1
|
Zhong R, Zhang L, Li H, Wang Y, Cao L, Bao W, Gao Y, Gong Q, Huang X. Elucidating trauma-related and disease-related regional cortical activity in post-traumatic stress disorder. Cereb Cortex 2024; 34:bhae307. [PMID: 39077917 DOI: 10.1093/cercor/bhae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Trauma exposure may precipitate a cascade of plastic modifications within the intrinsic activity of brain regions, but it remains unclear which regions could be responsible for the development of post-traumatic stress disorder based on intrinsic activity. To elucidate trauma-related and post-traumatic stress disorder-related alterations in cortical intrinsic activity at the whole-brain level, we recruited 47 survivors diagnosed with post-traumatic stress disorder, 64 trauma-exposed controls from a major earthquake, and 46 age- and sex-matched healthy controls. All subjects were scanned with an echo-planar imaging sequence, and 5 parameters including the amplitude of low-frequency fluctuations, fractional amplitude of low-frequency fluctuations, regional homogeneity, degree centrality, and voxel-mirrored homotopic connectivity were calculated. We found both post-traumatic stress disorder patients and trauma-exposed controls exhibited decreased amplitude of low-frequency fluctuations in the bilateral posterior cerebellum and inferior temporal gyrus, decreased fractional amplitude of low-frequency fluctuation and regional homogeneity in the bilateral anterior cerebellum, and decreased fractional amplitude of low-frequency fluctuation in the middle occipital gyrus and cuneus compared to healthy controls, and these impairments were more severe in post-traumatic stress disorder patients than in trauma-exposed controls. Additionally, fractional amplitude of low-frequency fluctuation in left cerebellum was positively correlated with Clinician-Administered PTSD Scale scores in post-traumatic stress disorder patients. We identified brain regions that might be responsible for the emergence of post-traumatic stress disorder, providing important information for the treatment of this disorder.
Collapse
Affiliation(s)
- Ruihan Zhong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- The Xiaman Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
2
|
Vedaei F, Mashhadi N, Alizadeh M, Zabrecky G, Monti D, Wintering N, Navarreto E, Hriso C, Newberg AB, Mohamed FB. Deep learning-based multimodality classification of chronic mild traumatic brain injury using resting-state functional MRI and PET imaging. Front Neurosci 2024; 17:1333725. [PMID: 38312737 PMCID: PMC10837852 DOI: 10.3389/fnins.2023.1333725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a public health concern. The present study aimed to develop an automatic classifier to distinguish between patients with chronic mTBI (n = 83) and healthy controls (HCs) (n = 40). Resting-state functional MRI (rs-fMRI) and positron emission tomography (PET) imaging were acquired from the subjects. We proposed a novel deep-learning-based framework, including an autoencoder (AE), to extract high-level latent and rectified linear unit (ReLU) and sigmoid activation functions. Single and multimodality algorithms integrating multiple rs-fMRI metrics and PET data were developed. We hypothesized that combining different imaging modalities provides complementary information and improves classification performance. Additionally, a novel data interpretation approach was utilized to identify top-performing features learned by the AEs. Our method delivered a classification accuracy within the range of 79-91.67% for single neuroimaging modalities. However, the performance of classification improved to 95.83%, thereby employing the multimodality model. The models have identified several brain regions located in the default mode network, sensorimotor network, visual cortex, cerebellum, and limbic system as the most discriminative features. We suggest that this approach could be extended to the objective biomarkers predicting mTBI in clinical settings.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Najmeh Mashhadi
- Department of Computer Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B. Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Bremner JD, Ortego RA, Campanella C, Nye JA, Davis LL, Fani N, Vaccarino V. Neural correlates of PTSD in women with childhood sexual abuse with and without PTSD and response to paroxetine treatment: A placebo-controlled, double-blind trial. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023; 14:100615. [PMID: 38088987 PMCID: PMC10715797 DOI: 10.1016/j.jadr.2023.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Objective Childhood sexual abuse is the leading cause of posttraumatic stress disorder (PTSD) in women, and is a prominent cause of morbidity and loss of function for which limited treatments are available. Understanding the neurobiology of treatment response is important for developing new treatments. The purpose of this study was to assess neural correlates of personalized traumatic memories in women with childhood sexual abuse with and without PTSD, and to assess response to treatment. Methods Women with childhood sexual abuse with (N = 28) and without (N = 17) PTSD underwent brain imaging with High-Resolution Positron Emission Tomography scanning with radiolabeled water for brain blood flow measurements during exposure to personalized traumatic scripts and memory encoding tasks. Women with PTSD were randomized to paroxetine or placebo followed by three months of double-blind treatment and repeat imaging with the same protocol. Results Women with PTSD showed decreases in areas involved in the Default Mode Network (DMN), a network of brain areas usually active when the brain is at rest, hippocampus and visual processing areas with exposure to traumatic scripts at baseline while women without PTSD showed increased activation in superior frontal gyrus and other areas (p < 0.005). Treatment of women with PTSD with paroxetine resulted in increased anterior cingulate activation and brain areas involved in the DMN and visual processing with scripts compared to placebo (p < 0.005). Conclusion PTSD related to childhood sexual abuse in women is associated with alterations in brain areas involved in memory and the stress response and treatment with paroxetine results in modulation of these areas.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA
