1
|
Tully JL, Bridge O, Rennie J, Krecké J, Stevens T. The rising use of cognitive enhancement drugs and predictors of use during COVID-19: findings from a cross-sectional survey of students and university staff in the UK. Front Psychol 2024; 15:1356496. [PMID: 39077204 PMCID: PMC11284161 DOI: 10.3389/fpsyg.2024.1356496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Background The use of psychoactive substances to increase cognitive performance while studying has been termed 'pharmacological cognitive enhancement' (PCE). In previous years, several large-scale national surveys have focused on their use by students at university, including drug types, prevalence rates, and predictive factors. The recent coronavirus pandemic brought about widespread structural changes for UK universities, as students were forced to adapt to home-based learning and in many cases reduced academic support. No study has yet focused primarily on the impact of pandemic social restrictions on PCE in students and academic staff, and whether personality and demographic factors reveal user profiles that predict use during the pandemic period. Method A convenience sample of 736 UK students and staff aged 18-54 (M = 22.2, SD = 5.2) completed a cross-sectional survey assessing PCE prevalence rates, polydrug use, perceived effects, academic self-efficacy and personality during the first year of social restrictions (March 2020 - February 2021) compared with the previous year (March 2019 - February 2020). Results There was a significant self-reported rise in the use of all drug types (all ps < 0.001) during social restrictions, particularly with Modafinil (+42%), nutraceuticals (+30.2%) and microdose LSD (+22.2%). Respondents also indicated stronger PCE effects for all substances, except alcohol, in comparison to the previous year. Polydrug use with modafinil and other prescription stimulants increased the most during social restrictions. Personality factors and gender identity reliably predicted PCE use and lower agreeableness was often the strongest predictor, followed by identifying as male and lower conscientiousness. Academic self-efficacy and student/academic staff status were not consistent predictors. Conclusion This is the first survey of UK students to investigate PCE during coronavirus social restrictions and to assess predictive factors. Findings reveal a rise in PCE use and polydrug use which we suggest is because of increased pressures on students created by the lockdown and reduced access to university resources.
Collapse
Affiliation(s)
- Jamie L. Tully
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| | - Oliver Bridge
- School of Education, University of Exeter, Exeter, United Kingdom
| | - Joseph Rennie
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| | - Joy Krecké
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| | - Tobias Stevens
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
2
|
Baliki MN, Vigotsky AD, Rached G, Jabakhanji R, Huang L, Branco P, Cong O, Griffith J, Wasan AD, Schnitzer TJ, Apkarian AV. Neuropsychology of chronic back pain managed with long-term opioid use. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302408. [PMID: 38370783 PMCID: PMC10871381 DOI: 10.1101/2024.02.07.24302408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Chronic pain is commonly treated with long-term opioids, but the neuropsychological outcomes associated with stable long-duration opioid use remain unclear. Here, we contrasted the psychological profiles, brain activity, and brain structure of 70 chronic back pain patients on opioids (CBP+O, average opioid exposure 6.2 years) with 70 patients managing their pain without opioids. CBP+O exhibited moderately worse psychological profiles and small differences in brain morphology. However, CBP+O had starkly different spontaneous brain activity, dominated by increased mesocorticolimbic and decreased dorsolateral-prefrontal activity, even after controlling for pain intensity and duration. These differences strongly reflected cortical opioid and serotonin receptor densities and mapped to two antagonistic resting-state circuits. The circuits' dynamics were explained by mesocorticolimbic activity and reflected negative affect. We reassessed a sub-group of CBP+O after they briefly abstained from taking opioids. Network dynamics, but not spontaneous activity, reflected exacerbated signs of withdrawal. Our results have implications for the management and tapering of opioids in chronic pain.
