1
|
Hemmatinafar M, Zaremoayedi L, Koushkie Jahromi M, Alvarez-Alvarado S, Wong A, Niknam A, Suzuki K, Imanian B, Bagheri R. Effect of Beetroot Juice Supplementation on Muscle Soreness and Performance Recovery after Exercise-Induced Muscle Damage in Female Volleyball Players. Nutrients 2023; 15:3763. [PMID: 37686795 PMCID: PMC10490293 DOI: 10.3390/nu15173763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Beetroot juice (BRJ) contains various bioactive compounds suggested to be effective in improving athlete recovery. However, the number of studies evaluating the effects of BRJ on recovery and muscle soreness (MS) indicators in female athletes is limited. Therefore, the present study aimed to determine the effects of BRJ consumption on the performance recovery indicators and MS after exercise-induced muscle damage (EIMD) in female volleyball players. METHODS Twelve young female volleyball players were evaluated in this study. We utilized a randomized, cross-over, and double-blind design during two phases with a 30-day interval (wash-out). During each phase, EIMD was performed first, followed by BRJ or placebo (PLA) supplementation for two days (eight servings of 50 mL). Recovery monitoring of performance indicators and MS was performed after EIMD. The results of wall-sit, V sit and reach (VSFT), vertical jump height (VJH), pressure pain threshold (PPT), and thigh swelling (Sw-T) tests were recorded 48 h after EIMD. Also, the Perceived Muscle Soreness was recorded using the visual analog scale (VAS) 12 (MS-12 h), 24 (MS-24 h), and 48 (MS-48 h) hours after EIMD. RESULTS The data were analyzed using two-way repeated measures of ANOVA at p < 0.05. Compared to PLA, BRJ supplementation improves wall-sit performance after EIMD (p < 0.05), while reducing Sw-T and perceived muscle soreness (p < 0.05). However, no significant difference was observed between PLA and BRJ in VJH and VSFT performance after EIMD (p > 0.05). CONCLUSIONS Our findings indicate that the consumption of BRJ in female volleyball players can be useful for improving some recovery indicators, such as muscle endurance, perceived muscle soreness, and tissue edema, after EIMD.
Collapse
Affiliation(s)
- Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Leila Zaremoayedi
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Stacey Alvarez-Alvarado
- Department of Neurology, College of Medicine—Jacksonville, University of Florida, Jacksonville, FL 32209, USA
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, TX 22207, USA
| | - Alireza Niknam
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Babak Imanian
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
2
|
Kyselovic J, Masarik J, Kechemir H, Koscova E, Turudic II, Hamblin MR. Physical properties and biological effects of ceramic materials emitting infrared radiation for pain, muscular activity, and musculoskeletal conditions. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:3-15. [PMID: 35510621 PMCID: PMC10084378 DOI: 10.1111/phpp.12799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Up to 33% of the general population worldwide suffer musculoskeletal conditions, with low back pain being the single leading cause of disability globally. Multimodal therapeutic options are available to relieve the pain associated with muscular disorders, including physical, complementary, and pharmacological therapies. However, existing interventions are not disease modifying and have several limitations. METHOD Literature review. RESULTS In this context, the use of nonthermal infrared light delivered via patches, fabrics, and garments containing infrared-emitting bioceramic minerals have been investigated. Positive effects on muscular cells, muscular recovery, and reduced inflammation and pain have been reported both in preclinical and clinical studies. There are several hypotheses on how infrared may contribute to musculoskeletal pain relief, however, the full mechanism of action remains unclear. This article provides an overview of the physical characteristics of infrared radiation and its biological effects, focusing on those that could potentially explain the mechanism of action responsible for the relief of musculoskeletal pain. CONCLUSIONS Based on the current evidence, the following pathways have been considered: upregulation of endothelial nitric oxide synthase, increase in nitric oxide bioavailability, anti-inflammatory effects, and reduction in oxidative stress.
