1
|
Suleri A, Rommel AS, Dmitrichenko O, Muetzel RL, Cecil CAM, de Witte L, Bergink V. The association between maternal immune activation and brain structure and function in human offspring: a systematic review. Mol Psychiatry 2024:10.1038/s41380-024-02760-w. [PMID: 39342040 DOI: 10.1038/s41380-024-02760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Maternal immune activation (MIA) during pregnancy, as a result of infectious or inflammatory stimuli, has gained increasing attention for its potential role in adverse child neurodevelopment, with studies focusing on associations in children born preterm. This systematic review summarizes research on the link between several types of prenatal MIA and subsequent child structural and/or functional brain development outcomes. We identified 111 neuroimaging studies in five MIA areas: inflammatory biomarkers (n = 13), chorioamnionitis (n = 18), other types of infections (n = 18), human immunodeficiency virus (HIV) (n = 42), and Zika virus (n = 20). Overall, there was large heterogeneity in the type of MIA exposure examined and in study methodology. Most studies had a prospective single cohort design and mainly focused on potential effects on the brain up to one year after birth. The median sample size was 53 participants. Severe infections, i.e., HIV and Zika virus, were associated with various types of cerebral lesions (e.g., microcephaly, atrophy, or periventricular leukomalacia) that were consistently identified across studies. For less severe infections and chronic inflammation, findings were generally inconsistent and mostly included deviations in white matter structure/function. Current findings have been mainly observed in the infants' brain, presenting an opportunity for future studies to investigate whether these associations persist throughout development. Additionally, the inconsistent findings, encompassing both regions of interest and null results, call into question whether prenatal exposure to less severe infections and chronic inflammation exerts a small effect or no effect on child brain development.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga Dmitrichenko
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lot de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Radboud UMC, Nijmegen, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Madzime J, Jankiewicz M, Meintjes EM, Torre P, Laughton B, van der Kouwe AJW, Holmes M. Reduced white matter maturation in the central auditory system of children living with HIV. FRONTIERS IN NEUROIMAGING 2024; 3:1341607. [PMID: 38510428 PMCID: PMC10951401 DOI: 10.3389/fnimg.2024.1341607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Introduction School-aged children experience crucial developmental changes in white matter (WM) in adolescence. The human immunodeficiency virus (HIV) affects neurodevelopment. Children living with perinatally acquired HIV (CPHIVs) demonstrate hearing and neurocognitive impairments when compared to their uninfected peers (CHUUs), but investigations into the central auditory system (CAS) WM integrity are lacking. The integration of the CAS and other brain areas is facilitated by WM fibers whose integrity may be affected in the presence of HIV, contributing to neurocognitive impairments. Methods We used diffusion tensor imaging (DTI) tractography to map the microstructural integrity of WM between CAS regions, including the lateral lemniscus and acoustic radiation, as well as between CAS regions and non-auditory regions of 11-year-old CPHIVs. We further employed a DTI-based graph theoretical framework to investigate the nodal strength and efficiency of the CAS and other brain regions in the structural brain network of the same population. Finally, we investigated associations between WM microstructural integrity outcomes and neurocognitive outcomes related to auditory and language processing. We hypothesized that compared to the CHUU group, the CPHIV group would have lower microstructural in the CAS and related regions. Results Our analyses showed higher mean diffusivity (MD), a marker of axonal maturation, in the lateral lemniscus and acoustic radiations, as well as WM between the CAS and non-auditory regions predominantly in frontotemporal areas. Most affected WM connections also showed higher axial and radial diffusivity (AD and RD, respectively). There were no differences in the nodal properties of the CAS regions between groups. The MD of frontotemporal and subcortical WM-connected CAS regions, including the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and internal capsule showed negative associations with sequential processing in the CPHIV group but not in the CHUU group. Discussion The current results point to reduced axonal maturation in WM, marked by higher MD, AD, and RD, within and from the CAS. Furthermore, alterations in WM integrity were associated with sequential processing, a neurocognitive marker of auditory working memory. Our results provide insights into the microstructural integrity of the CAS and related WM in the presence of HIV and link these alterations to auditory working memory.
