1
|
Wiesman AI, Vinding MC, Tsitsi P, Svenningsson P, Waldthaler J, Lundqvist D. Cortical effects of dopamine replacement account for clinical response variability in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.20.24317429. [PMID: 39606336 PMCID: PMC11601674 DOI: 10.1101/2024.11.20.24317429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Individual variability in clinical response to dopaminergic replacement therapy (DRT) is a key barrier to efficacious treatment for patients with Parkinson's disease (PD). A better understanding of the neurobiological sources of such inter-individual differences is necessary to inform future clinical interventions and motivate translational research. One potential source of this variability is an unintended secondary activation of extra-nigrostriatal dopamine systems by DRT, particularly in the neocortex. In this study, we use magnetoencephalography data collected from patients with PD before and after DRT to map their individual cortical neurophysiological responses to dopaminergic pharmacotherapy. By combining these DRT response maps with normative atlases of cortical dopamine receptor and transporter densities, we link the variable enhancement of rhythmic beta activity by DRT to dopamine-rich cortical regions. Importantly, patients who exhibited a larger dopaminergic beta cortical enhancement showed a smaller clinical improvement from DRT, indicating a potential source of individual variability in medication response for patients with PD. We conclude that these findings inform our understanding of the dopaminergic basis of neurophysiological variability often seen in patients with PD, and indicate that our methodological approach may be useful for data-driven contextualization of medication effects on cortical neurophysiology in future research and clinical applications.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Mikkel C. Vinding
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Panagiota Tsitsi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Waldthaler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Piette C, Tin SNW, Liège AD, Bloch-Queyrat C, Degos B, Venance L, Touboul J. Deep Brain Stimulation restores information processing in parkinsonian cortical networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.25.24310748. [PMID: 39252923 PMCID: PMC11383511 DOI: 10.1101/2024.08.25.24310748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with alterations of neural activity and information processing primarily in the basal ganglia and cerebral cortex. Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) is the most effective therapy when patients experience levodopa-induced motor complications. A growing body of evidence points towards a cortical effect of STN-DBS, restoring key electrophysiological markers, such as excessive beta band oscillations, commonly observed in PD. However, the mechanisms of STN-DBS remain elusive. Here, we aim to better characterize the cortical substrates underlying STN-DBS-induced improvement in motor symptoms. We recorded electroencephalograms (EEG) from PD patients and found that, although apparent EEG features were not different with or without therapy, EEG signals could more accurately predict limb movements under STN-DBS. To understand the origins of this enhanced information transmission under STN-DBS in the human EEG data, we investigated the information capacity and dynamics of a variety of computational models of cortical networks. The extent of improvement in decoding accuracy of complex naturalistic inputs under STN-DBS depended on the synaptic parameters of the network as well as its excitability and synchronization levels. Additionally, decoding accuracy could be optimized by adjusting STN-DBS parameters. Altogether, this work draws a comprehensive link between known alterations in cortical activity and the degradation of information processing capacity, as well as its restoration under DBS. These results also offer new perspectives for optimizing STN-DBS parameters based on clinically accessible measures of cortical information processing capacity.
