1
|
Gao J, Qian M, Wang Z, Li Y, Luo N, Xie S, Shi W, Li P, Chen J, Chen Y, Wang H, Liu W, Li Z, Yang Y, Guo H, Wan P, Lv L, Lu L, Yan J, Song Y, Wang H, Zhang H, Wu H, Ning Y, Du Y, Cheng Y, Xu J, Xu X, Zhang D, Jiang T. Exploring Schizophrenia Classification Through Multimodal MRI and Deep Graph Neural Networks: Unveiling Brain Region-Specific Weight Discrepancies and Their Association With Cell-Type Specific Transcriptomic Features. Schizophr Bull 2024; 51:217-235. [PMID: 38754993 PMCID: PMC11661952 DOI: 10.1093/schbul/sbae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification. STUDY DESIGN Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions. STUDY RESULTS Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research. CONCLUSIONS Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI's superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Maomin Qian
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Weiyang Shi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhigang Li
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yuqing Song
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Tianzai Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, China
| |
Collapse
|
2
|
Sun X, Xia M. Schizophrenia and Neurodevelopment: Insights From Connectome Perspective. Schizophr Bull 2024:sbae148. [PMID: 39209793 DOI: 10.1093/schbul/sbae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Schizophrenia is conceptualized as a brain connectome disorder that can emerge as early as late childhood and adolescence. However, the underlying neurodevelopmental basis remains unclear. Recent interest has grown in children and adolescent patients who experience symptom onset during critical brain development periods. Inspired by advanced methodological theories and large patient cohorts, Chinese researchers have made significant original contributions to understanding altered brain connectome development in early-onset schizophrenia (EOS). STUDY DESIGN We conducted a search of PubMed and Web of Science for studies on brain connectomes in schizophrenia and neurodevelopment. In this selective review, we first address the latest theories of brain structural and functional development. Subsequently, we synthesize Chinese findings regarding mechanisms of brain structural and functional abnormalities in EOS. Finally, we highlight several pivotal challenges and issues in this field. STUDY RESULTS Typical neurodevelopment follows a trajectory characterized by gray matter volume pruning, enhanced structural and functional connectivity, improved structural connectome efficiency, and differentiated modules in the functional connectome during late childhood and adolescence. Conversely, EOS deviates with excessive gray matter volume decline, cortical thinning, reduced information processing efficiency in the structural brain network, and dysregulated maturation of the functional brain network. Additionally, common functional connectome disruptions of default mode regions were found in early- and adult-onset patients. CONCLUSIONS Chinese research on brain connectomes of EOS provides crucial evidence for understanding pathological mechanisms. Further studies, utilizing standardized analyses based on large-sample multicenter datasets, have the potential to offer objective markers for early intervention and disease treatment.
Collapse
Affiliation(s)
- Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Du Y, Niu J, Xing Y, Li B, Calhoun VD. Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade. Schizophr Bull 2024:sbae110. [PMID: 38982882 DOI: 10.1093/schbul/sbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. STUDY DESIGN The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. STUDY RESULTS Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. CONCLUSIONS We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ju Niu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ying Xing
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Bang Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, GA, USA
| |
Collapse
|
4
|
Weng T, Zheng Y, Xie Y, Qin W, Guo L. Diagnosing schizophrenia using deep learning: Novel interpretation approaches and multi-site validation. Brain Res 2024; 1833:148876. [PMID: 38513996 DOI: 10.1016/j.brainres.2024.148876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia is a profound and enduring mental disorder that imposes significant negative impacts on individuals, their families, and society at large. The development of more accurate and objective diagnostic tools for schizophrenia can be expedited through the employment of deep learning (DL), that excels at deciphering complex hierarchical non-linear patterns. However, the limited interpretability of deep learning has eroded confidence in the model and restricted its clinical utility. At the same time, if the data source is only derived from a single center, the model's generalizability is difficult to test. To enhance the model's reliability and applicability, leave-one-center-out validation with a large and diverse sample from multiple centers is crucial. In this study, we utilized Nine different global centers to train and test the 3D Resnet model's generalizability, resulting in an 82% classification performance (area under the curve) on all datasets sourced from different countries, employing a leave-one-center-out-validation approach. Per our approximation of the feature significance of each region on the atlas, we identified marked differences in the thalamus, pallidum, and inferior frontal gyrus between individuals with schizophrenia and healthy controls, lending credence to prior research findings. At the same time, in order to translate the model's output into clinically applicable insights, the SHapley Additive exPlanations (SHAP) permutation explainer method with an anatomical atlas have been refined, thereby offering precise neuroanatomical and functional interpretations of different brain regions.