Collapse
Affiliation(s)
- Jan Kyselovic
- Clinical Research Unit, 5th Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovak Republic
| | - Jozef Masarik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Hayet Kechemir
- Consumer Healthcare Medical Affairs Department, Sanofi CHC, Paris, France
| | - Eva Koscova
- Consumer Healthcare Medical Affairs Department, Bratislava, Slovakia
| | - Iva Igracki Turudic
- Consumer Healthcare Medical Affairs Department, Sanofi CHC, Frankfurt, Germany
| | - Michael Richard Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Physiological effects of microcurrent and its application for maximising acute responses and chronic adaptations to exercise. Eur J Appl Physiol 2023; 123:451-465. [PMID: 36399190 PMCID: PMC9941239 DOI: 10.1007/s00421-022-05097-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Microcurrent is a non-invasive and safe electrotherapy applied through a series of sub-sensory electrical currents (less than 1 mA), which are of a similar magnitude to the currents generated endogenously by the human body. This review focuses on examining the physiological mechanisms mediating the effects of microcurrent when combined with different exercise modalities (e.g. endurance and strength) in healthy physically active individuals. The reviewed literature suggests the following candidate mechanisms could be involved in enhancing the effects of exercise when combined with microcurrent: (i) increased adenosine triphosphate resynthesis, (ii) maintenance of intercellular calcium homeostasis that in turn optimises exercise-induced structural and morphological adaptations, (iii) eliciting a hormone-like effect, which increases catecholamine secretion that in turn enhances exercise-induced lipolysis and (iv) enhanced muscle protein synthesis. In healthy individuals, despite a lack of standardisation on how microcurrent is combined with exercise (e.g. whether the microcurrent is pulsed or continuous), there is evidence concerning its effects in promoting body fat reduction, skeletal muscle remodelling and growth as well as attenuating delayed-onset muscle soreness. The greatest hindrance to understanding the combined effects of microcurrent and exercise is the variability of the implemented protocols, which adds further challenges to identifying the mechanisms, optimal patterns of current(s) and methodology of application. Future studies should standardise microcurrent protocols by accurately describing the used current [e.g. intensity (μA), frequency (Hz), application time (minutes) and treatment duration (e.g. weeks)] for specific exercise outcomes, e.g. strength and power, endurance, and gaining muscle mass or reducing body fat.
Collapse
|
4
|
Burgos J, Viribay A, Calleja-González J, Fernández-Lázaro D, Olasagasti-Ibargoien J, Seco-Calvo J, Mielgo-Ayuso J. Long-Term Combined Effects of Citrulline and Nitrate-Rich Beetroot Extract Supplementation on Recovery Status in Trained Male Triathletes: A Randomized, Double-Blind, Placebo-Controlled Trial. BIOLOGY 2022; 11:75. [PMID: 35053073 PMCID: PMC8772988 DOI: 10.3390/biology11010075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022]
Abstract
Citrulline (CIT) and nitrate-rich beetroot extract (BR) are widely studied ergogenic aids. Nevertheless, both supplements have been studied in short-term trials and separately. To the best of the authors' knowledge, the effects of combining CIT and BR supplementation on recovery status observed by distance covered in the Cooper test, exercise-induced muscle damage (EIMD) and anabolic/catabolic hormone status have not been investigated to date. Therefore, the main purpose of this research was to assess the effect of the long-term (9 weeks) mixture of 3 g/day of CIT plus 2.1 g/day of BR (300 mg/day of nitrates (NO3-)) supplementation on recovery by distance covered in the Cooper test, EIMD markers (urea, creatinine, AST, ALT, GGT, LDH and CK) and anabolic/catabolic hormones (testosterone, cortisol and testosterone/cortisol ratio (T/C)) in male trained triathletes. Thirty-two triathletes were randomized into four different groups of eight triathletes