1
|
Xiao J, Xiao J, Gao P, Zhang Y, Yan B, Wu H, Zhang Y. Enhanced salt tolerance in Glycyrrhiza uralensis Fisch. via Bacillus subtilis inoculation alters microbial community. Microbiol Spectr 2024; 12:e0381223. [PMID: 39189758 PMCID: PMC11448385 DOI: 10.1128/spectrum.03812-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/29/2024] [Indexed: 08/28/2024] Open
Abstract
The widespread prevalence of saline environments poses a significant global environmental challenge. Salt stress, induced by saline soils, disrupts soil microecology and affects the plant-microbe-soil cycling process. Utilizing microbial fungicides stands as a primary strategy to mitigate salt stress-induced damage to plants and soils. This study investigated the influence of Bacillus subtilis (Bs) inoculation on the microbial community, assembly processes, and functional changes in bacteria and fungi in Glycyrrhiza uralensis Fisch. (licorice) seedlings under varying salt stress levels, primarily employing microbiomics techniques. Soil enzyme activities displayed a declining trend with increasing salt stress, which was mitigated by Bs inoculation. Microbiome analysis revealed a significant increase in bacterial and fungal operational taxonomic units, particularly in Ascomycetes and Nitrogen-fixing Bacteria, thereby enhancing soil denitrification. The abundance of Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes in bacteria, as well as Ascomycota in fungi, increased with higher salt stress levels, a process facilitated by Bs inoculation. However, functional predictions indicated a reduction in the relative abundance of Dung Saprotrophs with Bs inoculation. Salt stress disrupted soil assembly processes, showcasing a continuous decline in diffusion limitation with increased salt concentration, where Bs inoculation reached a peak under moderate stress. In summary, this research elucidates the communication mechanism of Bs in enhancing salt tolerance in licorice from a microbiome perspective, contributing to a comprehensive understanding of abiotic and biotic factors.IMPORTANCELicorice is a herb that grows in deserts or saline soils. Enhancing the salt tolerance of licorice is necessary to maintain the quality of cultivated licorice and to ensure the supply of medicinal herbs. In the past, we have demonstrated the effectiveness of inoculation with Bacillus subtilis (Bs) to enhance the salt tolerance of licorice and revealed the key metabolic pathways for the development of salt tolerance through multi-omics. In this study, we used the microbiomics approach to reveal the plant-microbe-soil interactions at the level of inoculation of Bs affecting the dynamics of soil microbial communities from bacterial and fungal perspectives, thus bridging the interactions between biotic and abiotic factors.
Collapse
Affiliation(s)
- Jiancai Xiao
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xiao
- Dongying Municipal Bureau of Agriculture and Rural Development, Shandong, China
| | - Pengchao Gao
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - You Zhang
- Laiwu City Ziguang Ecological Park Co, Shangdong, China
| | - Binbin Yan
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongli Wu
- Institute of Basic Research In Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Meng X, Dong Q, Wang B, Ni Z, Zhang X, Liu C, Yu W, Liu J, Shi X, Xu D, Duan Y. Effect of Glycolipids Application Combined with Nitrogen Fertilizer Reduction on Maize Nitrogen Use Efficiency and Yield. PLANTS (BASEL, SWITZERLAND) 2024; 13:1222. [PMID: 38732437 PMCID: PMC11085625 DOI: 10.3390/plants13091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Microbial-driven N turnover is important in regulating N fertilizer use efficiency through the secretion of metabolites like glycolipids. Currently, our understanding of the potential of glycolipids to partially reduce N fertilizer use and the effects of glycolipids on crop yield and N use efficiency is still limited. Here, a three-year in situ field experiment was conducted with seven treatments: no fertilization (CK); chemical N, phosphorus and potassium (NPK); NPK plus glycolipids (N+PKT); and PK plus glycolipids with 10% (0.9 N+PKT), 20% (0.8 N+PKT), 30% (0.7 N+PKT), and 100% (PKT) N reduction. Compared with NPK, glycolipids with 0-20% N reduction did not significantly reduce maize yields, and also increased N uptake by 6.26-11.07%, but no significant changes in grain or straw N uptake. The N resorption efficiency under 0.9 N+PKT was significantly greater than that under NPK, while the apparent utilization rates of N fertilizer and partial factor productivity of N under 0.9 N+PKT were significantly greater than those under NPK. Although 0.9 N+PKT led to additional labor and input costs, compared with NPK, it had a greater net economic benefit. Our study demonstrates the potential for using glycolipids in agroecosystem management and provides theoretical support for optimizing fertilization strategies.
Collapse
Affiliation(s)
- Xianghai Meng
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Qingshan Dong
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Baicheng Wang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Zheng Ni
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
| | - Xingzhe Zhang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Chunguang Liu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Wenquan Yu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Jie Liu
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin 150086, China;
| | - Xinrui Shi
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Dehai Xu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (X.M.); (Q.D.); (B.W.); (X.Z.); (C.L.); (W.Y.); (X.S.); (D.X.)
| | - Yan Duan
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
| |
Collapse
|
3
|
Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. ENVIRONMENTAL RESEARCH 2023; 235:116585. [PMID: 37437867 DOI: 10.1016/j.envres.2023.116585] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Salinized land is slowly spreading across the world. Reduced crop yields and quality due to salt stress threaten the ability to feed a growing population. We discussed the mechanisms behind nano-enabled antioxidant enzyme-mediated plant tolerance, such as maintaining reactive oxygen species (ROS) homeostasis, enhancing the capacity of plants to retain K+ and eliminate Na+, increasing the production of nitric oxide, involving signaling pathways, and lowering lipoxygenase activities to lessen oxidative damage to membranes. Frequently used techniques were highlighted like protecting cells from oxidative stress and keeping balance in ionic state. Salt tolerance in plants enabled by nanotechnology is also discussed, along with the potential role of physiobiochemical and molecular mechanisms. As a whole, the goal of this review is meant to aid researchers in fields as diverse as plant science and nanoscience in better-comprehending potential with novel solutions to addressing salinity issues for sustainable agriculture.
