1
|
Xu E, Pitts S, Dahill-Fuchel J, Scherrer S, Nauvel T, Overton JG, Riva-Posse P, Crowell A, Figee M, Alagapan S, Rozell C, Choi KS, Mayberg HS, Waters AC. Neural Interoceptive Processing is Modulated by Deep Brain Stimulation to Subcallosal Cingulate Cortex for Treatment Resistant Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00358-6. [PMID: 39622471 DOI: 10.1016/j.bpsc.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Symptoms of depression are associated with impaired interoceptive processing of bodily sensation. The antidepressant effects of subcallosal cingulate deep brain stimulation (SCC DBS) include acute change in bodily sensation, and the SCC target is connected to cortical regions critically involved in interoception. This study tests whether cortical interoceptive processing is modulated by SCC DBS for treatment resistant depression (TRD). METHODS In eight patients receiving SCC DBS for TRD, we used electroencephalography (EEG) to measure the heartbeat-evoked potential (HEP), a putative read-out of neural interoception, before surgery and over six months of treatment with DBS. We also examined the immediate effect of DBS on the HEP, and correlated HEP change over time with outcomes of treatment for depression. RESULTS HEP amplitude increased from baseline after six months of DBS treatment, and this increase was associated with faster antidepressant response. Recording with stimulation on (versus off) had an immediate effect on HEP in the laboratory. Overall, modulation of the HEP was most pronounced in sensors over the left parietal cortex. CONCLUSION Brain-based evidence implies an interoceptive element in the mechanism of treatment efficacy with deep brain stimulation for TRD, and substantiates a theorized connection between interoception and depression.
Collapse
Affiliation(s)
- Elisa Xu
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai; Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Samantha Pitts
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai; Department of Neurology, Icahn School of Medicine at Mount Sina
| | | | - Sara Scherrer
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai; Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Tanya Nauvel
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai
| | | | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Andrea Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai; Department of Psychiatry, Icahn School of Medicine at Mount Sinai; Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | | | - Christopher Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai; Department of Radiology, Icahn School of Medicine at Mount Sinai; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai; Department of Psychiatry, Icahn School of Medicine at Mount Sinai; Department of Neurology, Icahn School of Medicine at Mount Sina; Department of Neuroscience, Icahn School of Medicine at Mount Sinai; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Allison C Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai; Department of Psychiatry, Icahn School of Medicine at Mount Sinai; Department of Neuroscience, Icahn School of Medicine at Mount Sinai.
| |
Collapse
|
2
|
Coenen VA, Zielinski JM, Sajonz BEA, Reinacher PC, Thierauf-Emberger A, Wessolleck J, Frosch M, Spittau B, Schläpfer TE, Baldermann JC, Endres D, Lagrèze W, Döbrössy MD, Reisert M. Joint Anatomical, Histological, and Imaging Investigation of the Midbrain Target Region for Superolateral Medial Forebrain Bundle Deep Brain Stimulation. Stereotact Funct Neurosurg 2024:1-13. [PMID: 39527932 DOI: 10.1159/000541834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) of the superolateral branch of the medial forebrain bundle (slMFB) is currently being researched in clinical trials and open case series as a therapeutic option for treatment-resistant major depressive disorder and treatment-resistant obsessive-compulsive disorder (TR-OCD). There are numerous publications describing stimulation in such proximity to the ventral tegmental area (VTA) and open questions remain concerning the stimulation target and its functional environment. As of right now, we are not aware of any publications that compare the typical electrode placements with the histologically supported tractographic depiction of the target structure. METHODS We used three cadaver midbrain samples with presumed unaltered anatomy. After fixation, staining and slicing, the histological samples were warped to the Montreal Neurological Institute (MNI) big brain environment. Utilizing a tractographic atlas, a qualitative analysis of the typical slMFB stimulation site in the lateral VTA utilizing a subset of clinically implanted DBS electrodes in n = 12 patients, successfully implanted for TR-OCD was performed. RESULTS A joint qualitative overlay analysis of predominantly tyrosine hydroxylase stained histology at different resolutions in an anatomical common space was achieved. Localization of the DBS lead bodies was found in the typical positions in front of the red nuclei in the lateral VTA. DBS lead tip region positions explained the oculomotor side effects of stimulation related to paranigral or parabrachial pigmented sub-nuclei of the VTA, respectively. The location of active electrode contacts suggests downstream and antidromic effects on the greater VTA related medial forebrain bundle system. CONCLUSION This is the first dedicated joint histopathological overlay analysis of DBS electrodes targeting the slMFB and lateral VTA in a common anatomical space. This analysis might serve to better understand the DBS target region for this procedure.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany
- Center for Basics in Neuromodulation, Medical Faculty of Freiburg University, Freiburg, Germany
| | - Jana Maxi Zielinski
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Bastian Elmar Alexander Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Annette Thierauf-Emberger
- Medical Faculty of Freiburg University, Freiburg, Germany
- Institute of Forensic Medicine, Medical Center of Freiburg University, Freiburg, Germany
| | - Johanna Wessolleck
- Medical Faculty of Freiburg University, Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Maximilian Frosch
- Medical Faculty of Freiburg University, Freiburg, Germany
- Institute of Neuropathology, Medical Center of Freiburg University, Freiburg, Germany
| | - Björn Spittau
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, Freiburg, Germany
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Thomas Eduard Schläpfer
- Medical Faculty of Freiburg University, Freiburg, Germany
- Division of Interventional Biologial Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Juan Carlos Baldermann
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Wolf Lagrèze
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Opthalmology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Máté Daniel Döbrössy
- Medical Faculty of Freiburg University, Freiburg, Germany
- Center for Basics in Neuromodulation, Medical Faculty of Freiburg University, Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Al-Sharif NB, Zavaliangos-Petropulu A, Narr KL. A review of diffusion MRI in mood disorders: mechanisms and predictors of treatment response. Neuropsychopharmacology 2024; 50:211-229. [PMID: 38902355 PMCID: PMC11525636 DOI: 10.1038/s41386-024-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
By measuring the molecular diffusion of water molecules in brain tissue, diffusion MRI (dMRI) provides unique insight into the microstructure and structural connections of the brain in living subjects. Since its inception, the application of dMRI in clinical research has expanded our understanding of the possible biological bases of psychiatric disorders and successful responses to different therapeutic interventions. Here, we review the past decade of diffusion imaging-based investigations with a specific focus on studies examining the mechanisms and predictors of therapeutic response in people with mood disorders. We present a brief overview of the general application of dMRI and key methodological developments in the field that afford increasingly detailed information concerning the macro- and micro-structural properties and connectivity patterns of white matter (WM) pathways and their perturbation over time in patients followed prospectively while undergoing treatment. This is followed by a more in-depth summary of particular studies using dMRI approaches to examine mechanisms and predictors of clinical outcomes in patients with unipolar or bipolar depression receiving pharmacological, neurostimulation, or behavioral treatments. Limitations associated with dMRI research in general and with treatment studies in mood disorders specifically are discussed, as are directions for future research. Despite limitations and the associated discrepancies in findings across individual studies, evolving research strongly indicates that the field is on the precipice of identifying and validating dMRI biomarkers that could lead to more successful personalized treatment approaches and could serve as targets for evaluating the neural effects of novel treatments.
Collapse
Affiliation(s)
- Noor B Al-Sharif
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Artemis Zavaliangos-Petropulu
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Skandalakis GP, Neudorfer C, Payne CA, Bond E, Tavakkoli AD, Barrios-Martinez J, Trutti AC, Koutsarnakis C, Coenen VA, Komaitis S, Hadjipanayis CG, Stranjalis G, Yeh FC, Banihashemi L, Hong J, Lozano AM, Kogan M, Horn A, Evans LT, Kalyvas A. Establishing connectivity through microdissections of midbrain stimulation-related neural circuits. Brain 2024; 147:3083-3098. [PMID: 38808482 PMCID: PMC11370807 DOI: 10.1093/brain/awae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.
Collapse
Affiliation(s)
- Georgios P Skandalakis
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Caitlin A Payne
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Evalina Bond
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Armin D Tavakkoli
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Anne C Trutti
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam 15926, The Netherlands
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg 79106, Germany
- Medical Faculty of the University of Freiburg, Freiburg 79110, Germany
- Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Freiburg 79106, Germany
| | - Spyridon Komaitis
- Queens Medical Center, Nottingham University Hospitals NHS Foundation Trust, Nottingham NG7 2UH, UK
| | | | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer Hong
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Linton T Evans
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Aristotelis Kalyvas
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
5
|
Lapa JDS, Duarte JFS, Campos ACP, Davidson B, Nestor SM, Rabin JS, Giacobbe P, Lipsman N, Hamani C. Adverse Effects of Deep Brain Stimulation for Treatment-Resistant Depression: A Scoping Review. Neurosurgery 2024; 95:509-516. [PMID: 38511957 DOI: 10.1227/neu.0000000000002910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Deep brain stimulation (DBS) is an emerging therapy for treatment-resistant depression (TRD). Although adverse effects have been reported in early-phase and a few randomized clinical trials, little is known about its overall safety profile, which has been assumed to be similar to that of DBS for movement disorders. The objective of this study was to pool existing safety data on DBS for TRD. Following PRISMA guidelines, PubMed was searched for English articles describing adverse outcomes after DBS for TRD. Studies were included if they reported at least 5 patients with a minimal follow-up of 6 months. After abstract (n = 607) and full-article review (n = 127), 28 articles reporting on 353 patients met criteria for final inclusion. Follow-up of the studies retrieved ranged from 12 to 96 months. Hemorrhages occurred in 0.8% of patients and infections in 10.2%. The rate of completed suicide was 2.5%. Development or worsening of depressive symptoms, anxiety, and mania occurred in 18.4%, 9.1%, and 5.1%, respectively. There were some differences between targets, but between-study heterogeneity precluded statistical comparisons. In conclusion, DBS for TRD is associated with surgical and psychiatric adverse events. Hemorrhage and infection occur at rates within an accepted range for other DBS applications. The risk of suicide after DBS for TRD is 2.5% but may not represent a significant deviation from the natural history of TRD. Finally, risks of worsening depression, anxiety, and the incidence of mania should be acknowledged when considering DBS for TRD.
