1
|
Zununi Vahed S, Hejazian SM, Ardalan M, Anagnostou F, Pavon-Djavid G, Barzegari A. The impacts of dietary antioxidants on cardiovascular events in hemodialysis patients: An update on the cellular and molecular mechanisms. Nutr Rev 2025; 83:e615-e634. [PMID: 38728008 DOI: 10.1093/nutrit/nuae039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular-related complications (CVCs) are the primary cause of death in patients undergoing hemodialysis (HD), accounting for greater than half of all deaths. Beyond traditional risk factors, chronic inflammation, extreme oxidative stress (OS), and endothelial dysfunction emerge as major contributors to accelerated CVCs in HD patients. Ample evidence shows that HD patients are constantly exposed to excessive OS, due to uremic toxins and pro-oxidant molecules that overwhelm the defense antioxidant mechanisms. The present study highlights the efficiency of natural antioxidant supplementation in managing HD-induced inflammation, OS, and consequently CVCs. Moreover, it discusses the underlying molecular mechanisms by which these antioxidants can decrease mitochondrial and endothelial dysfunction and ameliorate CVCs in HD patients. Given the complex nature of OS and its molecular pathways, the utilization of specific antioxidants as a polypharmacotherapy may be necessary for targeting each dysregulated signaling pathway and reducing the burden of CVCs.
Collapse
Affiliation(s)
| | | | | | - Fani Anagnostou
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
- Service of Odontology, Hospital Pitié-Salpêtrière AP-HP, Paris, France
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM UMR-S 1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 93430 Villetaneuse, France
| | - Abolfazl Barzegari
- Université Sorbonne Paris Nord, INSERM UMR-S 1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging, 93430 Villetaneuse, France
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Fu Q, Gao Q, Jiao S, Da F, Guo J, Liu Y, Liu J. Adipose-derived stem cells ameliorate radiation-induced lung injury by activating the DDAH1/ADMA/eNOS signaling pathway. Regen Ther 2024; 27:398-407. [PMID: 38694446 PMCID: PMC11061648 DOI: 10.1016/j.reth.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Background Ionizing radiation-induced lung injury is caused by the initial inflammatory reaction and leads to advanced fibrosis of lung tissue. Adipose-derived stem cells (ASCs) are a type of mesenchymal stem cell that can differentiate into various functional cell types with broad application prospects in the treatment of tissue damage. The purpose of this study was to explore the protective effect of ASCs against radiation-induced lung injury and to provide a novel basis for prevention and treatment of radiation-induced lung injury. Materials and methods Fifty mice were randomly divided into a control group (Ctrl), radiation exposure group (IR), radiation exposure plus ASC treatment group (IR + ASC), radiation exposure plus L-257 group (IR + L-257), and radiation exposure plus ASC treatment and L-257 group (IR + ASC + L-257). Mice in IR, IR + ASC, and IR + ASC + L-257 groups were exposed to a single whole-body dose of 5 Gy X-rays (160 kV/25 mA, 1.25 Gy/min). Within 2 h after irradiation, mice in IR + ASC and IR + ASC + L-257 groups were injected with 5 × 106 ASCs via the tail vein. Mice in IR + L-257 and IR + ASC + L-257 groups were intraperitoneally injected with 30 mg/kg L-257 in 0.5 mL saline. Results The mice in the IR group exhibited lung hemorrhage, edema, pulmonary fibrosis, and inflammatory cell infiltration, increased release of proinflammatory cytokines, elevation of oxidative stress and apoptosis, and inhibition of the dimethylarginine dimethylamino hydratase 1 (DDAH1)/ADMA/eNOS signaling pathway. ASC treatment alleviated radiation-induced oxidative stress, apoptosis, and inflammation, and restored the DDAH1/ADMA/eNOS signaling pathway. However, L-257 pretreatment offset the protective effect of ASCs against lung inflammation, oxidative stress, and apoptosis. Conclusions These data suggest that ASCs ameliorate radiation-induced lung injury, and the mechanism may be mediated through the DDAH1/ADMA/eNOS signaling pathway.