Collapse
Affiliation(s)
- Marwan N Baliki
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
| | - Andrew D Vigotsky
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Biomedical Engineering and Statistics & Data Science, Northwestern University, Chicago, Illinois
| | - Gaelle Rached
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Department of Neuroscience, Northwestern University, Chicago, Illinois
| | - Rami Jabakhanji
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Department of Neuroscience, Northwestern University, Chicago, Illinois
| | - Lejian Huang
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Department of Neuroscience, Northwestern University, Chicago, Illinois
| | - Paulo Branco
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Department of Neuroscience, Northwestern University, Chicago, Illinois
- Department of Anesthesia, Northwestern University, Chicago, Illinois
| | - Olivia Cong
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Department of Neuroscience, Northwestern University, Chicago, Illinois
| | - James Griffith
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Medical and Social Sciences, Northwestern University, Chicago, Illinois
| | - Ajay D Wasan
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas J Schnitzer
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Department of Anesthesia, Northwestern University, Chicago, Illinois
- Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - A Vania Apkarian
- Center for Translational Pain Research, Northwestern University, Chicago, Illinois
- Department of Neuroscience, Northwestern University, Chicago, Illinois
- Department of Anesthesia, Northwestern University, Chicago, Illinois
- Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| |
Collapse
|
3
|
Chen YH, Yang J, Wu H, Beier KT, Sawan M. Challenges and future trends in wearable closed-loop neuromodulation to efficiently treat methamphetamine addiction. Front Psychiatry 2023; 14:1085036. [PMID: 36911117 PMCID: PMC9995819 DOI: 10.3389/fpsyt.2023.1085036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Achieving abstinence from drugs is a long journey and can be particularly challenging in the case of methamphetamine, which has a higher relapse rate than other drugs. Therefore, real-time monitoring of patients' physiological conditions before and when cravings arise to reduce the chance of relapse might help to improve clinical outcomes. Conventional treatments, such as behavior therapy and peer support, often cannot provide timely intervention, reducing the efficiency of these therapies. To more effectively treat methamphetamine addiction in real-time, we propose an intelligent closed-loop transcranial magnetic stimulation (TMS) neuromodulation system based on multimodal electroencephalogram-functional near-infrared spectroscopy (EEG-fNIRS) measurements. This review summarizes the essential modules required for a wearable system to treat addiction efficiently. First, the advantages of neuroimaging over conventional techniques such as analysis of sweat, saliva, or urine for addiction detection are discussed. The knowledge to implement wearable, compact, and user-friendly closed-loop systems with EEG and fNIRS are reviewed. The features of EEG and fNIRS signals in patients with methamphetamine use disorder are summarized. EEG biomarkers are categorized into frequency and time domain and topography-related parameters, whereas for fNIRS, hemoglobin concentration variation and functional connectivity of cortices are described. Following this, the applications of two commonly used neuromodulation technologies, transcranial direct current stimulation and TMS, in patients with methamphetamine use disorder are introduced. The challenges of implementing intelligent closed-loop TMS modulation based on multimodal EEG-fNIRS are summarized, followed by a discussion of potential research directions and the promising future of this approach, including potential applications to other substance use disorders.
Collapse
Affiliation(s)
- Yun-Hsuan Chen
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jie Yang
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Hemmings Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kevin T. Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
4
|
Holden JM. Effects of bupropion on sign- and goal-tracking in male Sprague Dawley rats. Behav Brain Res 2023; 439:114241. [PMID: 36460126 DOI: 10.1016/j.bbr.2022.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Relapse into addiction is often triggered by cues that have a Pavlovian association with drugs and drug-taking. Sign-tracking involves approach of and interaction with Pavlovian conditioned signals for appetitive events (as opposed to goal-tracking, which involves approach of the site of the appetitive events themselves) and may be important in understanding cue-driven relapse. Bupropion is an atypical antidepressant and smoking cessation aid with effects on dopamine and norepinephrine that may have some utility in reducing sign-tracking. Male Sprague-Dawley rats were trained in a task where sign- and goal-tracking were possible and then administered doses of bupropion during a test phase. Bupropion decreased measures of sign-tracking and increased goal-tracking. This suggests that bupropion might be a useful adjunct medication for many kinds of behavioral disorders in which cue-driven behavior is problematic.