Collapse
Affiliation(s)
- Jorge D S Lapa
- Department of Medicine, Federal University of Sergipe, Aracaju , Sergipe , Brazil
- Department Neurosurgery, Hospital de Cirurgia, Aracaju , Sergipe , Brazil
| | - Joel F S Duarte
- Department Neurosurgery, Neurological Institute of Curitiba, Curitiba , Brazil
| | | | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto , Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| |
Collapse
|
6
|
Wang X, Li C. Knowledge, attitude, and practice of depression among university students. Brain Behav 2024; 14:e70030. [PMID: 39295097 PMCID: PMC11410866 DOI: 10.1002/brb3.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the knowledge, attitude, and practice (KAP) of depression among university students. METHODS A cross-sectional survey was carried out across randomly selected universities in Shandong Province from October 25, 2023, to November 8, 2023. Demographic information and KAP scores were assessed through the administration of questionnaires. The reliability of the questionnaire was confirmed with a Cronbach's alpha coefficient of 0.816 and the Kaiser-Meyer-Olkin measure of 0.894. RESULTS This study included 2448 university students, with 1489 (60.8%) females. The median scores for KAP were 20 (Interquartile Range (IQR): 17-21), 26 (IQR: 23-28), and 35 (IQR: 32-38), respectively. Multivariate regression analysis indicated that being a junior (odds ratio [OR] = 0.720, 95% Confidence Interval (CI): 0.538-0.965, p = .028), senior or above (OR = 0.474, 95% CI: 0.325-0.691, p < .001), having divorced parents (OR = 0.618, 95% CI: 0.409-0.933, p = .022), having direct relatives with depression (OR = 0.710, 95% CI: 0.589-0.856, p < .001), and lacking intimate friends (OR = 0.344, 95% CI: 0.245-0.484, p < .001) were negatively associated with practice. Only having an attitude score of ≥26 (OR = 5.076, 95% CI: 4.230-6.091, p < .001) was significantly and positively associated with practice. CONCLUSION University students had insufficient knowledge, positive attitude, and passive practice toward depression. Clinical interventions should focus on enhancing the understanding and management of depression among university students, particularly through targeted educational programs and support groups, to bridge the gap between knowledge and practice and foster a proactive approach to mental health care.
Collapse
Affiliation(s)
- Xuechao Wang
- Department of Human Resources and Organizational BehaviorShandong University of Finance and EconomicsJinanChina
| | | |
Collapse
|
7
|
Remore LG, Tolossa M, Wei W, Karnib M, Tsolaki E, Rifi Z, Bari AA. Deep Brain Stimulation of the Medial Forebrain Bundle for Treatment-Resistant Depression: A Systematic Review Focused on the Long-Term Antidepressive Effect. Neuromodulation 2024; 27:690-700. [PMID: 37115122 DOI: 10.1016/j.neurom.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Major depression affects millions of people worldwide and has important social and economic consequences. Since up to 30% of patients do not respond to several lines of antidepressive drugs, deep brain stimulation (DBS) has been evaluated for the management of treatment-resistant depression (TRD). The superolateral branch of the medial forebrain bundle (slMFB) appears as a "hypothesis-driven target" because of its role in the reward-seeking system, which is dysfunctional in depression. Although initial results of slMFB-DBS from open-label studies were promising and characterized by a rapid clinical response, long-term outcomes of neurostimulation for TRD deserve particular attention. Therefore, we performed a systematic review focused on the long-term outcome of slMFB-DBS. MATERIALS AND METHODS A literature search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify all studies reporting changes in depression scores after one-year follow-up and beyond. Patient, disease, surgical, and outcome data were extracted for statistical analysis. The Montgomery-Åsberg Depression Rating Scale (ΔMADRS) was used as the clinical outcome, defined as percentage reduction from baseline to follow-up evaluation. Responders' and remitters' rates were also calculated. RESULTS From 56 studies screened for review, six studies comprising 34 patients met the inclusion criteria and were analyzed. After one year of active stimulation, ΔMADRS was 60.7% ± 4%; responders' and remitters' rates were 83.8% and 61.5%, respectively. At the last follow-up, four to five years after the implantation, ΔMADRS reached 74.7% ± 4.6%. The most common side effects were stimulation related and reversible with parameter adjustments. CONCLUSIONS slMFB-DBS appears to have a strong antidepressive effect that increases over the years. Nevertheless, to date, the overall number of patients receiving implantations is limited, and the slMFB-DBS surgical technique seems to have an important impact on the clinical outcome. Further multicentric studies in a larger population are needed to confirm slMFB-DBS clinical outcomes.
Collapse
Affiliation(s)
- Luigi Gianmaria Remore
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA; University of Milan "La Statale," Milan, Italy.
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Evangelia Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ziad Rifi
- University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf Ahmad Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Johnson KA, Okun MS, Scangos KW, Mayberg HS, de Hemptinne C. Deep brain stimulation for refractory major depressive disorder: a comprehensive review. Mol Psychiatry 2024; 29:1075-1087. [PMID: 38287101 PMCID: PMC11348289 DOI: 10.1038/s41380-023-02394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Deep brain stimulation (DBS) has emerged as a promising treatment for select patients with refractory major depressive disorder (MDD). The clinical effectiveness of DBS for MDD has been demonstrated in meta-analyses, open-label studies, and a few controlled studies. However, randomized controlled trials have yielded mixed outcomes, highlighting challenges that must be addressed prior to widespread adoption of DBS for MDD. These challenges include tracking MDD symptoms objectively to evaluate the clinical effectiveness of DBS with sensitivity and specificity, identifying the patient population that is most likely to benefit from DBS, selecting the optimal patient-specific surgical target and stimulation parameters, and understanding the mechanisms underpinning the therapeutic benefits of DBS in the context of MDD pathophysiology. In this review, we provide an overview of the latest clinical evidence of MDD DBS effectiveness and the recent technological advancements that could transform our understanding of MDD pathophysiology, improve the clinical outcomes for MDD DBS, and establish a path forward to develop more effective neuromodulation therapies to alleviate depressive symptoms.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Tong Y, Cho S, Coenen VA, Döbrössy MD. Input-output relation of midbrain connectomics in a rodent model of depression. J Affect Disord 2024; 345:443-454. [PMID: 37890539 DOI: 10.1016/j.jad.2023.10.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The symptoms associated with depression are believed to arise from disruptions in information processing across brain networks. The ventral tegmental area (VTA) influences reward-based behavior, motivation, addiction, and psychiatric disorders, including depression. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB), is an emerging therapy for treatment-resistant depression. Understanding the depression associated anatomical networks crucial for comprehending its antidepressant effects. METHODS Flinders Sensitive Line (FSL), a rodent model of depression and Sprague-Dawley rats (n = 10 each) were used in this study. We used monosynaptic tracing to map inputs of VTA efferent neurons: VTA-to-NAc nucleus accumbens (NAc) (both core and shell) and VTA-to-prefrontal cortex (PFC). Quantitative analysis explored afferent diversity and strengths. RESULTS VTA efferent neurons receive a variety of afferents with varying input weights and predominant neuromodulatory representation. Notably, NAc-core projecting VTA neurons showed stronger afferents from dorsal raphe, while NAc shell-projecting VTA neurons displayed lower input strengths from cortex, thalamus, zona incerta and pretectal area in FSL rats. NAc shell-projecting VTA neurons showed the most difference in connectivity across the experimental groups. LIMITATIONS Lack of functional properties of the anatomical connections is the major limitation of this study. Incomplete labeling and the cytotoxicity of the rabies virus should be made aware of. CONCLUSIONS These findings provide the first characterization of inputs to different VTA ascending projection neurons, shedding light on critical differences in the connectome of the midbrain-forebrain system. Moreover, these differences support potential network effects of these circuits in the context of MFB DBS neuromodulation for depression.
Collapse
Affiliation(s)
- Y Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - S Cho
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - V A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg, Germany; IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg, Germany
| | - M D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
10
|
Kilian HM, Schiller B, Meyer-Doll DM, Heinrichs M, Schläpfer TE. Normalized affective responsiveness following deep brain stimulation of the medial forebrain bundle in depression. Transl Psychiatry 2024; 14:6. [PMID: 38191528 PMCID: PMC10774255 DOI: 10.1038/s41398-023-02712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Deep brain stimulation (DBS) of the supero-lateral medial forebrain bundle (slMFB) is associated with rapid and sustained antidepressant effects in treatment-resistant depression (TRD). Beyond that, improvements in social functioning have been reported. However, it is unclear whether social skills, the basis of successful social functioning, are systematically altered following slMFB DBS. Therefore, the current study investigated specific social skills (affective empathy, compassion, and theory of mind) in patients with TRD undergoing slMFB DBS in comparison to healthy subjects. 12 patients with TRD and 12 age- and gender-matched healthy subjects (5 females) performed the EmpaToM, a video-based naturalistic paradigm differentiating between affective empathy, compassion, and theory of mind. Patients were assessed before and three months after DBS onset and compared to an age- and gender-matched sample of healthy controls. All data were analyzed using non-parametric Mann-Whitney U tests. DBS treatment significantly affected patients' affective responsiveness towards emotional versus neutral situations (i.e. affective empathy): While their affective responsiveness was reduced compared to healthy subjects at baseline, they showed normalized affective responsiveness three months after slMFB DBS onset. No effects occurred in other domains with persisting deficits in compassion and intact socio-cognitive skills. Active slMFB DBS resulted in a normalized affective responsiveness in patients with TRD. This specific effect might represent one factor supporting the resumption of social activities after recovery from chronic depression. Considering the small size of this unique sample as well as the explorative nature of this study, future studies are needed to investigate the robustness of these effects.
Collapse
Affiliation(s)
- Hannah Marlene Kilian
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany.
| | - Bastian Schiller
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, DE-79104, Freiburg, Germany
| | - Dora Margarete Meyer-Doll
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany
| | - Markus Heinrichs
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, DE-79104, Freiburg, Germany
| | - Thomas Eduard Schläpfer
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany
| |
Collapse
|
11
|
Chan JL, Carpentier AV, Middlebrooks EH, Okun MS, Wong JK. Current perspectives on tractography-guided deep brain stimulation for the treatment of mood disorders. Expert Rev Neurother 2024; 24:11-24. [PMID: 38037329 DOI: 10.1080/14737175.2023.2289573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an emerging therapy for mood disorders, particularly treatment-resistant depression (TRD). Different brain areas implicated in depression-related brain networks have been investigated as DBS targets and variable clinical outcomes highlight the importance of target identification. Tractography has provided insight into how DBS modulates disorder-related brain networks and is being increasingly used to guide DBS for psychiatric disorders. AREAS COVERED In this perspective, an overview of the current state of DBS for TRD and the principles of tractography is provided. Next, a comprehensive review of DBS targets is presented with a focus on tractography. Finally, the challenges and future directions of tractography-guided DBS are discussed. EXPERT OPINION Tractography-guided DBS is a promising tool for improving DBS outcomes for mood disorders. Tractography is particularly useful for targeting patient-specific white matter tracts that are not visible using conventional structural MRI. Developments in tractography methods will help refine DBS targeting for TRD and may facilitate symptom-specific precision neuromodulation. Ultimately, the standardization of tractography methods will be essential to transforming DBS into an established therapy for mood disorders.