Collapse
Affiliation(s)
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | | | | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
4
|
Feng L, Wei L, Liu Y, Ren J, Liao W. Carbon monoxide/heme oxygenase system in plant: Roles in abiotic stress response and crosstalk with other signals molecules. Nitric Oxide 2023; 138-139:51-63. [PMID: 37364740 DOI: 10.1016/j.niox.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Carbon monoxide (CO) has been recognized as a crucial gasotransmitter mainly produced by heme oxygenase (HO)-catalyzed heme degradation in plant. Recent studies have shown that CO plays an important role in regulating growth and development of plant, as well as and responding to a variety of abiotic stresses. Meanwhile, many studies have reported on CO working in combination with other signal molecules to mitigate abiotic stress. Here, we presented a comprehensive overview of recent developments in which CO reduces plant damage caused by abiotic stresses. The regulation of antioxidant system, photosynthetic system, ion balance and transport are the main mechanisms of CO-alleviated abiotic stress. We also proposed and discussed the relationship between CO and other signal molecules, including nitric oxide (NO), hydrogen sulfide (H2S), hydrogen gas (H2), abscisic acid (ABA), indole 3-acetic acid (IAA), gibberellin (GA), cytokine (CTK), salicylic acid (SA), jasmonic acid (JA), hydrogen peroxide (H2O2) and calcium ion (Ca2+). Furthermore, the important role of HO genes in alleviating abiotic stress was also discussed. We proposed promising and new research directions for the study of plant CO, which can provide further insights on the role of CO in plant growth and development under abiotic stress.
Collapse
Affiliation(s)
- Li Feng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yayu Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Hua YP, Zhang YF, Zhang TY, Chen JF, Song HL, Wu PJ, Yue CP, Huang JY, Feng YN, Zhou T. Low iron ameliorates the salinity-induced growth cessation of seminal roots in wheat seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:567-591. [PMID: 36358019 DOI: 10.1111/pce.14486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Wheat plants are ubiquitously simultaneously exposed to salinity and limited iron availability caused by soil saline-alkalisation. Through this study, we found that both low Fe and NaCl severely inhibited the growth of seminal roots in wheat seedlings; however, sufficient Fe caused greater growth cessation of seminal roots than low Fe under salt stress. Low Fe improved the root meristematic division activity, not altering the mature cell sizes compared with sufficient Fe under salt stress. Foliar Fe spray and split-root experiments showed that low Fe-alleviating the salinity-induced growth cessation of seminal roots was dependent on local low Fe signals in the roots. Ionomics combined with TEM/X-ray few differences in the root Na+ uptake and vacuolar Na+ sequestration between two Fe levels under salt stress. Phytohormone profiling and metabolomics revealed salinity-induced overaccumulation of ACC/ethylene and tryptophan/auxin in the roots under sufficient Fe than under low Fe. Differential gene expression, pharmacological inhibitor addition and the root growth performance of transgenic wheat plants revealed that the rootward auxin efflux and was responsible for the low Fe-mediated amelioration of the salinity-induced growth cessation of seminal roots. Our findings will provide novel insights into the modulation of crop root growth under salt stress.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yi-Fan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Yang L, Yan C, Peng S, Chen L, Guo J, Lu Y, Li L, Ji Z. Broad-spectrum resistance mechanism of serine protease Sp1 in Bacillus licheniformis W10 via dual comparative transcriptome analysis. Front Microbiol 2022; 13:974473. [PMID: 36267189 PMCID: PMC9577198 DOI: 10.3389/fmicb.2022.974473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Antagonistic microorganisms are considered to be the most promising biological controls for plant disease. However, they are still not as popular as chemical pesticides due to complex environmental factors in the field. It is urgent to exploit their potential genetic characteristics and excellent properties to develop biopesticides with antimicrobial substances as the main components. Here, the serine protease Sp1 isolated from the Bacillus licheniformis W10 strain was confirmed to have a broad antifungal and antibacterial spectrum. Sp1 treatment significantly inhibited fungal vegetative growth and damaged the structure of hyphae, in accordance with that caused by W10 strain. Furthermore, Sp1 could activate the systemic resistance of peach twigs, fruits and tobacco. Dual comparative transcriptome analysis uncovered how Sp1 resisted the plant pathogenic fungus Phomopsis amygdali and the potential molecular resistance mechanisms of tobacco. In PSp1 vs. P. amygdali, RNA-seq identified 150 differentially expressed genes (DEGs) that were upregulated and 209 DEGs that were downregulated. Further analysis found that Sp1 might act on the energy supply and cell wall structure to inhibit the development of P. amygdali. In TSp1 vs. Xanthi tobacco, RNA-seq identified that 5937 DEGs were upregulated and 2929 DEGs were downregulated. DEGs were enriched in the metabolic biosynthesis pathways of secondary metabolites, plant hormone signal transduction, plant–pathogen interactions, and MAPK signaling pathway–plant and further found that the genes of salicylic acid (SA) and jasmonic acid (JA) signaling pathways were highly expressed and the contents of SA and JA increased significantly, suggesting that systemic resistance induced by Sp1 shares features of SAR and ISR. In addition, Sp1 might induce the plant defense responses of tobacco. This study provides insights into the broad-spectrum resistance molecular mechanism of Sp1, which could be used as a potential biocontrol product.
Collapse
Affiliation(s)
- Lina Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chun Yan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuai Peng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lili Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Junjie Guo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yihe Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhaolin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhaolin Ji,
| |
Collapse
|
7
|
Taheri P. Crosstalk of nitro-oxidative stress and iron in plant immunity. Free Radic Biol Med 2022; 191:137-149. [PMID: 36075546 DOI: 10.1016/j.freeradbiomed.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of oxygen and nitrogen radicals and their derivatives, known as reactive oxygen species (ROS) and reactive nitrogen species (RNS), occurs throughout various phases of plant growth in association with biotic and abiotic stresses. One of the consequences of environmental stresses is disruption of homeostasis between production and scavenging of ROS and RNS, which leads to nitro-oxidative burst and affects other defense-related mechanisms, such as polyamines levels, phenolics, lignin and callose as defense components related to plant cell wall reinforcement. Although this subject has attracted huge interest, the cross-talk between these signaling molecules and iron, as a main metal element involved in the activity of various enzymes and numerous vital processes in the living cells, remains largely unexplored. Therefore, it seems necessary to pay more in depth attention to the mechanisms of plant resistance against various environmental stimuli for designing novel and effective plant protection strategies. This review is focused on advances in recent knowledge related to the role of ROS, RNS, and association of these signaling molecules with iron in plant immunity. Furthermore, the role of cell wall fortification as a main physical barrier involved in plant defense have been discussed in association with reactive species and iron ions.
