1
|
Magalhães RC, Filha RDS, Vieira ÉLM, Teixeira AL, Moreira JM, Simões E Silva AC. Rehabilitation Intervention Is Associated With Improved Neurodevelopment and Modulation of Inflammatory Molecules in Children With Cerebral Palsy. J Child Neurol 2024; 39:324-333. [PMID: 39196287 DOI: 10.1177/08830738241273436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
AIM To evaluate the effects of systematic rehabilitation on both the neuropsychomotor development, and on the peripheral response from immunological and neuroplastic mediators in children with cerebral palsy. METHODS This is a prospective cohort study with 90 children with cerebral palsy at 18 months of age. Sixty children received rehabilitation for 6 months, and they were compared to 30 children that were placed in the waiting list. Peripheral biomarkers and neuropsychomotor parameters were compared between the Rehab vs the Nonrehab groups at baseline and at 6 months. RESULTS Results showed higher Bayley III scores in the Rehab group, with significant differences in inflammatory and neurotrophic biomarkers between groups. Rehabilitation was associated to decreased levels of IL-12p70, IL-6, IL-1β, CXCL8 IL-8, and CXCL9/MIG and increased levels of BDNF and GDNF. Nonrehab children had stable immune molecule levels but decreased BDNF levels over time. CONCLUSION Rehabilitation improved neurodevelopment parameters and modulated levels of inflammatory (↓) and neurotrophic (↑) biomarkers.
Collapse
Affiliation(s)
- Rafael Coelho Magalhães
- Department of Occupational Therapy, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Roberta da Silva Filha
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Janaina Matos Moreira
- Department of Pediatrics, Faculty of Medicine, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Cusack R, Ranzato M, Charvet CJ. Helpless infants are learning a foundation model. Trends Cogn Sci 2024; 28:726-738. [PMID: 38839537 PMCID: PMC11310914 DOI: 10.1016/j.tics.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Humans have a protracted postnatal helplessness period, typically attributed to human-specific maternal constraints causing an early birth when the brain is highly immature. By aligning neurodevelopmental events across species, however, it has been found that humans are not born with especially immature brains compared with animal species with a shorter helpless period. Consistent with this, the rapidly growing field of infant neuroimaging has found that brain connectivity and functional activation at birth share many similarities with the mature brain. Inspired by machine learning, where deep neural networks also benefit from a 'helpless period' of pre-training, we propose that human infants are learning a foundation model: a set of fundamental representations that underpin later cognition with high performance and rapid generalisation.
Collapse
|
3
|
Arichi T. Characterizing Large-Scale Human Circuit Development with In Vivo Neuroimaging. Cold Spring Harb Perspect Biol 2024; 16:a041496. [PMID: 38438187 PMCID: PMC11146311 DOI: 10.1101/cshperspect.a041496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Large-scale coordinated patterns of neural activity are crucial for the integration of information in the human brain and to enable complex and flexible human behavior across the life span. Through recent advances in noninvasive functional magnetic resonance imaging (fMRI) methods, it is now possible to study this activity and how it emerges in the living fetal brain across the second half of human gestation. This work has demonstrated that functional activity in the fetal brain has several features in keeping with highly organized networks of activity, which are undergoing a highly programmed and rapid sequence of development before birth, in which long-range connections emerge and core features of the mature functional connectome (such as hub regions and a gradient organization) are established. In this review, the findings of these studies are summarized, their relationship to the known changes in developmental neurobiology is considered, and considerations for future work in the context of limitations to the fMRI approach are presented.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| |
Collapse
|
4
|
Boerwinkle VL, Manjón I, Sussman BL, McGary A, Mirea L, Gillette K, Broman-Fulks J, Cediel EG, Arhin M, Hunter SE, Wyckoff SN, Allred K, Tom D. Resting-State Functional Magnetic Resonance Imaging Network Association With Mortality, Epilepsy, Cognition, and Motor Two-Year Outcomes in Suspected Severe Neonatal Acute Brain Injury. Pediatr Neurol 2024; 152:41-55. [PMID: 38198979 DOI: 10.1016/j.pediatrneurol.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND AND OBJECTIVES In acute brain injury of neonates, resting-state functional magnetic resonance imaging (MRI) (RS) showed incremental association with consciousness, mortality, cognitive and motor development, and epilepsy, with correction for multiple comparisons, at six months postgestation in neonates with suspected acute brain injury (ABI). However, there are relatively few developmental milestones at six months to benchmark against, thus, we extended this cohort study to evaluate two-year outcomes. METHODS In 40 consecutive neonates with ABI and RS, ordinal scores of resting-state networks; MRI, magnetic resonance spectroscopy, and electroencephalography; and up to 42-month outcomes of mortality, general and motor development, Pediatric Cerebral Performance Category Scale (PCPC), and epilepsy informed associations between tests and outcomes. RESULTS Mean gestational age was 37.8 weeks, 68% were male, and 60% had hypoxic-ischemic encephalopathy. Three died in-hospital, four at six to 42 months, and five were lost to follow-up. Associations included basal ganglia network with PCPC (P = 0.0003), all-mortality (P = 0.005), and motor (P = 0.0004); language/frontoparietal network with developmental delay (P = 0.009), PCPC (P = 0.006), and all-mortality (P = 0.01); default mode network with developmental delay (P = 0.003), PCPC (P = 0.004), neonatal intensive care unit mortality (P = 0.01), and motor (P = 0.009); RS seizure onset zone with epilepsy (P = 0.01); and anatomic MRI with epilepsy (P = 0.01). CONCLUSION For the first time, at any age, resting state functional MRI in ABI is associated with long-term epilepsy and RSNs predicted mortality in neonates. Severity of RSN abnormality was associated with incrementally worsened neurodevelopment including cognition, language, and motor function over two years.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Child Neurology, University of North Carolina Medical School, Chapel Hill, North Carolina.