Collapse
Affiliation(s)
- Jason L Chan
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Ariane V Carpentier
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | | | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Runia N, Mol GJJ, Hillenius T, Hassanzadeh Z, Denys DAJP, Bergfeld IO. Effects of deep brain stimulation on cognitive functioning in treatment-resistant depression: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:4585-4593. [PMID: 37730844 DOI: 10.1038/s41380-023-02262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Deep brain stimulation (DBS) is a promising intervention for treatment-resistant depression (TRD). Effects on cognitive functioning are unclear since they have been studied in small samples. We aim to estimate the impact of DBS on cognitive functioning in TRD with a systematic review and meta-analyses. After systematically searching PubMed we included 10 studies which compared standardized neuropsychological tests before and after DBS or between active and sham DBS in TRD. Different random-effects meta-analyses were done for different cognitive (sub-)domains and for different follow-up time windows (<6 months, 6-18 months, and >18 months). We found no significant differences in cognitive functioning up to 6 months of DBS. After 6-18 months of DBS small to moderate improvements were found in verbal memory (Hedge's g = 0.22, 95% CI = [0.01-0.43], p = 0.04), visual memory (Hedge's g = 0.37, 95% CI = [0.03-0.71], p = 0.04), attention/psychomotor speed (Hedge's g = 0.26, 95% CI = [0.02-0.50], p = 0.04) and executive functioning (Hedge's g = 0.37, 95% CI = [0.15-0.59], p = 0.001). Not enough studies could be retrieved for a meta-analysis of effects after >18 months of DBS or for the comparison of active and sham DBS. Qualitatively, generally no differences in cognitive functioning between active and sham DBS were found. No cognitive decline was found in this meta-analysis up to 18 months of DBS in patients with TRD. Results even suggest small positive effects of DBS on cognitive functioning in TRD, although this should be interpreted with caution due to lack of controlled data.
Collapse
Affiliation(s)
- N Runia
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Amsterdam Brain and Cognition, Amsterdam, The Netherlands.
| | - G J J Mol
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - T Hillenius
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Z Hassanzadeh
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - D A J P Denys
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, Amsterdam, The Netherlands
| | - I O Bergfeld
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Remore LG, Rifi Z, Nariai H, Eliashiv DS, Fallah A, Edmonds BD, Matsumoto JH, Salamon N, Tolossa M, Wei W, Locatelli M, Tsolaki EC, Bari AA. Structural connections of the centromedian nucleus of thalamus and their relevance for neuromodulation in generalized drug-resistant epilepsy: insight from a tractography study. Ther Adv Neurol Disord 2023; 16:17562864231202064. [PMID: 37822361 PMCID: PMC10563482 DOI: 10.1177/17562864231202064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Background Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.
Collapse
Affiliation(s)
- Luigi G. Remore
- Surgical Neuromodulation and Brain Mapping Laboratory, ULCA
- Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, USA
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ziad Rifi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dawn S. Eliashiv
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin D. Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Locatelli
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Evangelia C. Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A. Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Geffen School of Medicine David California Los Angeles University of Angeles Los CA, USA
| |
Collapse
|
14
|
Amiri S, Arbabi M, Rahimi M, Parvaresh-Rizi M, Mirbagheri MM. Effective connectivity between deep brain stimulation targets in individuals with treatment-resistant depression. Brain Commun 2023; 5:fcad256. [PMID: 37901039 PMCID: PMC10600572 DOI: 10.1093/braincomms/fcad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
The therapeutic effect of deep brain stimulation on patients with treatment-resistant depression is strongly dependent on the connectivity of the stimulation region with other regions associated with depression. The aims of this study are to characterize the effective connectivity between the brain regions playing important roles in depression and further investigate the underlying pathophysiological mechanisms of treatment-resistant depression and the mechanisms involving deep brain stimulation. Thirty-three individuals with treatment-resistant depression and 29 healthy control subjects were examined. All subjects underwent resting-state functional MRI scanning. The coupling parameters reflecting the causal interactions among deep brain stimulation targets and medial prefrontal cortex were estimated using spectral dynamic causal modelling. Our results showed that compared to the healthy control subjects, in the left hemisphere of treatment-resistant depression patients, the nucleus accumbens was inhibited by the inferior thalamic peduncle and excited the ventral caudate and the subcallosal cingulate gyrus, which in turn excited the lateral habenula. In the right hemisphere, the lateral habenula inhibited the ventral caudate and the nucleus accumbens, both of which inhibited the inferior thalamic peduncle, which in turn inhibited the cingulate gyrus. The ventral caudate excited the lateral habenula and the cingulate gyrus, which excited the medial prefrontal cortex. Furthermore, these effective connectivity links varied between males and females, and the left and right hemispheres. Our findings suggest that intrinsic excitatory/inhibitory connections between deep brain stimulation targets are impaired in treatment-resistant depression patients, and that these connections are sex dependent and hemispherically lateralized. This knowledge can help to better understand the underlying mechanisms of treatment-resistant depression, and along with tractography, structural imaging, and other relevant clinical information, may assist to determine the appropriate region for deep brain stimulation therapy in each treatment-resistant depression patient.
Collapse
Affiliation(s)
- Saba Amiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran 1983969367, Iran
| | - Mohammad Arbabi
- Psychiatry, Psychosomatic Medicine Research Center Department, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Milad Rahimi
- Medical Physics and Biomedical Engineering Group, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1461884513, Iran
| | - Mansour Parvaresh-Rizi
- Neurosurgery Department, Iran University of Medical Sciences (IUMS), Tehran 02166509120, Iran
| | - Mehdi M Mirbagheri
- Medical Physics and Biomedical Engineering Group, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1461884513, Iran
- Physical Medicine and Rehabilitation Department, Northwestern University, Chicago IL 60611, USA
- Neural Engineering and Rehabilitation Research Center, Tehran 1146733711, Iran
| |
Collapse
|
15
|
Fanty L, Yu J, Chen N, Fletcher D, Hey G, Okun M, Wong J. The current state, challenges, and future directions of deep brain stimulation for obsessive compulsive disorder. Expert Rev Med Devices 2023; 20:829-842. [PMID: 37642374 DOI: 10.1080/17434440.2023.2252732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is clinically and pathologically heterogenous, with symptoms often refractory to first-line treatments. Deep brain stimulation (DBS) for the treatment of refractory OCD provides an opportunity to adjust and individualize neuromodulation targeting aberrant circuitry underlying OCD. The tailoring of DBS therapy may allow precision in symptom control based on patient-specific pathology. Progress has been made in understanding the potential targets for DBS intervention; however, a consensus on an optimal target has not been agreed upon. AREAS COVERED A literature review of DBS for OCD was performed by querying the PubMed database. The following topics were covered: the evolution of DBS targeting in OCD, the concept of an underlying unified connectomic network, current DBS targets, challenges facing the field, and future directions which could advance personalized DBS in this challenging population. EXPERT OPINION To continue the increasing efficacy of DBS for OCD, we must further explore the optimal DBS response across clinical profiles and neuropsychiatric domains of OCD as well as how interventions targeting multiple points in an aberrant circuit, multiple aberrant circuits, or a connectivity hub impact clinical response. Additionally, biomarkers would be invaluable in programming adjustments and creating a closed-loop paradigm to address symptom fluctuation in daily life.
Collapse
Affiliation(s)
- Lauren Fanty
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Jun Yu
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Nita Chen
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Drew Fletcher
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Grace Hey
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Michael Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Josh Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
16
|
Hitti FL, Widge AS, Riva-Posse P, Malone DA, Okun MS, Shanechi MM, Foote KD, Lisanby SH, Ankudowich E, Chivukula S, Chang EF, Gunduz A, Hamani C, Feinsinger A, Kubu CS, Chiong W, Chandler JA, Carbunaru R, Cheeran B, Raike RS, Davis RA, Halpern CH, Vanegas-Arroyave N, Markovic D, Bick SK, McIntyre CC, Richardson RM, Dougherty DD, Kopell BH, Sweet JA, Goodman WK, Sheth SA, Pouratian N. Future directions in psychiatric neurosurgery: Proceedings of the 2022 American Society for Stereotactic and Functional Neurosurgery meeting on surgical neuromodulation for psychiatric disorders. Brain Stimul 2023; 16:867-878. [PMID: 37217075 PMCID: PMC11189296 DOI: 10.1016/j.brs.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
OBJECTIVE Despite advances in the treatment of psychiatric diseases, currently available therapies do not provide sufficient and durable relief for as many as 30-40% of patients. Neuromodulation, including deep brain stimulation (DBS), has emerged as a potential therapy for persistent disabling disease, however it has not yet gained widespread adoption. In 2016, the American Society for Stereotactic and Functional Neurosurgery (ASSFN) convened a meeting with leaders in the field to discuss a roadmap for the path forward. A follow-up meeting in 2022 aimed to review the current state of the field and to identify critical barriers and milestones for progress. DESIGN The ASSFN convened a meeting on June 3, 2022 in Atlanta, Georgia and included leaders from the fields of neurology, neurosurgery, and psychiatry along with colleagues from industry, government, ethics, and law. The goal was to review the current state of the field, assess for advances or setbacks in the interim six years, and suggest a future path forward. The participants focused on five areas of interest: interdisciplinary engagement, regulatory pathways and trial design, disease biomarkers, ethics of psychiatric surgery, and resource allocation/prioritization. The proceedings are summarized here. CONCLUSION The field of surgical psychiatry has made significant progress since our last expert meeting. Although weakness and threats to the development of novel surgical therapies exist, the identified strengths and opportunities promise to move the field through methodically rigorous and biologically-based approaches. The experts agree that ethics, law, patient engagement, and multidisciplinary teams will be critical to any potential growth in this area.