Collapse
|
5
|
Porrino LJ, Smith HR, Beveridge TJR, Miller MD, Nader SH, Nader MA. Residual deficits in functional brain activity after chronic cocaine self-administration in rhesus monkeys. Neuropsychopharmacology 2023; 48:290-298. [PMID: 34385608 PMCID: PMC9751134 DOI: 10.1038/s41386-021-01136-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022]
Abstract
Previous studies in humans and in animals have shown dramatic effects of cocaine on measures of brain function that persist into abstinence. The purpose of this study was to examine the neurobiological consequences of abstinence from cocaine, using a model that removes the potential confound of cocaine cues. Adult male rhesus monkeys self-administered cocaine (0.3 mg/kg/injection; N = 8) during daily sessions or served as food-reinforcement controls (N = 4). Two times per week, monkeys were placed in a neutral environment and presented with a cartoon video for ~30 min, sometimes pre- and sometimes post-operant session, but no reinforcement was presented during the video. After ~100 sessions and when the cocaine groups had self-administered 900 mg/kg cocaine, the final experimental condition was a terminal 2-[14C]-deoxyglucose procedure, which occurred in the neutral (cartoon video) environment; for half of the monkeys in each group, this occurred after 1 day of abstinence and for the others after 30 days of abstinence. Rates of local cerebral glucose metabolism were measured in 57 brain regions. Global rates of cerebral metabolism were significantly lower in animals 1 day and 30 days post-cocaine self-administration when compared to those of food-reinforced controls. Effects were larger in 30- vs. 1-day cocaine abstinence, especially in prefrontal, parietal and cingulate cortex, as well as dorsal striatum and thalamus. Because these measures were obtained from monkeys while in a neutral environment, the deficits in glucose utilization can be attributed to the consequences of cocaine exposure and not to effects of conditioned stimuli associated with cocaine.
Collapse
Affiliation(s)
- Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Hilary R Smith
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Mack D Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
6
|
Bel-Bahar TS, Khan AA, Shaik RB, Parvaz MA. A scoping review of electroencephalographic (EEG) markers for tracking neurophysiological changes and predicting outcomes in substance use disorder treatment. Front Hum Neurosci 2022; 16:995534. [PMID: 36325430 PMCID: PMC9619053 DOI: 10.3389/fnhum.2022.995534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Substance use disorders (SUDs) constitute a growing global health crisis, yet many limitations and challenges exist in SUD treatment research, including the lack of objective brain-based markers for tracking treatment outcomes. Electroencephalography (EEG) is a neurophysiological technique for measuring brain activity, and although much is known about EEG activity in acute and chronic substance use, knowledge regarding EEG in relation to abstinence and treatment outcomes is sparse. We performed a scoping review of longitudinal and pre-post treatment EEG studies that explored putative changes in brain function associated with abstinence and/or treatment in individuals with SUD. Following PRISMA guidelines, we identified studies published between January 2000 and March 2022 from online databases. Search keywords included EEG, addictive substances (e.g., alcohol, cocaine, methamphetamine), and treatment related terms (e.g., abstinence, relapse). Selected studies used EEG at least at one time point as a predictor of abstinence or other treatment-related outcomes; or examined pre- vs. post-SUD intervention (brain stimulation, pharmacological, behavioral) EEG effects. Studies were also rated on the risk of bias and quality using validated instruments. Forty-four studies met the inclusion criteria. More consistent findings included lower oddball P3 and higher resting beta at baseline predicting negative outcomes, and abstinence-mediated longitudinal decrease in cue-elicited P3 amplitude and resting beta power. Other findings included abstinence or treatment-related changes in late positive potential (LPP) and N2 amplitudes, as well as in delta and theta power. Existing studies were heterogeneous and limited in terms of specific substances of interest, brief times for follow-ups, and inconsistent or sparse results. Encouragingly, in this limited but maturing literature, many studies demonstrated partial associations of EEG markers with abstinence, treatment outcomes, or pre-post treatment-effects. Studies were generally of good quality in terms of risk of bias. More EEG studies are warranted to better understand abstinence- or treatment-mediated neural changes or to predict SUD treatment outcomes. Future research can benefit from prospective large-sample cohorts and the use of standardized methods such as task batteries. EEG markers elucidating the temporal dynamics of changes in brain function related to abstinence and/or treatment may enable evidence-based planning for more effective and targeted treatments, potentially pre-empting relapse or minimizing negative lifespan effects of SUD.