in this double-blind, placebo-controlled trial: placebo group (PLG), CIT group (CITG; 3 g/day of CIT), BR group (BRG; 2.1 g/day of BR (300 mg/day of NO3-)) and CIT-BR group (CIT-BRG; 3 g/day of CIT plus 2.1 g/day of BR (300 mg/day of NO3-)). Distance covered in the Cooper test and blood samples were collected from all participants at baseline (T1) and after 9 weeks of supplementation (T2). There were no significant differences in the interaction between group and time in EIMD markers (urea, creatinine, AST, ALT, GGT, LDH and CK) (p > 0.05). However, significant differences were observed in the group-by-time interaction in distance covered in the Cooper test (p = 0.002; η2p = 0.418), cortisol (p = 0.044; η2p = 0.247) and T/C (p = 0.005; η2p = 0.359). Concretely, significant differences were observed in distance covered in the Cooper test percentage of change (p = 0.002; η2p = 0.418) between CIT-BRG and PLG and CITG, in cortisol percentage change (p = 0.049; η2p = 0.257) and in T/C percentage change (p = 0.018; η2p = 0.297) between CIT-BRG and PLG. In conclusion, the combination of 3 g/day of CIT plus 2.1 g/day of BR (300 mg/day of NO3-) supplementation for 9 weeks did not present any benefit for EIMD. However, CIT + BR improved recovery status by preventing an increase in cortisol and showing an increase in distance covered in the Cooper test and T/C.
Collapse
Affiliation(s)
- José Burgos
- Department of Nursing and Physiotherapy, University of León, 24071 León, Spain;
- Burgos Nutrition, Physiology, Nutrition and Sport, 26007 Logroño, Spain
| | - Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004 Vitoria-Gasteiz, Spain;
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, 01007 Vitoria-Gasteiz, Spain;
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, 42003 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Jurgi Olasagasti-Ibargoien
- Faculty of Education and Sports, University of Deusto, 20012 Donostia-San Sebastian, Spain;
- Health, Physical Activity and Sports Science Laboratory (HealthPASS), Departament of Physical Activity and Sport, Faculty of Education and Sport, University of Deusto, 48007 Bilbao, Spain
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), University of Leon, Campus de Vegazana, 24071 Leon, Spain;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
5
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
6
|
Have We Looked in the Wrong Direction for More Than 100 Years? Delayed Onset Muscle Soreness Is, in Fact, Neural Microdamage Rather Than Muscle Damage. Antioxidants (Basel) 2020; 9:antiox9030212. [PMID: 32150878 PMCID: PMC7139782 DOI: 10.3390/antiox9030212] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
According to our hypothesis, delayed onset muscle soreness (DOMS) is an acute compression axonopathy of the nerve endings in the muscle spindle. It is caused by the superposition of compression when repetitive eccentric contractions are executed under cognitive demand. The acute compression axonopathy could coincide with microinjury of the surrounding tissues and is enhanced by immune-mediated inflammation. DOMS is masked by sympathetic nervous system activity at initiation, but once it subsides, a safety mode comes into play to prevent further injury. DOMS becomes manifest when the microinjured non-nociceptive sensory fibers of the muscle spindle stop inhibiting the effects of the microinjured, hyperexcited nociceptive sensory fibers, therefore providing the ‘open gate’ in the dorsal horn to hyperalgesia. Reactive oxygen species and nitric oxide play a cross-talking role in the parallel, interlinked degeneration–regeneration mechanisms of these injured tissues. We propose that the mitochondrial electron transport chain generated free radical involvement in the acute compression axonopathy. ‘Closed gate exercises’ could be of nonpharmacological therapeutic importance, because they reduce neuropathic pain in addition to having an anti-inflammatory effect. Finally, DOMS could have an important ontogenetical role by not just enhancing ability to escape danger to survive in the wild, but also triggering muscle growth.