Collapse
Affiliation(s)
- Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald A Malone
- Department of Psychiatry, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
| | - Maryam M Shanechi
- Departments of Electrical and Computer Engineering and Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
| | - Sarah H Lisanby
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Elizabeth Ankudowich
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, USA
| | - Srinivas Chivukula
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Aysegul Gunduz
- Department of Biomedical Engineering and Fixel Institute for Neurological Disorders, University of Florida, Gainesville, FL, USA
| | - Clement Hamani
- Sunnybrook Research Institute, Hurvitz Brain Sciences Centre, Harquail Centre for Neuromodulation, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Ashley Feinsinger
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cynthia S Kubu
- Department of Neurology, Cleveland Clinic and Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Winston Chiong
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer A Chandler
- Faculty of Law, University of Ottawa, Ottawa, ON, USA; Affiliate Investigator, Bruyère Research Institute, Ottawa, ON, USA
| | | | | | - Robert S Raike
- Global Research Organization, Medtronic Inc. Neuromodulation, Minneapolis, MN, USA
| | - Rachel A Davis
- Departments of Psychiatry and Neurosurgery, University of Colorado Anschutz, Aurora, CO, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Cpl Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | | | - Dejan Markovic
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cameron C McIntyre
- Departments of Biomedical Engineering and Neurosurgery, Duke University, Durham, NC, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Brian H Kopell
- Department of Neurosurgery, Center for Neuromodulation, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer A Sweet
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Wayne K Goodman
- Department of Psychiatry and Behavior Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Campos ACP, Pople C, Silk E, Surendrakumar S, Rabelo TK, Meng Y, Gouveia FV, Lipsman N, Giacobbe P, Hamani C. Neurochemical mechanisms of deep brain stimulation for depression in animal models. Eur Neuropsychopharmacol 2023; 68:11-26. [PMID: 36640729 DOI: 10.1016/j.euroneuro.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Christopher Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Esther Silk
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thallita K Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Flavia Venetucci Gouveia
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
18
|
Reisert M, Sajonz BEA, Brugger TS, Reinacher PC, Russe MF, Kellner E, Skibbe H, Coenen VA. Where Position Matters-Deep-Learning-Driven Normalization and Coregistration of Computed Tomography in the Postoperative Analysis of Deep Brain Stimulation. Neuromodulation 2023; 26:302-309. [PMID: 36424266 DOI: 10.1016/j.neurom.2022.10.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Recent developments in the postoperative evaluation of deep brain stimulation surgery on the group level warrant the detection of achieved electrode positions based on postoperative imaging. Computed tomography (CT) is a frequently used imaging modality, but because of its idiosyncrasies (high spatial accuracy at low soft tissue resolution), it has not been sufficient for the parallel determination of electrode position and details of the surrounding brain anatomy (nuclei). The common solution is rigid fusion of CT images and magnetic resonance (MR) images, which have much better soft tissue contrast and allow accurate normalization into template spaces. Here, we explored a deep-learning approach to directly relate positions (usually the lead position) in postoperative CT images to the native anatomy of the midbrain and group space. MATERIALS AND METHODS Deep learning is used to create derived tissue contrasts (white matter, gray matter, cerebrospinal fluid, brainstem nuclei) based on the CT image; that is, a convolution neural network (CNN) takes solely the raw CT image as input and outputs several tissue probability maps. The ground truth is based on coregistrations with MR contrasts. The tissue probability maps are then used to either rigidly coregister or normalize the CT image in a deformable way to group space. The CNN was trained in 220 patients and tested in a set of 80 patients. RESULTS Rigorous validation of such an approach is difficult because of the lack of ground truth. We examined the agreements between the classical and proposed approaches and considered the spread of implantation locations across a group of identically implanted subjects, which serves as an indicator of the accuracy of the lead localization procedure. The proposed procedure agrees well with current magnetic resonance imaging-based techniques, and the spread is comparable or even lower. CONCLUSIONS Postoperative CT imaging alone is sufficient for accurate localization of the midbrain nuclei and normalization to the group space. In the context of group analysis, it seems sufficient to have a single postoperative CT image of good quality for inclusion. The proposed approach will allow researchers and clinicians to include cases that were not previously suitable for analysis.
Collapse
Affiliation(s)
- Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany.
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany
| | - Timo S Brugger
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Maximilian F Russe
- Medical Faculty of Freiburg University, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Medical Faculty of Freiburg University, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany
| | - Henrik Skibbe
- RIKEN, Center for Brain Science, Brain Image Analysis Unit, Saitama, Japan
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany
| |
Collapse
|
19
|
DePaoli D, Côté DC, Bouma BE, Villiger M. Endoscopic imaging of white matter fiber tracts using polarization-sensitive optical coherence tomography. Neuroimage 2022; 264:119755. [PMID: 36400379 PMCID: PMC9802682 DOI: 10.1016/j.neuroimage.2022.119755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Polarization sensitive optical coherence tomography (PSOCT) has been shown to image and delineate white matter fibers in a label-free manner by revealing optical birefringence within the myelin sheath using a microscope setup. In this proof-of-concept study, we adapt recent advancements in endoscopic PSOCT to perform depth-resolved imaging of white matter structures deep inside intact porcine brain tissue ex-vivo, through a small, rotational fiber probe. The probe geometry is comparable to microelectrodes currently used in neurosurgical interventions. The presented imaging system is mobile, robust, and uses biologically safe levels of optical radiation making it well suited for clinical translation. In neurosurgery, where accuracy is imperative, endoscopic PSOCT through a narrow-gauge fiber probe could provide intra-operative feedback on the location of critical white matter structures.
Collapse
Affiliation(s)
- Damon DePaoli
- Harvard Medical School, Boston, MA 02115, USA,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel C. Côté
- CERVO Brain Research Center, Université Laval, Quebec City, Quebec G1E 1T2, Canada
| | - Brett E. Bouma
- Harvard Medical School, Boston, MA 02115, USA,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Martin Villiger
- Harvard Medical School, Boston, MA 02115, USA,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA,Corresponding author. (M. Villiger)
| |
Collapse
|
20
|
Coenen VA, Schlaepfer TE, Meyer D, Kilian H, Spanier S, Sajonz BEA, Reinacher PC, Reisert M. Resolving dyskinesias at sustained anti-OCD efficacy by steering of DBS away from the anteromedial STN to the mesencephalic ventral tegmentum - case report. Acta Neurochir (Wien) 2022; 164:2303-2307. [PMID: 35499574 PMCID: PMC9427876 DOI: 10.1007/s00701-022-05206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023]
Abstract
Here we describe therapeutic results in a female patient who underwent bilateral slMFB DBS for OCD. During a 35-month long course of stimulation, she suffered from stimulation-induced dyskinesia of her right leg which we interpreted as co-stimulation of the adjacent anteromedial subthalamic nucleus (amSTN). After reprogramming to steer the stimulation away from the amSTN medial into the direction of the mesencephalic ventral tegmentum (MVT which contains the ventral tegmental area, VTA), the dyskinesias disappeared. Remarkably, anti-OCD efficacy in the presented patient was preserved and achieved with a bilateral stimulation which by our imaging study fully avoided the amSTN.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany.
- Medical Faculty of Freiburg University, Freiburg, Germany.
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Thomas E Schlaepfer
- Medical Faculty of Freiburg University, Freiburg, Germany
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany
- Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Dora Meyer
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Hannah Kilian
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Susanne Spanier
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Gardner W, Fuchs F, Durieux L, Bourgin P, Coenen VA, Döbrössy M, Lecourtier L. Slow Wave Sleep Deficits in the Flinders Sensitive Line Rodent Model of Depression: Effects of Medial Forebrain Bundle Deep-Brain Stimulation. Neuroscience 2022; 498:31-49. [PMID: 35750113 DOI: 10.1016/j.neuroscience.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Major Depressive Disorder (MDD) is an affective disorder typically accompanied by sleep disturbances. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) is an emerging intervention for treatment-resistant depression, but its effect on sleep has not been closely examined. Here we aimed to characterise sleep deficits in the Flinders sensitive line, an established rodent model of depression, and investigate the consequences of MFB stimulation on sleep-related phenotypes. Rats were implanted with bilateral stimulation electrodes in the MFB, surface electrodes to record electrocorticography and electromyography for sleep scoring and electrodes within the prelimbic cortex, nucleus accumbens (NAc) and dorsal hippocampus. Recordings of sleep and oscillatory activity were conducted prior to and following twenty-four hours of MFB stimulation. Behavioural anti-depressant effects were monitored using the forced swim test. Previously unreported abnormalities in the Flinders sensitive line rats were observed during slow wave sleep, including decreased circadian amplitude of its rhythm, a reduction in slow wave activity and elevated gamma band oscillations. Previously established rapid eye movement sleep deficits were replicated. MFB stimulation had anti-depressant effects on behavioural phenotype, but did not significantly impact sleep architecture; it suppressed elevated gamma activity during slow wave sleep in the electrocorticogram and prelimbic cortex signals. Diverse abnormalities in Flinders sensitive line rats emphasise slow wave sleep as a state of dysfunction in affective disorders. MFB stimulation is able to affect behaviour and sleep physiology without influencing sleep architecture. Gamma modulation may represent a component of antidepressant mechanism.
Collapse
Affiliation(s)
- Wilf Gardner
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Faculty of Biology, Albert-Ludwigs-Universität-Freiburg, Freiburg, Germany; Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France
| | - Fanny Fuchs
- Inovarion, Paris, France; Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Strasbourg France
| | - Laura Durieux
- Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France
| | - Patrice Bourgin
- Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Strasbourg France; Centre des troubles du sommeil - CIRCSom, Strasbourg University Hospitals, Strasbourg, France
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| | - Máté Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Faculty of Biology, Albert-Ludwigs-Universität-Freiburg, Freiburg, Germany; Dept of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Germany.
| | - Lucas Lecourtier
- Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
22
|
Pallikaras V, Shizgal P. The Convergence Model of Brain Reward Circuitry: Implications for Relief of Treatment-Resistant Depression by Deep-Brain Stimulation of the Medial Forebrain Bundle. Front Behav Neurosci 2022; 16:851067. [PMID: 35431828 PMCID: PMC9011331 DOI: 10.3389/fnbeh.2022.851067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Deep-brain stimulation of the medial forebrain bundle (MFB) can provide effective, enduring relief of treatment-resistant depression. Panksepp provided an explanatory framework: the MFB constitutes the core of the neural circuitry subserving the anticipation and pursuit of rewards: the “SEEKING” system. On that view, the SEEKING system is hypoactive in depressed individuals; background electrical stimulation of the MFB alleviates symptoms by normalizing activity. Panksepp attributed intracranial self-stimulation to excitation of the SEEKING system in which the ascending projections of midbrain dopamine neurons are an essential component. In parallel with Panksepp’s qualitative work, intracranial self-stimulation has long been studied quantitatively by psychophysical means. That work argues that the predominant directly stimulated substrate for MFB self-stimulation are myelinated, non-dopaminergic fibers, more readily excited by brief electrical current pulses than the thin, unmyelinated axons of the midbrain dopamine neurons. The series-circuit hypothesis reconciles this view with the evidence implicating dopamine in MFB self-stimulation as follows: direct activation of myelinated MFB fibers is rewarding due to their trans-synaptic activation of midbrain dopamine neurons. A recent study in which rats worked for optogenetic stimulation of midbrain dopamine neurons challenges the series-circuit hypothesis and provides a new model of intracranial self-stimulation in which the myelinated non-dopaminergic neurons and the midbrain dopamine projections access the behavioral final common path for reward seeking via separate, converging routes. We explore the potential implications of this convergence model for the interpretation of the antidepressant effect of MFB stimulation. We also discuss the consistent finding that psychomotor stimulants, which boost dopaminergic neurotransmission, fail to provide a monotherapy for depression. We propose that non-dopaminergic MFB components may contribute to the therapeutic effect in parallel to, in synergy with, or even instead of, a dopaminergic component.