Collapse
Affiliation(s)
- Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
8
|
Huang J, Bao M, Li J, Chen H, Xu D, Chen Z, Wen Y. Enantioselective Response of Wheat Seedlings to Imazethapyr: From the Perspective of Fe and the Secondary Metabolite DIMBOA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5516-5525. [PMID: 35476430 DOI: 10.1021/acs.jafc.1c07727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The responses of trace elements and secondary metabolites to stress can reflect plant adaptation to the environment. If and how the imperative trace element Fe and the defensive secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) mediate the toxicity of chiral herbicides to nontarget plants remains inconclusive. We found that the herbicidal-active imazethapyr enantiomer [(R)-IM] stimulated heme oxygenase-1 activity, triggered the release of the catalytic product Fe2+, increased reactive oxygen species production, decreased the DIMBOA content, and increased the DIMBOA-Fe content. XAFS analyses and in vitro Fenton assays demonstrated that DIMBOA could relieve phytotoxicity by chelating excessive Fe3+ to restore Fe homeostasis. The free radical scavenging ability of the chelate of DIMBOA and Fe was also involved. This work refines the dual role of DIMBOA and Fe in mediating the enantioselective phytotoxicity of chiral herbicides, which provides a new direction for improving the herbicide resistance of crops.
Collapse
Affiliation(s)
- Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manxin Bao
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Su N, Liu Z, Wang L, Liu Y, Niu M, Chen X, Cui J. Improving the anthocyanin accumulation of hypocotyls in radish sprouts by hemin-induced NO. BMC PLANT BIOLOGY 2022; 22:224. [PMID: 35490232 PMCID: PMC9055698 DOI: 10.1186/s12870-022-03605-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The health benefits of anthocyanins impel researchers and food producers to explorer new methods to increase anthocyanin contents in plant foods. Our previous studies revealed a positive role of nitric oxide (NO) in anthocyanin accumulation in radish (Raphanus sativus L.) sprouts. The application of hemin, an inducer of heme oxygenase-1 (HO-1), can effectively elevate NO production in vivo. Hemin treatment also improves plant growth and stress tolerance. This study is aimed to assess the effects of hemin treatment on anthocyanin production in radish sprouts, and to investigate whether NO signalling is involved in this process. RESULTS The application of hemin significantly up regulated the expressions of many anthocyanins biosynthesis related structure and regulatory genes, leading to increased anthocyanins accumulation in radish hypocotyls. Hemin treatment also raised NO contents in radish sprouts, probably through enhancing nitrate reductase (NR) activity and Nitric Oxide-Associated 1 (NOA1) expression. Comparing the effects of Zinc Protoporphyrin (ZnPP, HO-1 activity inhibitor), Sodium Nitroprusside (SNP, NO donor) and carboxy-PTIO (cPTIO, NO-scavenger) on anthocyanin and NO production, a positive role of NO signalling has been revealed in hemin-derived anthocyanin accumulation. A positive feedback loop between HO-1 and NO may be involved in regulating this process. CONCLUSIONS Hemin induced anthocyanin accumulation in radish sprouts through HO-1 and NO signalling network.
Collapse
Affiliation(s)
- Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ze Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yuanyuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
10
|
Singh N, Bhatla SC. Heme oxygenase-nitric oxide crosstalk-mediated iron homeostasis in plants under oxidative stress. Free Radic Biol Med 2022; 182:192-205. [PMID: 35247570 DOI: 10.1016/j.freeradbiomed.2022.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Plant growth under abiotic stress conditions significantly enhances intracellular generation of reactive oxygen species (ROS). Oxidative status of plant cells is directly affected by the modulation of iron homeostasis. Among mammals and plants, heme oxygenase-1 (HO-1) is a well-known antioxidant enzyme. It catalyzes oxygenation of heme, thereby producing Fe2+, CO and biliverdin as byproducts. The antioxidant potential of HO-1 is primarily due to its catalytic reaction byproducts. Biliverdin and bilirubin possess conjugated π-electrons which escalate the ability of these biomolecules to scavenge free radicals. CO also enhances the ROS scavenging ability of plants cells by upregulating catalase and peroxidase activity. Enhanced expression of HO-1 in plants under oxidative stress accompanies sequestration of iron in specialized iron storage proteins localized in plastids and mitochondria, namely ferritin for Fe3+ storage and frataxin for storage of Fe-S clusters, respectively. Nitric oxide (NO) crosstalks with HO-1 at multiple levels, more so in plants under oxidative stress, in order to maintain intracellular iron status. Formation of dinitrosyl-iron complexes (DNICs) significantly prevents Fenton reaction during oxidative stress. DNICs also release NO upon dissociation in target cells over long distance in plants. They also function as antioxidants against superoxide anions and lipidic free radicals. A number of NO-modulated transcription factors also facilitate iron homeostasis in plant cells. Plants facing oxidative stress exhibit modulation of lateral root formation by HO-1 through NO and auxin-dependent pathways. The present review provides an in-depth analysis of the structure-function relationship of HO-1 in plants and mammals, correlating them with their adaptive mechanisms of survival under stress.
Collapse
Affiliation(s)
- Neha Singh
- Department of Botany, Gargi College, University of Delhi, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Wang Q, Wang B, Liu H, Han H, Zhuang H, Wang J, Yang T, Wang H, Qin Y. Comparative proteomic analysis for revealing the advantage mechanisms of salt-tolerant tomato ( Solanum lycoperscium). PeerJ 2022; 10:e12955. [PMID: 35251781 PMCID: PMC8893030 DOI: 10.7717/peerj.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
Salt stress causes the quality change and significant yield loss of tomato. However, the resources of salt-resistant tomato were still deficient and the mechanisms of tomato resistance to salt stress were still unclear. In this study, the proteomic profiles of two salt-tolerant and salt-sensitive tomato cultivars were investigated to decipher the salt-resistance mechanism of tomato and provide novel resources for tomato breeding. We found high abundance proteins related to nitrate and amino acids metabolismsin the salt-tolerant cultivars. The significant increase in abundance of proteins involved in Brassinolides and GABA biosynthesis were verified in salt-tolerant cultivars, strengthening the salt resistance of tomato. Meanwhile, salt-tolerant cultivars with higher abundance and activity of antioxidant-related proteins have more advantages in dealing with reactive oxygen species caused by salt stress. Moreover, the salt-tolerant cultivars had higher photosynthetic activity based on overexpression of proteins functioned in chloroplast, guaranteeing the sufficient nutrient for plant growth under salt stress. Furthermore, three key proteins were identified as important salt-resistant resources for breeding salt-tolerant cultivars, including sterol side chain reductase, gamma aminobutyrate transaminase and starch synthase. Our results provided series valuable strategies for salt-tolerant cultivars which can be used in future.