Collapse
Affiliation(s)
- Tarik S. Bel-Bahar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anam A. Khan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Riaz B. Shaik
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Muhammad A. Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Chen CC, Chung CR, Tsai MC, Wu EHK, Chiu PR, Tsai PY, Yeh SC. Impaired Brain-Heart Relation in Patients With Methamphetamine Use Disorder During VR Induction of Drug Cue Reactivity. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 12:1-9. [PMID: 38059128 PMCID: PMC10697298 DOI: 10.1109/jtehm.2022.3206333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 12/08/2023]
Abstract
Methamphetamine use disorder (MUD) is an illness associated with severe health consequences. Virtual reality (VR) is used to induce the drug-cue reactivity and significant EEG and ECG abnormalities were found in MUD patients. However, whether a link exists between EEG and ECG abnormalities in patients with MUD during exposure to drug cues remains unknown. This is important from the therapeutic viewpoint because different treatment strategies may be applied when EEG abnormalities and ECG irregularities are complications of MUD. We designed a VR system with drug cues and EEG and ECG were recorded during VR exposure. Sixteen patients with MUD and sixteen healthy subjects were recruited. Statistical tests and Pearson correlation were employed to analyze the EEG and ECG. The results showed that, during VR induction, the patients with MUD but not healthy controls showed significant [Formula: see text] and [Formula: see text] power increases when the stimulus materials were most intense. This finding indicated that the stimuli are indiscriminate to healthy controls but meaningful to patients with MUD. Five heart rate variability (HRV) indexes significantly differed between patients and controls, suggesting abnormalities in the reaction of patient's autonomic nervous system. Importantly, significant relations between EEG and HRV indexes changes were only identified in the controls, but not in MUD patients, signifying a disruption of brain-heart relations in patients. Our findings of stimulus-specific EEG changes and the impaired brain-heart relations in patients with MUD shed light on the understanding of drug-cue reactivity and may be used to design diagnostic and/or therapeutic strategies for MUD.
Collapse
Affiliation(s)
- Chun-Chuan Chen
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City320317Taiwan
| | - Chia-Ru Chung
- Computer Science and Information Engineering DepartmentNational Central UniversityTaoyuan City320317Taiwan
| | - Meng-Chang Tsai
- Department of PsychiatryKaohsiung Chang Gung Memorial HospitalKaohsiung City83301Taiwan
- Department of PsychiatryChang Gung University College of MedicineKaohsiung City83301Taiwan
| | - Eric Hsiao-Kuang Wu
- Computer Science and Information Engineering DepartmentNational Central UniversityTaoyuan City320317Taiwan
| | - Po-Ru Chiu
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City320317Taiwan
| | - Po-Yi Tsai
- Department of Physical Medicine and RehabilitationTaipei Veterans General HospitalTaipei112201Taiwan
| | - Shih-Ching Yeh
- Computer Science and Information Engineering DepartmentNational Central UniversityTaoyuan City320317Taiwan
| |
Collapse
|
8
|
Lu L, Yang W, Zhang X, Tang F, Du Y, Fan L, Luo J, Yan C, Zhang J, Li J, Liu J, von Deneen KM, Yu D, Liu J, Yuan K. Potential brain recovery of frontostriatal circuits in heroin users after prolonged abstinence: A preliminary study. J Psychiatr Res 2022; 152:326-334. [PMID: 35785575 DOI: 10.1016/j.jpsychires.2022.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Neuroscientists have devoted efforts to explore potential brain recovery after prolonged abstinence in heroin users (HU). However, not much is known about whether frontostriatal circuits can recover after prolonged abstinence in HU. An eight-month longitudinal study was carried out for HU. Two MRI scans were obtained at baseline (HU1) and 8-month follow-up (HU2). The functional and structural connectivities of dorsal and ventral frontostriatal pathways were measured by resting-state functional connectivity (RSFC) and diffusion tensor imaging (DTI). Correlation analyses were employed to reveal the associations between neuroimaging and behavioral changes. Results suggested that relative to healthy controls (HCs), HU1 showed lower fractional anisotropy (FA) in the right dorsolateral prefrontal cortex (DLPFC)-to-caudate tracts and medial orbitofrontal cortex (mOFC)-to-nucleus accumbens (NAc) tracts as well as decreased RSFC in the left mOFC-NAc circuits. Longitudinal results revealed reduced craving and enhanced cognitive control in HU2 compared with HU1. After prolonged abstinence, HU2 showed increased FA values in the right DLPFC-caudate and mOFC-NAc tracts as well as increased RSFC strength in the bilateral mOFC-NAc circuits compared with HU1. In addition, changes in RSFC and FA values in the right mOFC-NAc circuit were negatively correlated with craving score changes. Similarly, negative correlations were also found between changes of RSFC in the bilateral DLPFC-caudate circuits and TMT-A scores. We provided scientific evidence for brain recovery of the dorsal and ventral frontostriatal circuits in HU after prolonged abstinence, and these circuits may be potential neuroimaging biomarkers for cognition and craving changes.