Collapse
|
23
|
Coenen VA, Sajonz BEA, Hurwitz TA, Böck M, Hosp JA, Reinacher PC, Urbach H, Blazhenets G, Meyer PT, Reisert M. A Neuroanatomy of Positive Affect Display – Subcortical Fiber Pathways Relevant for Initiation and Modulation of Smiling and Laughing. Front Behav Neurosci 2022; 16:817554. [PMID: 35464145 PMCID: PMC9022623 DOI: 10.3389/fnbeh.2022.817554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background We here report two cases of stimulation induced pathological laughter (PL) under thalamic deep brain stimulation (DBS) for essential tremor and interpret the effects based on a modified neuroanatomy of positive affect display (PAD). Objective/Hypothesis The hitherto existing neuroanatomy of PAD can be augmented with recently described parts of the motor medial forebrain bundle (motorMFB). We speculate that a co-stimulation of parts of this fiber structure might lead to a non-volitional modulation of PAD resulting in PL. Methods We describe the clinical and individual imaging workup and combine the interpretation with normative diffusion tensor imaging (DTI)-tractography descriptions of motor connections of the ventral tegmental area (VTA) (n = 200 subjects, HCP cohort), [[18F] fluorodeoxyglucose (18FDG)] positron emission tomography (PET), and volume of activated tissue simulations. We integrate these results with literature concerning PAD and the neuroanatomy of smiling and laughing. Results DBS electrodes bilaterally co-localized with the MB-pathway (“limiter pathway”). The FDG PET activation pattern allowed to explain pathological PAD. A conceptual revised neuroanatomy of PAD is described. Conclusion Eliciting pathological PAD through chronic thalamic DBS is a new finding and has previously not been reported. PAD is evolution driven, hard wired to the brain and realized over previously described branches of the motorMFB. A major relay region is the VTA/mammillary body complex. PAD physiologically undergoes conscious modulation mainly via the MB branch of the motorMFB (limiter). This limiter in our cases is bilaterally disturbed through DBS. The here described anatomy adds to a previously described framework of neuroanatomy of laughter and humor.
Collapse
Affiliation(s)
- Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- Center for Deep Brain Stimulation, University of Freiburg, Freiburg, Germany
- *Correspondence: Volker A. Coenen,
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Trevor A. Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Marlies Böck
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- Center for Deep Brain Stimulation, University of Freiburg, Freiburg, Germany
| | - Jonas A. Hosp
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- Institute for Laser Technology (ILT), Aachen, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Faculty, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Philipp T. Meyer
- Department of Nuclear Medicine, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Coenen VA, Schlaepfer TE, Sajonz BEA, Reinacher PC, Döbrössy MD, Reisert M. "The Heart Asks Pleasure First"-Conceptualizing Psychiatric Diseases as MAINTENANCE Network Dysfunctions through Insights from slMFB DBS in Depression and Obsessive-Compulsive Disorder. Brain Sci 2022; 12:438. [PMID: 35447971 PMCID: PMC9028695 DOI: 10.3390/brainsci12040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
More than a decade ago, deep brain stimulation (DBS) of the superolateral medial forebrain bundle (slMFB), as part of the greater MFB system, had been proposed as a putative yet experimental treatment strategy for therapy refractory depression (TRD) and later for obsessive-compulsive disorders (OCD). Antidepressant and anti-OCD efficacy have been shown in open case series and smaller trials and were independently replicated. The MFB is anato-physiologically confluent with the SEEKING system promoting euphoric drive, reward anticipation and reward; functions realized through the mesocorticolimbic dopaminergic system. Growing clinical experience concerning surgical and stimulation aspects from a larger number of patients shows an MFB functionality beyond SEEKING and now re-informs the scientific rationale concerning the MFB's (patho-) physiology. In this white paper, we combine observations from more than 75 cases of slMFB DBS. We integrate these observations with a selected literature review to provide a new neuroethological view on the MFB. We here formulate a re-interpretation of the MFB as the main structure of an integrated SEEKING/MAINTENANCE circuitry, allowing for individual homeostasis and well-being through emotional arousal, basic and higher affect valence, bodily reactions, motor programing, vigor and flexible behavior, as the basis for the antidepressant and anti-OCD efficacy.
Collapse
Affiliation(s)
- Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Thomas E. Schlaepfer
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Department of Interventional Biological Psychiatry, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Máté D. Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
25
|
Zhang Y, Furst AJ. Brainstem Diffusion Tensor Tractography and Clinical Applications in Pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:840328. [PMID: 35399154 PMCID: PMC8989264 DOI: 10.3389/fpain.2022.840328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
The brainstem is one of the most vulnerable brain structures in many neurological conditions, such as pain, sleep problems, autonomic dysfunctions, and neurodegenerative disorders. Diffusion tensor imaging and tractography provide structural details and quantitative measures of brainstem fiber pathways. Until recently, diffusion tensor tractographic studies have mainly focused on whole-brain MRI acquisition. Due to the brainstem's spatial localization, size, and tissue characteristics, and limits of imaging techniques, brainstem diffusion MRI poses particular challenges in tractography. We provide a brief overview on recent advances in diffusion tensor tractography in revealing human pathways connecting the brainstem to the subcortical regions (e.g., basal ganglia, mesolimbic, basal forebrain), and cortical regions. Each of these pathways contains different distributions of fiber tracts from known neurotransmitter-specific nuclei in the brainstem. We compare the brainstem tractographic approaches in literature and our in-lab developed automated brainstem tractography in terms of atlas building, technical advantages, and neuroanatomical implications on neurotransmitter systems. Lastly, we summarize recent investigations of using brainstem tractography as a promising tool in association with pain.
Collapse
Affiliation(s)
- Yu Zhang
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, CA, United States,*Correspondence: Yu Zhang ;
| | - Ansgar J. Furst
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, CA, United States,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, United States,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States,Polytrauma System of Care (PSC), VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
26
|
Meyer DM, Spanier S, Kilian HM, Reisert M, Urbach H, Sajonz BEA, Reinacher PC, Normann C, Domschke K, Coenen VA, Schlaepfer TE. Efficacy of superolateral medial forebrain bundle deep brain stimulation in obsessive-compulsive disorder. Brain Stimul 2022; 15:582-585. [DOI: 10.1016/j.brs.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
|
27
|
Marquez-Franco R, Carrillo-Ruiz JD, Velasco AL, Velasco F. Deep Brain Stimulation Neuromodulation for the Treatment of Mood Disorders: Obsessive Compulsive Disorder and Treatment Resistant Depression. Front Psychiatry 2022; 12:764776. [PMID: 35250649 PMCID: PMC8888660 DOI: 10.3389/fpsyt.2021.764776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rene Marquez-Franco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Jose Damian Carrillo-Ruiz
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, Mexico
| | - Ana Luisa Velasco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Francisco Velasco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| |
Collapse
|
28
|
Rymaszewska J, Wieczorek T, Fila-Witecka K, Smarzewska K, Weiser A, Piotrowski P, Tabakow P. Various neuromodulation methods including Deep Brain Stimulation of the medial forebrain bundle combined with psychopharmacotherapy of treatment-resistant depression-Case report. Front Psychiatry 2022; 13:1068054. [PMID: 36727088 PMCID: PMC9884833 DOI: 10.3389/fpsyt.2022.1068054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Treatment-resistant depression remains one of the main concerns of modern psychiatry. Novel methods such as Transcranial Magnetic Stimulation (including deep and theta burst protocols, iTBS) and Deep Brain Stimulation (DBS) can be considered as alternative treatment options. CASE PRESENTATION Twenty-nine-year-old Caucasian female, single, higher-educated was treated with major depressive disorder initially with standard pharmaco- and psychotherapy. Due to diagnosed treatment resistance additional therapeutic approaches were introduced sequentially: Electroconvulsive therapy (efficient only 4 months) and Transcranial Magnetic Stimulation (intermittent Theta Burst Stimulation, iTBS improved just insomnia). Finally the patient was enrolled to the Deep Brain Stimulation (DBS) study with the medial forebrain bundle target. After 20 months of active DBS a reduction of over 80% of depressive symptom severity was observed (Montgomery-Asberg and Hamilton Depression Rating Scales), together with an 87% reduction of anxiety symptoms intensity (Hamilton Anxiety Rating Scale) and a 90% increase in social and occupational functioning. Subjective assessment of the patient performed with questionnaires and visual analog scales showed less pronounced improvement in terms of depressive and anxiety symptoms, and high reduction of anhedonia. Some mild, transient side effects of neurostimulation were eliminated with an adjustment in stimulation parameters. CONCLUSIONS The presented clinical case confirms the possibility of achieving remission after the use of MFB DBS in treatment-resistant depression, but postponed for many months. Nevertheless, personalization of every combined therapy with DBS is necessary with exploration of individual factors as past traumas and personality traits. More reports on long-term observations in DBS treatment in TRD trials (especially focused on MFB target) are needed.
Collapse
Affiliation(s)
| | - Tomasz Wieczorek
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Artur Weiser
- Department of Neurosurgery, Wroclaw Medical University, Wrocław, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | - Paweł Tabakow
- Department of Neurosurgery, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
29
|
An S, Fousek J, Kiss ZHT, Cortese F, van der Wijk G, McAusland LB, Ramasubbu R, Jirsa VK, Protzner AB. High-resolution Virtual Brain Modeling Personalizes Deep Brain Stimulation for Treatment-Resistant Depression: Spatiotemporal Response Characteristics Following Stimulation of Neural Fiber Pathways. Neuroimage 2021; 249:118848. [PMID: 34954330 DOI: 10.1016/j.neuroimage.2021.118848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Over the past 15 years, deep brain stimulation (DBS) has been actively investigated as a groundbreaking therapy for patients with treatment-resistant depression (TRD); nevertheless, outcomes have varied from patient to patient, with an average response rate of ∼50%. The engagement of specific fiber tracts at the stimulation site has been hypothesized to be an important factor in determining outcomes, however, the resulting individual network effects at the whole-brain scale remain largely unknown. Here we provide a computational framework that can explore each individual's brain response characteristics elicited by selective stimulation of fiber tracts. We use a novel personalized in-silico approach, the Virtual Big Brain, which makes use of high-resolution virtual brain models at a mm-scale and explicitly reconstructs more than 100 000 fiber tracts for each individual. Each fiber tract is active and can be selectively stimulated. Simulation results demonstrate distinct stimulus-induced event-related potentials as a function of stimulation location, parametrized by the contact positions of the electrodes implanted in each patient, even though validation against empirical patient data reveals some limitations (i.e., the need for individual parameter adjustment, and differential accuracy across stimulation locations). This study provides evidence for the capacity of personalized high-resolution virtual brain models to investigate individual network effects in DBS for patients with TRD and opens up novel avenues in the personalized optimization of brain stimulation.