| | - Rebeca Alvarado Ortego
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Carolina Campanella
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Jonathon A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Lori L. Davis
- Department of Psychiatry, University of Alabama School of Medicine, Birmingham, AL
- Tuscaloosa VA Medical Center, Tuscaloosa AL
| | - Negar Fani
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta GA
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
4
|
Zhang C, Chen X, Yin Y, Xie D, Luo J, Ai Y, Zhan W, Kan H, Zhang S, Jiang G, Hu X. Functional Alterations of the Basal Ganglia Are Associated with Voluntary Activation of the Core Stabilizing Muscles in Patients with Chronic Low Back Pain: A Cross-Sectional Study. Pain Res Manag 2023; 2023:2028379. [PMID: 37693681 PMCID: PMC10484657 DOI: 10.1155/2023/2028379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/15/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Purpose Deficits in voluntary activation of the core stabilizing muscles are consistently observed in patients with chronic low back pain (CLBP); however, the underlying neural mechanism remains unclear. This cross-sectional study aimed at testing the hypothesis that the impaired voluntary activation of core stabilizing muscles is associated with structural and functional alterations in the basal ganglia, thalamus, and cortex in patients with CLBP. Methods We obtained structural and resting-state functional magnetic resonance imaging (rs-fMRI) data from 53 patients with CLBP and 67 healthy controls and estimated the alterations in grey matter volume (GMV) and functional and effective connectivity (EC) of regions with altered GMV via whole brain analysis. The voluntary activation of the multifidus (MF) and transversus abdominis (TrA) was evaluated by ultrasound imaging in these patients. Results Compared with the HCs, they displayed a significant decrease in GMV in the bilateral thalamus and caudate nucleus, a significant increase in GMV in the left middle frontal gyrus, and increased resting-state functional connectivity between the right caudate nucleus and the bilateral precuneus (voxel-level p < 0.005, Gaussian random field-corrected p < 0.05). The patients also showed increased EC from the right caudate nucleus to the bilateral precuneus, which was significantly correlated with voluntary activation of the bilateral MF and TrA (all p < 0.050). Conclusions Grey matter alterations may be confined to regions responsible for perception, motor control, and emotion regulation in patients with CLBP. The interrupted EC from the basal ganglia to the default mode network might be involved in the impairment of voluntary activation of the core stabilizing muscles.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Dongfeng Xie
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wenfeng Zhan
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Hongjun Kan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shuxian Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
5
|
Pierce ZP, Johnson ER, Kim IA, Lear BE, Mast AM, Black JM. Therapeutic interventions impact brain function and promote post-traumatic growth in adults living with post-traumatic stress disorder: A systematic review and meta-analysis of functional magnetic resonance imaging studies. Front Psychol 2023; 14:1074972. [PMID: 36844333 PMCID: PMC9948410 DOI: 10.3389/fpsyg.2023.1074972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The present systematic review and meta-analysis explores the impacts of cognitive processing therapy (CPT), eye movement desensitization and reprocessing (EMDR), and prolonged exposure (PE) therapy on neural activity underlying the phenomenon of post-traumatic growth for adult trauma survivors. Methods We utilized the following databases to conduct our systematic search: Boston College Libraries, PubMed, MEDLINE, and PsycINFO. Our initial search yielded 834 studies for initial screening. We implemented seven eligibility criteria to vet articles for full-text review. Twenty-nine studies remained for full-text review after our systematic review process was completed. Studies were subjected to several levels of analysis. First, pre-and post- test post-traumatic growth inventory (PTGI) scores were collected from all studies and analyzed through a forest plot using Hedges' g. Next, Montreal Neurological Institute (MNI) coordinates and t-scores were collected and analyzed using an Activation Likelihood Estimation (ALE) to measure brain function. T-scores and Hedges' g values were then analyzed using Pearson correlations to determine if there were any relationships between brain function and post-traumatic growth for each modality. Lastly, all studies were subjected to a bubble plot and Egger's test to assess risk of publication bias across the review sample. Results Forest plot results indicated that all three interventions had a robust effect on PTGI scores. ALE meta-analysis results indicated that EMDR exhibited the largest effect on brain function, with the R thalamus (t = 4.23, p < 0.001) showing robust activation, followed closely by the R precuneus (t = 4.19, p < 0.001). Pearson correlation results showed that EMDR demonstrated the strongest correlation between increased brain function and PTGI scores (r = 0.910, p < 0.001). Qualitative review of the bubble plot indicated no obvious traces of publication bias, which was corroborated by the results of the Egger's test (p = 0.127). Discussion Our systematic review and meta-analysis showed that CPT, EMDR, and PE each exhibited a robust effect on PTG impacts across the course of treatment. However, when looking closer at comparative analyses of neural activity (ALE) and PTGI scores (Pearson correlation), EMDR exhibited a more robust effect on PTG impacts and brain function than CPT and PE.