Collapse
Affiliation(s)
- Joanah Madzime
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Marcin Jankiewicz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Ernesta M. Meintjes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, College of Health and Human Services, San Diego, CA, United States
| | - Barbara Laughton
- Family Centre for Research with Ubuntu, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Andre J. W. van der Kouwe
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Martha Holmes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Mudra Rakshasa-Loots A, Naidoo S, Hamana T, Fanqa B, van Wyhe KS, Lindani F, van der Kouwe AJW, Glashoff R, Kruger S, Robertson F, Cox SR, Meintjes EM, Laughton B. Multi-modal analysis of inflammation as a potential mediator of depressive symptoms in young people with HIV: The GOLD depression study. PLoS One 2024; 19:e0298787. [PMID: 38386679 PMCID: PMC10883559 DOI: 10.1371/journal.pone.0298787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
People living with HIV are at three times greater risk for depressive symptoms. Inflammation is a notable predictor of depression, and people with HIV exhibit chronic inflammation despite antiretroviral therapy. We hypothesised that inflammatory biomarkers may mediate the association between HIV status and depressive symptoms. Participants (N = 60, 53% girls, median [interquartile range (IQR)] age 15.5 [15.0, 16.0] years, 70% living with HIV, of whom 90.5% were virally-suppressed) completed the nine-item Patient Health Questionnaire (PHQ-9). We measured choline and myo-inositol in basal ganglia, midfrontal gray matter, and peritrigonal white matter using magnetic resonance spectroscopy, and 16 inflammatory proteins in blood serum using ELISA and Luminex™ multiplex immunoassays. Using structural equation mediation modelling, we calculated standardised indirect effect estimates with 95% confidence intervals. Median [IQR] total PHQ-9 score was 3 [0, 7]. HIV status was significantly associated with total PHQ-9 score (B = 3.32, p = 0.022). Participants with HIV showed a higher choline-to-creatine ratio in the basal ganglia than those without HIV (β = 0.86, pFDR = 0.035). In blood serum, participants with HIV showed higher monocyte chemoattractant protein-1 (MCP-1, β = 0.59, pFDR = 0.040), higher chitinase-3 like-1 (YKL-40, β = 0.73, pFDR = 0.032), and lower interleukin-1beta (IL-1β, β = -0.67, pFDR = 0.047) than those without HIV. There were no significant associations of any biomarkers with total PHQ-9 score. None of the indirect effects were significant, mediating <13.1% of the association. Findings remained consistent when accounting for age, gender, and time between neuroimaging and PHQ-9 administration. Using a robust analytical approach in a community-based sample, we have shown that participants living with HIV reported greater depressive symptoms than those without HIV, but we did not find that neuroimaging and blood biomarkers of inflammation significantly mediated this association. Further studies with participants experiencing severe depression may help to elucidate the links between HIV, inflammation, and depression.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Shalena Naidoo
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Thandi Hamana
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
- Division of Biomedical Engineering, Biomedical Engineering Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Busiswa Fanqa
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Kaylee S. van Wyhe
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
- ACSENT Lab, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Filicity Lindani
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre J. W. van der Kouwe
- Division of Biomedical Engineering, Biomedical Engineering Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
| | - Richard Glashoff
- Division of Medical Microbiology, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Business Unit, Cape Town, South Africa
| | - Sharon Kruger
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Frances Robertson
- Division of Biomedical Engineering, Biomedical Engineering Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, Cape Town, South Africa
| | - Simon R. Cox
- Lothian Birth Cohorts group, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Biomedical Engineering Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, Cape Town, South Africa
| | - Barbara Laughton