Collapse
Affiliation(s)
- Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, MA Waltham, USA
| | - Sophie Ng Wing Tin
- Service de Physiologie, Explorations Fonctionnelles et Médecine du Sport, Assistance Publique-Hôpitaux de Paris (AP-HP), Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
- Inserm UMR 1272, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Astrid De Liège
- Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Coralie Bloch-Queyrat
- Department of Clinical Research, Avicenne University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 93009, Bobigny, France
| | - Bertrand Degos
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
- Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, MA Waltham, USA
| |
Collapse
|
3
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
4
|
Xu M, Hu B, Wang Z, Zhu L, Lin J, Wang D. Mathematical derivation and mechanism analysis of beta oscillations in a cortex-pallidum model. Cogn Neurodyn 2024; 18:1359-1378. [PMID: 38826645 PMCID: PMC11143146 DOI: 10.1007/s11571-023-09951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 06/04/2024] Open
Abstract
In this paper, we develop a new cortex-pallidum model to study the origin mechanism of Parkinson's oscillations in the cortex. In contrast to many previous models, the globus pallidus internal (GPi) and externa (GPe) both exert direct inhibitory feedback to the cortex. Using Hopf bifurcation analysis, two new critical conditions for oscillations, which can include the self-feedback projection of GPe, are obtained. In this paper, we find that the average discharge rate (ADR) is an important marker of oscillations, which can divide Hopf bifurcations into two types that can uniformly be used to explain the oscillation mechanism. Interestingly, the ADR of the cortex first increases and then decreases with increasing coupling weights that are projected to the GPe. Regarding the Hopf bifurcation critical conditions, the quantitative relationship between the inhibitory projection and excitatory projection to the GPe is monotonically increasing; in contrast, the relationship between different coupling weights in the cortex is monotonically decreasing. In general, the oscillation amplitude is the lowest near the bifurcation points and reaches the maximum value with the evolution of oscillations. The GPe is an effective target for deep brain stimulation to alleviate oscillations in the cortex.
Collapse
Affiliation(s)
- Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Jiahui Lin
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| |
Collapse
|
5
|
Ubeda Matzilevich E, Daniel PL, Little S. Towards therapeutic electrophysiological neurofeedback in Parkinson's disease. Parkinsonism Relat Disord 2024; 121:106010. [PMID: 38245382 DOI: 10.1016/j.parkreldis.2024.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Neurofeedback (NF) techniques support individuals to self-regulate specific features of brain activity, which has been shown to impact behavior and potentially ameliorate clinical symptoms. Electrophysiological NF (epNF) may be particularly impactful for patients with Parkinson's disease (PD), as evidence mounts to suggest a central role of pathological neural oscillations underlying symptoms in PD. Exaggerated beta oscillations (12-30 Hz) in the basal ganglia-cortical network are linked to motor symptoms (e.g., bradykinesia, rigidity), and beta is reduced by successful therapy with dopaminergic medication and Deep Brain Stimulation (DBS). PD patients also experience non-motor symptoms related to sleep, mood, motivation, and cognitive control. Although less is known about the mechanisms of non-motor symptoms in PD and how to successfully treat them, low frequency neural oscillations (1-12 Hz) in the basal ganglia-cortical network are particularly implicated in non-motor symptoms. Here, we review how cortical and subcortical epNF could be used to target motor and non-motor specific oscillations, and potentially serve as an adjunct therapy that enables PD patients to endogenously control their own pathological neural activities. Recent studies have demonstrated that epNF protocols can successfully support volitional control of cortical and subcortical beta rhythms. Importantly, this endogenous control of beta has been linked to changes in motor behavior. epNF for PD, as a casual intervention on neural signals, has the potential to increase understanding of the neurophysiology of movement, mood, and cognition and to identify new therapeutic approaches for motor and non-motor symptoms.
Collapse
Affiliation(s)
- Elena Ubeda Matzilevich
- Movement Disorders and Neuromodulation Division, Department of Neurology, University of California San Francisco, CA, USA
| | - Pria Lauren Daniel
- Movement Disorders and Neuromodulation Division, Department of Neurology, University of California San Francisco, CA, USA; Department of Psychology, University of California San Diego, CA, USA.