Collapse
Affiliation(s)
- Tingting Weng
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yuemei Zheng
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Shandong 100038, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
5
|
Barnett EJ, Onete DG, Salekin A, Faraone SV. Genomic Machine Learning Meta-regression: Insights on Associations of Study Features With Reported Model Performance. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:169-177. [PMID: 38109236 DOI: 10.1109/tcbb.2023.3343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Many studies have been conducted with the goal of correctly predicting diagnostic status of a disorder using the combination of genomic data and machine learning. It is often hard to judge which components of a study led to better results and whether better reported results represent a true improvement or an uncorrected bias inflating performance. We extracted information about the methods used and other differentiating features in genomic machine learning models. We used these features in linear regressions predicting model performance. We tested for univariate and multivariate associations as well as interactions between features. Of the models reviewed, 46% used feature selection methods that can lead to data leakage. Across our models, the number of hyperparameter optimizations reported, data leakage due to feature selection, model type, and modeling an autoimmune disorder were significantly associated with an increase in reported model performance. We found a significant, negative interaction between data leakage and training size. Our results suggest that methods susceptible to data leakage are prevalent among genomic machine learning research, resulting in inflated reported performance. Best practice guidelines that promote the avoidance and recognition of data leakage may help the field avoid biased results.
Collapse
|
6
|
Lv Q, Zeljic K, Zhao S, Zhang J, Zhang J, Wang Z. Dissecting Psychiatric Heterogeneity and Comorbidity with Core Region-Based Machine Learning. Neurosci Bull 2023; 39:1309-1326. [PMID: 37093448 PMCID: PMC10387015 DOI: 10.1007/s12264-023-01057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 04/25/2023] Open
Abstract
Machine learning approaches are increasingly being applied to neuroimaging data from patients with psychiatric disorders to extract brain-based features for diagnosis and prognosis. The goal of this review is to discuss recent practices for evaluating machine learning applications to obsessive-compulsive and related disorders and to advance a novel strategy of building machine learning models based on a set of core brain regions for better performance, interpretability, and generalizability. Specifically, we argue that a core set of co-altered brain regions (namely 'core regions') comprising areas central to the underlying psychopathology enables the efficient construction of a predictive model to identify distinct symptom dimensions/clusters in individual patients. Hypothesis-driven and data-driven approaches are further introduced showing how core regions are identified from the entire brain. We demonstrate a broadly applicable roadmap for leveraging this core set-based strategy to accelerate the pursuit of neuroimaging-based markers for diagnosis and prognosis in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Qian Lv
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Kristina Zeljic
- School of Health and Psychological Sciences, City, University of London, London, EC1V 0HB, UK
| | - Shaoling Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jiangtao Zhang
- Tongde Hospital of Zhejiang Province (Zhejiang Mental Health Center), Zhejiang Office of Mental Health, Hangzhou, 310012, China
| | - Jianmin Zhang
- Tongde Hospital of Zhejiang Province (Zhejiang Mental Health Center), Zhejiang Office of Mental Health, Hangzhou, 310012, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Liang C, Pearlson G, Bustillo J, Kochunov P, Turner JA, Wen X, Jiang R, Fu Z, Zhang X, Li K, Xu X, Zhang D, Qi S, Calhoun VD. Psychotic Symptom, Mood, and Cognition-associated Multimodal MRI Reveal Shared Links to the Salience Network Within the Psychosis Spectrum Disorders. Schizophr Bull 2023; 49:172-184. [PMID: 36305162 PMCID: PMC9810025 DOI: 10.1093/schbul/sbac158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Schizophrenia (SZ), schizoaffective disorder (SAD), and psychotic bipolar disorder share substantial overlap in clinical phenotypes, associated brain abnormalities and risk genes, making reliable diagnosis among the three illness challenging, especially in the absence of distinguishing biomarkers. This investigation aims to identify multimodal brain networks related to psychotic symptom, mood, and cognition through reference-guided fusion to discriminate among SZ, SAD, and BP. Psychotic symptom, mood, and cognition were used as references to supervise functional and structural magnetic resonance imaging (MRI) fusion to identify multimodal brain networks for SZ, SAD, and BP individually. These features were then used to assess the ability in discriminating among SZ, SAD, and BP. We observed shared links to functional and structural covariation in prefrontal, medial temporal, anterior cingulate, and insular cortices among SZ, SAD, and BP, although they were linked with different clinical domains. The salience (SAN), default mode (DMN), and fronto-limbic (FLN) networks were the three identified multimodal MRI features within the psychosis spectrum disorders from psychotic symptom, mood, and cognition associations. In addition, using these networks, we can classify patients and controls and distinguish among SZ, SAD, and BP, including their first-degree relatives. The identified multimodal SAN may be informative regarding neural mechanisms of comorbidity for psychosis spectrum disorders, along with DMN and FLN may serve as potential biomarkers in discriminating among SZ, SAD, and BP, which may help investigators better understand the underlying mechanisms of psychotic comorbidity from three different disorders via a multimodal neuroimaging perspective.