Collapse
Affiliation(s)
- Zachary P. Pierce
- School of Social Work, Boston College, Chestnut Hill, MA, United States
- The Cell to Society Laboratory, Chestnut Hill, MA, United States
| | - Emily R. Johnson
- School of Social Work, Boston College, Chestnut Hill, MA, United States
- The Cell to Society Laboratory, Chestnut Hill, MA, United States
| | - Isabelle A. Kim
- The Cell to Society Laboratory, Chestnut Hill, MA, United States
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Brianna E. Lear
- The Cell to Society Laboratory, Chestnut Hill, MA, United States
| | - A. Michaela Mast
- School of Social Work, Boston College, Chestnut Hill, MA, United States
- The Cell to Society Laboratory, Chestnut Hill, MA, United States
| | - Jessica M. Black
- School of Social Work, Boston College, Chestnut Hill, MA, United States
- The Cell to Society Laboratory, Chestnut Hill, MA, United States
| |
Collapse
|
6
|
Leite L, Esper NB, Junior JRML, Lara DR, Buchweitz A. An exploratory study of resting-state functional connectivity of amygdala subregions in posttraumatic stress disorder following trauma in adulthood. Sci Rep 2022; 12:9558. [PMID: 35688847 PMCID: PMC9187646 DOI: 10.1038/s41598-022-13395-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
We carried out an exploratory study aimed at identifying differences in resting-state functional connectivity for the amygdala and its subregions, right and left basolateral, centromedial and superficial nuclei, in patients with Posttraumatic Stress Disorder (PTSD), relative to controls. The study included 10 participants with PTSD following trauma in adulthood (9 females), and 10 controls (9 females). The results suggest PTSD was associated with a decreased (negative) functional connectivity between the superficial amygdala and posterior brain regions relative to controls. The differences were observed between right superficial amygdala and right fusiform gyrus, and between left superficial amygdala and left lingual and left middle occipital gyri. The results suggest that among PTSD patients, the worse the PTSD symptoms, the lower the connectivity. The results corroborate the fMRI literature that shows PTSD is associated with weaker amygdala functional connectivity with areas of the brain involved in sensory and perceptual processes. The results also suggest that though the patients traumatic experience occured in adulthood, the presence of early traumatic experiences were associated with negative connectivity between the centromedial amygdala and sensory and perceptual regions. We argue that the understanding of the mechanisms of PTSD symptoms, its behaviors and the effects on quality of life of patients may benefit from the investigation of brain function that underpins sensory and perceptual symptoms associated with the disorder.
Collapse
Affiliation(s)
- Leticia Leite
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
| | - Nathalia Bianchini Esper
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - José Roberto M Lopes Junior
- School of Psychology and Health, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | | | - Augusto Buchweitz
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.
- Department of Psychology, University of Connecticut, Stamford, 06269-1020, United States of America.