| | - Simon Little
- Movement Disorders and Neuromodulation Division, Department of Neurology, University of California San Francisco, CA, USA
| |
Collapse
|
6
|
McKeown DJ, Jones M, Pihl C, Finley AJ, Kelley N, Baumann O, Schinazi VR, Moustafa AA, Cavanagh JF, Angus DJ. Medication-invariant resting aperiodic and periodic neural activity in Parkinson's disease. Psychophysiology 2024; 61:e14478. [PMID: 37937898 PMCID: PMC11542173 DOI: 10.1111/psyp.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Parkinson's disease (PD) has been associated with greater total power in canonical frequency bands (i.e., alpha, beta) of the resting electroencephalogram (EEG). However, PD has also been associated with a reduction in the proportion of total power across all frequency bands. This discrepancy may be explained by aperiodic activity (exponent and offset) present across all frequency bands. Here, we examined differences in the eyes-open (EO) and eyes-closed (EC) resting EEG of PD participants (N = 26) on and off medication, and age-matched healthy controls (CTL; N = 26). We extracted power from canonical frequency bands using traditional methods (total alpha and beta power) and extracted separate parameters for periodic (parameterized alpha and beta power) and aperiodic activity (exponent and offset). Cluster-based permutation tests over spatial and frequency dimensions indicated that total alpha and beta power, and aperiodic exponent and offset were greater in PD participants, independent of medication status. After removing the exponent and offset, greater alpha power in PD (vs. CTL) was only present in EO recordings and no reliable differences in beta power were observed. Differences between PD and CTL in the resting EEG are likely driven by aperiodic activity, suggestive of greater relative inhibitory neural activity and greater neuronal spiking. Our findings suggest that resting EEG activity in PD is characterized by medication-invariant differences in aperiodic activity which is independent of the increase in alpha power with EO. This highlights the importance of considering aperiodic activity contributions to the neural correlates of brain disorders.
Collapse
Affiliation(s)
- Daniel J. McKeown
- Faculty of Society and Design, School of Psychology, Bond University, Gold Coast, Queensland, Australia
| | - Manon Jones
- Faculty of Society and Design, School of Psychology, Bond University, Gold Coast, Queensland, Australia
| | - Camilla Pihl
- Faculty of Society and Design, School of Psychology, Bond University, Gold Coast, Queensland, Australia
| | - Anna J. Finley
- Institute on Aging, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas Kelley
- School of Psychology, University of Southampton, Southampton, UK
| | - Oliver Baumann
- Faculty of Society and Design, School of Psychology, Bond University, Gold Coast, Queensland, Australia
| | - Victor R. Schinazi
- Faculty of Society and Design, School of Psychology, Bond University, Gold Coast, Queensland, Australia
| | - Ahmed A. Moustafa
- Faculty of Society and Design, School of Psychology, Bond University, Gold Coast, Queensland, Australia
| | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Douglas J. Angus
- Faculty of Society and Design, School of Psychology, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
7
|
Vinding MC, Waldthaler J, Eriksson A, Manting CL, Ferreira D, Ingvar M, Svenningsson P, Lundqvist D. Oscillatory and non-oscillatory features of the magnetoencephalic sensorimotor rhythm in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:51. [PMID: 38443402 PMCID: PMC10915140 DOI: 10.1038/s41531-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Parkinson's disease (PD) is associated with changes in neural activity in the sensorimotor alpha and beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous neuronal activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients (N = 78) on Parkinsonian medication and age- and sex-matched healthy controls (N = 60) using source reconstructed resting-state MEG. We quantified features of the time series data in terms of oscillatory alpha power and central alpha frequency, beta power and central beta frequency, and 1/f broadband characteristics using power spectral density. Furthermore, we characterised transient oscillatory burst events in the mu-beta band time-domain signals. We examined the relationship between these signal features and the patients' disease state, symptom severity, age, sex, and cortical thickness. PD patients and healthy controls differed on PSD broadband characteristics, with PD patients showing a steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related decrease in the burst rate. Out of all the signal features of the sensorimotor activity, the burst rate was associated with increased severity of bradykinesia, whereas the burst duration was associated with axial symptoms. Our study shows that general non-oscillatory features (broadband 1/f exponent and offset) of the sensorimotor signals are related to disease state and oscillatory burst rate scales with symptom severity in PD.