| | - Iliana Manjón
- University of Arizona College of Medicine - Tucson, Tucson, Arizona
| | - Bethany L Sussman
- Division of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona
| | - Alyssa McGary
- Department of Clinical Research, Phoenix Children's Hospital, Phoenix, Arizona
| | - Lucia Mirea
- Department of Clinical Research, Phoenix Children's Hospital, Phoenix, Arizona
| | - Kirsten Gillette
- Division of Child Neurology, University of North Carolina Medical School, Chapel Hill, North Carolina
| | - Jordan Broman-Fulks
- Division of Child Neurology, University of North Carolina Medical School, Chapel Hill, North Carolina
| | - Emilio G Cediel
- Division of Child Neurology, University of North Carolina Medical School, Chapel Hill, North Carolina
| | - Martin Arhin
- Division of Child Neurology, University of North Carolina Medical School, Chapel Hill, North Carolina
| | - Senyene E Hunter
- Division of Child Neurology, University of North Carolina Medical School, Chapel Hill, North Carolina
| | - Sarah N Wyckoff
- Division of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona
| | - Kimberlee Allred
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona
| | - Deborah Tom
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona
| |
Collapse
|
5
|
Vallinoja J, Nurmi T, Jaatela J, Wens V, Bourguignon M, Mäenpää H, Piitulainen H. Functional connectivity of sensorimotor network is enhanced in spastic diplegic cerebral palsy: A multimodal study using fMRI and MEG. Clin Neurophysiol 2024; 157:4-14. [PMID: 38006621 DOI: 10.1016/j.clinph.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/02/2023] [Accepted: 10/15/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE To assess the effects to functional connectivity (FC) caused by lesions related to spastic diplegic cerebral palsy (CP) in children and adolescents using multiple imaging modalities. METHODS We used resting state magnetoencephalography (MEG) envelope signals in alpha, beta and gamma ranges and resting state functional magnetic resonance imaging (fMRI) signals to quantify FC between selected sensorimotor regions of interest (ROIs) in 11 adolescents with spastic diplegic cerebral palsy and 24 typically developing controls. Motor performance of the hands was quantified with gross motor, fine motor and kinesthesia tests. RESULTS In fMRI, participants with CP showed enhanced FC within posterior parietal regions; in MEG, they showed enhanced interhemispheric FC between sensorimotor regions and posterior parietal regions both in alpha and lower beta bands. There was a correlation between the kinesthesia score and fronto-parietal connectivity in the control population. CONCLUSIONS CP is associated with enhanced FC in sensorimotor network. This difference is not correlated with hand coordination performance. The effect of the lesion is likely not fully captured by temporal correlation of ROI signals. SIGNIFICANCE Brain lesions can show as increased temporal correlation of activity between remote brain areas. We suggest this effect is likely separate from typical physiological correlates of functional connectivity.
Collapse
Affiliation(s)
- Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. BOX 12200, 00076 AALTO Espoo, Finland.
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. BOX 12200, 00076 AALTO Espoo, Finland; Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland
| | - Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. BOX 12200, 00076 AALTO Espoo, Finland
| | - Vincent Wens
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium; Department of Translational Neuroimaging, HUB - Hôpital Erasme, Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| | - Helena Mäenpää
- Department of Child Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. BOX 12200, 00076 AALTO Espoo, Finland; Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
6
|
Bayne T, Frohlich J, Cusack R, Moser J, Naci L. Consciousness in the cradle: on the emergence of infant experience. Trends Cogn Sci 2023; 27:1135-1149. [PMID: 37838614 PMCID: PMC10660191 DOI: 10.1016/j.tics.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/16/2023]
Abstract
Although each of us was once a baby, infant consciousness remains mysterious and there is no received view about when, and in what form, consciousness first emerges. Some theorists defend a 'late-onset' view, suggesting that consciousness requires cognitive capacities which are unlikely to be in place before the child's first birthday at the very earliest. Other theorists defend an 'early-onset' account, suggesting that consciousness is likely to be in place at birth (or shortly after) and may even arise during the third trimester. Progress in this field has been difficult, not just because of the challenges associated with procuring the relevant behavioral and neural data, but also because of uncertainty about how best to study consciousness in the absence of the capacity for verbal report or intentional behavior. This review examines both the empirical and methodological progress in this field, arguing that recent research points in favor of early-onset accounts of the emergence of consciousness.
Collapse
Affiliation(s)
- Tim Bayne
- Monash University, Melbourne, VIC, Australia; Brain, Mind, and Consciousness Program, Canadian Institute for Advanced Research, Toronto, Canada.
| | - Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany; Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Rhodri Cusack
- Thomas Mitchell Professor of Cognitive Neuroscience, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Lorina Naci
- Trinity College Institute of Neuroscience and Global Brain Health Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
7
|
Wu YW, Monsell SE, Glass HC, Wisnowski JL, Mathur AM, McKinstry RC, Bluml S, Gonzalez FF, Comstock BA, Heagerty PJ, Juul SE. How well does neonatal neuroimaging correlate with neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy? Pediatr Res 2023; 94:1018-1025. [PMID: 36859442 PMCID: PMC10444609 DOI: 10.1038/s41390-023-02510-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND In newborns with hypoxic-ischemic encephalopathy (HIE), the correlation between neonatal neuroimaging and the degree of neurodevelopmental impairment (NDI) is unclear. METHODS Infants with HIE enrolled in a randomized controlled trial underwent neonatal MRI/MR spectroscopy (MRS) using a harmonized protocol at 4-6 days of age. The severity of brain injury was measured with a validated scoring system. Using proportional odds regression, we calculated adjusted odds ratios (aOR) for the associations between MRI/MRS measures of injury and primary ordinal outcome (i.e., normal, mild NDI, moderate NDI, severe NDI, or death) at age 2 years. RESULTS Of 451 infants with MRI/MRS at a median age of 5 days (IQR 4.5-5.8), outcomes were normal (51%); mild (12%), moderate (14%), severe NDI (13%); or death (9%). MRI injury score (aOR 1.06, 95% CI 1.05, 1.07), severe brain injury (aOR 39.6, 95% CI 16.4, 95.6), and MRS lactate/n-acetylaspartate (NAA) ratio (aOR 1.6, 95% CI 1.4,1.8) were associated with worse primary outcomes. Infants with mild/moderate MRI brain injury had similar BSID-III cognitive, language, and motor scores as infants with no injury. CONCLUSION In the absence of severe injury, brain MRI/MRS does not accurately discriminate the degree of NDI. Given diagnostic uncertainty, families need to be counseled regarding a range of possible neurodevelopmental outcomes. IMPACT Half of all infants with hypoxic-ischemic encephalopathy (HIE) enrolled in a large clinical trial either died or had neurodevelopmental impairment at age 2 years despite receiving therapeutic hypothermia. Severe brain injury and a global pattern of brain injury on MRI were both strongly associated with death or neurodevelopmental impairment. Infants with mild or moderate brain injury had similar mean BSID-III cognitive, language, and motor scores as infants with no brain injury on MRI. Given the prognostic uncertainty of brain MRI among infants with less severe degrees of brain injury, families should be counseled regarding a range of possible neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Sarah E Monsell
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Hannah C Glass
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L Wisnowski
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Amit M Mathur
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington Univ School of Medicine, St. Louis, MO, USA
| | - Stefan Bluml
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of Southern CA Keck School of Medicine, Los Angeles, CA, USA
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Bryan A Comstock
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Sandra E Juul