Collapse
|
7
|
Timpani CA, Trewin AJ, Stojanovska V, Robinson A, Goodman CA, Nurgali K, Betik AC, Stepto N, Hayes A, McConell GK, Rybalka E. Attempting to Compensate for Reduced Neuronal Nitric Oxide Synthase Protein with Nitrate Supplementation Cannot Overcome Metabolic Dysfunction but Rather Has Detrimental Effects in Dystrophin-Deficient mdx Muscle. Neurotherapeutics 2017; 14:429-446. [PMID: 27921261 PMCID: PMC5398978 DOI: 10.1007/s13311-016-0494-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Duchenne muscular dystrophy arises from the loss of dystrophin and is characterized by calcium dysregulation, muscular atrophy, and metabolic dysfunction. The secondary reduction of neuronal nitric oxide synthase (nNOS) from the sarcolemma reduces NO production and bioavailability. As NO modulates glucose uptake, metabolism, and mitochondrial bioenergetics, we investigated whether an 8-week nitrate supplementation regimen could overcome metabolic dysfunction in the mdx mouse. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were supplemented with sodium nitrate (85 mg/l) in drinking water. Following the supplementation period, extensor digitorum longus and soleus were excised and radioactive glucose uptake was measured at rest (basal) and during contraction. Gastrocnemius was excised and mitochondrial respiration was measured using the Oroboros Oxygraph. Tibialis anterior was analyzed immunohistochemically for the presence of dystrophin, nNOS, nitrotyrosine, IgG and CD45+ cells, and histologically to assess areas of damage and regeneration. Glucose uptake in the basal and contracting states was normal in unsupplemented mdx muscles but was reduced following nitrate supplementation in mdx muscles only. The mitochondrial utilization of substrates was also impaired in mdx gastrocnemius during phosphorylating and maximal uncoupled respiration, and nitrate could not improve respiration in mdx muscle. Although nitrate supplementation reduced mitochondrial hydrogen peroxide emission, it induced mitochondrial uncoupling in red gastrocnemius, increased muscle fiber peroxynitrite (nitrotyrosine), and promoted skeletal muscle damage. Our novel data suggest that despite lower nNOS protein expression and likely lower NO production in mdx muscle, enhancing NO production with nitrate supplementation in these mice has detrimental effects on skeletal muscle. This may have important relevance for those with DMD.
Collapse
Affiliation(s)
- Cara A Timpani
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Adam J Trewin
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Ainsley Robinson
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Craig A Goodman
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Health, Melbourne, Victoria, 3021, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Andrew C Betik
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Nigel Stepto
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Alan Hayes
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Health, Melbourne, Victoria, 3021, Australia
| | - Glenn K McConell
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Health, Melbourne, Victoria, 3021, Australia
| | - Emma Rybalka
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia.
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia.
- Australian Institute of Musculoskeletal Science (AIMSS), Western Health, Melbourne, Victoria, 3021, Australia.
| |
Collapse
|
8
|
Fatouros IG, Jamurtas AZ. Insights into the molecular etiology of exercise-induced inflammation: opportunities for optimizing performance. J Inflamm Res 2016; 9:175-186. [PMID: 27799809 PMCID: PMC5085309 DOI: 10.2147/jir.s114635] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The study of exercise-induced muscle damage (EIMD) is of paramount importance not only because it affects athletic performance but also because it is an excellent model to study the mechanisms governing muscle cachexia under various clinical conditions. Although, a large number of studies have investigated EIMD and its associated inflammatory response, several aspects of skeletal muscles responses remain unclear. In the first section of this article, the mechanisms of EIMD are reviewed in an attempt to follow the events that result in functional and structural alterations of skeletal muscle. In the second section, the inflammatory response associated with EIMD is presented with emphasis in leukocyte accumulation through mechanisms that are largely coordinated by pro- and anti-inflammatory cytokines released either by injured muscle itself or other cells. The practical applications of EIMD and the subsequent inflammatory response are discussed with respect to athletic performance. Specifically, the mechanisms leading to performance deterioration and development of muscle soreness are discussed. Emphasis is given to the factors affecting individual responses to EIMD and the resulting interindividual variability to this phenomenon.