| |
Collapse
|
7
|
Vedaei F, Newberg AB, Alizadeh M, Muller J, Shahrampour S, Middleton D, Zabrecky G, Wintering N, Bazzan AJ, Monti DA, Mohamed FB. Resting-State Functional MRI Metrics in Patients With Chronic Mild Traumatic Brain Injury and Their Association With Clinical Cognitive Performance. Front Hum Neurosci 2022; 15:768485. [PMID: 35027887 PMCID: PMC8751629 DOI: 10.3389/fnhum.2021.768485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 80% of people experiencing brain injuries. Symptoms of mTBI include short-term and long-term adverse clinical outcomes. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was conducted to measure voxel-based indices including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) in patients suffering from chronic mTBI; 64 patients with chronic mTBI at least 3 months post injury and 40 healthy controls underwent rs-fMRI scanning. Partial correlation analysis controlling for age and gender was performed within mTBI cohort to explore the association between rs-fMRI metrics and neuropsychological scores. Compared with controls, chronic mTBI patients showed increased fALFF in the left middle occipital cortex (MOC), right middle temporal cortex (MTC), and right angular gyrus (AG), and increased ReHo in the left MOC and left posterior cingulate cortex (PCC). Enhanced FC was observed from left MOC to right precuneus; from right MTC to right superior temporal cortex (STC), right supramarginal, and left inferior parietal cortex (IPC); and from the seed located at right AG to left precuneus, left superior medial frontal cortex (SMFC), left MTC, left superior temporal cortex (STC), and left MOC. Furthermore, the correlation analysis revealed a significant correlation between neuropsychological scores and fALFF, ReHo, and seed-based FC measured from the regions with significant group differences. Our results demonstrated that alterations of low-frequency oscillations in chronic mTBI could be representative of disruption in emotional circuits, cognitive performance, and recovery in this cohort.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer Muller
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Shiva Shahrampour
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Devon Middleton
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anthony J Bazzan
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Altered spontaneous neural activity in the precuneus, middle and superior frontal gyri, and hippocampus in college students with subclinical depression. BMC Psychiatry 2021; 21:280. [PMID: 34074266 PMCID: PMC8167968 DOI: 10.1186/s12888-021-03292-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subclinical depression (ScD) is a prevalent condition associated with relatively mild depressive states, and it poses a high risk of developing into major depressive disorder (MDD). However, the neural pathology of ScD is still largely unknown. Identifying the spontaneous neural activity involved in ScD may help clarify risk factors for MDD and explore treatment strategies for mild stages of depression. METHODS A total of 34 ScD subjects and 40 age-, sex-, and education-matched healthy controls were screened from 1105 college students. The amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) of resting-state fMRI were calculated to reveal neural activity. Strict statistical strategies, including Gaussian random field (GRF), false discovery rate (FDR), and permutation test (PT) with threshold-free cluster enhancement (TFCE), were conducted. Based on the altered ALFF and ReHo, resting-state functional connectivity (RSFC) was further analyzed using a seed-based approach. RESULTS The right precuneus and left middle frontal gyrus (MFG) both showed significantly increased ALFF and ReHo in ScD subjects. Moreover, the left hippocampus and superior frontal gyrus (SFG) showed decreased ALFF and increased ReHo, respectively. In addition, ScD subjects showed increased RSFC between MFG and hippocampus compared to healthy controls, and significant positive correlation was found between the Beck Depression Inventory-II (BDI-II) score and RSFC from MFG to hippocampus in ScD group. CONCLUSION Spontaneous neural activities in the right precuneus, left MFG, SFG, and hippocampus were altered in ScD subjects. Functional alterations in these dorsolateral prefrontal cortex and default mode network regions are largely related to abnormal emotional processing in ScD, and indicate strong associations with brain impairments in MDD, which provide insight into potential pathophysiology mechanisms of subclinical depression.
Collapse
|
9
|
Sobczak AM, Bohaterewicz B, Marek T, Fafrowicz M, Dudek D, Siwek M, Tereszko A, Krupa A, Bryll A, Chrobak AA. Altered Functional Connectivity Differences in Salience Network as a Neuromarker of Suicide Risk in Euthymic Bipolar Disorder Patients. Front Hum Neurosci 2020; 14:585766. [PMID: 33281585 PMCID: PMC7705642 DOI: 10.3389/fnhum.2020.585766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Objective The occurrence of death by suicide in patients diagnosed with bipolar disorder is as much as 60 times greater than in the general population. Even during the state of euthymia patients are characterized by suicide risk. The aim of the study is to investigate the baseline brain activity in euthymic bipolar disorder patients in regard to suicide risk. We hypothesized that patients compared to healthy control group will demonstrate altered functional connectivity among resting state networks which will be directly related to current suicide risk. Method 41 subjects were enrolled in the study consisting control group (n = 21) and euthymic bipolar disorder patients group (n = 20). Functional magnetic resonance imaging was used to evaluate resting state brain activity and ROI-ROI functional connectivity analysis was performed. Suicidal risk was estimated using The Suicide Behaviors Questionnaire-Revised. Results A two sample t-test revealed decreased functional connectivity between regions involved in the salience network in patients compared to the control group. This decrease was negatively correlated with current suicide risk. Conclusion Obtained results suggest the association between risk of suicide and activity of regions responsible for functions such as learning from mistakes, prospective thinking, and sensory integration.
Collapse
Affiliation(s)
- Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland.,Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Tereszko
- Chair of Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Krupa
- Chair of Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Amira Bryll
- Chair of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|