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Wang Y, Wang Y, Hua G, Yu M, Lin L, Zhang L, Li H. Changes of Functional Brain Network in Neonates with Different Degrees of Hypoxic-Ischemic Encephalopathy. Brain Connect 2023; 13:427-435. [PMID: 37279260 DOI: 10.1089/brain.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Background: Neonatal hypoxic-ischemic encephalopathy (HIE) is the main cause of neonatal death and disability worldwide. At present, there are few researches on the application of resting-state functional magnetic resonance imaging (rs-fMRI) to explore the brain development of HIE children. This study aimed to explore the changes of brain function in neonates with different degrees of HIE using rs-fMRI. Methods: From February 2018 to May 2020, 44 patients with HIE were recruited, including 21 mild patients and 23 moderate and severe patients. The recruited patients were scanned by conventional and functional magnetic resonance image, and the method of amplitude of low-frequency fluctuation and connecting edge analysis of brain network was used. Results: Compared with the mild group, the connections between the right supplementary motor area and the right precentral gyrus, the right lingual gyrus and the right hippocampus, the left calcarine cortex and the right amygdala, and the right pallidus and the right posterior cingulate cortex in the moderate and severe groups were reduced (t values were 4.04, 4.04, 4.04, 4.07, all p < 0.001, uncorrected). Conclusion: By analyzing the functional connection changes of brain network in infants with different degrees of HIE, the findings of the current study suggested that neonates with moderate to severe HIE lag behind those with mild HIE in emotional processing, sensory movement, cognitive function, and learning and memory. Chinese Clinical Trial Registry registration number: ChiCTR1800016409.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Neonatology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Yi Wang
- Nantong University, Nantong, China
| | - Guowei Hua
- Department of Neonatology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Min Yu
- Department of Neonatology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Lu Lin
- Department of Radiology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Lichi Zhang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxin Li
- Department of Neonatology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| |
Collapse
|
9
|
Dewey D. Brain lesion type, corticospinal tract organization, and task demands may be predictive of mirror movements and motor outcomes in children with unilateral cerebral palsy. Dev Med Child Neurol 2023; 65:154-155. [PMID: 35809248 DOI: 10.1111/dmcn.15343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Deborah Dewey
- University of Calgary - Departments of Paediatrics and Community Health Sciences, Owerko Centre in the Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Triplett RL, Smyser CD. Neuroimaging of structural and functional connectivity in preterm infants with intraventricular hemorrhage. Semin Perinatol 2022; 46:151593. [PMID: 35410714 PMCID: PMC9910034 DOI: 10.1016/j.semperi.2022.151593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preterm infants with intraventricular hemorrhage (IVH) are known to have some of the worst neurodevelopmental outcomes in all of neonatal medicine, with a growing body of evidence relating these outcomes to underlying disruptions in brain structure and function. This review begins by summarizing state-of-the-art neuroimaging techniques delineating structural and functional connectivity (diffusion and resting state functional MRI) and their application in infants with IVH, including unique technical challenges and emerging methods. We then review studies of altered structural and functional connectivity, highlighting the role of IVH severity and location. We subsequently detail investigations linking structural and functional findings in infancy to later outcomes in early childhood. We conclude with future directions including methodologic considerations for prospective and potentially interventional studies designed to mitigate disruptions to underlying structural and functional connections and improve neurodevelopmental outcomes in this high-risk population.
Collapse
Affiliation(s)
- Regina L Triplett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
11
|
Kardan O, Kaplan S, Wheelock MD, Feczko E, Day TKM, Miranda-Domínguez Ó, Meyer D, Eggebrecht AT, Moore LA, Sung S, Chamberlain TA, Earl E, Snider K, Graham A, Berman MG, Uğurbil K, Yacoub E, Elison JT, Smyser CD, Fair DA, Rosenberg MD. Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds. Dev Cogn Neurosci 2022; 56:101123. [PMID: 35751994 PMCID: PMC9234342 DOI: 10.1016/j.dcn.2022.101123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Resting-state functional connectivity (rsFC) measured with fMRI has been used to characterize functional brain maturation in typically and atypically developing children and adults. However, its reliability and utility for predicting development in infants and toddlers is less well understood. Here, we use fMRI data from the Baby Connectome Project study to measure the reliability and uniqueness of rsFC in infants and toddlers and predict age in this sample (8-to-26 months old; n = 170). We observed medium reliability for within-session infant rsFC in our sample, and found that individual infant and toddler's connectomes were sufficiently distinct for successful functional connectome fingerprinting. Next, we trained and tested support vector regression models to predict age-at-scan with rsFC. Models successfully predicted novel infants' age within ± 3.6 months error and a prediction R2 = .51. To characterize the anatomy of predictive networks, we grouped connections into 11 infant-specific resting-state functional networks defined in a data-driven manner. We found that connections between regions of the same network-i.e. within-network connections-predicted age significantly better than between-network connections. Looking ahead, these findings can help characterize changes in functional brain organization in infancy and toddlerhood and inform work predicting developmental outcome measures in this age range.
Collapse
Affiliation(s)
| | - Sydney Kaplan
- Washington University in St. Louis School of Medicine, USA
| | | | | | | | | | | | | | | | | | | | - Eric Earl
- Oregon Health & Science University, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lessons from infant learning for unsupervised machine learning. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Boerwinkle VL, Sussman BL, Manjón I, Mirea L, Suleman S, Wyckoff SN, Bonnell A, Orgill A, Tom DJ. Association of network connectivity via resting state functional MRI with consciousness, mortality, and outcomes in neonatal acute brain injury. Neuroimage Clin 2022; 34:102962. [PMID: 35152054 PMCID: PMC8851268 DOI: 10.1016/j.nicl.2022.102962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND An accurate and comprehensive test of integrated brain network function is needed for neonates during the acute brain injury period to inform on morbidity. This retrospective cohort study assessed whether integrated brain network function acquired by resting state functional MRI during the acute period in neonates with brain injury, is associated with acute exam, neonatal mortality, and 6-month outcomes. METHODS Study subjects included 40 consecutive neonates with resting state functional MRI acquired within 31 days after suspected brain insult from March 2018 to July 2019 at Phoenix Children's Hospital. Acute-period exam and test results were assigned ordinal scores based on severity as documented by respective treating specialists. Analyses (Fisher exact, Wilcoxon-rank sum test, ordinal/multinomial logistic regression) examined association of resting state networks with demographics, presentation, neurological exam, electroencephalogram, anatomical MRI, magnetic resonance spectroscopy, passive task functional MRI, and outcomes of discharge condition, outpatient development, motor tone, seizure, and mortality. RESULTS Subjects had a mean (standard deviation) gestational age of 37.8 (2.6) weeks, a majority were male (63%), with a diagnosis of hypoxic ischemic encephalopathy (68%). Findings at birth included mild distress (48%), moderately abnormal neurological exam (33%), and consciousness characterized as awake but irritable (40%). Significant associations after multiple testing corrections were detected for resting state networks: basal ganglia with outpatient developmental delay (odds ratio [OR], 14.5; 99.4% confidence interval [CI], 2.00-105; P < .001) and motor tone/weakness (OR, 9.98; 99.4% CI, 1.72-57.9; P < .001); language/frontoparietal network with discharge condition (OR, 5.13; 99.4% CI, 1.22-21.5; P = .002) and outpatient developmental delay (OR, 4.77; 99.4% CI, 1.21-18.7; P=.002); default mode network with discharge condition (OR, 3.72; 99.4% CI, 1.01-13.78; P=.006) and neurological exam (P = .002 (FE); OR, 11.8; 99.4% CI, 0.73-191; P = .01 (OLR)); and seizure onset zone with motor tone/weakness (OR, 3.31; 99.4% CI, 1.08-10.1; P=.003). Resting state networks were not detected in three neonates, who died prior to discharge. CONCLUSIONS This study provides level 3 evidence (OCEBM Levels of Evidence Working Group) demonstrating that in neonatal acute brain injury, the degree of abnormality of resting state networks is associated with acute exam and outcomes. Total lack of brain network detection was only found in patients who did not survive.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA.