Collapse
Affiliation(s)
- Quanwei Fu
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710038, China
| | - Qiaohui Gao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710038, China
| | - Shengyuan Jiao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710038, China
| | - Fei Da
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710038, China
| | - Juan Guo
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710038, China
| | - Yunen Liu
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
- Department of Emergency Medicine, General Hospital of Northern Theater Command, No. 83 Road, Shenhe District, Shenyang l10016, China
| | - Junye Liu
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710038, China
| |
Collapse
|
3
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
4
|
Natale F, Franzese R, Luisi E, Mollo N, Marotta L, Solimene A, D’Elia S, Golino P, Cimmino G. The Increasing Problem of Resistant Hypertension: We'll Manage till Help Comes! Med Sci (Basel) 2024; 12:53. [PMID: 39449409 PMCID: PMC11503307 DOI: 10.3390/medsci12040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Arterial hypertension remains the major cardiovascular risk worldwide. It is estimated that under 50 years of age one in every three adults is hypertensive while beyond the age of 50 the prevalence is almost 50% globally. The latest World Health Organization (WHO) Global Report on Hypertension indicated that the global number of hypertensive patients almost doubled in the last three decades, with related increasing deaths, disability, and costs annually. Because of this global increase, early diagnosis and timely treatment is of great importance. However, based on the WHO Global Report, it is estimated that up to 46% of individuals were never diagnosed. Of those diagnosed, less than 50% were on treatment, with nearly half among these at target according to the current guidelines. It is also important to note that an increasing number of hypertensive patients, despite the use of three or more drugs, still do not achieve a blood pressure normalization, thus defining the clinical scenario of resistant hypertension (RH). This condition is associated to a higher risk of hypertension-mediated organ damage and hospitalization due to acute cardiovascular events. Current guidelines recommend a triple combination therapy (renin angiotensin system blocking agent + a thiazide or thiazide-like diuretic + a dihydropyridinic calcium-channel blocker) to all patients with RH. Beta-blockers and mineralocorticoid receptor antagonists, alone or in combination, should be also considered based on concomitant conditions and potential contraindications. Finally, the renal denervation is also proposed in patients with preserved kidney function that remain hypertensive despite the use of maximum tolerated medical treatment. However, the failure of this procedure in the long term and the contraindication in patients with kidney failure is a strong call for a new therapeutic approach. In the present review, we will discuss the pharmacological novelties to come for the management of hypertension and RH in the next future.
Collapse
Affiliation(s)
- Francesco Natale
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Rosa Franzese
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Ettore Luisi
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Noemi Mollo
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Luigi Marotta
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Achille Solimene
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Saverio D’Elia
- Cardiology Unit, AOU Luigi Vanvitelli, 80138 Naples, Italy
| | - Paolo Golino
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy;
- Cardiology Unit, AOU Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
5
|
Rapone B, Inchingolo F, Tartaglia GM, De Francesco M, Ferrara E. Asymmetric Dimethylarginine as a Potential Mediator in the Association between Periodontitis and Cardiovascular Disease: A Systematic Review of Current Evidence. Dent J (Basel) 2024; 12:297. [PMID: 39329863 PMCID: PMC11431043 DOI: 10.3390/dj12090297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Background: Periodontitis, a chronic inflammatory disease, has been associated with an elevated risk of cardiovascular disease (CVD). Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, has emerged as a potential biomarker linking periodontitis, endothelial dysfunction, and CVD. This systematic review aimed to synthesize the existing evidence on the relationship between ADMA, periodontitis, and CVD, and to evaluate ADMA's potential as a biomarker for periodontal disease progression and its correlation with endothelial dysfunction. Methods: A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science databases from their inception to March 2023. Observational and interventional studies assessing ADMA levels in patients with periodontitis and/or CVD were included. The methodological quality of the included studies was evaluated using the NIH Quality Assessment Tools. Due to the heterogeneity of the included studies, a qualitative synthesis was performed. Results: Cross-sectional studies consistently demonstrated significantly elevated ADMA levels in patients with periodontitis and CVD compared to healthy controls. The prospective cohort study indicated that successful periodontal treatment was associated with a significant reduction in ADMA levels and concomitant improvement in endothelial function. The pilot cohort study reported a significant decrease in ADMA levels following periodontal therapy in patients with chronic kidney disease. However, the randomized controlled trials did not demonstrate significant alterations in ADMA levels or endothelial function subsequent to periodontal treatment in patients with periodontitis alone. Conclusions: Periodontal treatment may effectively reduce ADMA levels and improve endothelial function, particularly in patients with comorbidities. These findings suggest that ADMA is a promising biomarker linking periodontitis, endothelial dysfunction, and CVD. However, the limitations of this study include the small number of studies, heterogeneity in the study designs, and a lack of long-term follow-up data. Further high-quality, longitudinal studies are required to confirm its clinical utility and elucidate the underlying mechanisms of these relationships. The integration of periodontal care into CVD prevention and management strategies warrants consideration, as it may contribute to mitigating the cardiovascular risk associated with periodontitis.