Collapse
Affiliation(s)
- Qiang Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Huifang Liu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hongwei Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hongmei Zhuang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hao Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
12
|
Etesami H, Fatemi H, Rizwan M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112769. [PMID: 34509968 DOI: 10.1016/j.ecoenv.2021.112769] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 05/19/2023]
Abstract
Salinity stress is one of the most destructive non-biological stresses in plants that has adversely affected many agricultural lands in the world. Salinity stress causes many morphological, physiological, epigenetic and genetic changes in plants by increasing sodium and chlorine ions in the plant cells. The plants can alleviate this disorder to some extent through various mechanisms and return the cell to its original state, but if the salt dose is high, the plants may not be able to provide a proper response and can die due to salt stress. Nowadays, scientists have offered many solutions to this problem. Nanotechnology is one of the most emerging and efficient technologies that has been entered in this field and has recorded very brilliant results. Although some studies have confirmed the positive effects of nontechnology on plants under salinity stress, there is no the complete understanding of the relationship and interaction of nanoparticles and intracellular mechanisms in the plants. In the review paper, we have tried to reach a conclusion from the latest articles that how NPs could help salt-stressed plants to recover their cells under salt stress so that we can take a step towards clearing the existing ambiguities for researchers in this field.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Karaj, Iran.
| | - Hamideh Fatemi
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Pakistan.
| |
Collapse
|
13
|
Cui M, Ma Y, Yu Y. Heme oxygenase-1/carbon monoxide signaling participates in the accumulation of triterpenoids of Ganoderma lucidum. J Zhejiang Univ Sci B 2021; 22:941-953. [PMID: 34783224 DOI: 10.1631/jzus.b2000818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ganoderic triterpenoids (GTs) are the primary bioactive constituents of the Basidiomycotina fungus, Ganoderma lucidum. These compounds exhibit antitumor, anti-hyperlipidemic, and immune-modulatory pharmacological activities. This study focused on GT accumulation in mycelia of G. lucidum mediated by the heme oxygenase-1 (HO-1)/carbon monoxide (CO) signaling. Compared with the control, hemin (10 μmol/L) induced an increase of 60.1% in GT content and 57.1% in HO-1 activity. Moreover, carbon monoxide-releasing molecule-2 (CORM-2), CO donor, increased GT content by 56.0% and HO-1 activity by 18.1%. Zn protoporphyrin IX (ZnPPIX), a specific HO-1 inhibitor, significantly reduced GT content by 26.0% and HO-1 activity by 15.8%, while hemin supplementation reversed these effects. Transcriptome sequencing showed that HO-1/CO could function directly as a regulator involved in promoting GT accumulation by regulating gene expression in the mevalonate pathway, and modulating the reactive oxygen species (ROS) and Ca2+ pathways. The results of this study may help enhance large-scale GT production and support further exploration of GT metabolic networks and relevant signaling cross-talk.
Collapse
Affiliation(s)
- Meilin Cui
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Yuchang Ma
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
14
|
Bhatla SC, Gogna M, Jain P, Singh N, Mukherjee S, Kalra G. Signaling mechanisms and biochemical pathways regulating pollen-stigma interaction, seed development and seedling growth in sunflower under salt stress. PLANT SIGNALING & BEHAVIOR 2021; 16:1958129. [PMID: 34429013 PMCID: PMC8526035 DOI: 10.1080/15592324.2021.1958129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 05/04/2023]
Abstract
Sunflower (Helianthus annuus L.) is one of the major oilseed crops cultivated world over for its high-quality oil rich in linoleic acid. It also has established applications in pharmaceutical and biotechnological industries, mainly through recombinant production of unique oil body (OB) membrane proteins-oleosins, which are used for producing a wide variety of vaccines, food products, cosmetics and nutraceuticals. The present review provides a critical analysis of the progress made in advancing our knowledge in sunflower biology, ranging from mechanisms of pollen-stigma interaction, seed development, physiology of seed germination and seedling growth under salt stress, and finally understanding the signaling routes associated with various biochemical pathways regulating seedling growth. Role of nitric oxide (NO) triggered post-translational modifications (PTMs), discovered in the recent past, have paved way for future research directions leading to further understanding of sunflower developmental physiology. Novel protocols recently developed to monitor temporal and spatial distributions of various biochemicals involved in above-stated developmental events in sunflower, will go a long way for similar applications in plant biology in future.
Collapse
Affiliation(s)
| | - Mansi Gogna
- Department of Botany, University of Delhi, Delhi, India
| | - Prachi Jain
- Department of Botany, University of Delhi, Delhi, India
| | - Neha Singh
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Jangipur, West Bengal, India
| | - Geetika Kalra
- Department of Botany , Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
15
|
Singh N, Jain P, Gupta S, Khurana JM, Bhatla SC. N-Nitrosomelatonin, an efficient nitric oxide donor and transporter in Arabidopsis seedlings. Nitric Oxide 2021; 113-114:50-56. [PMID: 34023504 DOI: 10.1016/j.niox.2021.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) produced in plant cells has the unique ability to interact with various other biomolecules, thereby facilitating its own as well as their signaling and associated actions at their sites of biosynthesis and at other sites via transcellular long distance transport of the molecular complexes. Melatonin (Mel) is one such biomolecule produced in plant cells which has fascinated plant biologists with regard to its molecular crosstalk with other molecules to serve its roles as a growth regulator. Present work reports the synthesis of N-nitrosomelatonin (NOMela) and its preferential uptake by Arabidopsis seedlings roots and long distance transport to the leaves through vascular strands. Equimolar (250 μM) concentrations of NOMela and S-nitrosoglutathione (GSNO) in aqueous solutions bring about 52.8% more release of NO from NOMela than from GSNO. Following confocal laser scanning microscopic (CLSM) imaging, Pearson's correlation coefficient analysis of the Scatter gram of endogenously taken up NOMela demonstrates significant NO signal in roots emanating from mitochondria. NOMela (250 μM) taken up by Arabidopsis seedling roots also proved more efficient as a NO transporter from primary root to leaves than 250 μM of GSNO. These novel observations on NOMela thus hold promise to decipher its crucial role as a NO carrier and reservoir in plant cells, and also as a facilitator of melatonin action in plant development.