| | - Bethany L Sussman
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Iliana Manjón
- University of Arizona College of Medicine - Tucson, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Lucia Mirea
- Department of Clinical Research, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Saher Suleman
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Sarah N Wyckoff
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Alexandra Bonnell
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Andrew Orgill
- Department of Clinical Research, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Deborah J Tom
- Division of Neonatology, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| |
Collapse
|
15
|
Dall'Orso S, Arichi T, Fitzgibbon SP, Edwards AD, Burdet E, Muceli S. Development of functional organization within the sensorimotor network across the perinatal period. Hum Brain Mapp 2022; 43:2249-2261. [PMID: 35088920 PMCID: PMC8996360 DOI: 10.1002/hbm.25785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
In the mature human brain, the neural processing related to different body parts is reflected in patterns of functional connectivity, which is strongest between functional homologs in opposite cortical hemispheres. To understand how this organization is first established, we investigated functional connectivity between limb regions in the sensorimotor cortex in 400 preterm and term infants aged across the equivalent period to the third trimester of gestation (32–45 weeks postmenstrual age). Masks were obtained from empirically derived functional responses in neonates from an independent data set. We demonstrate the early presence of a crude but spatially organized functional connectivity, that rapidly matures across the preterm period to achieve an adult‐like configuration by the normal time of birth. Specifically, connectivity was strongest between homolog regions, followed by connectivity between adjacent regions (different limbs but same hemisphere) already in the preterm brain, and increased with age. These changes were specific to the sensorimotor network. Crucially, these trajectories were strongly dependent on age more than age of birth. This demonstrates that during the perinatal period the sensorimotor cortex undergoes preprogrammed changes determining the functional movement organization that are not altered by preterm birth in absence of brain injury.
Collapse
Affiliation(s)
- Sofia Dall'Orso
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London.,Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK.,Paediatric Neurosciences, Evelina London Children's Hospital, St. Thomas' Hospital, London, UK.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - Silvia Muceli
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London
| |
Collapse
|
16
|
Hu H, Cusack R, Naci L. OUP accepted manuscript. Brain Commun 2022; 4:fcac071. [PMID: 35425900 PMCID: PMC9006044 DOI: 10.1093/braincomms/fcac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
One of the great frontiers of consciousness science is understanding how early consciousness arises in the development of the human infant. The reciprocal relationship between the default mode network and fronto-parietal networks—the dorsal attention and executive control network—is thought to facilitate integration of information across the brain and its availability for a wide set of conscious mental operations. It remains unknown whether the brain mechanism of conscious awareness is instantiated in infants from birth. To address this gap, we investigated the development of the default mode and fronto-parietal networks and of their reciprocal relationship in neonates. To understand the effect of early neonate age on these networks, we also assessed neonates born prematurely or before term-equivalent age. We used the Developing Human Connectome Project, a unique Open Science dataset which provides a large sample of neonatal functional MRI data with high temporal and spatial resolution. Resting state functional MRI data for full-term neonates (n = 282, age 41.2 weeks ± 12 days) and preterm neonates scanned at term-equivalent age (n = 73, 40.9 weeks ± 14.5 days), or before term-equivalent age (n = 73, 34.6 weeks ± 13.4 days), were obtained from the Developing Human Connectome Project, and for a reference adult group (n = 176, 22–36 years), from the Human Connectome Project. For the first time, we show that the reciprocal relationship between the default mode and dorsal attention network was present at full-term birth or term-equivalent age. Although different from the adult networks, the default mode, dorsal attention and executive control networks were present as distinct networks at full-term birth or term-equivalent age, but premature birth was associated with network disruption. By contrast, neonates before term-equivalent age showed dramatic underdevelopment of high-order networks. Only the dorsal attention network was present as a distinct network and the reciprocal network relationship was not yet formed. Our results suggest that, at full-term birth or by term-equivalent age, infants possess key features of the neural circuitry that enables integration of information across diverse sensory and high-order functional modules, giving rise to conscious awareness. Conversely, they suggest that this brain infrastructure is not present before infants reach term-equivalent age. These findings improve understanding of the ontogeny of high-order network dynamics that support conscious awareness and of their disruption by premature birth.
Collapse
Affiliation(s)
- Huiqing Hu
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Correspondence to: Lorina Naci School of Psychology Trinity College Institute of Neuroscience Global Brain Health Institute Trinity College Dublin Dublin, Ireland E-mail:
| |
Collapse
|
17
|
Ní Bhroin M, Kelly L, Sweetman D, Aslam S, O'Dea MI, Hurley T, Slevin M, Murphy J, Byrne AT, Colleran G, Molloy EJ, Bokde ALW. Relationship Between MRI Scoring Systems and Neurodevelopmental Outcome at Two Years in Infants With Neonatal Encephalopathy. Pediatr Neurol 2022; 126:35-42. [PMID: 34736061 DOI: 10.1016/j.pediatrneurol.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) scoring systems are used in the neonatal period to predict outcome in infants with neonatal encephalopathy. Our aim was to assess the relationship between three MRI scores and neurodevelopmental outcome assessed using Bayley Scales of Infant and Toddler Development, third edition (Bayley-III), at two years in infants with neonatal encephalopathy. METHODS Term-born neonates with evidence of perinatal asphyxia born between 2011 and 2015 were retrospectively reviewed. MRI scanning was performed within the first two weeks of life and scored using Barkovich, National Institute of Child Health and Human Development (NICHD) Neonatal Research Network (NRN), and Weeke systems by a single assessor blinded to the infants clinical course. Neurodevelopmental outcome was assessed using composite scores on the Bayley-III at two years. Multiple linear regression analyses were used to assess the association between MRI scores and Bayley-III composite scores, with postmenstrual age at scan and sex included as covariates. RESULTS Of the 135 recruited infants, 90 infants underwent MRI, and of these, 66 returned for follow-up. MRI abnormalities were detected with the highest frequency using the Weeke score (Barkovich 40%, NICHD NRN 50%, Weeke 77%). The inter-rater agreement was good for the Barkovich score and excellent for NICHD NRN and Weeke scores. There was a significant association between Barkovich, NICHD NRN, and Weeke scores and Bayley-III cognitive and motor scores. Only the Weeke score was associated with Bayley-III language scores. CONCLUSIONS Our findings confirm the predictive value of existing MRI scoring systems for cognitive and motor outcome and suggest that more detailed scoring systems have predictive value for language outcome.