Collapse
Affiliation(s)
- Biagio Rapone
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy;
| | - Francesco Inchingolo
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy;
| | | | - Maurizio De Francesco
- Department of Neurosciences, Institute of Clinical Dentistry, University of Padua, 35128 Padua, Italy;
| | - Elisabetta Ferrara
- Department of Human Sciences, Law, and Economics, Telematic University Leonardo da Vinci, UNIDAV, Torrevecchia Teatina, 66100 Chieti, Italy;
| |
Collapse
|
6
|
Pavitra E, Acharya RK, Gupta VK, Verma HK, Kang H, Lee JH, Sahu T, Bhaskar L, Raju GSR, Huh YS. Impacts of oxidative stress and anti-oxidants on the development, pathogenesis, and therapy of sickle cell disease: A comprehensive review. Biomed Pharmacother 2024; 176:116849. [PMID: 38823275 DOI: 10.1016/j.biopha.2024.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
Sickle cell disease (SCD) is the most severe monogenic hemoglobinopathy caused by a single genetic mutation that leads to repeated polymerization and depolymerization of hemoglobin resulting in intravascular hemolysis, cell adhesion, vascular occlusion, and ischemia-reperfusion injury. Hemolysis causes oxidative damage indirectly by generating reactive oxygen species through various pathophysiological mechanisms, which include hemoglobin autoxidation, endothelial nitric oxide synthase uncoupling, reduced nitric oxide bioavailability, and elevated levels of asymmetric dimethylarginine. Red blood cells have a built-in anti-oxidant system that includes enzymes like sodium dismutase, catalase, and glutathione peroxidase, along with free radical scavenging molecules, such as vitamin C, vitamin E, and glutathione, which help them to fight oxidative damage. However, these anti-oxidants may not be sufficient to prevent the effects of oxidative stress in SCD patients. Therefore, in line with a recent FDA request that the focus to be placed on the development of innovative therapies for SCD that address the root cause of the disease, there is a need for therapies that target oxidative stress and restore redox balance in SCD patients. This review summarizes the current state of knowledge regarding the role of oxidative stress in SCD and the potential benefits of anti-oxidant therapies. It also discusses the challenges and limitations of these therapies and suggests future directions for research and development.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, Munich 85764, Germany
| | - Haneul Kang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Tarun Sahu
- Department of Physiology, All Indian Institute of Medical Science, Raipur, Chhattisgarh, India
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
7
|
Dai Y, Sang XB, Bai WP. N-acetylcysteine and Hydroxychloroquine Ameliorate ADMA-Induced Fetal Growth Restriction in Mice via Regulating Oxidative Stress and Autophagy. Reprod Sci 2024; 31:779-790. [PMID: 37845590 DOI: 10.1007/s43032-023-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Fetal growth restriction (FGR) seriously threatens perinatal health. The main cause of FGR is placental malperfusion, but the specific mechanism is still unclear, and there is no effective treatment for FGR. We constructed a FGR mouse model by adding exogenous asymmetric dimethylarginine (ADMA) through in vivo experiments and found that ADMA could cause placental dysplasia and induce the occurrence of FGR. Compared with the control group, reactive oxygen species (ROS) production in the placenta was increased in mice with FGR, and the expression of autophagy-related proteins p-AKT/AKT, p-mTOR/mTOR, and P62 was significantly decreased, while the expression of Beclin-1 and LC3-II was significantly increased in the FGR group. Furthermore, ADMA had a favorable effect in promoting the formation of autophagosomes. Hydroxychloroquine (HCQ) and N-acetylcysteine (NAC) improved ADMA-induced disorders of placental development and alleviated ADMA-induced FGR. This study found that ADMA could cause excessive autophagy of trophoblasts by increasing the level of oxidative stress, ultimately leading to the occurrence of FGR, and HCQ and NAC had therapeutic effects on ADMA-induced FGR.