Collapse
Affiliation(s)
- Neha Singh
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shruti Gupta
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | | | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
16
|
Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:257-268. [PMID: 33529801 DOI: 10.1016/j.plaphy.2021.01.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 05/04/2023]
Abstract
In the era of climate change, salt stress is a promising threat to agriculture, limiting crop production via imposing primary effects such as osmotic and ionic, as well as secondary effects such as oxidative stress, perturbance in hormonal homeostasis, and nutrient imbalance. On the other hand, production areas are expanding into the salt affected regions due to excessive pressure for fulfilling food security targets to meet the needs of continuously increasing human population. Accumulating evidences demonstrate that supplementation of nanoparticles to plants can significantly alleviate the injurious effects caused by various harsh conditions including salt stress, and hence, regulate adaptive mechanisms in plants. Various types of NPs and nanofertilizers have shown a promising evidence so far regarding salt stress management. In this review, we recapitulate recent pioneering progress made towards acquiring salt stress tolerance in crop plants utilizing NPs. Finally, future research directions in this domain to explicate the comprehensive roles of nanoparticles in improving salt tolerance in plants are underscored. To ensure social acceptance and safe use of NPs, some conclusive directions have been elaborated in order to achieve sustainable progress in crop production under saline environments.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, Pakistan.
| | | |
Collapse
|
17
|
Zhang Y, Yang N, Zhao L, Zhu H, Tang C. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC PLANT BIOLOGY 2020; 20:89. [PMID: 32106811 PMCID: PMC7047391 DOI: 10.1186/s12870-019-2221-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Verticillium wilt of cotton is a serious soil-borne disease that causes a substantial reduction in cotton yields. A previous study showed that the endophytic fungus Chaetomium globosum CEF-082 could control Verticillium wilt of cotton, and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear. RESULTS To study the signalling mechanism induced by CEF-082, the transcriptome of cotton seedlings pretreated with CEF-082 was sequenced. The results revealed 5638 DEGs at 24 h post inoculation with CEF-082, and 2921 and 2153 DEGs at 12 and 48 h post inoculation with Verticillium dahliae, respectively. At 24 h post inoculation with CEF-082, KEGG enrichment analysis indicated that the DEGs were enriched mainly in the plant-pathogen interaction, MAPK signalling pathway-plant, flavonoid biosynthesis, and phenylpropanoid biosynthesis pathways. There were 1209 DEGs specifically induced only in cotton plants inoculated with V. dahliae in the presence of the biocontrol fungus CEF-082, and not when cotton plants were only inoculated with V. dahliae. GO analysis revealed that these DEGs were enriched mainly in the following terms: ROS metabolic process, H2O2 metabolic process, defense response, superoxide dismutase activity, and antioxidant activity. Moreover, many genes, such as ERF, CNGC, FLS2, MYB, GST and CML, that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF-082 increases the resistance of cotton to Verticillium wilt. CONCLUSIONS The results of this study showed that CEF-082 could regulate multiple metabolic pathways in cotton. After treatment with V. dahliae, the defense response of cotton plants preinoculated with CEF-082 was strengthened.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan People’s Republic of China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan People’s Republic of China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| |
Collapse
|
18
|
Yanatori I, Richardson DR, Toyokuni S, Kishi F. How iron is handled in the course of heme catabolism: Integration of heme oxygenase with intracellular iron transport mechanisms mediated by poly (rC)-binding protein-2. Arch Biochem Biophys 2019; 672:108071. [PMID: 31421070 DOI: 10.1016/j.abb.2019.108071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
Heme and iron are essential to almost all forms of life. The strict maintenance of heme and iron homeostasis is essential to prevent cellular toxicity and the existence of systemic and intracellular regulation is fundamental. Cytosolic heme can be catabolized and detoxified by heme oxygenases (HOs). Interestingly, free heme detoxification through HOs results in the production of free ferrous iron, which can be potentially hazardous for cells. Recently, the intracellular iron chaperone, poly (rC)-binding protein 2 (PCBP2), has been identified, which can be involved in accepting iron after heme catabolism as well as intracellular iron transport. In fact, HO1, NADPH-cytochrome P450 reductase, and PCBP2 form a functional unit that integrates the catabolism of heme with the binding and transport of iron by PCBP2. In this review, we provide an overview of our understanding of the iron chaperones and discuss the mechanism how iron chaperones bind iron released during the process of heme degradation.
Collapse
Affiliation(s)
- Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Des R Richardson
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan; Department of Pathology and Bosch Institute, University of Sydney, Camperdown, Sydney, New South Wales, 2006, Australia
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Fumio Kishi
- Kenjinkai Healthcare Corporation, 530 Asa, Sanyo-Onoda Yamaguchi, 757-0001, Japan.
| |
Collapse
|
19
|
Zhao Y, Wei X, Ji X, Ma W. Endogenous NO-mediated transcripts involved in photosynthesis and carbohydrate metabolism in alfalfa (Medicago sativa L.) seedlings under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:456-465. [PMID: 31247428 DOI: 10.1016/j.plaphy.2019.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important perennial legume and used as a forage crop worldwide, and has extensive resistance to various abiotic stresses. Nitric oxide (NO) plays a critical role in response to external and internal cues to regulate plant growth and development. However, endogenous NO-mediated molecular mechanisms of drought tolerance in alfalfa is poorly understood. To get a deeper insight into the regulate pathway of NO, RNA-Seq was used to profile transcriptome changes of alfalfa seedlings, which were treated with NO scavenger under normal and drought conditions. A total of 1,025 and 3,461 differently-expressed genes (FDR < 0.0001; fold change ≥ 2) were observed while NO absence under normal and drought conditions, respectively. Based on GO enrich and KEGG pathway analysis, we found NO absence induced photosynthesis, carbon fixation in photosynthetic organisms and primary metabolism were significantly up-enriched. Most oxidoreductase, dehydrogenase, reductase and transferase genes were down-regulated in the above processes. Moreover, NO absence restrained chlorophyll biosynthesis and decreased different sugar content. Therefore, this work provides insights into the mechanism that NO-mediated enhanced photosynthesis and carbohydrate metabolism in alfalfa under drought stress.