Collapse
Affiliation(s)
- Mikkel C Vinding
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Josefine Waldthaler
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Allison Eriksson
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Cognitive Neuroimaging Centre, Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore, Singapore
- McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran, Canaria, España
| | - Martin Ingvar
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Gimenez-Aparisi G, Guijarro-Estelles E, Chornet-Lurbe A, Ballesta-Martinez S, Pardo-Hernandez M, Ye-Lin Y. Early detection of Parkinson's disease: Systematic analysis of the influence of the eyes on quantitative biomarkers in resting state electroencephalography. Heliyon 2023; 9:e20625. [PMID: 37829809 PMCID: PMC10565694 DOI: 10.1016/j.heliyon.2023.e20625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
While resting state electroencephalography (EEG) provides relevant information on pathological changes in Parkinson's disease, most studies focus on the eyes-closed EEG biomarkers. Recent evidence has shown that both eyes-open EEG and reactivity to eyes-opening can also differentiate Parkinson's disease from healthy aging, but no consensus has been reached on a discriminatory capability benchmark. The aim of this study was to determine the resting-state EEG biomarkers suitable for real-time application that can differentiate Parkinson's patients from healthy subjects under both eyes closed and open. For this, we analysed and compared the quantitative EEG analyses of 13 early-stage cognitively normal Parkinson's patients with an age and sex-matched healthy group. We found that Parkinson's disease exhibited abnormal excessive theta activity in eyes-closed, which was reflected by a significantly higher relative theta power, a higher time percentage with a frequency peak in the theta band and a reduced alpha/theta ratio, while Parkinson's patients showed a significantly steeper non-oscillatory spectral slope activity than that of healthy subjects. We also found considerably less alpha and beta reactivity to eyes-opening in Parkinson's disease plus a significant moderate correlation between these EEG-biomarkers and the MDS-UPDRS score, used to assesses the clinical symptoms of Parkinson's Disease. Both EEG recordings with the eyes open and reactivity to eyes-opening provided additional information to the eyes-closed condition. We thus strongly recommend that both eyes open and closed be used in clinical practice recording protocols to promote EEG as a complementary non-invasive screening method for the early detection of Parkinson's disease, which would allow clinicians to design patient-oriented treatment and improve the patient's quality of life.
Collapse
Affiliation(s)
- G. Gimenez-Aparisi
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| | - E. Guijarro-Estelles
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| | - A. Chornet-Lurbe
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - S. Ballesta-Martinez
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - M. Pardo-Hernandez
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - Y. Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| |
Collapse
|
9
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Cao Z, Wu J, Liu X, Chen J, Wen J, Qin J, Tan S, Duanmu X, Zhang B, Huang P, Xu X, Zhang M. Normalization effect of dopamine replacement therapy on brain functional connectome in Parkinson's disease. Hum Brain Mapp 2023; 44:3845-3858. [PMID: 37126590 DOI: 10.1002/hbm.26316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023] Open
Abstract
Dopamine replacement therapy (DRT) represents the standard treatment for Parkinson's disease (PD), however, instant and long-term medication influence on patients' brain function have not been delineated. Here, a total of 97 drug-naïve patients, 43 patients under long-term DRT, and 94 normal control (NC) were, retrospectively, enrolled. Resting-state functional magnetic resonance imaging data and motor symptom assessments were conducted before and after levodopa challenge test. Whole-brain functional connectivity (FC) matrices were constructed. Network-based statistics were performed to assess FC difference between drug-naïve patients and NC, and these significant FCs were defined as disease-related connectomes, which were used for further statistical analyses. Patients showed better motor performances after both long-term DRT and levodopa challenge test. Two disease-related connectomes were observed with distinct patterns. The FC of the increased connectome, which mainly consisted of the motor, visual, subcortical, and cerebellum networks, was higher in drug-naïve patients than that in NC and was normalized after long-term DRT (p-value <.050). The decreased connectome was mainly composed of the motor, medial frontal, and salience networks and showed significantly lower FC in all patients than NC (p-value <.050). The global FC of both increased and decreased connectome was significantly enhanced after levodopa challenge test (q-value <0.050, false discovery rate-corrected). The global FC of increased connectome in ON-state was negatively associated with levodopa equivalency dose (r = -.496, q-value = 0.007). Higher global FC of the decreased connectome was related to better motor performances (r = -.310, q-value = 0.022). Our findings provided insights into brain functional alterations under dopaminergic medication and its benefit on motor symptoms.