Collapse
Affiliation(s)
- Ioannis G Fatouros
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece
| | - Athanasios Z Jamurtas
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece
| |
Collapse
|
9
|
Morinda citrifolia leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses. Food Chem 2016; 212:443-52. [PMID: 27374554 DOI: 10.1016/j.foodchem.2016.05.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery.
Collapse
|
10
|
Hatchett A, Berry C, Oliva C, Wiley D, St Hilaire J, LaRochelle A. A Comparison between Chocolate Milk and a Raw Milk Honey Solution's Influence on Delayed Onset of Muscle Soreness. Sports (Basel) 2016; 4:sports4010018. [PMID: 29910267 PMCID: PMC5968944 DOI: 10.3390/sports4010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 11/16/2022] Open
Abstract
This investigation sought to examine the effect that a chocolate milk solution (CMS) and a raw milk solution (RMS) had on lower extremity induced delayed onset of muscle soreness (DOMS). Twenty trained male participants completed a set of questionnaires, prior to completing a lower extremity DOMS protocol, to determine the level of discomfort and functional limitations. Once the DOMS protocol was completed, participants were randomly assigned to either the CM or RM group. Once assigned, participants ingested 240 mL of the respective solution and completed the same set of questionnaires immediately post, 24-, 48- and 72-h post DOMS protocol. Additionally, for 10 days post-ingestion participants were contacted to learn if any negative effects were experienced as a result of ingesting either solution. Both groups reported an increase in lower extremity discomfort at each data collection interval post-DOMS protocol (post, 24-, 48- and 72-h). Participants assigned to the RM group reported high discomfort post and a relative decline in discomfort from immediately post-DOMS protocol to 72-h post. The RMS group reported substantially less discomfort at 72-h when compared to the CMS group. Ingestion of a raw milk solution immediately post strength exercise can substantially reduce the level of self-reported discomfort associated with DOMS.
Collapse
Affiliation(s)
- Andrew Hatchett
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Christopher Berry
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Claudia Oliva
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Douglas Wiley
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Jacob St Hilaire
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Alex LaRochelle
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| |
Collapse
|
11
|
Kim J, Lee J. A review of nutritional intervention on delayed onset muscle soreness. Part I. J Exerc Rehabil 2014; 10:349-56. [PMID: 25610818 PMCID: PMC4294436 DOI: 10.12965/jer.140179] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 11/22/2022] Open
Abstract
This review is focused on the effect of nutritional intervention on delayed onset muscle soreness (DOMS) that occurs after exercise. In general, high force eccentric contractions and/or unaccustomed exercise result in DOMS attributed to reduction in performance such as muscle strength and range of motion (ROM) for both athletes and non-athletes. Nutritional intervention is one of the preventive or therapeutic ways to reduce DOMS. Previous research studies have suggested the following nutrition intervention: caffeine, omega-3 fatty acids, taurine, polyphenols, and so on. Nutritional intervention with these nutrients before and after exercise was reported to be effective in reducing DOMS. These nutritional interventions have also been reported to affect inflammatory responses and oxidative stress leading to DOMS reduction. However, other studies have reported that these nutritional interventions have no effect on DOMS. It is suggested that intake of proper nutrition intervention can effectively reduce DOMS after exercise and quickly help an athlete return to exercise or training program. In addition, nutritional intervention may help both athletes and non-athletes who engage in physical therapy or rehabilitative programs after surgery or any injurious events.