Collapse
Affiliation(s)
- Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Xiangzhuo Ji
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Wenjing Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| |
Collapse
|
20
|
Keisham M, Jain P, Singh N, von Toerne C, Bhatla SC, Lindermayr C. Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide 2019; 88:10-26. [DOI: 10.1016/j.niox.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
|
21
|
Singh N, Bhatla SC, Demidchik V. Plants and human beings engage similar molecular crosstalk with nitric oxide under stress conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:695-701. [PMID: 31029180 DOI: 10.1071/fp19018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/03/2019] [Indexed: 05/08/2023]
Abstract
Human beings and plants experience a variety of stress conditions and adapt themselves through novel molecular crosstalk in their cellular constituents. Nitric oxide (NO), haemoglobin and melatonin interact with each other not only in blood stream of human beings, but also in the cells and metabolically active conducting strands of plants. Specialised sites of biosynthesis and differential intracellular spatial distribution of these molecules have been clearly demonstrated by the authors in plant systems. This has led to an understanding of the role of these molecules under salt stress conditions experienced by plants: NO is a modulator of enzyme activity through S-nitrosylation and tyrosine nitration, haemoglobin (phytoglobin) is an NO scavenger, and melatonin is a reactive oxygen species (ROS) scavenger involved in key crosstalk in both plants and humans facing stress. Our recent work on heme oxygenase (HO) activity modulation by stress in plants, and its interaction with NO, further demonstrates common features of molecular crosstalk in protecting plants and human beings from stress.
Collapse
Affiliation(s)
- Neha Singh
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi-110007, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi-110007, India; and Corresponding author.
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Minsk, Belarus
| |
Collapse
|
22
|
Gogna M, Bhatla SC. Biochemical mechanisms regulating salt tolerance in sunflower. PLANT SIGNALING & BEHAVIOR 2019; 14:1670597. [PMID: 31566062 PMCID: PMC6866699 DOI: 10.1080/15592324.2019.1670597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sunflower plants are semi-tolerant to salt stress. Calcium modulates the expression of oubain-sensitive ATPases, responsible for sodium fluxes in cells. Salt stress delays degradation of oil body (OB) membrane proteins. Serotonin and melatonin contents are elevated in response to salt stress. Melatonin can detoxify the seedlings of elevated reactive oxygen species (ROS) levels. Enhanced nitric oxide (NO) expression correlates with NaCl-induced modulation of seedling growth. Salt stress enhances S-nitrosylation of cytosolic proteins in seedling cotyledons, while in roots, denitrosylation of proteins is observed. Lipid peroxide content and glutathione peroxidase (GPX4) activity are enhanced in response to salt stress. Salt stress downregulates the activity of superoxide dismutase (SOD) and upregulates the activity of GPX4 and glutathione reductase (GR). Heme oxygenase-1 (HO-1) abundance in cells surrounding the secretory canal in seedling cotyledons is enhanced in response to salt stress. NO negatively regulates the total glutathione homeostasis and regulates polyamine and glycine betaine homeostasis in response to salt stress. An intricate biochemical crosstalk is thus observed to control salt tolerance mechanisms in sunflower.
Collapse
Affiliation(s)
- Mansi Gogna
- Laboratory of Plant Physiology, Department of Botany, University of Delhi, Delhi, India
| | - Satish C. Bhatla
- Laboratory of Plant Physiology, Department of Botany, University of Delhi, Delhi, India
- CONTACT Satish C. Bhatla Laboratory of Plant Physiology, Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
23
|
Amooaghaie R, Tabatabaei F, Ahadi A. Alterations in HO-1 expression, heme oxygenase activity and endogenous NO homeostasis modulate antioxidant responses of Brassica nigra against nano silver toxicity. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:75-84. [PMID: 29870881 DOI: 10.1016/j.jplph.2018.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most widely-used nanomaterials, which are toxic and can cause physiological disorders in plants. The aim of the present study was to investigate whether a possible signaling link between heme oxygenase (HO) and nitric oxide (NO) is implicated in alleviating the toxicity of AgNPs as well as AgNO3. The results showed that exposure to 400 mg L-1 of AgNPs or AgNO3 reduced the chlorophyll content and the growth parameters in Brassica nigra. Data on Ag accumulation as well as the evaluation of lipid peroxidation and the H2O2 content in roots and shoots revealed that AgNP exerted more toxicity than AgNO3. Applying AgNP and AgNO3, respectively, increased HO transcripts by 87.5 and 37.3% and elevated the endogenous NO content 51.8 and 28.5%. The application of both hematin (as an inducer of HO) and sodium nitroprusside (SNP, as a NO donor) reversed the chlorosis and improved plant growth under AgNP and Ag+ ions stresses. Hematin decreased Ag accumulation in plants, indicating that this compound triggered an avoidance mechanism. Hematin and SNP enhanced the activities of antioxidant enzymes and proline accumulation, in parallel to increasing HO transcripts and NO release levels in the roots. ZnPPIX, as the inhibitor of HO, and cPTIO, as the specific NO scavenger, differentially blocked these effects. These findings revealed for the first time that HO might confer an increased tolerance to AgNP by activating the antioxidant systems, which was partially mediated by NO signal.