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Shabanpour M, Kaboodvand N, Iravani B. Parkinson's disease is characterized by sub-second resting-state spatio-oscillatory patterns: A contribution from deep convolutional neural network. Neuroimage Clin 2022; 36:103266. [PMID: 36451369 PMCID: PMC9723309 DOI: 10.1016/j.nicl.2022.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Deep convolutional neural network (DCNN) provides a multivariate framework to detect relevant spatio-oscillatory patterns in the data beyond common mass-univariate statistics. Yet, its practical application is limited due to the low interpretability of the results beyond accuracy. We opted to use DCNN with a minimalistic architecture design and large penalized terms to yield a generalizable and clinically relevant network model. Our network was trained based on the scalp topology of the electroencephalography (EEG) from an open access dataset, constituting our primary sample of healthy controls (n = 25) and Parkinson's disease (PD) patients (n = 25), with and without medication. Next, we validated the model on another independent, yet comparable open access EEG dataset (healthy controls (n = 20) and PD patients (n = 20)), which was unseen to the network. We applied Gradient-weighted Class Activation Mapping (Grad-CAM) interpretability technique to create a localization map exhibiting the key network predictors, based on the gradients of the classification score flowing into the last convolutional layer. Accordingly, our results indicated that a sub-second of intrinsic oscillatory power pattern in the beta band over the occipitoparietal, gamma band over the left motor cortex as well as theta band over the frontoparietal cluster, had the largest impact on the network score for dissociating the PD patients from age- and gender-matched healthy controls, across the two datasets. We further found that the off-medication motor symptoms were related to the occipitoparietal off-medication beta power whereas the disease duration was associated with the off-medication beta power of the motor cortex. The on-medication theta power of the frontoparietal was related to the improvement of the motor symptoms. In conclusion, our method enabled us to characterize PD patho-electrophysiology according to the multivariate topographic analysis approach, where both spatial and frequency aspects of the oscillations were simultaneously considered. Moreover, our approach was free from common reference problem of the EEG data analyses.
Collapse
Affiliation(s)
| | - Neda Kaboodvand
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neurology and Neurological Science, Stanford University, Stanford, United States
| | - Behzad Iravani
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neurology and Neurological Science, Stanford University, Stanford, United States,Corresponding author at: Full postal address: K8 Klinisk neurovetenskap, K8 Neuro Fransson, 171 77 Stockholm, Sweden.
| |
Collapse
|
11
|
Zhao F, Cheng Z, Piao J, Cui R, Li B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front Pharmacol 2022; 13:947785. [PMID: 36059987 PMCID: PMC9428607 DOI: 10.3389/fphar.2022.947785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine and its receptors are currently recognized targets for the treatment of several neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, some drug use addictions, as well as depression. Dopamine receptors are widely distributed in various regions of the brain, but their role and exact contribution to neuropsychiatric diseases has not yet been thoroughly studied. Based on the types of dopamine receptors and their distribution in different brain regions, this paper reviews the current research status of the molecular, cellular and circuit mechanisms of dopamine and its receptors involved in depression. Multiple lines of investigation of these mechanisms provide a new future direction for understanding the etiology and treatment of depression and potential new targets for antidepressant treatments.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Bingjin Li,
| |
Collapse
|
12
|
Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel) 2022; 12:1543. [PMID: 35885449 PMCID: PMC9324237 DOI: 10.3390/diagnostics12071543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Luca Saba
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751029, India;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sofia Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | | | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Mansfield, OH 44905, USA;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology, and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Zoltán Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| |
Collapse
|
13
|
Suri JS, Paul S, Maindarkar MA, Puvvula A, Saxena S, Saba L, Turk M, Laird JR, Khanna NN, Viskovic K, Singh IM, Kalra M, Krishnan PR, Johri A, Paraskevas KI. Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites 2022; 12:metabo12040312. [PMID: 35448500 PMCID: PMC9033076 DOI: 10.3390/metabo12040312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Correspondence: ; Tel.: +1-(916)-749-5628