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Williams SR, Robertson FC, Wedderburn CJ, Ringshaw JE, Bradford L, Nyakonda CN, Hoffman N, Joshi SH, Zar HJ, Stein DJ, Donald KA. 1H-MRS neurometabolite profiles and motor development in school-aged children who are HIV-exposed uninfected: a birth cohort study. Front Neurosci 2023; 17:1251575. [PMID: 37901429 PMCID: PMC10600451 DOI: 10.3389/fnins.2023.1251575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Alterations in regional neurometabolite levels as well as impaired neurodevelopmental outcomes have previously been observed in children who are HIV-exposed uninfected (CHEU). However, little is known about how neurometabolite profiles may relate to their developmental impairment. This study aimed to compare neurometabolite concentrations in school-aged CHEU and children who are HIV-unexposed (CHU) and to explore associations of neurometabolite profiles with functional neurodevelopment in the context of perinatal HIV exposure. Methods We used 3 T single voxel proton magnetic resonance spectroscopy (1H-MRS) to quantify absolute and relative neurometabolites in the parietal gray and parietal white matter in school-aged CHEU and aged- and community-matched CHU. Functional neurodevelopmental outcomes were assessed using the early learning outcome measure (ELOM) tool at 6 years of age. Results Our study included 152 school-aged children (50% males), 110 CHEU and 42 CHU, with an average age of 74 months at the neuroimaging visit. In an adjusted multiple linear regression analysis, significantly lower glutamate (Glu) concentrations were found in CHEU as compared to CHU in the parietal gray matter (absolute Glu, p = 0.046; Glu/total creatine (Cr+PCr) ratios, p = 0.035) and lower total choline to creatine ratios (GPC+PCh/Cr+PCr) in the parietal white matter (p = 0.039). Using factor analysis and adjusted logistic regression analysis, a parietal gray matter Glu and myo-inositol (Ins) dominated factor was associated with HIV exposure status in both unadjusted (OR 0.55, 95% CI 0.17-0.45, p = 0.013) and adjusted analyses (OR 0.59, 95% CI 0.35-0.94, p = 0.031). With Ins as one of the dominating metabolites, this neurometabolic factor was similar to that found at the age of two years. Furthermore, this factor was also found to be correlated with ELOM scores of gross motor development in CHEU (Pearson's r = -0.48, p = 0.044). In addition, in CHEU, there was a significant association between Ins/Cr+PCr ratios in the parietal white matter and ELOM scores of fine motor coordination and visual motor integration in CHEU (Pearson's r = 0.51, p = 0.032). Conclusion Reduced Glu concentrations in the parietal gray matter may suggest regional alterations in excitatory glutamatergic transmission pathways in the context of perinatal HIV and/or antiretroviral therapy (ART) exposure, while reduced Cho ratios in the parietal white matter suggest regional myelin loss. Identified associations between neurometabolite profiles and gross and fine motor developmental outcomes in CHEU are suggestive of a neurometabolic mechanism that may underlie impaired motor neurodevelopmental outcomes observed in CHEU.
Collapse
Affiliation(s)
- Simone R. Williams
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Frances C. Robertson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa
| | - Catherine J. Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jessica E. Ringshaw
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Layla Bradford
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Charmaine N. Nyakonda
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H. Joshi
- Departments of Neurology and Bioengineering, UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Mudra Rakshasa-Loots A. Depression and HIV: a scoping review in search of neuroimmune biomarkers. Brain Commun 2023; 5:fcad231. [PMID: 37693812 PMCID: PMC10489482 DOI: 10.1093/braincomms/fcad231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
People with HIV are at increased risk for depression, though the neurobiological mechanisms underlying this are unclear. In the last decade, there has been a substantial rise in interest in the contribution of (neuro)inflammation to depression, coupled with rapid advancements in the resolution and sensitivity of biomarker assays such as Luminex, single molecular array and newly developed positron emission tomography radioligands. Numerous pre-clinical and clinical studies have recently leveraged these next-generation immunoassays to identify biomarkers that may be associated with HIV and depression (separately), though few studies have explored these biomarkers in co-occurring HIV and depression. Using a systematic search, we detected 33 