Collapse
Affiliation(s)
- Sora An
- Department of Communication Disorders, Ewha Womans University, 03760, Seoul, Republic of Korea.
| | - Jan Fousek
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005, Marseille, France
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Seaman Family MR Centre, Foothills Medical Centre, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Gwen van der Wijk
- Department of Psychology, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Laina Beth McAusland
- Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Viktor K Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005, Marseille, France.
| | - Andrea B Protzner
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, T2N 1N4, Calgary, Alberta, Canada.
| |
Collapse
|
30
|
Four Deep Brain Stimulation Targets for Obsessive-Compulsive Disorder: Are They Different? Biol Psychiatry 2021; 90:667-677. [PMID: 32951818 PMCID: PMC9569132 DOI: 10.1016/j.biopsych.2020.06.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Deep brain stimulation is a promising therapeutic approach for patients with treatment-resistant obsessive-compulsive disorder, a condition linked to abnormalities in corticobasal ganglia networks. Effective targets are placed in one of four subcortical areas with the goal of capturing prefrontal, anterior cingulate, and basal ganglia connections linked to the limbic system. These include the anterior limb of the internal capsule, the ventral striatum, the subthalamic nucleus, and a midbrain target. The goal of this review is to examine these 4 targets with respect to the similarities and differences of their connections. Following a review of the connections for each target based on anatomic studies in nonhuman primates, we examine the accuracy of diffusion magnetic resonance imaging tractography to replicate those connections in nonhuman primates, before evaluating the connections in the human brain based on diffusion magnetic resonance imaging tractography. Results demonstrate that the four targets generally involve similar connections, all of which are part of the internal capsule. Nonetheless, some connections are unique to each site. Delineating the similarities and differences across targets is a critical step for evaluating and comparing the effectiveness of each and how circuits contribute to the therapeutic outcome. It also underscores the importance that the terminology used for each target accurately reflects its position and its anatomic connections, so as to enable comparisons across clinical studies and for basic scientists to probe mechanisms underlying deep brain stimulation.
Collapse
|
31
|
Boutet A, Loh A, Chow CT, Taha A, Elias GJB, Neudorfer C, Germann J, Paff M, Zrinzo L, Fasano A, Kalia SK, Steele CJ, Mikulis D, Kucharczyk W, Lozano AM. A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg 2021; 135:1445-1458. [PMID: 33770759 DOI: 10.3171/2020.8.jns201125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of "first-pass" targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature. METHODS The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review. RESULTS A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging. CONCLUSIONS Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning.
Collapse
Affiliation(s)
- Alexandre Boutet
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | - Ludvic Zrinzo
- 3Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Alfonso Fasano
- 4Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto
- 5Krembil Brain Institute, Toronto, Ontario
| | | | - Christopher J Steele
- 6Department of Psychology, Concordia University, Montreal, Quebec, Canada; and
- 7Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - David Mikulis
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Coenen VA, Döbrössy MD, Teo SJ, Wessolleck J, Sajonz BEA, Reinacher PC, Thierauf-Emberger A, Spittau B, Leupold J, von Elverfeldt D, Schlaepfer TE, Reisert M. Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI. Brain Struct Funct 2021; 227:23-47. [PMID: 34482443 PMCID: PMC8741702 DOI: 10.1007/s00429-021-02373-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Uncertainties
concerning anatomy and function of cortico-subcortical projections have arisen during the recent years. A clear distinction between cortico-subthalamic (hyperdirect) and cortico-tegmental projections (superolateral medial forebrain bundle, slMFB) so far is elusive. Deep Brain Stimulation (DBS) of the slMFB (for major depression, MD and obsessive compulsive disorders, OCD) has on the one hand been interpreted as actually involving limbic (prefrontal) hyperdirect pathways. On the other hand slMFB’s stimulation region in the mesencephalic ventral tegmentum is said to impact on other structures too, going beyond the antidepressant (or anti OCD) efficacy of sole modulation of the cortico-tegmental reward-associated pathways. We have here used a normative diffusion MRT template (HCP, n = 80) for long-range tractography and augmented this dataset with ex-vivo high resolution data (n = 1) in a stochastic brain space. We compared this data with histological information and used the high resolution ex-vivo data set to scrutinize the mesencephalic tegmentum for small fiber pathways present. Our work resolves an existing ambiguity between slMFB and prefrontal hyperdirect pathways which—for the first time—are described as co-existent. DBS of the slMFB does not appear to modulate prefrontal hyperdirect cortico-subthalamic but rather cortico-tegmental projections. Smaller fiber structures in the target region—as far as they can be discerned—appear not to be involved in slMFB DBS. Our work enfeebles previous anatomical criticism and strengthens the position of the slMFB DBS target for its use in MD and OCD.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany. .,Medical Faculty of Freiburg University, Freiburg, Germany. .,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany. .,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany.
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Shi Jia Teo
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Wessolleck
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Annette Thierauf-Emberger
- Medical Faculty of Freiburg University, Freiburg, Germany.,Institute of Forensic Medicine, Medical Center of Freiburg University, Freiburg, Germany
| | - Björn Spittau
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, Bielefeld, Germany.,Institute for Anatomy and Cell Biology, Department of Molecular Embryologie, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Jochen Leupold
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas E Schlaepfer
- Medical Faculty of Freiburg University, Freiburg, Germany.,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.,Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center of Freiburg University, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Georgiev D, Akram H, Jahanshahi M. Deep brain stimulation for psychiatric disorders: role of imaging in identifying/confirming DBS targets, predicting, and optimizing outcome and unravelling mechanisms of action. PSYCHORADIOLOGY 2021; 1:118-151. [PMID: 38665808 PMCID: PMC10917192 DOI: 10.1093/psyrad/kkab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 04/28/2024]
Abstract
Following the established application of deep brain stimulation (DBS) in the treatment of movement disorders, new non-neurological indications have emerged, such as for obsessive-compulsive disorders, major depressive disorder, dementia, Gilles de la Tourette Syndrome, anorexia nervosa, and addictions. As DBS is a network modulation surgical treatment, the development of DBS for both neurological and psychiatric disorders has been partly driven by advances in neuroimaging, which has helped explain the brain networks implicated. Advances in magnetic resonance imaging connectivity and electrophysiology have led to the development of the concept of modulating widely distributed, complex brain networks. Moreover, the increasing number of targets for treating psychiatric disorders have indicated that there may be a convergence of the effect of stimulating different targets for the same disorder, and the effect of stimulating the same target for different disorders. The aim of this paper is to review the imaging studies of DBS for psychiatric disorders. Imaging, and particularly connectivity analysis, offers exceptional opportunities to better understand and even predict the clinical outcomes of DBS, especially where there is a lack of objective biomarkers that are essential to properly guide DBS pre- and post-operatively. In future, imaging might also prove useful to individualize DBS treatment. Finally, one of the most important aspects of imaging in DBS is that it allows us to better understand the brain through observing the changes of the functional connectome under neuromodulation, which may in turn help explain the mechanisms of action of DBS that remain elusive.
Collapse
Affiliation(s)
- Dejan Georgiev
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
34
|
Zhu Z, Hubbard E, Guo X, Barbosa DAN, Popal AM, Cai C, Jiang H, Zheng Z, Lin J, Gao W, Zhang J, Bartas K, Macchia D, Derdeyn P, Halpern CH, Mayberg HS, Beier KT, Zhu J, Wu H. A connectomic analysis of deep brain stimulation for treatment-resistant depression. Brain Stimul 2021; 14:1226-1233. [PMID: 34400379 DOI: 10.1016/j.brs.2021.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) has been used as a treatment of last resort for treatment-resistant depression (TRD) for more than a decade. Many DBS targets have been proposed and tested clinically, but the underlying circuit mechanisms remain unclear. Uncovering white matter tracts (WMT) activated by DBS targets may provide crucial information about the circuit substrates mediating DBS efficacy in ameliorating TRD. METHODS We performed probabilistic tractography using diffusion magnetic resonance imaging datas from 100 healthy volunteers in Human Connectome Project datasets to analyze the structural connectivity patterns of stimulation targeting currently-used DBS target for TRD. We generated mean and binary fiber distribution maps and calculated the numbers of WMT streamlines in the dataset. RESULTS Probabilistic tracking results revealed that activation of distinct DBS targets demonstrated modulation of overlapping but considerably distinct pathways. DBS targets were categorized into 4 groups: Cortical, Striatal, Thalamic, and Medial Forebrain Bundle according to their main modulated WMT and brain areas. Our data also revealed that Brodmann area 10 and amygdala are hub structures that are associated with all DBS targets. CONCLUSIONS Our results together suggest that the distinct mechanism of DBS targets implies individualized target selection and formulation in the future of DBS treatment for TRD. The modulation of Brodmann area 10 and amygdala may be critical for the efficacy of DBS-mediated treatment of TRD.
Collapse
Affiliation(s)
- Zhoule Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Elizabeth Hubbard
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA
| | - Xinxia Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abdul Malik Popal
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Chengwei Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Hongjie Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jingquan Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wei Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Katrina Bartas
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, 92697-4560, USA
| | - Desiree Macchia
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA
| | - Pieter Derdeyn
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, 92697-4560, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Helen S Mayberg
- Departments of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697-4560, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697-4560, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-4560, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China.
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China.
| |
Collapse
|
35
|
Coenen VA. Commentary: Posteromedial Hypothalamic Deep Brain Stimulation for Refractory Aggressiveness in a Patient With Weaver Syndrome: Clinical, Technical Report and Operative Video. Oper Neurosurg (Hagerstown) 2021; 21:E226-E228. [PMID: 34038954 DOI: 10.1093/ons/opab165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty, Freiburg University, Freiburg, Germany.,Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| |
Collapse
|
36
|
Elias GJB, Loh A, Gwun D, Pancholi A, Boutet A, Neudorfer C, Germann J, Namasivayam A, Gramer R, Paff M, Lozano AM. Deep brain stimulation of the brainstem. Brain 2021; 144:712-723. [PMID: 33313788 DOI: 10.1093/brain/awaa374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus, pallidum, and thalamus is an established therapy for various movement disorders. Limbic targets have also been increasingly explored for their application to neuropsychiatric and cognitive disorders. The brainstem constitutes another DBS substrate, although the existing literature on the indications for and the effects of brainstem stimulation remains comparatively sparse. The objective of this review was to provide a comprehensive overview of the pertinent anatomy, indications, and reported stimulation-induced acute and long-term effects of existing white and grey matter brainstem DBS targets. We systematically searched the published literature, reviewing clinical trial articles pertaining to DBS brainstem targets. Overall, 164 studies describing brainstem DBS were identified. These studies encompassed 10 discrete structures: periaqueductal/periventricular grey (n = 63), pedunculopontine nucleus (n = 48), ventral tegmental area (n = 22), substantia nigra (n = 9), mesencephalic reticular formation (n = 7), medial forebrain bundle (n = 8), superior cerebellar peduncles (n = 3), red nucleus (n = 3), parabrachial complex (n = 2), and locus coeruleus (n = 1). Indications for brainstem DBS varied widely and included central neuropathic pain, axial symptoms of movement disorders, headache, depression, and vegetative state. The most promising results for brainstem DBS have come from targeting the pedunculopontine nucleus for relief of axial motor deficits, periaqueductal/periventricular grey for the management of central neuropathic pain, and ventral tegmental area for treatment of cluster headaches. Brainstem DBS has also acutely elicited numerous motor, limbic, and autonomic effects. Further work involving larger, controlled trials is necessary to better establish the therapeutic potential of DBS in this complex area.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Andrew Namasivayam
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Robert Gramer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Michelle Paff
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Coenen VA, Reisert M. DTI for brain targeting: Diffusion weighted imaging fiber tractography-Assisted deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:47-67. [PMID: 34446250 DOI: 10.1016/bs.irn.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fiber tractography assisted Deep Brain Stimulation (DBS) has been performed by different groups for more than 10 years to now. Groups around the world have adapted initial approaches to currently embrace the fiber tractography technology mainly for treating tremor (DBS and lesions), psychiatric indications (OCD and major depression) and pain (DBS). Despite the advantages of directly visualizing the target structure, the technology is demanding and is vulnerable to inaccuracies especially since it is performed on individual level. In this contribution, we will focus on tremor and psychiatric indications, and will show future applications of sophisticated tractography applications for subthalamic nucleus (STN) DBS surgery and stimulation steering as an example.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Radiology-Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
38
|
Deep brain stimulation response in obsessive-compulsive disorder is associated with preoperative nucleus accumbens volume. NEUROIMAGE-CLINICAL 2021; 30:102640. [PMID: 33799272 PMCID: PMC8044711 DOI: 10.1016/j.nicl.2021.102640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Preoperative MRI was associated with 12-months DBS treatment outcome in OCD patients. Larger nucleus accumbens volume was associated with larger clinical improvement. Machine learning analysis was not successful in predicting clinical improvement.