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Maheshrao A. Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Annu’s Hospitals for Skin & Diabetes, Gudur 524101, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India;
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy;
| | - Monika Turk
- Deparment of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India;
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| |
Collapse
|
14
|
Cousineau J, Plateau V, Baufreton J, Le Bon-Jégo M. Dopaminergic modulation of primary motor cortex: From cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson's disease. Neurobiol Dis 2022; 167:105674. [PMID: 35245676 DOI: 10.1016/j.nbd.2022.105674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary motor cortex (M1) is crucial for movement execution, especially dexterous ones, but also for cognitive functions like motor learning. The acquisition of motor skills to execute dexterous movements requires dopamine-dependent and -independent plasticity mechanisms within M1. In addition to the basal ganglia, M1 is disturbed in Parkinson's disease (PD). However, little is known about how the lack of dopamine (DA), characteristic of PD, directly or indirectly impacts M1 circuitry. Here we review data from studies of PD patients and the substantial research in non-human primate and rodent models of DA depletion. These models enable us to understand the importance of DA in M1 physiology at the behavioral, network, cellular, and synaptic levels. We first summarize M1 functions and neuronal populations in mammals. We then look at the origin of M1 DA and the cellular location of its receptors and explore the impact of DA loss on M1 physiology, motor, and executive functions. Finally, we discuss how PD treatments impact M1 functions.
Collapse
|
15
|
Jiang X, Liang P, Wang K, Jia J, Wang X. Serotonin 1A receptor agonist modulation of motor deficits and cortical oscillations by NMDA receptor interaction in parkinsonian rats. Neuropharmacology 2022; 203:108881. [PMID: 34785162 DOI: 10.1016/j.neuropharm.2021.108881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Although serotonin 1A (5-HT1A) receptor agonists are widely used as the additive compound to reduce l-dopa-induced dyskinesia in Parkinson's disease (PD), few studies focused on the effect and mechanism of 5-HT1A receptor agonist on the motor symptoms of PD. Unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats were used and implantation of electrodes was performed in the motor cortex of these rats. So the effect of 5-HT1A receptor agonist 8-OH-DPAT on motor behaviors and oscillatory activities were evaluated. In addition, 8-OH-DPAT combined with D2 receptor antagonist raclopride, NMDA receptor antagonist MK-801, or its agonist d-cycloserine (DCS) were co-administrated. 8-OH-DPAT administration significantly improved spontaneous locomotor activity and asymmetric forepaw function in 6-OHDA-lesioned rats. Meanwhile, 8-OH-DPAT identified selective modulation of the abnormal high beta oscillations (25-40 Hz) in the motor cortex of 6-OHDA-lesioned rats, without inducing pathological finely tuned gamma around 80 Hz. Different from 8-OH-DPAT, l-dopa treatment produced a prolonged improvement on motor performances and differential regulation of high beta and gamma oscillations. However, dopamine D2 receptor antagonist had no influence on the 8-OH-DPAT-mediated-motor behaviors and beta oscillations in 6-OHDA-lesioned rats. In contrast, subthreshold NMDA receptor antagonist MK-801 obviously elevated the 8-OH-DPAT-mediated-motor behaviors, while NMDA receptor agonist DCS partially impaired the 8-OH-DPAT-mediated symptoms in 6-OHDA-lesioned rats. This study suggests that 5-HT1A receptor agonist 8-OH-DPAT improves motor activity and modulates the oscillations in the motor cortex of parkinsonian rats. Different from l-dopa, 8-OH-DPAT administration ameliorates motor symptoms of PD through glutamatergic rather than the dopaminergic pathway.
Collapse
Affiliation(s)
- Xinxin Jiang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Peirong Liang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Ke Wang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Jun Jia
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Xiaomin Wang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
16
|
Barone J, Rossiter HE. Understanding the Role of Sensorimotor Beta Oscillations. Front Syst Neurosci 2021; 15:655886. [PMID: 34135739 PMCID: PMC8200463 DOI: 10.3389/fnsys.2021.655886] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Beta oscillations have been predominantly observed in sensorimotor cortices and basal ganglia structures and they are thought to be involved in somatosensory processing and motor control. Although beta activity is a distinct feature of healthy and pathological sensorimotor processing, the role of this rhythm is still under debate. Here we review recent findings about the role of beta oscillations during experimental manipulations (i.e., drugs and brain stimulation) and their alteration in aging and pathology. We show how beta changes when learning new motor skills and its potential to integrate sensory input with prior contextual knowledge. We conclude by discussing a novel methodological approach analyzing beta oscillations as a series of transient bursting events.