Collapse
Affiliation(s)
- Megan Ní Bhroin
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| | - Lynne Kelly
- Department of Paediatric and Child Health, Trinity College Dublin, Tallaght University Hospital (TUH), Dublin, Ireland
| | - Deirdre Sweetman
- Department of Neonatology, The National Maternity Hospital, Dublin, Ireland
| | - Saima Aslam
- Department of Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Mary I O'Dea
- Department of Paediatric and Child Health, Trinity College Dublin, Tallaght University Hospital (TUH), Dublin, Ireland; Department of Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Tim Hurley
- Department of Paediatric and Child Health, Trinity College Dublin, Tallaght University Hospital (TUH), Dublin, Ireland
| | - Marie Slevin
- Department of Neonatology, The National Maternity Hospital, Dublin, Ireland
| | - John Murphy
- Department of Neonatology, The National Maternity Hospital, Dublin, Ireland
| | - Angela T Byrne
- Department of Radiology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Gabrielle Colleran
- Department of Radiology, The National Maternity Hospital, Dublin, Ireland and Children's Hospital Ireland (CHI) at Temple Street, Dublin, Ireland; Department of Paediatrics, Trinity College Dublin, Dublin, Ireland; Women's and Children's Health, University College Dublin (UCD), School of Medicine, University College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Department of Paediatric and Child Health, Trinity College Dublin, Tallaght University Hospital (TUH), Dublin, Ireland; Department of Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Arun L W Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Campbell SK. Functional movement assessment with the Test of Infant Motor Performance. J Perinatol 2021; 41:2385-2394. [PMID: 33883688 DOI: 10.1038/s41372-021-01060-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
The purpose of this article is to review research on the Test of Infant Motor Performance, a functional assessment of movement capabilities with age standards for infants from 34 weeks postmenstrual age through 17 weeks post term (corrected age). The Test of Infant Motor Performance was normed on a U.S. population-based sample to support its use as a tool for diagnosing delayed motor development in early infancy. The test is one of the preferred methods for parents of babies in special care nurseries to learn about their infant's development. The test was used in a variety of clinical trials to document effects of early therapy and can be used as a short-term outcome measure for other interventions expected to impact functional motor performance.
Collapse
Affiliation(s)
- Suzann K Campbell
- Professor Emerita, University of Illinois at Chicago, and Partner, Infant Motor Performance Scales, LLC, Chicago, IL, USA.
| |
Collapse
|
19
|
Wang Y, Hinds W, Duarte CS, Lee S, Monk C, Wall M, Canino G, Milani ACC, Jackowski A, Mamin MG, Foerster BU, Gingrich J, Weissman MM, Peterson BS, Semanek D, Perez EA, Labat E, Torres IB, Da Silva I, Parente C, Abdala N, Posner J. Intra-session test-retest reliability of functional connectivity in infants. Neuroimage 2021; 239:118284. [PMID: 34147630 PMCID: PMC8335644 DOI: 10.1016/j.neuroimage.2021.118284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022] Open
Abstract
Resting functional MRI studies of the infant brain are increasingly becoming an important tool in developmental neuroscience. Whereas the test-retest reliability of functional connectivity (FC) measures derived from resting fMRI data have been characterized in the adult and child brain, similar assessments have not been conducted in infants. In this study, we examined the intra-session test-retest reliability of FC measures from 119 infant brain MRI scans from four neurodevelopmental studies. We investigated edge-level and subject-level reliability within one MRI session (between and within runs) measured by the Intraclass correlation coefficient (ICC). First, using an atlas-based approach, we examined whole-brain connectivity as well as connectivity within two common resting fMRI networks - the default mode network (DMN) and the sensorimotor network (SMN). Second, we examined the influence of run duration, study site, and scanning manufacturer (e.g., Philips and General Electric) on ICCs. Lastly, we tested spatial similarity using the Jaccard Index from networks derived from independent component analysis (ICA). Consistent with resting fMRI studies from adults, our findings indicated poor edge-level reliability (ICC = 0.14-0.18), but moderate-to-good subject-level intra-session reliability for whole-brain, DMN, and SMN connectivity (ICC = 0.40-0.78). We also found significant effects of run duration, site, and scanning manufacturer on reliability estimates. Some ICA-derived networks showed strong spatial reproducibility (e.g., DMN, SMN, and Visual Network), and were labelled based on their spatial similarity to analogous networks measured in adults. These networks were reproducibly found across different study sites. However, other ICA-networks (e.g. Executive Control Network) did not show strong spatial reproducibility, suggesting that the reliability and/or maturational course of functional connectivity may vary by network. In sum, our findings suggest that developmental scientists may be on safe ground examining the functional organization of some major neural networks (e.g. DMN and SMN), but judicious interpretation of functional connectivity is essential to its ongoing success.
Collapse
Affiliation(s)
- Yun Wang
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Walter Hinds
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Catherine Monk
- Department of Obstetrics and Gynecology, New York State Psychiatric Institute, New York, NY, USA
| | - Melanie Wall
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Glorisa Canino
- School of Medicine, Medical Science Campus, University of Puerto Rico, San Juan, PR, USA
| | | | - Andrea Jackowski
- Interdisciplinary Lab for Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Bernd U Foerster
- Department of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jay Gingrich
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Obstetrics and Gynecology, New York State Psychiatric Institute, New York, NY, USA
| | - Bradley S Peterson
- Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, CA, USA
| | - David Semanek
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Edna Acosta Perez
- School of Medicine, Medical Science Campus, University of Puerto Rico, San Juan, PR, USA; Graduate School of Public Health, Medical Science Campus, University of Puerto Rico, San Juan, PR, USA
| | - Eduardo Labat
- School of Medicine, Medical Science Campus, University of Puerto Rico, San Juan, PR, USA
| | - Ioannisely Berrios Torres
- Behavioral Science Research Insitute, Academic Deanship, Medical Science Campus, University of Puerto Rico, San Juan, PR, USA
| | - Ivaldo Da Silva
- Department of Gynecology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Camila Parente
- Department of Gynecology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Nitamar Abdala
- Department of Diagnostic Radiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Ellis CT, Skalaban LJ, Yates TS, Bejjanki VR, Córdova NI, Turk-Browne NB. Evidence of hippocampal learning in human infants. Curr Biol 2021; 31:3358-3364.e4. [PMID: 34022155 DOI: 10.1016/j.cub.2021.04.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 01/26/2023]
Abstract
The hippocampus is essential for human memory.1 The protracted maturation of memory capacities from infancy through early childhood2-4 is thus often attributed to hippocampal immaturity.5-7 The hippocampus of human infants has been characterized in terms of anatomy,8,9 but its function has never been tested directly because of technical challenges.10,11 Here, we use recently developed methods for task-based fMRI in awake human infants12 to test the hypothesis that the infant hippocampus supports statistical learning.13-15 Hippocampal activity increased with exposure to visual sequences of objects when the temporal order contained regularities to be learned, compared to when the order was random. Despite the hippocampus doubling in anatomical volume across infancy, learning-related functional activity bore no relationship to age. This suggests that the hippocampus is recruited for statistical learning at the youngest ages in our sample, around 3 months. Within the hippocampus, statistical learning was clearer in anterior than posterior divisions. This is consistent with the theory that statistical learning occurs in the monosynaptic pathway,16 which is more strongly represented in the anterior hippocampus.17,18 The monosynaptic pathway develops earlier than the trisynaptic pathway, which is linked to episodic memory,19,20 raising the possibility that the infant hippocampus participates in statistical learning before it forms durable memories. Beyond the hippocampus, the medial prefrontal cortex showed statistical learning, consistent with its role in adult memory integration21 and generalization.22 These results suggest that the hippocampus supports the vital ability of infants to extract the structure of their environment through experience.