Collapse
Affiliation(s)
- Jooyoung Kim
- College of Physical Education, Kookmin University, Seoul, Korea
| | - Joohyung Lee
- College of Physical Education, Kookmin University, Seoul, Korea
| |
Collapse
|
12
|
Tantimonaco M, Ceci R, Sabatini S, Catani MV, Rossi A, Gasperi V, Maccarrone M. Physical activity and the endocannabinoid system: an overview. Cell Mol Life Sci 2014; 71:2681-98. [PMID: 24526057 PMCID: PMC11113821 DOI: 10.1007/s00018-014-1575-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/06/2023]
Abstract
Recognized as a "disease modifier", physical activity (PA) is increasingly viewed as a more holistic, cost-saving method for prevention, treatment and management of human disease conditions. The traditional view that PA engages the monoaminergic and endorphinergic systems has been challenged by the discovery of the endocannabinoid system (ECS), composed of endogenous lipids, their target receptors, and metabolic enzymes. Indeed, direct and indirect evidence suggests that the ECS might mediate some of the PA-triggered effects throughout the body. Moreover, it is now emerging that PA itself is able to modulate ECS in different ways. Against this background, in the present review we shall discuss evidence of the cross-talk between PA and the ECS, ranging from brain to peripheral districts and highlighting how ECS must be tightly regulated during PA, in order to maintain its beneficial effects on cognition, mood, and nociception, while avoiding impaired energy metabolism, oxidative stress, and inflammatory processes.
Collapse
Affiliation(s)
- Mirko Tantimonaco
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Roberta Ceci
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Antonello Rossi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
13
|
Wernbom M, Apro W, Paulsen G, Nilsen TS, Blomstrand E, Raastad T. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol 2014; 113:2953-65. [PMID: 24078212 DOI: 10.1007/s00421-013-2733-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/16/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate hypertrophic signalling after a single bout of low-load resistance exercise with and without blood flow restriction (BFR). METHODS Seven subjects performed unilateral knee extensions at 30 % of their one repetition maximum. The subjects performed five sets to failure with BFR on one leg, and then repeated the same amount of work with the other leg without BFR. Biopsies were obtained from m. vastus lateralis before and 1, 24 and 48 h after exercise. RESULTS At 1-h post-exercise, phosphorylation of p70S6KThr389 and p38MAPKThr180/Tyr182 was elevated in the BFR leg, but not in the free-flow leg. Phospho-p70S6KThr389 was elevated three- to fourfold in both legs at 24-h post-exercise, but back to baseline at 48 h. The number of visible satellite cells (SCs) per muscle fibre was increased for all post-exercise time points and in both legs (33–53 %). The proportion of SCs with cytoplasmic extensions was elevated at 1-h post in the BFR leg and the number of SCs positive for myogenin and/or MyoD was increased at 1- and 24-h post-exercise for both legs combined. CONCLUSION Acute low-load resistance exercise with BFR resulted in early (1 h) and late (24 h) enhancement of phospho-p70S6KThr389, an early response of p38MAPK, and an increased number of SCs per muscle fibre. Enhanced phospho-p70S6KThr389 at 24-h post-exercise and increases in SC numbers were seen also in the free-flow leg. Implications of these findings for the hypertrophic effects of fatiguing low-load resistance exercise with and without BFR are discussed.
Collapse
|
14
|
Balfoussia E, Skenderi K, Tsironi M, Anagnostopoulos AK, Parthimos N, Vougas K, Papassotiriou I, Tsangaris GT, Chrousos GP. A proteomic study of plasma protein changes under extreme physical stress. J Proteomics 2013; 98:1-14. [PMID: 24345577 DOI: 10.1016/j.jprot.2013.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 01/18/2023]
Abstract
UNLABELLED The Spartathlon race (brisk walking a distance of 246km in less than 36h) was employed as a model of severe physical stress to investigate proteomic alterations in the plasma of athletes at the start (Athens) and finish (Sparta) of the race, as well as 48h after the race (Post). The athletes' plasma was analyzed by 2D gel electrophoresis (2-DE) and the differentially expressed proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS). The ProteoSeek™ Albumin/IgG removal kit and the ProteoMiner™ enrichment kit were utilized to detect medium- and low-abundance proteins, whose expression may be masked due to high-abundance proteins. Our results were confirmed by Western blot and biochemical analyses. Overall fifty-two proteins were differentially expressed between the starting point, the finishing line and two days after the end of the race. Of these, thirty proteins were involved in inflammation, while the rest concerned anti-oxidation, anti-coagulation and iron and vitamin D transport. These results indicate that prolonged physical stress affects circulating stress-related proteins, which might be employed as biomarkers of stress-related diseases. BIOLOGICAL SIGNIFICANCE The current study employed the Spartathlon, as a model of prolonged endurance exercise, to identify and isolate putative biomarkers of inflammation under extreme physical stress conditions. These protein quantitative variations may pave the way to exploration and understanding of stress-related physiological processes, the stress response itself and diseases whose onset appears to be linked to stress.