Collapse
Affiliation(s)
- Ling Lu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaozi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Fei Tang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Cui Yan
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Dahua Yu
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China.
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China.
| |
Collapse
|
9
|
Chen CC, Tsai MC, Wu EHK, Chung CR, Lee Y, Chiu PR, Tsai PY, Sheng SR, Yeh SC. Neuronal Abnormalities Induced by an Intelligent Virtual Reality System for Methamphetamine Use Disorder. IEEE J Biomed Health Inform 2022; 26:3458-3465. [PMID: 35226611 DOI: 10.1109/jbhi.2022.3154759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Methamphetamine use disorder (MUD) is a brain disease that leads to altered regional neuronal activity. Virtual reality (VR) is used to induce the drug cue reactivity. Previous studies reported significant frequency-specific abnormalities in patients with MUD during VR induction of drug craving. However, whether those patients exhibit neuronal abnormalities after VR induction that could serve as the treatment target remains unclear. Here, we developed an integrated VR system for inducing drug related changes and investigated the neuronal abnormalities after VR exposure in patients. Fifteen patients with MUD and ten healthy subjects were recruited and exposed to drug-related VR environments. Resting-state EEG were recorded for 5 minutes twice-before and after VR and transformed to obtain the frequency-specific data. Three self-reported scales for measurement of the anxiety levels and impulsivity of participants were obtained after VR task. Statistical tests and machine learning methods were employed to reveal the differences between patients and healthy subjects. The result showed that patients with MUD and healthy subjects significantly differed in, and power changes after VR. These neuronal abnormalities in patients were associated with the self-reported behavioral scales, indicating impaired impulse control. Our findings of resting-state EEG abnormalities in patients with MUD after VR exposure have the translation value and can be used to develop the treatment strategies for methamphetamine use disorder.
Collapse
|
10
|
Eslami-Shahrbabaki M, Barfehee D, Parvaresh N, Zamani E, Soltaninejad A, Ahmadi A. Investigating Cognitive Functions in Methadone Users in Comparison with Methadone and Methamphetamine Users and Control Group. ADDICTION & HEALTH 2022; 14:1-6. [PMID: 35573763 PMCID: PMC9057645 DOI: 10.22122/ahj.v14i1.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
Background Cognitive impairment in drug users is a marker for predicting recurrence and poorer adherence to treatment. The purpose of this study was to compare the cognitive function in three groups of methadone users methadone maintenance treatment (MMT), compared to methadone and methamphetamine (MAMP) users (MMT + MAMP) and healthy people (control group). Methods Three groups of 90 people including 30 users of MMT, 30 users of MMT + MAMP, and 30 healthy persons participated in this cross-sectional and purposeful study. The study was performed on outpatients of MMT Clinic of Psychiatric Hospital in Kerman, Iran. The demographic and related data questionnaire was filled out. In addition, Persian version of the Brief Assessment of Cognition in Schizophrenia (BACS) was used to assess cognitive function. Findings The mean of total number of scores and all BACS subscales were significantly better in control group than the other two groups of patients. Moreover, not only the mean of total number of BACS was significantly different between two substance abuser groups, but also there was a significant difference between them on verbal memory, digit sequencing, and token motor test, with MMT + MAMP group performing worse than MMT group. Conclusion Concomitant use of opioids and stimulant substance such as MAMP results in cumulative toxic effect of them on brain and cognitive functions.