Background Deep brain stimulation (DBS) is a new treatment option for patients with therapy-resistant obsessive–compulsive disorder (OCD). Approximately 60% of patients benefit from DBS, which might be improved if a biomarker could identify patients who are likely to respond. Therefore, we evaluated the use of preoperative structural magnetic resonance imaging (MRI) in predicting treatment outcome for OCD patients on the group- and individual-level. Methods In this retrospective study, we analyzed preoperative MRI data of a large cohort of patients who received DBS for OCD (n = 57). We used voxel-based morphometry to investigate whether grey matter (GM) or white matter (WM) volume surrounding the DBS electrode (nucleus accumbens (NAc), anterior thalamic radiation), and whole-brain GM/WM volume were associated with OCD severity and response status at 12-month follow-up. In addition, we performed machine learning analyses to predict treatment outcome at an individual-level and evaluated its performance using cross-validation. Results Larger preoperative left NAc volume was associated with lower OCD severity at 12-month follow-up (pFWE < 0.05). None of the individual-level regression/classification analyses exceeded chance-level performance. Conclusions These results provide evidence that patients with larger NAc volumes show a better response to DBS, indicating that DBS success is partly determined by individual differences in brain anatomy. However, the results also indicate that structural MRI data alone does not provide sufficient information to guide clinical decision making at an individual level yet.
Collapse
|
39
|
Howell B, Isbaine F, Willie JT, Opri E, Gross RE, De Hemptinne C, Starr PA, McIntyre CC, Miocinovic S. Image-based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation. Brain Stimul 2021; 14:549-563. [PMID: 33757931 DOI: 10.1016/j.brs.2021.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Subthalamic deep brain stimulation (DBS) is an effective surgical treatment for Parkinson's disease and continues to advance technologically with an enormous parameter space. As such, in-silico DBS modeling systems have become common tools for research and development, but their underlying methods have yet to be standardized and validated. OBJECTIVE Evaluate the accuracy of patient-specific estimates of neural pathway activations in the subthalamic region against intracranial, cortical evoked potential (EP) recordings. METHODS Pathway activations were modeled in eleven patients using the latest advances in connectomic modeling of subthalamic DBS, focusing on the hyperdirect pathway (HDP) and corticospinal/bulbar tract (CSBT) for their relevance in human research studies. Correlations between pathway activations and respective EP amplitudes were quantified. RESULTS Good model performance required accurate lead localization and image fusions, as well as appropriate selection of fiber diameter in the biophysical model. While optimal model parameters varied across patients, good performance could be achieved using a global set of parameters that explained 60% and 73% of electrophysiologic activations of CSBT and HDP, respectively. Moreover, restricted models fit to only EP amplitudes of eight standard (monopolar and bipolar) electrode configurations were able to extrapolate variation in EP amplitudes across other directional electrode configurations and stimulation parameters, with no significant reduction in model performance across the cohort. CONCLUSIONS Our findings demonstrate that connectomic models of DBS with sufficient anatomical and electrical details can predict recruitment dynamics of white matter. These results will help to define connectomic modeling standards for preoperative surgical targeting and postoperative patient programming applications.
Collapse
Affiliation(s)
- Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, USA
| | | | - Jon T Willie
- Department of Neurosurgery, Emory University, USA
| | - Enrico Opri
- Department of Neurology, Emory University, USA
| | | | | | - Philip A Starr
- Department of Neurological Surgery, University of California San Francisco, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, USA
| | | |
Collapse
|
40
|
Davidson B, Lipsman N, Meng Y, Rabin JS, Giacobbe P, Hamani C. The Use of Tractography-Based Targeting in Deep Brain Stimulation for Psychiatric Indications. Front Hum Neurosci 2020; 14:588423. [PMID: 33304258 PMCID: PMC7701283 DOI: 10.3389/fnhum.2020.588423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Deep Brain Stimulation (DBS) has been investigated as a treatment option for patients with refractory psychiatric illness. Over the past two decades, neuroimaging developments have helped to advance the field, particularly the use of diffusion tensor imaging (DTI) and tractographic reconstruction of white-matter pathways. In this article, we review translational considerations and how DTI and tractography have been used to improve targeting during DBS surgery for depression, obsessive compulsive disorder (OCD) and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ying Meng
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jennifer S. Rabin
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Davidson B, Suresh H, Goubran M, Rabin JS, Meng Y, Mithani K, Pople CB, Giacobbe P, Hamani C, Lipsman N. Predicting response to psychiatric surgery: a systematic review of neuroimaging findings. J Psychiatry Neurosci 2020; 45:387-394. [PMID: 32293838 PMCID: PMC7595737 DOI: 10.1503/jpn.190208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Psychiatric surgery, including deep brain stimulation and stereotactic ablation, is an important treatment option in severe refractory psychiatric illness. Several large trials have demonstrated response rates of approximately 50%, underscoring the need to identify and select responders preoperatively. Recent advances in neuroimaging have brought this possibility into focus. We systematically reviewed the psychiatric surgery neuroimaging literature to assess the current state of evidence for preoperative imaging predictors of response. METHODS We performed this study in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) frameworks, and preregistered it using PROSPERO. We systematically searched the Medline, Embase and Cochrane databases for studies reporting preoperative neuroimaging analyses correlated with clinical outcomes in patients who underwent psychiatric surgery. We recorded and synthesized the methodological details, imaging results and clinical correlations from these studies. RESULTS After removing duplicates, the search yielded 8388 unique articles, of which 7 met the inclusion criteria. The included articles were published between 2001 and 2018 and reported on the outcomes of 101 unique patients. Of the 6 studies that reported significant findings, all identified clusters of hypermetabolism, hyperconnectivity or increased size in the frontostriatal limbic circuitry. LIMITATIONS The included studies were few and highly varied, spanning 2 decades. CONCLUSION Although few studies have analyzed preoperative imaging for predictors of response to psychiatric surgery, we found consistency among the reported results: most studies implicated overactivity in the frontostriatal limbic network as being correlated with clinical response. Larger prospective studies are needed. REGISTRATION www.crd.york.ac.uk/prospero/display_record.php?RecordID=131151.
Collapse
Affiliation(s)
- Benjamin Davidson
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Hrishikesh Suresh
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Maged Goubran
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Jennifer S Rabin
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Ying Meng
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Karim Mithani
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Christopher B Pople
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Peter Giacobbe
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Clement Hamani
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| | - Nir Lipsman
- From the Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada (Davidson, Suresh, Hamani, Lipsman); and the Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada (Davidson, Goubran, Rabin, Meng, Mithani, Pople, Giacobbe, Hamani, Lipsman)
| |
Collapse
|
42
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Neudorfer C, Germann J, Elias GJB, Gramer R, Boutet A, Lozano AM. A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Sci Data 2020; 7:305. [PMID: 32934244 PMCID: PMC7492465 DOI: 10.1038/s41597-020-00644-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
The study of the hypothalamus and its topological changes provides valuable insights into underlying physiological and pathological processes. Owing to technological limitations, however, in vivo atlases detailing hypothalamic anatomy are currently lacking in the literature. In this work we aim to overcome this shortcoming by generating a high-resolution in vivo anatomical atlas of the human hypothalamic region. A minimum deformation averaging (MDA) pipeline was employed to produce a normalized, high-resolution template from multimodal magnetic resonance imaging (MRI) datasets. This template was used to delineate hypothalamic (n = 13) and extrahypothalamic (n = 12) gray and white matter structures. The reliability of the atlas was evaluated as a measure for voxel-wise volume overlap among raters. Clinical application was demonstrated by superimposing the atlas into datasets of patients diagnosed with a hypothalamic lesion (n = 1) or undergoing hypothalamic (n = 1) and forniceal (n = 1) deep brain stimulation (DBS). The present template serves as a substrate for segmentation of brain structures, specifically those featuring low contrast. Conversely, the segmented hypothalamic atlas may inform DBS programming procedures and may be employed in volumetric studies.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Robert Gramer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
44
|
Hitti FL, Yang AI, Cristancho MA, Baltuch GH. Deep Brain Stimulation Is Effective for Treatment-Resistant Depression: A Meta-Analysis and Meta-Regression. J Clin Med 2020; 9:jcm9092796. [PMID: 32872572 PMCID: PMC7564277 DOI: 10.3390/jcm9092796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability and a significant cause of mortality worldwide. Approximately 30–40% of patients fail to achieve clinical remission with available pharmacological treatments, a clinical course termed treatment-resistant depression (TRD). Numerous studies have investigated deep brain stimulation (DBS) as a therapy for TRD. We performed a meta-analysis to determine efficacy and a meta-regression to compare stimulation targets. We identified and screened 1397 studies. We included 125 citations in the qualitative review and considered 26 for quantitative analysis. Only blinded studies that compared active DBS to sham stimulation (k = 12) were included in the meta-analysis. The random-effects model supported the efficacy of DBS for TRD (standardized mean difference = −0.75, <0 favors active stimulation; p = 0.0001). The meta-regression did not demonstrate a statistically significant difference between stimulation targets (p = 0.45). While enthusiasm for DBS treatment of TRD has been tempered by recent randomized trials, this meta-analysis reveals a significant effect of DBS for the treatment of TRD. Additionally, the majority of trials have demonstrated the safety and efficacy of DBS for this indication. Further trials are required to determine the optimal stimulation parameters and patient populations for which DBS would be effective. Particular attention to factors including electrode placement technique, patient selection, and long-term follow-up is essential for future trial design.
Collapse
Affiliation(s)
- Frederick L. Hitti
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania, 800 Spruce St, Philadelphia, PA 19107, USA; (A.I.Y.); (G.H.B.)