Collapse
Affiliation(s)
- Rayhaneh Amooaghaie
- Biology Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Tabatabaei
- Biology Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
24
|
Jain P, Bhatla SC. Tyrosine nitration of cytosolic peroxidase is probably triggered as a long distance signaling response in sunflower seedling cotyledons subjected to salt stress. PLoS One 2018; 13:e0197132. [PMID: 29768452 PMCID: PMC5955538 DOI: 10.1371/journal.pone.0197132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Present work focuses on tissue and concentration-dependent effect of nitric oxide (NO) on the modulation of cytosolic peroxidase (POD; EC 1.11.1.7) activity in 2-day old etiolated sunflower (Helianthus annuus L.) seedlings. Exogenously supplied NO (in the form of sodium nitroprusside [SNP] or diethylenetriamine NONOate [DETA]; 125 to 500 μM) results in noteworthy enhancement in seedling growth in a concentration dependent manner irrespective of salt-stress and differentially affects POD activity in 2-day old seedling cotyledons. Elevated NO availability leads to an increase in the specific activity of POD in a concentration-dependent manner within 48 hrs as a rapid signaling response. Purification of POD protein using immunoprecipitation technique has shown that cotyledons derived from salt stressed seedlings exhibit a higher extent of tyrosine nitration of POD as compared to the control seedlings. Out of the four tyrosine residues found in the amino acid sequence of POD, the one at position 100 has been predicted to undergo nitration. Thus, a probable NO-POD crosstalk is evident in sunflower seedling cotyledons accompanying salt stress.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| | - Satish C. Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
25
|
Janicka MG, Reda MG, Czy Ewska K, Kaba A K. Involvement of signalling molecules NO, H 2O 2 and H 2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:428-439. [PMID: 32290982 DOI: 10.1071/fp17095] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/20/2017] [Indexed: 05/27/2023]
Abstract
In the present study we demonstrate that the signalling molecules NO, H2O2 and H2S are important for understanding the mechanisms of modification of plasma membrane H+-ATPase (EC 3.6.3.14) activity in conditions of both salt (50mM NaCl) and low temperature (10°C, LT) stress. Plants were subjected to stress conditions for 1 or 6 days. After 3 days of exposure to stress some of the plants were transferred to control conditions for another 3 days: post-stressed plants (3+3). We measured the endogenous levels of signalling molecules in stressed plants. To determine the physiological significance of NO, H2O2 and H2S induced activity of plasma membrane H+-ATPase (PM H+-ATPase) in salt and LT stresses, we investigated the activity of the plasma membrane proton pump in stress conditions, and plants were additionally supplemented with PTIO (a scavenger of NO), ascorbic acid (a scavenger of H2O2) or hypotaurine (a scavenger of H2S). H2S contributed to increased activity of PM H+-ATPase in short-term salt stress (1 day) and in low temperature treated plants (both 6 days and post-stressed plants), by stimulation of expression of several genes encoding isoforms of the plasma membrane proton pump (CsHA2, CsH4, CsH8, CsH9 and CsHA10). In contrast, NO and H2O2 play a minor role in the regulation of ATPase activity at the genetic level, because they significantly increased the expression of only one isoform, CsHA1, the expression level of which was very low in the tissues of the control plants, and additionally they slightly increased the expression of the gene encoding the isoform CsHA2. However, NO plays an important role in stimulation of the plasma membrane proton pumps under salt stress and low temperature. NO participates in post-translational modifications because it leads to increased enzyme phosphorylation and an increased H+/ATP coupling ratio.
Collapse
Affiliation(s)
- Ma Gorzata Janicka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroc?aw, Kanonia 6/8, 50-328 Wroc?aw, Poland
| | - Ma Gorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroc?aw, Kanonia 6/8, 50-328 Wroc?aw, Poland
| | - Katarzyna Czy Ewska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroc?aw, Kanonia 6/8, 50-328 Wroc?aw, Poland
| | - Katarzyna Kaba A
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroc?aw, Kanonia 6/8, 50-328 Wroc?aw, Poland
| |
Collapse
|
26
|
Jain P, von Toerne C, Lindermayr C, Bhatla SC. S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. PHYSIOLOGIA PLANTARUM 2018; 162:49-72. [PMID: 28902403 DOI: 10.1111/ppl.12641] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) and various reactive nitrogen species produced in cells in normal growth conditions, and their enhanced production under stress conditions are responsible for a variety of biochemical aberrations. The present findings demonstrate that sunflower seedling roots exhibit high sensitivity to salt stress in terms of nitrite accumulation. A significant reduction in S-nitrosoglutathione reductase (GSNOR) activity is evident in response to salt stress. Restoration of GSNOR activity with dithioerythritol shows that the enzyme is reversibly inhibited under conditions of 120 mM NaCl. Salt stress-mediated S-nitrosylation of cytosolic proteins was analyzed in roots and cotyledons using biotin-switch assay. LC-MS/MS analysis revealed opposite patterns of S-nitrosylation in seedling cotyledons and roots. Salt stress enhances S-nitrosylation of proteins in cotyledons, whereas roots exhibit denitrosylation of proteins. Highest number of proteins having undergone S-nitrosylation belonged to the category of carbohydrate metabolism followed by other metabolic proteins. Of the total 61 proteins observed to be regulated by S-nitrosylation, 17 are unique to cotyledons, 4 are unique to roots whereas 40 are common to both. Eighteen S-nitrosylated proteins are being reported for the first time in plant systems, including pectinesterase, phospholipase d-alpha and calmodulin. Further physiological analysis of glyceraldehyde-3-phosphate dehydrogenase and monodehydroascorbate reductase showed that salt stress leads to a reversible inhibition of both these enzymes in cotyledons. However, seedling roots exhibit enhanced enzyme activity under salinity stress. These observations implicate the role of S-nitrosylation and denitrosylation in NO signaling thereby regulating various enzyme activities under salinity stress in sunflower seedlings.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum Muenchen, D-80939, München, Germany
| | - Christian Lindermayr
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
27
|
Stolarz M, Dziubinska H. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1766. [PMID: 29093722 PMCID: PMC5651625 DOI: 10.3389/fpls.2017.01766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/27/2017] [Indexed: 05/04/2023]
Abstract
Action potentials (APs), i.e., long-distance electrical signals, and circumnutations (CN), i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0-500 mOsm) were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min) and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs) propagating basipetally and acropetally with a velocity of 12-20 cm min-1 were observed. The number of SAPs increased 2-3 times (7-10 SAPs 24 h-1plant-1) in the mild salt stress (160 mOsm NaCl and KCl), compared to the control and strong salt stress (3-4 SAPs 24 h-1 plant-1 in the control and 300 mOsm KCl and NaCl). Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3-24 APs) transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | |
