations are still detectable in adulthood such as an alteration in CC inhibitory function. The aim of the present study was thus to examine transcallosal inhibition in young adults born very preterm compared to counterparts born at term. STUDY PARTICIPANTS & METHODS Transcallosal inhibition was probed by measuring the ipsilateral silent period (iSP) using transcranial magnetic stimulation (TMS) in 13 young adults born at 33w of gestation or less (20 ± 3. 2y) and 12 young adults born at term (22 ± 1. 75y). Single high-intensity TMS were delivered to the primary motor cortex (M1) ipsilateral to the preactivated first dorsal interosseous (FDI) muscle. Occurrence, latency, and duration of iSP were measured in the FDI EMG activity, for both hemispheres alternatively (10-12 trials each) along with their resting motor threshold (RMT). RESULTS In individuals born very preterm as compared to individuals born at term, ISP occurred less frequently (p < .0001), its latency was longer (p = .004), especially in the non-dominant hemisphere, its duration shorter (p < .0001), and RMT was higher in the non-dominant M1 than in the dominant. CONCLUSIONS Impairment of transcallosal inhibition along with asymmetry of M1 excitability in young adults born very preterm as compared to those born at term underline that neurophysiological consequences of a preterm birth can still be detected in early adulthood.
Collapse
|
46
|
Pecheva D, Kelly C, Kimpton J, Bonthrone A, Batalle D, Zhang H, Counsell SJ. Recent advances in diffusion neuroimaging: applications in the developing preterm brain. F1000Res 2018; 7. [PMID: 30210783 PMCID: PMC6107996 DOI: 10.12688/f1000research.15073.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Measures obtained from diffusion-weighted imaging provide objective indices of white matter development and injury in the developing preterm brain. To date, diffusion tensor imaging (DTI) has been used widely, highlighting differences in fractional anisotropy (FA) and mean diffusivity (MD) between preterm infants at term and healthy term controls; altered white matter development associated with a number of perinatal risk factors; and correlations between FA values in the white matter in the neonatal period and subsequent neurodevelopmental outcome. Recent developments, including neurite orientation dispersion and density imaging (NODDI) and fixel-based analysis (FBA), enable white matter microstructure to be assessed in detail. Constrained spherical deconvolution (CSD) enables multiple fibre populations in an imaging voxel to be resolved and allows delineation of fibres that traverse regions of fibre-crossings, such as the arcuate fasciculus and cerebellar–cortical pathways. This review summarises DTI findings in the preterm brain and discusses initial findings in this population using CSD, NODDI, and FBA.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jessica Kimpton
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexandra Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|