Collapse
Affiliation(s)
- Jacopo Barone
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Holly E Rossiter
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Peña E, Mohammad TM, Almohammed F, AlOtaibi T, Nahrir S, Khan S, Poghosyan V, Johnson MD, Bajwa JA. Individual Magnetoencephalography Response Profiles to Short-Duration L-Dopa in Parkinson's Disease. Front Hum Neurosci 2021; 15:640591. [PMID: 33790752 PMCID: PMC8005574 DOI: 10.3389/fnhum.2021.640591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
Clinical responses to dopamine replacement therapy for individuals with Parkinson’s disease (PD) are often difficult to predict. We characterized changes in MDS-UPDRS motor factor scores resulting from a short-duration L-Dopa response (SDR), and investigated how the inter-subject clinical differences could be predicted from motor cortical magnetoencephalography (MEG). MDS-UPDRS motor factor scores and resting-state MEG recordings were collected during SDR from twenty individuals with a PD diagnosis. We used a novel subject-specific strategy based on linear support vector machines to quantify motor cortical oscillatory frequency profiles that best predicted medication state. Motor cortical profiles differed substantially across individuals and showed consistency across multiple data folds. There was a linear relationship between classification accuracy and SDR of lower limb bradykinesia, although this relationship did not persist after multiple comparison correction, suggesting that combinations of spectral power features alone are insufficient to predict clinical state. Factor score analysis of therapeutic response and novel subject-specific machine learning approaches based on subject-specific neuroimaging provide tools to predict outcomes of therapies for PD.
Collapse
Affiliation(s)
- Edgar Peña
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Tareq M Mohammad
- National Neuroscience Nursing Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fedaa Almohammed
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tahani AlOtaibi
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Shahpar Nahrir
- Department of Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sheraz Khan
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA, United States.,McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| | - Vahe Poghosyan
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Jawad A Bajwa
- Department of Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Cook AJ, Pfeifer KJ, Tass PA. A Single Case Feasibility Study of Sensorimotor Rhythm Neurofeedback in Parkinson's Disease. Front Neurosci 2021; 15:623317. [PMID: 33613185 PMCID: PMC7890190 DOI: 10.3389/fnins.2021.623317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 01/25/2023] Open
Abstract
Electroencephalographic activity over the sensorimotor cortex has been one of the best studied targets for neurofeedback therapy. Parkinson’s disease patients display abnormal brain rhythms in the motor cortex caused by increased synchrony in the basal ganglia-cortical pathway. Few studies have examined the effects of sensorimotor-based neurofeedback therapy in humans with PD. In this pilot study, one patient, diagnosed with Parkinson’s disease 10 years prior, participated in two consecutive days of EEG neurofeedback training to increase sensorimotor rhythm (SMR) power over the motor cortex. Using a visual display connected to ongoing EEG, the patient voluntarily manipulated SMR power, and he/she was awarded with points to positively reinforce successful increases over a predefined threshold. Recorded EEG data were source localized and analyzed for the occurrence of high amplitude bursts of SMR activity as well as bursts in the beta frequency band in the precentral cortex. The rate of SMR bursts increased with each subsequent training session, while the rate of beta bursts only increased on the final session. Relative power in the beta band, a marker of PD symptom severity, decreased over the motor cortex in the later session. These results provide first evidence for the feasibility of SMR neurofeedback training as a non-invasive therapy for reducing Parkinson’s disease related activity and upregulating SMR in the human motor cortex.
Collapse
Affiliation(s)
- Alexander J Cook
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kristina J Pfeifer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|