Collapse
|
28
|
Singh N, Bhatla SC. Signaling through reactive oxygen and nitrogen species is differentially modulated in sunflower seedling root and cotyledon in response to various nitric oxide donors and scavengers<sup/>. PLANT SIGNALING & BEHAVIOR 2017; 12:e1365214. [PMID: 28862537 PMCID: PMC5640198 DOI: 10.1080/15592324.2017.1365214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/04/2017] [Indexed: 05/04/2023]
Abstract
Sodium nitroprusside (SNP), diethylenetriamine NONOate (DETA), S-nitroso-n-acetyl-D,L- penicillamine (SNAP), and 4-(p-methoxyphenyl)-1,3,2- Oxathiazolylium-5-olate (CAY) exhibit differential NO releasing ability in aqueous solution and hemoglobin is a more efficient NO quencher than cPTIO in solution. DETA releases 16% more NO compared with SNP in solution. Various NO donors (SNP, DETA, SNAP, and CAY) also bring about a differential but concentration-dependent increase in endogenous NO in seedling cotyledons and roots. Two-day old, dark-grown seedling roots exhibit 95%, 77%, 59% and 45% increase in NO content in presence of each of 500 µM of DETA, SNAP, CAY and SNP, respectively, relative to control. NO accumulation in the tissue system as a response to NO donors is reflected in terms of corresponding peroxynitrite accumulation. Release of cyanide and free iron as byproducts of SNP dissociation in solution limits its usefulness as an NO donor. SNP leads to profuse ROS generation in sunflower seedling roots. Light is not a pre-requisite for NO generation from SNP. Present work also demonstrates the usefulness of hemoglobin over cPTIO as NO scavenger. Hemoglobin brings about increasing NO quenching with its increasing concentration from 2.5 to 10 µM. Greater sensitivity of the root system to the NO donor/scavenger treatments is evident, it being in direct contact with the molecules in the incubation/ growth medium. This differential effect does not seem to be significantly transmitted to the cotyledons (long-distance signaling).
Collapse
Affiliation(s)
- Neha Singh
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| | - Satish C. Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
29
|
Guo S, Zuo Y, Zhang Y, Wu C, Su W, Jin W, Yu H, An Y, Li Q. Large-scale transcriptome comparison of sunflower genes responsive to Verticillium dahliae. BMC Genomics 2017; 18:42. [PMID: 28061745 PMCID: PMC5219742 DOI: 10.1186/s12864-016-3386-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sunflower Verticillium wilt (SVW) is a vascular disease caused by root infection with Verticillium dahliae (V. dahlia). It is a serious threat to the yield and quality of sunflower. However, chemical and agronomic measures for controlling this disease are not effective. The selection of more resistant genotypes is a desirable strategy to reduce contamination. A deeper knowledge of the molecular mechanisms and genetic basis underlying sunflower Verticillium wilt is necessary to accelerate breeding progress. RESULTS An RNA-Seq approach was used to perform global transcriptome profiling on the roots of resistant (S18) and susceptible (P77) sunflower genotypes infected with V. dahlia. Different pairwise transcriptome comparisons were examined over a time course (6, 12 and 24 h, and 2, 3, 5 and 10 d post inoculation). In RD, SD and D datasets, 1231 genes were associated with SVW resistance in a genotype-common transcriptional pattern. Moreover, 759 and 511 genes were directly related to SVW resistance in the resistant and susceptible genotypes, respectively, in a genotype-specific transcriptional pattern. Most of the genes were demonstrated to participate in plant defense responses; these genes included peroxidase (POD), glutathione peroxidase, aquaporin PIP, chitinase, L-ascorbate oxidase, and LRR receptors. For the up-regulated genotype-specific differentially expressed genes (DEGs) in the resistant genotype, higher average fold-changes were observed in the resistant genotype compared to those in the susceptible genotype. An inverse effect was observed in the down-regulated genotype-specific DEGs in the resistant genotype. KEGG analyses showed that 98, 112 and 52 genes were classified into plant hormone signal transduction, plant-pathogen interaction and flavonoid biosynthesis categories, respectively. Many of these genes, such as CNGC, RBOH, FLS2, JAZ, MYC2 NPR1 and TGA, regulate crucial points in defense-related pathway and may contribute to V. dahliae resistance in sunflower. CONCLUSIONS The transcriptome profiling results provided a clearer understanding of the transcripts associated with the crosstalk between sunflower and V. dahliae. The results identified several differentially expressed unigenes involved in the hyper sensitive response (HR) and the salicylic acid (SA)/jasmonic acid (JA)-mediated signal transduction pathway for resistance against V. dahliae. These results are useful for screening resistant sunflower genotypes.
Collapse
Affiliation(s)
- Shuchun Guo
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.,Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yongchun Zuo
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.,The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, College of life sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yanfang Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Chengyan Wu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Wenxia Su
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Haifeng Yu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yulin An
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
30
|
Stolarz M, Dziubinska H. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1766. [PMID: 29093722 DOI: 10.1007/s11738-017-2528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/27/2017] [Indexed: 05/21/2023]
Abstract
Action potentials (APs), i.e., long-distance electrical signals, and circumnutations (CN), i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0-500 mOsm) were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min) and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs) propagating basipetally and acropetally with a velocity of 12-20 cm min-1 were observed. The number of SAPs increased 2-3 times (7-10 SAPs 24 h-1plant-1) in the mild salt stress (160 mOsm NaCl and KCl), compared to the control and strong salt stress (3-4 SAPs 24 h-1 plant-1 in the control and 300 mOsm KCl and NaCl). Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3-24 APs) transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Halina Dziubinska
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
31
|
Handschuh-Wang S, Wang T, Zhou X. Recent advances in hybrid measurement methods based on atomic force microscopy and surface sensitive measurement techniques. RSC Adv 2017. [DOI: 10.1039/c7ra08515j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review summaries the recent progress of the combination of optical and non-optical surface sensitive techniques with the atomic force microscopy.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Tao Wang
- Functional Thin Films Research Center
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|
32
|
Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 2016; 61:10-19. [DOI: 10.1016/j.niox.2016.09.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
|