- Correspondence: ; Tel.: +1-215-834-0444
| | - Andrew I. Yang
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania, 800 Spruce St, Philadelphia, PA 19107, USA; (A.I.Y.); (G.H.B.)
| | - Mario A. Cristancho
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA;
| | - Gordon H. Baltuch
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania, 800 Spruce St, Philadelphia, PA 19107, USA; (A.I.Y.); (G.H.B.)
| |
Collapse
|
45
|
Clark DL, Johnson KA, Butson CR, Lebel C, Gobbi D, Ramasubbu R, Kiss ZHT. Tract-based analysis of target engagement by subcallosal cingulate deep brain stimulation for treatment resistant depression. Brain Stimul 2020; 13:1094-1101. [PMID: 32417668 DOI: 10.1016/j.brs.2020.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of subcallosal cingulate cortex (SCC) is a promising investigational therapy for treatment-resistant depression (TRD). However, outcomes vary, likely due to suboptimal DBS placement. Ideal placement is proposed to stimulate 4 SCC white matter bundles; however, no quantitative data have linked activation of these target tracts to response. OBJECTIVE Here we used the volume of tissue activated (VTA) and probabilistic diffusion tensor imaging (DTI) to quantify tract activation relating to response. METHODS DTI was performed in 19 TRD patients who received SCC-DBS. We defined clinical response as >48% reduction from baseline in the Hamilton Depression Rating Scale. Bilateral VTAs were generated based on subject-specific stimulation parameters. Patient-specific tract maps emanating from the VTAs were calculated using whole-brain probabilistic DTI. The four target tracts were isolated using tract-specific quantification and examined for overlap with DBS activated tissue. RESULTS Medial frontal and temporal projections were stimulated in all responders at 6 and 12 months. Individual tract-based generalized linear mixed model analysis revealed a significant tract-by-response interaction at both 6 (F(1,135) = 3.828, p = 0.001) and 12 (F(1,135) = 5.688, p < 0.001) months, with post hoc tests revealing a response-related increase in cingulum activation at 6 months (t(135) = 2.418, p = 0.017) and decrease in forceps minor activation at 12 months (t(135) = -2.802, p = 0.006). CONCLUSIONS A wider profile of white matter tracts, particularly to the medial frontal, was associated with DBS response. Cingulum bundle stimulation may promote early response and excess stimulation of the forceps minor might be detrimental. Our work supports prospective patient-specific targeting to inform personalized DBS.
Collapse
Affiliation(s)
- Darren L Clark
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Departments of Neurology, Neurosurgery, and Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research Program, Alberta Children's Hosspital, Calgary, AB, Canada
| | - David Gobbi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Rajamannar Ramasubbu
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zelma H T Kiss
- Department of Clinical Neuroscience, University of Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
46
|
Davidson B, Giacobbe P, Mithani K, Levitt A, Rabin JS, Lipsman N, Hamani C. Lack of clinical response to deep brain stimulation of the medial forebrain bundle in depression. Brain Stimul 2020; 13:1268-1270. [PMID: 32540453 DOI: 10.1016/j.brs.2020.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Karim Mithani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Anthony Levitt
- Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada; Hurvitz Brain Sciences Program, Toronto, ON M4N3M5, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, ON, M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
47
|
Petry-Schmelzer JN, Krause M, Dembek TA, Horn A, Evans J, Ashkan K, Rizos A, Silverdale M, Schumacher W, Sack C, Loehrer PA, Fink GR, Fonoff ET, Martinez-Martin P, Antonini A, Barbe MT, Visser-Vandewalle V, Ray-Chaudhuri K, Timmermann L, Dafsari HS. Non-motor outcomes depend on location of neurostimulation in Parkinson's disease. Brain 2020; 142:3592-3604. [PMID: 31553039 DOI: 10.1093/brain/awz285] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 01/29/2023] Open
Abstract
Deep brain stimulation of the subthalamic nucleus is an effective and established therapy for patients with advanced Parkinson's disease improving quality of life, motor symptoms and non-motor symptoms. However, there is a considerable degree of interindividual variability for these outcomes, likely due to variability in electrode placement and stimulation settings. Here, we present probabilistic mapping data from a prospective, open-label, multicentre, international study to investigate the influence of the location of subthalamic nucleus deep brain stimulation on non-motor symptoms in patients with Parkinson's disease. A total of 91 Parkinson's disease patients undergoing bilateral deep brain stimulation of the subthalamic nucleus were included, and we investigated NMSScale, NMSQuestionnaire, Scales for Outcomes in Parkinson's disease-motor examination, -activities of daily living, and -motor complications, and Parkinson's disease Questionnaire-8 preoperatively and at 6-month follow-up after surgery. Leads were localized in standard space using the Lead-DBS toolbox and individual volumes of tissue activated were calculated based on clinical stimulation settings. Probabilistic stimulation maps and non-parametric permutation statistics were applied to identify voxels with significant above or below average improvement for each scale and analysed using the DISTAL atlas. All outcomes improved significantly at follow-up. Significant spatial distribution patterns of neurostimulation were observed for NMSScale total score and its mood/apathy and attention/memory domains. For both domains, voxels associated with below average improvement were mainly located dorsal to the subthalamic nucleus. In contrast, above average improvement for mood/apathy was observed in the ventral border region of the subthalamic nucleus and in its sensorimotor subregion and for attention/memory in the associative subregion. A trend was observed for NMSScale sleep domain showing voxels with above average improvement located ventral to the subthalamic nucleus. Our study provides evidence that the interindividual variability of mood/apathy, attention/memory, and sleep outcomes after subthalamic nucleus deep brain stimulation depends on the location of neurostimulation. This study highlights the importance of holistic assessments of motor and non-motor aspects of Parkinson's disease to tailor surgical targeting and stimulation parameter settings to patients' personal profiles.
Collapse
Affiliation(s)
- Jan Niklas Petry-Schmelzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Max Krause
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Till A Dembek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Andreas Horn
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Julian Evans
- Department of Neurology and Neurosurgery, Salford Royal Foundation Thrust, Greater Manchester, UK
| | - Keyoumars Ashkan
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Alexandra Rizos
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Monty Silverdale
- Department of Neurology and Neurosurgery, Salford Royal Foundation Thrust, Greater Manchester, UK
| | - Wibke Schumacher
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Carolin Sack
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Philipp A Loehrer
- Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Erich T Fonoff
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Pablo Martinez-Martin
- National Center of Epidemiology and CIBERNED, Carlos III Institute of Health, Madrid, Spain
| | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Michael T Barbe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne, Germany
| | - K Ray-Chaudhuri
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK.,The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Lars Timmermann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.,Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Haidar S Dafsari
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.,National Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | | |
Collapse
|
48
|
Riva-Posse P. Why is deep brain stimulation for treatment-resistant depression a needed treatment option? BRAZILIAN JOURNAL OF PSYCHIATRY 2020; 42:344-346. [PMID: 32401869 PMCID: PMC7430386 DOI: 10.1590/1516-4446-2020-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, GA, USA
| |
Collapse
|
49
|
RaviPrakash H, Korostenskaja M, Castillo EM, Lee KH, Salinas CM, Baumgartner J, Anwar SM, Spampinato C, Bagci U. Deep Learning Provides Exceptional Accuracy to ECoG-Based Functional Language Mapping for Epilepsy Surgery. Front Neurosci 2020; 14:409. [PMID: 32435182 PMCID: PMC7218144 DOI: 10.3389/fnins.2020.00409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/03/2020] [Indexed: 12/02/2022] Open
Abstract
The success of surgical resection in epilepsy patients depends on preserving functionally critical brain regions, while removing pathological tissues. Being the gold standard, electro-cortical stimulation mapping (ESM) helps surgeons in localizing the function of eloquent cortex through electrical stimulation of electrodes placed directly on the cortical brain surface. Due to the potential hazards of ESM, including increased risk of provoked seizures, electrocorticography based functional mapping (ECoG-FM) was introduced as a safer alternative approach. However, ECoG-FM has a low success rate when compared to the ESM. In this study, we address this critical limitation by developing a new algorithm based on deep learning for ECoG-FM and thereby we achieve an accuracy comparable to ESM in identifying eloquent language cortex. In our experiments, with 11 epilepsy patients who underwent presurgical evaluation (through deep learning-based signal analysis on 637 electrodes), our proposed algorithm obtained an accuracy of 83.05% in identifying language regions, an exceptional 23% improvement with respect to the conventional ECoG-FM analysis (∼60%). Our findings have demonstrated, for the first time, that deep learning powered ECoG-FM can serve as a stand-alone modality and avoid likely hazards of the ESM in epilepsy surgery. Hence, reducing the potential for developing post-surgical morbidity in the language function.
Collapse
Affiliation(s)
- Harish RaviPrakash
- Center for Research in Computer Vision, University of Central Florida, Orlando, FL, United States
| | - Milena Korostenskaja
- Functional Brain Mapping and Brain Computer Interface Lab, AdventHealth Orlando, Orlando, FL, United States.,MEG Lab, AdventHealth Orlando, Orlando, FL, United States.,AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - Eduardo M Castillo
- MEG Lab, AdventHealth Orlando, Orlando, FL, United States.,AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - Ki H Lee
- AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - Christine M Salinas
- AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - James Baumgartner
- AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - Syed M Anwar
- Center for Research in Computer Vision, University of Central Florida, Orlando, FL, United States
| | - Concetto Spampinato
- Center for Research in Computer Vision, University of Central Florida, Orlando, FL, United States.,Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy
| | - Ulas Bagci
- Center for Research in Computer Vision, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
50
|
Janson AP, Anderson DN, Butson CR. Activation robustness with directional leads and multi-lead configurations in deep brain stimulation. J Neural Eng 2020; 17:026012. [PMID: 32116233 PMCID: PMC7405888 DOI: 10.1088/1741-2552/ab7b1d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Clinical outcomes from deep brain stimulation (DBS) can be highly variable, and two critical factors underlying this variability are the location and type of stimulation. In this study we quantified how robustly DBS activates a target region when taking into account a range of different lead designs and realistic variations in placement. The objective of the study is to assess the likelihood of achieving target activation. APPROACH We performed finite element computational modeling and established a metric of performance robustness to evaluate the ability of directional and multi-lead configurations to activate target fiber pathways while taking into account location variability. A more robust lead configuration produces less variability in activation across all stimulation locations around the target. MAIN RESULTS Directional leads demonstrated higher overall performance robustness compared to axisymmetric leads, primarily 1-2 mm outside of the target. Multi-lead configurations demonstrated higher levels of robustness compared to any single lead due to distribution of electrodes in a broader region around the target. SIGNIFICANCE Robustness measures can be used to evaluate the performance of existing DBS lead designs and aid in the development of novel lead designs to better accommodate known variability in lead location and orientation. This type of analysis may also be useful to understand how DBS clinical outcome variability is influenced by lead location among groups of patients.
Collapse
Affiliation(s)
- Andrew P Janson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America. Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States of America
| | | | | |
Collapse
|