Collapse
Affiliation(s)
- Chuang Liang
- Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Godfrey Pearlson
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Juan Bustillo
- Departments of Neurosciences and Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Xuyun Wen
- Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Rongtao Jiang
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Xiao Zhang
- Department of Psychiatry, Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Daoqiang Zhang
- Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Shile Qi
- Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Vince D Calhoun
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Electrical and Computer Engineering, Georgia Tech University, Atlanta, GA, USA
| |
Collapse
|
8
|
Wang M, Hu K, Fan L, Yan H, Li P, Jiang T, Liu B. Predicting Treatment Response in Schizophrenia With Magnetic Resonance Imaging and Polygenic Risk Score. Front Genet 2022; 13:848205. [PMID: 35186051 PMCID: PMC8847599 DOI: 10.3389/fgene.2022.848205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Prior studies have separately demonstrated that magnetic resonance imaging (MRI) and schizophrenia polygenic risk score (PRS) are predictive of antipsychotic medication treatment outcomes in schizophrenia. However, it remains unclear whether MRI combined with PRS can provide superior prognostic performance. Besides, the relative importance of these measures in predictions is not investigated. Methods: We collected 57 patients with schizophrenia, all of which had baseline MRI and genotype data. All these patients received approximately 6 weeks of antipsychotic medication treatment. Psychotic symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and follow-up. We divided these patients into responders (N = 20) or non-responders (N = 37) based on whether their percentages of PANSS total reduction were above or below 50%. Nine categories of MRI measures and PRSs with 145 different p-value thresholding ranges were calculated. We trained machine learning classifiers with these baseline predictors to identify whether a patient was a responder or non-responder. Results: The extreme gradient boosting (XGBoost) technique was applied to build binary classifiers. Using a leave-one-out cross-validation scheme, we achieved an accuracy of 86% with all MRI and PRS features. Other metrics were also estimated, including sensitivity (85%), specificity (86%), F1-score (81%), and area under the receiver operating characteristic curve (0.86). We found excluding a single feature category of gray matter volume (GMV), amplitude of low-frequency fluctuation (ALFF), and surface curvature could lead to a maximum accuracy drop of 10.5%. These three categories contributed more than half of the top 10 important features. Besides, removing PRS features caused a modest accuracy drop (8.8%), which was not the least decrease (1.8%) among all feature categories. Conclusions: Our classifier using both MRI and PRS features was stable and not biased to predicting either responder or non-responder. Combining with MRI measures, PRS could provide certain extra predictive power of antipsychotic medication treatment outcomes in schizophrenia. PRS exhibited medium importance in predictions, lower than GMV, ALFF, and surface curvature, but higher than measures of cortical thickness, cortical volume, and surface sulcal depth. Our findings inform the contributions of PRS in predictions of treatment outcomes in schizophrenia.
Collapse
Affiliation(s)
- Meng Wang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Ke Hu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Peng Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Innovation Academy for Artificial Intelligence, Chinese Academy of Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|