Collapse
Affiliation(s)
- Cameron T Ellis
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA
| | - Lena J Skalaban
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA
| | - Tristan S Yates
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA
| | - Vikranth R Bejjanki
- Department of Psychology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - Natalia I Córdova
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
21
|
Poppe T, Willers Moore J, Arichi T. Individual focused studies of functional brain development in early human infancy. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Ní Bhroin M, Molloy EJ, Bokde ALW. Relationship between resting-state fMRI functional connectivity with motor and language outcome after perinatal brain injury - A systematic review. Eur J Paediatr Neurol 2021; 33:36-49. [PMID: 34058624 DOI: 10.1016/j.ejpn.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Perinatal brain injury is a significant cause of adverse neurodevelopmental outcomes. The objective of this systematic review was to identify patterns of altered brain function, quantified using functional connectivity (FC) changes in resting-state fMRI (rs-fMRI) data, that were associated with motor and language outcomes in individuals with a history of perinatal brain injury. A systematic search using electronic databases was conducted to identify relevant studies. A total of 10 studies were included in the systematic review, representing 260 individuals with a history of perinatal brain injury. Motor and language outcomes were measured at time points ranging from 4 months to 29 years 1 month. Relations between FC and motor measures revealed increased intra-hemispheric FC, reduced inter-hemispheric FC and impaired lateralization of motor-related brain regions associated with motor outcomes. Altered FC within sensorimotor, visual, cerebellum and frontoparietal networks, and between sensorimotor, visual, auditory and higher-order networks, including cerebellum, frontoparietal, default-mode, salience, self-referential and attentional networks were also associated with motor outcomes. In studies assessing the relationship between rs-fMRI and language outcome, reduced intra-hemispheric FC, increased inter-hemispheric FC and right-hemisphere lateralization of language-related brain regions correlated with language outcomes. Evidence from this systematic review suggests a possible association between diaschisis and motor and language impairments in individuals after perinatal brain lesions. These findings support the need to explore the contributions of additional brain regions functionally connected but remote from the primary lesioned brain area for targeted treatments and appropriate intervention, though more studies with increased standardization across neuroimaging and neurodevelopmental assessments are needed.
Collapse
Affiliation(s)
- Megan Ní Bhroin
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| | - Eleanor J Molloy
- Paediatrics and Child Health, Trinity College Dublin, Dublin, Ireland; Department of Neonatology, Children's Hospital Ireland at Crumlin and Tallaght, Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Arun L W Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Howell AL, Osher DE, Li J, Saygin ZM. The intrinsic neonatal hippocampal network: rsfMRI findings. J Neurophysiol 2020; 124:1458-1468. [DOI: 10.1152/jn.00362.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although both animal data and human data suggest that the hippocampus is immature at birth, to date, there are no direct assessments of human hippocampal functional connectivity (FC) very early in life. Our study explores the FC of the hippocampus to the cortex at birth, allowing insight into the development of human memory systems. In particular, we find that adults and neonates exhibit vastly different hippocampal connectivity profiles—a finding that likely has large developmental implications.
Collapse
Affiliation(s)
- Athena L. Howell
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - David E. Osher
- Department of Psychology, The Ohio State University, Columbus, Ohio
| | - Jin Li
- Department of Psychology, The Ohio State University, Columbus, Ohio
| | - Zeynep M. Saygin
- Department of Psychology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
24
|
Camacho MC, King LS, Ojha A, Garcia CM, Sisk LM, Cichocki AC, Humphreys KL, Gotlib IH. Cerebral blood flow in 5- to 8-month-olds: Regional tissue maturity is associated with infant affect. Dev Sci 2020; 23:e12928. [PMID: 31802580 PMCID: PMC8931704 DOI: 10.1111/desc.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Infancy is marked by rapid neural and emotional development. The relation between brain function and emotion in infancy, however, is not well understood. Methods for measuring brain function predominantly rely on the BOLD signal; however, interpretation of the BOLD signal in infancy is challenging because the neuronal-hemodynamic relation is immature. Regional cerebral blood flow (rCBF) provides a context for the infant BOLD signal and can yield insight into the developmental maturity of brain regions that may support affective behaviors. This study aims to elucidate the relations among rCBF, age, and emotion in infancy. One hundred and seven mothers reported their infants' (infant age M ± SD = 6.14 ± 0.51 months) temperament. A subsample of infants completed MRI scans, 38 of whom produced usable perfusion MRI during natural sleep to quantify rCBF. Mother-infant dyads completed the repeated Still-Face Paradigm, from which infant affect reactivity and recovery to stress were quantified. We tested associations of infant age at scan, temperament factor scores, and observed affect reactivity and recovery with voxel-wise rCBF. Infant age was positively associated with CBF in nearly all voxels, with peaks located in sensory cortices and the ventral prefrontal cortex, supporting the formulation that rCBF is an indicator of tissue maturity. Temperamental Negative Affect and recovery of positive affect following a stressor were positively associated with rCBF in several cortical and subcortical limbic regions, including the orbitofrontal cortex and inferior frontal gyrus. This finding yields insight into the nature of affective neurodevelopment during infancy. Specifically, infants with relatively increased prefrontal cortex maturity may evidence a disposition toward greater negative affect and negative reactivity in their daily lives yet show better recovery of positive affect following a social stressor.
Collapse
Affiliation(s)
| | | | - Amar Ojha
- Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Franki I, Mailleux L, Emsell L, Peedima ML, Fehrenbach A, Feys H, Ortibus E. The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review - Part A. Structural imaging. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 100:103606. [PMID: 32192951 DOI: 10.1016/j.ridd.2020.103606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Conventional Structural Magnetic Resonance Imaging (sMRI) is a mainstay in Cerebral Palsy (CP) diagnosis. AIMS A systematic literature review was performed with the aim to investigate the relationship between structural brain lesions identified by sMRI and motor outcomes in children with CP. METHODS Fifty-eight studies were included. The results were analysed in terms of population characteristics, sMRI (classified according to Krägeloh-Mann & Horber, 2007), gross and fine motor function and their interrelation. OUTCOMES White matter lesions were the most common brain lesion types and were present in 57.8 % of all children with uCP, in 67.0 % of all children with bCP and in 33 % of the group of mixed subtypes. Grey matter lesions were most frequently registered in children with dyskinesia (n = 42.2 %). No structural anomalies visualized by sMRI were reported in 5.7 % of all cases. In all lesion types, an equal distribution over the different gross motor function classification system categories was present. The included studies did not report sufficient information about fine motor function to relate these results to structural imaging. CONCLUSIONS AND IMPLICATIONS The relationship between brain structure and motor outcome needs to be further elucidated in a representative cohort of children with CP, using a more standardized MRI classification system.