Collapse
Affiliation(s)
- Edily Balfoussia
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Skenderi
- Laboratory of Nutrition and Clinical Dietetics, "Harokopio" University, Athens, Greece
| | - Maria Tsironi
- Department of Internal Medicine, University of Peloponnesus, School of Nursing, Sparta, Greece
| | - Athanasios K Anagnostopoulos
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Parthimos
- First Department of Pediatrics, University of Athens Medical School, Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Kostantinos Vougas
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - George P Chrousos
- First Department of Pediatrics, University of Athens Medical School, Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
15
|
Zhao H, Liu J, Pan S, Sun Y, Li Q, Li F, Ma L, Guo Q. SOD mRNA and MDA expression in rectus femoris muscle of rats with different eccentric exercise programs and time points. PLoS One 2013; 8:e73634. [PMID: 24058480 PMCID: PMC3772806 DOI: 10.1371/journal.pone.0073634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/30/2013] [Indexed: 01/28/2023] Open
Abstract
Purpose Although superoxide dismutase (SOD) and malondialdehyde (MDA) affect Delayed Onset Muscle Soreness (DOMS), their effects are unclear in rectus femoris muscles (RFM) of rats with different eccentric exercise programs and time points. The purpose of this study is to investigate the effects of the various eccentric exercise programs at different time points on the SOD mRNA expression and MDA using rat as the animal model. Methods 248 male rats were randomly divided into 4 groups: control group (CTL, n = 8), once-only exercise group (OEG, n = 80), continuous exercise group (CEG, n = 80), and intermittent exercise group (IEG, n = 80). Each exercise group was divided into 10 subgroups that exercised 0.5 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, or 168 h. Rats were sacrificed and their SOD mRNA expression, and MDA concentrations of skeletal muscle tissue were measured. Results The specimen in all eccentric exercise programs showed increased RFM SOD1 mRNA expression levels at 0.5 h (P<0.05), and decreased RFM SOD3 mRNA expression at 0.5 h (P<0.05). The continuous eccentric exercise (CE) significantly enhanced muscle SOD2 mRNA level at 0.5 h (P<0.05). After once-only eccentric exercise (OE), SOD1, SOD2, and SOD3 mRNA expression significantly increased at 96 h, whereas MDA concentrations decreased at 96 h. After CE, the correlation coefficients of SOD1, SOD2, SOD3 mRNA expression levels and MDA concentrations were −0.814, −0.763, −0.845 (all P<0.05) at 12 h. Conclusion Regular eccentric exercise, especially CE could enhance SOD1 and SOD2 mRNA expression in acute stage and the SOD2 mRNA expression correlates to MDA concentration in vivo, which may improve the oxidative adaption ability of skeletal muscles.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiani Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- * E-mail:
| | - Yingwei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Ma
- Central Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
17
|
Akazawa Y, Kubo M, Zhang R, Matsumoto K, Yan F, Setiawan H, Takahashi H, Fujikura Y, Ogino K. Inhibition of arginase ameliorates experimental ulcerative colitis in mice. Free Radic Res 2013; 47:137-45. [PMID: 23215832 DOI: 10.3109/10715762.2012.756980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of N(ω)-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.
Collapse
Affiliation(s)
- Y Akazawa
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|