publications involving a cumulative N = 10 590 participants which tested for associations between depressive symptoms and 55 biomarkers of inflammation and related processes in participants living with HIV. Formal meta-analyses were not possible as statistical reporting in the field was highly variable; future studies must fully report test statistics and effect size estimates. The majority of included studies were carried out in the United States, with samples that were primarily older and primarily men. Substantial further work is necessary to diversify the geographical, age, and sex distribution of samples in the field. This review finds that alterations in concentrations of certain biomarkers of neuroinflammation (interleukin-6, tumour necrosis factor-α, neopterin) may influence the association between HIV and depression. Equally, the chemokines monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) or the metabolic index kynurenine:tryptophan (Kyn:Trp), which have been the focus of several studies, do not appear to be associated with depressive symptoms amongst people living with HIV, as all (MCP-1) or most (IL-8 and Kyn:Trp) available studies of these biomarkers reported non-significant associations. We propose a biomarker-driven hypothesis of the neuroimmunometabolic mechanisms that may precipitate the increased risk of depression among people with HIV. Chronically activated microglia, which trigger key neuroinflammatory cascades shown to be upregulated in people with HIV, may be the central link connecting HIV infection in the central nervous system with depressive symptoms. Findings from this review may inform research design in future studies of HIV-associated depression and enable concerted efforts towards biomarker discovery.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town 7505, South Africa
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton BN2 5BE, UK
| |
Collapse
|
6
|
Ibrahim A, Warton FL, Fry S, Cotton MF, Jacobson SW, Jacobson JL, Molteno CD, Little F, van der Kouwe AJW, Laughton B, Meintjes EM, Holmes MJ. Maternal ART throughout gestation prevents caudate volume reductions in neonates who are HIV exposed but uninfected. Front Neurosci 2023; 17:1085589. [PMID: 36968507 PMCID: PMC10035579 DOI: 10.3389/fnins.2023.1085589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionSuccessful programmes for prevention of vertical HIV transmission have reduced the risk of infant HIV infection in South Africa from 8% in 2008 to below 1% in 2018/2019, resulting in an increasing population of children exposed to HIV perinatally but who are uninfected (HEU). However, the long-term effects of HIV and antiretroviral treatment (ART) exposure on the developing brain are not well understood. Whereas children who are HEU perform better than their HIV-infected counterparts, they demonstrate greater neurodevelopmental delay than children who are HIV unexposed and uninfected (HUU), especially in resource-poor settings. Here we investigate subcortical volumetric differences related to HIV and ART exposure in neonates.MethodsWe included 120 infants (59 girls; 79 HEU) born to healthy women with and without HIV infection in Cape Town, South Africa, where HIV sero-prevalence approaches 30%. Of the 79 HEU infants, 40 were exposed to ART throughout gestation (i.e., mothers initiated ART pre conception; HEU-pre), and 39 were exposed to ART for part of gestation (i.e., mothers initiated ART post conception; HEU-post). Post-conception mothers had a mean (± SD) gestational age (GA) of 15.4 (± 5.7) weeks at ART initiation. Mothers with HIV received standard care fixed drug combination ART (Tenofovir/Efavirenz/Emtricitabine). Infants were imaged unsedated on a 3T Skyra (Siemens, Erlangen, Germany) at mean GA equivalent of 41.5 (± 1.0) weeks. Selected regions (caudate, putamen, pallidum, thalamus, cerebellar hemispheres and vermis, and corpus callosum) were manually traced on T1-weighted images using Freeview.ResultsHEU neonates had smaller left putamen volumes than HUU [β (SE) = −90.3 (45.3), p = 0.05] and caudate volume reductions that depended on ART exposure duration in utero. While the HEU-pre group demonstrated no caudate volume reductions compared to HUU, the HEU-post group had smaller caudate volumes bilaterally [β (SE) = −145.5 (45.1), p = 0.002, and −135.7 (49.7), p = 0.008 for left and right caudate, respectively].DiscussionThese findings from the first postnatal month suggest that maternal ART throughout gestation is protective to the caudate nuclei. In contrast, left putamens were smaller across all HEU newborns, despite maternal ART.