Collapse
Affiliation(s)
- Mahin Eslami-Shahrbabaki
- Neuroscience Research Center, Institute of Neuropharmacology AND Department of Psychiatry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Delaram Barfehee
- Neurology Research Center AND Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nooshin Parvaresh
- Department of Psychiatry, Afzalipour School of Medicine AND Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Zamani
- Department of Psychiatry, Afzalipour School of Medicine AND Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Soltaninejad
- Department of Psychiatry, Afzalipour School of Medicine AND Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ahmadi
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Ceceli AO, Bradberry CW, Goldstein RZ. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology 2022; 47:276-291. [PMID: 34408275 PMCID: PMC8617203 DOI: 10.1038/s41386-021-01153-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
A growing preclinical and clinical body of work on the effects of chronic drug use and drug addiction has extended the scope of inquiry from the putative reward-related subcortical mechanisms to higher-order executive functions as regulated by the prefrontal cortex. Here we review the neuroimaging evidence in humans and non-human primates to demonstrate the involvement of the prefrontal cortex in emotional, cognitive, and behavioral alterations in drug addiction, with particular attention to the impaired response inhibition and salience attribution (iRISA) framework. In support of iRISA, functional and structural neuroimaging studies document a role for the prefrontal cortex in assigning excessive salience to drug over non-drug-related processes with concomitant lapses in self-control, and deficits in reward-related decision-making and insight into illness. Importantly, converging insights from human and non-human primate studies suggest a causal relationship between drug addiction and prefrontal insult, indicating that chronic drug use causes the prefrontal cortex damage that underlies iRISA while changes with abstinence and recovery with treatment suggest plasticity of these same brain regions and functions. We further dissect the overlapping and distinct characteristics of drug classes, potential biomarkers that inform vulnerability and resilience, and advancements in cutting-edge psychological and neuromodulatory treatment strategies, providing a comprehensive landscape of the human and non-human primate drug addiction literature as it relates to the prefrontal cortex.
Collapse
Affiliation(s)
- Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Xu Y, Wang S, Chen L, Shao Z, Zhang M, Liu S, Wen X, Li Y, Yang W, Tang F, Luo J, Fan L, Yan C, Liu J, Yuan K. Reduced midbrain functional connectivity and recovery in abstinent heroin users. J Psychiatr Res 2021; 144:168-176. [PMID: 34662755 DOI: 10.1016/j.jpsychires.2021.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
Dopaminergic pathways from the midbrain to striatum as well as cortex are involved in addiction. However, the alternations of these pathways and whether the recoveries of aberrant circuits would be detected after prolonged abstinence in heroin users are rarely known. The resting-state functional connectivity (RSFC) patterns of midbrain (i.e., the ventral tegmental area (VTA) and substantia nigra (SN)) were compared between 40 abstinent heroin users with opioid use disorder (HUs) and 35 healthy controls (HCs). Then, we tested the functional recovery hypothesis by both cross-sectional and longitudinal design. For cross-sectional design, HUs were separated into short-term abstainers (STs) (3-15 days) and long-term abstainers (LTs) (>15 days). With regard to longitudinal design, 22 subjects among HUs were followed up for 10 months. A sandwich estimator method was used to analyze the differences between baseline HUs and follow-up HUs. HUs showed lower RSFC between midbrain and several cortical areas (medial orbitofrontal cortex (mOFC) and anterior cingulate cortex) compared with HCs. Besides, lower RSFC of VTA-right nucleus accumbens circuit as well as right SN- caudate circuit was also found in HUs. The enhanced RSFC value of VTA-left mOFC circuit was observed in LTs, compared with STs. Additionally, longitudinal design also revealed the increased RSFC values of the midbrain with frontal cortex after 10 months prolonged abstinence. We revealed abnormal functional organizations of midbrain-striato and midbrain-cortical circuits in HUs. More importantly, partially recovery of these dysfunctions can be found after long-term abstinence.
Collapse
Affiliation(s)
- Yan Xu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Shicong Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Longmao Chen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Ziqiang Shao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Min Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Shuang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Xinwen Wen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Yangding Li
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, Hunan, China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Tang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cui Yan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|