Collapse
Affiliation(s)
- Inge Franki
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium; Universitaire Ziekenhuizen Leuven, Campus Pellenberg, Cerebral Palsy Reference Centre, Leuven, Belgium.
| | - Lisa Mailleux
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium; Centre For Developmental Disabilities, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Department of Imaging an Pathology, Translational MRI, Leuven, Belgium; KU Leuven, University Psychiatric Center (UPC-) Geriatric Psychiatry, Leuven, Belgium
| | | | - Anna Fehrenbach
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Hilde Feys
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Els Ortibus
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium; Universitaire Ziekenhuizen Leuven, Campus Pellenberg, Cerebral Palsy Reference Centre, Leuven, Belgium; Centre For Developmental Disabilities, Leuven, Belgium
| |
Collapse
|
26
|
Rocha PRH, Saraiva MDCP, Barbieri MA, Ferraro AA, Bettiol H. Association of preterm birth and intrauterine growth restriction with childhood motor development: Brisa cohort, Brazil. Infant Behav Dev 2020; 58:101429. [PMID: 32088637 DOI: 10.1016/j.infbeh.2020.101429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022]
Abstract
The present study investigated the association between preterm birth PT conditions, intrauterine growth restriction IUGR and the combination of both PT-IUGR with infant motor development. A cohort with 1006 children was monitored during prenatal, at birth, and two years of age. Bayley-III screening was used to evaluate of fine and gross motor skills. The data did not indicate an increased risk for motor delays in the PT or IUGR, composed mainly by mild cases. However, the combination of the conditions PT-IUGR increased the risk of delays in motor, which emphasizes the importance of monitoring the motor development of the group.
Collapse
Affiliation(s)
- Paulo Ricardo H Rocha
- Department of Puericulture and Pediatrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Maria da C P Saraiva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marco A Barbieri
- Department of Puericulture and Pediatrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alexandre A Ferraro
- Department of Pediatrics, Faculty of Medicine, University of Sao Paulo, SP, Brazil
| | - Heloisa Bettiol
- Department of Puericulture and Pediatrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
27
|
Mailleux L, Franki I, Emsell L, Peedima ML, Fehrenbach A, Feys H, Ortibus E. The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review-Part B diffusion imaging and tractography. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 97:103569. [PMID: 31901671 DOI: 10.1016/j.ridd.2019.103569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/13/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Diffusion magnetic resonance imaging (dMRI) is able to detect, localize and quantify subtle brain white matter abnormalities that may not be visible on conventional structural MRI. Over the past years, a growing number of studies have applied dMRI to investigate structure-function relationships in children with cerebral palsy (CP). AIMS To provide an overview of the recent literature on dMRI and motor function in children with CP. METHODS A systematic literature search was conducted in PubMed, Embase, Cochrane Central Register of Controlled trials, Cinahl and Web of Science from 2012 onwards. RESULTS In total, 577 children with CP in 19 studies were included. Sixteen studies only included unilateral CP, while none included dyskinetic CP. Most studies focused on specific regions/tracts of interest (n = 17) versus two studies that investigated the whole brain. In unilateral and bilateral CP, white matter abnormalities were widespread including non-motor areas. In unilateral CP, consistent relationships were found between white matter integrity of the corticospinal tract and somatosensory pathways (e.g. thalamocortical projections, medial lemniscus) with upper limb sensorimotor function. The role of commissural and associative tracts remains poorly investigated. Also results describing structure-function relationships in bilateral CP are scarce (n = 3). CONCLUSIONS This review underlines the importance of both the motor and somatosensory tracts for upper limb sensorimotor function in unilateral CP. However, the exact contribution of each tract requires further exploration. In addition, research on the relevance of non-motor pathways is warranted, as well as studies including other types of CP.
Collapse
Affiliation(s)
- Lisa Mailleux
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium; Centre For Developmental Disabilities, Leuven, Belgium.
| | - Inge Franki
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium; University Hospitals Leuven, Campus Pellenberg, Cerebral Palsy Reference Centre, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Translational MRI, Department of Imaging and Pathology, Leuven, Belgium; KU Leuven, Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| | | | - Anna Fehrenbach
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Hilde Feys
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Els Ortibus
- Centre For Developmental Disabilities, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, Leuven, Belgium; University Hospitals Leuven, Campus Pellenberg, Cerebral Palsy Reference Centre, Leuven, Belgium
| |
Collapse
|
28
|
Merhar SL, Gozdas E, Tkach JA, Parikh NA, Kline-Fath BM, He L, Yuan W, Altaye M, Leach JL, Holland SK. Neonatal Functional and Structural Connectivity Are Associated with Cerebral Palsy at Two Years of Age. Am J Perinatol 2020; 37:137-145. [PMID: 30919395 PMCID: PMC8103821 DOI: 10.1055/s-0039-1683874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The accuracy of structural magnetic resonance imaging (MRI) to predict later cerebral palsy (CP) in newborns with perinatal brain injury is variable. Diffusion tensor imaging (DTI) and task-based functional MRI (fMRI) show promise as predictive tools. We hypothesized that infants who later developed CP would have reduced structural and functional connectivity as compared with those without CP. STUDY DESIGN We performed DTI and fMRI using a passive motor task at 40 to 48 weeks' postmenstrual age in 12 infants with perinatal brain injury. CP was diagnosed at age 2 using a standardized examination. RESULTS Five infants had CP at 2 years of age, and seven did not have CP. Tract-based spatial statistics showed a widespread reduction of fractional anisotropy (FA) in almost all white matter tracts in the CP group. Using the median FA value in the corticospinal tracts as a cutoff, FA was 100% sensitive and 86% specific to predict CP compared with a sensitivity of 60 to 80% and a specificity of 71% for structural MRI. During fMRI, the CP group had reduced functional connectivity from the right supplemental motor area as compared with the non-CP group. CONCLUSION DTI and fMRI obtained soon after birth are potential biomarkers to predict CP in newborns with perinatal brain injury.