Collapse
Affiliation(s)
- Abdulmumin Ibrahim
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Fleur L. Warton
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- *Correspondence: Fleur L. Warton,
| | - Samantha Fry
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Mark F. Cotton
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Sandra W. Jacobson
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Joseph L. Jacobson
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christopher D. Molteno
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre J. W. van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Barbara Laughton
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- Ernesta M. Meintjes,
| | - Martha J. Holmes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Salan T, Willen EJ, Cuadra A, Sheriff S, Maudsley AA, Govind V. Whole-brain MR spectroscopic imaging reveals regional metabolite abnormalities in perinatally HIV infected young adults. Front Neurosci 2023; 17:1134867. [PMID: 36937663 PMCID: PMC10017464 DOI: 10.3389/fnins.2023.1134867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Perinatally acquired HIV (PHIV) has been associated with brain structural and functional deficiencies, and with poorer cognitive performance despite the advent of antiretroviral therapy (ART). However, investigation of brain metabolite levels in PHIV measured by proton magnetic resonance spectroscopy (MRS) methods, is still limited with often inconclusive or contradictory findings. In general, these MRS-based methods have used a single voxel approach that can only evaluate metabolite concentrations in a few select brain anatomical regions. Additionally, most of the published data have been on children perinatally infected with HIV with only a few studies examining adult populations, though not exclusively. Therefore, this prospective and cross-sectional study aims to evaluate metabolite differences at the whole-brain level, using a unique whole-brain proton magnetic resonance spectroscopy imaging (MRSI) method, in a group of PHIV infected young adults (N = 28) compared to age and gender matched control sample (N = 28), and to find associations with HIV clinical factors and neurocognitive scores. MRSI data were acquired on a 3T scanner with a TE of 70 ms. Brain metabolites levels of total N-acetylaspartate (tNAA), total choline (tCho) and total creatine (tCre), as well as ratios of tNAA/tCre, tCho/tCre, and tNAA/tCho, were obtained from the whole brain level and evaluated at the level of gray matter (GM) and white matter (WM) tissue types and anatomical regions of interest (ROI). Our results indicate extensive metabolic abnormalities throughout the brains of PHIV infected subjects with significantly elevated levels of tCre and tCho, notably in GM regions. Decreases in tNAA and ratios of tNAA/tCre and tNAA/tCho were also found mostly in WM regions. These metabolic alterations indicate increased glial activation, inflammation, neuronal dysfunction, and energy metabolism in PHIV infected individuals, which correlated with a reduction in CD4 cell count, and lower cognitive scores. Our findings suggest that significant brain metabolite alterations and associated neurological complications persist in the brains of those with PHIV on long-term ART, and advocates the need for continued monitoring of their brain health.
Collapse
Affiliation(s)
- Teddy Salan
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Elizabeth J. Willen
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Anai Cuadra
- Department of Pediatrics, Mailman Center for Child Development, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andrew A. Maudsley
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Varan Govind
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Wedderburn CJ, Groenewold NA, Roos A, Yeung S, Fouche JP, Rehman AM, Gibb DM, Narr KL, Zar HJ, Stein DJ, Donald KA. Early structural brain development in infants exposed to HIV and antiretroviral therapy in utero in a South African birth cohort. J Int AIDS Soc 2022; 25:e25863. [PMID: 35041774 PMCID: PMC8765561 DOI: 10.1002/jia2.25863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction There is a growing population of children who are HIV‐exposed and uninfected (HEU) with the successful expansion of antiretroviral therapy (ART) use in pregnancy. Children who are HEU are at risk of delayed neurodevelopment; however, there is limited research on early brain growth and maturation. We aimed to investigate the effects of in utero exposure to HIV/ART on brain structure of infants who are HEU compared to HIV‐unexposed (HU). Methods Magnetic resonance imaging using a T2‐weighted sequence was undertaken in a subgroup of infants aged 2–6 weeks enrolled in the Drakenstein Child Health Study birth cohort, South Africa, between 2012 and 2015. Mother–child pairs received antenatal and postnatal HIV testing and ART per local guidelines. We compared subcortical and total grey matter volumes between HEU and HU groups using multivariable linear regression adjusting for infant age, sex, intracranial volume and socio‐economic variables. We further assessed associations between brain volumes with maternal CD4 cell count and ART exposure. Results One hundred forty‐six infants (40 HEU; 106 HU) with high‐resolution images were included in this analysis (mean age 3 weeks; 50.7% male). All infants who were HEU were exposed to ART (88% maternal triple ART). Infants who were HEU had smaller caudate volumes bilaterally (5.4% reduction, p < 0.05) compared to HU infants. There were no group differences in other subcortical volumes (all p > 0.2). Total grey matter volume was also reduced in infants who were HEU (2.1% reduction, p < 0.05). Exploratory analyses showed that low maternal CD4 cell count (<350 cells/mm3) was associated with decreased infant grey matter volumes. There was no relationship between timing of ART exposure and grey matter volumes. Conclusions Lower caudate and total grey matter volumes were found in infants who were HEU compared to HU in the first weeks of life, and maternal immunosuppression was associated with reduced volumes. These findings suggest that antenatal HIV exposure may impact early structural brain development and improved antenatal HIV management may have the potential to optimize neurodevelopmental outcomes of children who are HEU.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Bertran-Cobo C, Wedderburn CJ, Robertson FC, Subramoney S, Narr KL, Joshi SH, Roos A, Rehman AM, Hoffman N, Zar HJ, Stein DJ, Donald KA. A Neurometabolic Pattern of Elevated Myo-Inositol in Children Who Are HIV-Exposed and Uninfected: A South African Birth Cohort Study. Front Immunol 2022; 13:800273. [PMID: 35419007 PMCID: PMC8995436 DOI: 10.3389/fimmu.2022.800273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Exposure to maternal HIV in pregnancy may be a risk factor for impaired child neurodevelopment during the first years of life. Altered neurometabolites have been associated with HIV exposure in older children and may help explain the mechanisms underlying this risk. For the first time, we explored neurometabolic profiles of children who are HIV-exposed and uninfected (CHEU) compared to children who are HIV-unexposed (CHU) at 2-3 years of age. Methods The South African Drakenstein Child Health Study enrolled women during pregnancy and is following mother-child pairs through childhood. MRI scans were acquired on a sub-group of children at 2-3 years. We used single voxel magnetic resonance spectroscopy to measure brain metabolite ratios to total creatine in the parietal grey matter, and left and right parietal white matter of 83 children (36 CHEU; 47 CHU). Using factor analysis, we explored brain metabolite patterns in predefined parietal voxels in these groups using logistic regression models. Differences in relative concentrations of individual metabolites (n-acetyl-aspartate, myo-inositol, total choline, and glutamate) to total creatine between CHEU and CHU groups were also examined. Results Factor analysis revealed four different metabolite patterns, each one characterized by covarying ratios of a single metabolite in parietal grey and white matter. The cross-regional pattern dominated by myo-inositol, a marker for glial reactivity and inflammation, was associated with HIV exposure status (OR 1.63; 95% CI 1.11-2.50) which held after adjusting for child age, sex, and maternal alcohol use during pregnancy (OR 1.59; 95% CI 1.07 -2.47). Additionally, higher relative concentrations of myo-inositol to total creatine were found in left and right parietal white matter of CHEU compared to CHU (p=0.025 and p=0.001 respectively). Discussion Increased ratios of myo-inositol to total creatine in parietal brain regions at age 2-3 years in CHEU are suggestive of early and ongoing neuroinflammatory processes. Altered relative concentrations of neurometabolites were found predominantly in the white matter, which is sensitive to neuroinflammation, and may contribute to developmental risk in this population. Future work on the trajectory of myo-inositol over time in CHEU, alongside markers of neurocognitive development, and the potential for specific neurodevelopmental interventions will be useful.