Collapse
Affiliation(s)
- Stephanie L. Merhar
- Perinatal Institute, Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH,University of Cincinnati Department of Pediatrics, Cincinnati OH
| | - Elveda Gozdas
- Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Jean A. Tkach
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati OH,Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Nehal A. Parikh
- Perinatal Institute, Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH,University of Cincinnati Department of Pediatrics, Cincinnati OH
| | - Beth M. Kline-Fath
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Lili He
- Perinatal Institute, Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical Center, Cincinnati OH,Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - James L. Leach
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | | |
Collapse
|
29
|
Functional Connectome of the Fetal Brain. J Neurosci 2019; 39:9716-9724. [PMID: 31685648 PMCID: PMC6891066 DOI: 10.1523/jneurosci.2891-18.2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 01/05/2023] Open
Abstract
Large-scale functional connectome formation and reorganization is apparent in the second trimester of pregnancy, making it a crucial and vulnerable time window in connectome development. Here we identified which architectural principles of functional connectome organization are initiated before birth, and contrast those with topological characteristics observed in the mature adult brain. A sample of 105 pregnant women participated in human fetal resting-state fMRI studies (fetal gestational age between 20 and 40 weeks). Connectome analysis was used to analyze weighted network characteristics of fetal macroscale brain wiring. We identified efficient network attributes, common functional modules, and high overlap between the fetal and adult brain network. Our results indicate that key features of the functional connectome are present in the second and third trimesters of pregnancy. Understanding the organizational principles of fetal connectome organization may bring opportunities to develop markers for early detection of alterations of brain function.SIGNIFICANCE STATEMENT The fetal to neonatal period is well known as a critical stage in brain development. Rapid neurodevelopmental processes establish key functional neural circuits of the human brain. Prenatal risk factors may interfere with early trajectories of connectome formation and thereby shape future health outcomes. Recent advances in MRI have made it possible to examine fetal brain functional connectivity. In this study, we evaluate the network topography of normative functional network development during connectome genesis in utero Understanding the developmental trajectory of brain connectivity provides a basis for understanding how the prenatal period shapes future brain function and disease dysfunction.
Collapse
|
30
|
Shang J, Fisher P, Bäuml JG, Daamen M, Baumann N, Zimmer C, Bartmann P, Boecker H, Wolke D, Sorg C, Koutsouleris N, Dwyer DB. A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Hum Brain Mapp 2019; 40:4239-4252. [PMID: 31228329 DOI: 10.1002/hbm.24698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Imaging studies have characterized functional and structural brain abnormalities in adults after premature birth, but these investigations have mostly used univariate methods that do not account for hypothesized interdependencies between brain regions or quantify accuracy in identifying individuals. To overcome these limitations, we used multivariate machine learning to identify gray matter volume (GMV) and amplitude of low frequency fluctuations (ALFF) brain patterns that best classify young adults born very preterm/very low birth weight (VP/VLBW; n = 94) from those born full-term (FT; n = 92). We then compared the spatial maps of the structural and functional brain signatures and validated them by assessing associations with clinical birth history and basic cognitive variables. Premature birth could be predicted with a balanced accuracy of 80.7% using GMV and 77.4% using ALFF. GMV predictions were mediated by a pattern of subcortical and middle temporal reductions and volumetric increases of the lateral prefrontal, medial prefrontal, and superior temporal gyrus regions. ALFF predictions were characterized by a pattern including increases in the thalamus, pre- and post-central gyri, and parietal lobes, in addition to decreases in the superior temporal gyri bilaterally. Decision scores from each classification, assessing the degree to which an individual was classified as a VP/VLBW case, were predicted by the number of days in neonatal hospitalization and birth weight. ALFF decision scores also contributed to the prediction of general IQ, which highlighted their potential clinical significance. Combined, the results clarified previous research and suggested that primary subcortical and temporal damage may be accompanied by disrupted neurodevelopment of the cortex.
Collapse
Affiliation(s)
- Jing Shang
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,TUM-NIC Neuroimaging Center, Technische Universität München
| | - Paul Fisher
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Marcel Daamen
- Department of Neonatology, University Hospital Bonn, Bonn, Germany.,Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München.,Department of Neuroradiology, Klinikum rechts der Isar and Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar and Technische Universität München, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
31
|
Woodward KE, Carlson HL, Kuczynski A, Saunders J, Hodge J, Kirton A. Sensory-motor network functional connectivity in children with unilateral cerebral palsy secondary to perinatal stroke. Neuroimage Clin 2019; 21:101670. [PMID: 30642756 PMCID: PMC6412078 DOI: 10.1016/j.nicl.2019.101670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Perinatal stroke is the most common cause of unilateral cerebral palsy. Mechanisms of post-stroke developmental plasticity in children are poorly understood. To better understand the relationship between functional connectivity and disability, we used resting-state fMRI to compare sensorimotor connectivity with clinical dysfunction. METHODS School-aged children with periventricular venous infarction (PVI) and unilateral cerebral palsy were compared to controls. Resting-state BOLD signal was acquired on 3 T MRI and analyzed using CONN in SPM12. Functional connectivity was computed between S1, M1, supplementary motor area (SMA), and thalamus of the left/non-lesioned and right/lesioned hemisphere. Primary outcome was connectivity expressed as a Fisher-transformed correlation coefficient. Motor function was measured using the Assisting Hand Assessment (AHA), and Melbourne Assessment (MA). Proprioceptive function was measured using a robotic position matching task (VarXY). RESULTS Participants included 15 PVI and 21 controls. AHA and MA in stroke patients were negatively correlated with connectivity (increased connectivity = poorer performance). Position sense was inversely correlated with connectivity (increased connectivity = improved performance) between the non-lesioned S1 and thalamus/SMA. In controls, VarXY was positively correlated with connectivity between the thalamus and bilateral sensorimotor regions. CONCLUSIONS Resting state fMRI measures of sensorimotor connectivity are associated with clinical sensorimotor function in children with unilateral cerebral palsy secondary to PVI. Greater insight into understanding reorganization of brain networks following perinatal stroke may facilitate personalized rehabilitation.
Collapse
Affiliation(s)
- K E Woodward
- Department of Clinical Neurosciences, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada.
| | - H L Carlson
- Department of Clinical Neurosciences, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada.
| | - A Kuczynski
- Department of Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N4N1, Canada.
| | - J Saunders
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada.
| | - J Hodge
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada.
| | - A Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada; Department of Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N4N1, Canada.
| |
Collapse
|
32
|
Cusack R, McCuaig O, Linke AC. Methodological challenges in the comparison of infant fMRI across age groups. Dev Cogn Neurosci 2018; 33:194-205. [PMID: 29158073 PMCID: PMC6969274 DOI: 10.1016/j.dcn.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/29/2017] [Accepted: 11/07/2017] [Indexed: 01/31/2023] Open
Abstract
Functional MRI (fMRI) in infants is rapidly growing and providing fundamental insights into the origins of brain functions. Comparing brain development at different ages is particularly powerful, but there are a number of methodological challenges that must be addressed if confounds are to be avoided. With development, brains change in composition in a way that alters their tissue contrast, and in size, shape, and gyrification, requiring careful image processing strategies and age-specific standard templates. The hemodynamic response and other aspects of physiology change with age, requiring careful paradigm design and analysis methods. Infants move more, particularly around the second year of age, and move in a different way to adults. This movement can lead to distortion in fMRI images, and requires tailored techniques during acquisition and post-processing. Infants have different sleep patterns, and their sensory periphery is changing macroscopically and in its neural pathways. Finally, once data have been acquired and analyzed, there are important considerations during mapping of brain processes and cognitive functions across age groups. In summary, new methods are critical to the comparison across age groups, and key to maximizing the rate at which infant fMRI can provide insight into the fascinating questions about the origin of cognition.
Collapse
Affiliation(s)
- Rhodri Cusack
- Brain and Mind Institute, Western University, Canada; Trinity College, Dublin, Ireland.
| | | | | |
Collapse
|