Collapse
Affiliation(s)
- Cesc Bertran-Cobo
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Research Master Brain and Cognitive Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Frances C Robertson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Cape Town, South Africa
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
A Longitudinal Analysis of Cerebral Blood Flow in Perinatally HIV Infected Adolescents as Compared to Matched Healthy Controls. Viruses 2021; 13:v13112179. [PMID: 34834985 PMCID: PMC8625391 DOI: 10.3390/v13112179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Despite effective combination anti-retroviral therapy (cART), perinatally HIV infected (PHIV) adolescents still experience cognitive complications. We previously reported higher cerebral blood flow (CBF) in basal ganglia and white matter (WM) in PHIV children compared to matched controls. In healthy children CBF is associated with cognitive domains. To determine longitudinal changes in CBF and its impact on cognitive complications, we measured CBF—using arterial spin labeling—in 21 PHIV adolescents and 23 controls matched for age, sex and socio-economic status twice with a mean follow-up of 4.6 years. We explored associations between CBF changes and WM micro- and macrostructural markers and cognitive domains using linear mixed models. The median age at follow-up was comparable between PHIV adolescents 17.4y (IQR:15.3–20.7) and controls 16.2y (IQR:15.6–19.1). At baseline, PHIV had higher CBF in the caudate nucleus and putamen. CBF development was comparable in gray matter (GM), WM and subcortical regions in both groups. In our cohort, we found that over time an increase of GM CBF was associated with an increase of visual motor function (p = 0.043) and executive function (p = 0.045). Increase of CBF in the caudate nucleus, putamen and thalamus was associated with an increase processing speed (p = 0.033; 0.036; 0.003 respectively) and visual motor function (p = 0.023; 0.045; 0.003 respectively). CBF development is relatively normal in PHIV adolescents on cART. CBF decline is associated with cognitive impairment, irrespective of HIV status.
Collapse
|
12
|
van Biljon N, Robertson F, Holmes M, Cotton MF, Laughton B, van der Kouwe A, Meintjes E, Little F. Multivariate approach for longitudinal analysis of brain metabolite levels from ages 5-11 years in children with perinatal HIV infection. Neuroimage 2021; 237:118101. [PMID: 33961998 PMCID: PMC8295244 DOI: 10.1016/j.neuroimage.2021.118101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Treatment guidelines recommend that children with perinatal HIV infection (PHIV) initiate antiretroviral therapy (ART) early in life and remain on it lifelong. As part of a longitudinal study examining the long-term consequences of PHIV and early ART on the developing brain, 89 PHIV children and a control group of 85 HIV uninfected children (HIV-) received neuroimaging at ages 5, 7, 9 and 11 years, including single voxel magnetic resonance spectroscopy (MRS) in three brain regions, namely the basal ganglia (BG), midfrontal gray matter (MFGM) and peritrigonal white matter (PWM). We analysed age-related changes in absolute metabolite concentrations using a multivariate approach traditionally applied to ecological data, the Correlated Response Model (CRM) and compared these to results obtained from a multilevel mixed effect modelling (MMEM) approach. Both approaches produce similar outcomes in relation to HIV status and age effects on longitudinal trajectories. Both methods found similar age-related increases in both PHIV and HIV- children in almost all metabolites across regions. We found significantly elevated GPC+PCh across regions (95% CI=[0.033; 0.105] in BG; 95% CI=[0.021; 0.099] in PWM; 95% CI=[0.059; 0.137] in MFGM) and elevated mI in MFGM (95% CI=[0.131; 0.407]) among children living with PHIV compared to HIV- children; additionally the CRM model also indicated elevated mI in BG (95% CI=[0.008; 0.248]). These findings suggest persistent inflammation across the brain in young children living with HIV despite early ART initiation.
Collapse
Affiliation(s)
- Noëlle van Biljon
- Department of Statistical Sciences, University of Cape Town, Private Bag X3, Rhodes Gift, 7707 Cape Town, South Africa; Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa
| | - Frances Robertson
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Cape Universities Body Imaging Centre, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| | - Martha Holmes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| | - Mark F Cotton
- FAMCRU, Department of Paediatrics and Child Health and Tygerberg Children's Hospital, Stellenbosch University, Cape Town, South Africa
| | - Barbara Laughton
- FAMCRU, Department of Paediatrics and Child Health and Tygerberg Children's Hospital, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - Ernesta Meintjes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Cape Universities Body Imaging Centre, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Private Bag X3, Rhodes Gift, 7707 Cape Town, South Africa.
| |
Collapse
|