Collapse
Affiliation(s)
- Yan Dai
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiu-Bo Sang
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen-Pei Bai
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Park MJ, Lee J, Bagon BB, Matienzo ME, Lim S, Kim K, Lee CM, Wu J, Kim DI. N G ,N G -Dimethylarginine Dimethylaminohydrolase 1 Expression Is Dispensable for Cold- or Diet-Induced Thermogenesis. Adv Biol (Weinh) 2024; 8:e2300192. [PMID: 38164809 DOI: 10.1002/adbi.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The strategy to activate thermogenic adipocytes has therapeutic potential to overcome obesity as they dissipate surplus energy as heat through various mechanisms. NG,NG-dimethylarginine dimethylaminohydrolases (DDAHs) are enzymes involved in the nitric oxide-protein kinase G signaling axis which increases thermogenic gene expression. However, the role of DDAHs in thermogenic adipocytes has not been elucidated. The adipocyte-specific Ddah1 knockout mice are generated by crossing Ddah1fl/fl mice with adiponectin Cre recombinase mice. Adipocyte-specific DDAH1 overexpressing mice are generated using adeno-associated virus-double-floxed inverse open reading frame (AAV-DIO) system. These mice are analyzed under basal, cold exposure, or high-fat diet (HFD) conditions. Primary inguinal white adipose tissue cells from adipocyte-specific Ddah1 knockout mice expressed comparable amounts of Ucp1 mRNA. Adipocyte-specific DDAH1 overexpressing mice do not exhibit enhanced activation of thermogenic adipocytes. In addition, when these mice are exposed to cold environment or fed an HFD, their body temperature/weight and thermogenesis-related gene and protein expressions are unchanged. These findings indicate that DDAH1 does not play a role in either cold- or diet-induced thermogenesis. Therefore, adipocyte targeting DDAH1 gene therapy for the treatment of obesity is unlikely to be effective.
Collapse
Affiliation(s)
- Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Sangyi Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
9
|
Li H, Liu T, Yang L, Ma F, Wang Y, Zhan Y, Mao H. Knowledge landscapes and emerging trends of cardiorenal syndrome type 4: a bibliometrics and visual analysis from 2004 to 2022. Int Urol Nephrol 2024; 56:155-166. [PMID: 37422767 PMCID: PMC10776493 DOI: 10.1007/s11255-023-03680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To evaluate the key topics and emerging trends in the field of cardiorenal syndrome type 4 (CRS-4) by bibliometrics and visual analysis. METHODS Citespace, VOSviewer, and Bibliometrix package were used to analyze the collected data from the Web of Science Core Collection, including publication trends, leading countries, active authors and institutions, co-cited references, journals, and keyword analysis. RESULTS Finally, 2267 articles were obtained. From 2004 to 2022, the number of publications was increasing year by year. A total of 735 authors from 543 institutions in 94 countries/regions participated in the publication of CRS-4 field, which were mostly from North America and Europe. Most of the co-cited references were reviews or guidelines from kidney/heart specialist journals or top journals. The journals concerning nephrology had a higher academic influence in this field. Oxidative stress and inflammation remained hot topics in CRS-4 research, as well as uremic toxins. Fibroblast growth factor 23 and klotho were emerging trends in recent years. Sodium glucose cotransporter 2 (SGLT2) inhibitors were the latest frontier hot spots. Future research advances may pay more attention to the prevention and prognosis assessment of CRS-4. CONCLUSION Our study provides some key information for scholars to determine the direction of future research.
Collapse
Affiliation(s)
- Han Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
10
|
Moini Jazani A, Nasimi Doost Azgomi H, Nasimi Doost Azgomi A, Nasimi Doost Azgomi R. Effect of hydrotherapy, balneotherapy, and spa therapy on blood pressure: a mini-review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1387-1396. [PMID: 37438576 DOI: 10.1007/s00484-023-02512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/27/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Hypertension (high blood pressure) is one of the most common health conditions. When your blood pressure is high for a long term, it can cause health problems, such as heart disease. In addition to the main methods of treatment, there are various methods of adjuvant therapy, one of the most common of which is hydrotherapy. In this review study, we examined the effects of hydrotherapy, balneotherapy, and spa therapy on blood pressure. We searched the PubMed/MEDLINE, Web of Science, Scopus, and Science Direct databases until April 2022 using related keywords. In summary, the current study shows that different hydrotherapy methods may improve blood pressure. Hydrotherapy as one of the adjunctive therapy methods can be effective in lowering blood pressure. Blood circulation is smoothed by the warmth of the water. This improvement may be achieved by regulating heart rate, releasing hormones that control blood pressure, or regulating the activity of baroreceptors or chemoreceptors. In addition to using medications, hypertension patients also use non-pharmacological approaches in their care, including hydrotherapy, balneotherapy, and warm water foot soaks performed at home. Although several lines of evidence show the potential effects of hydrotherapy, balneotherapy, and spa therapy on blood pressure, many clinical trials are needed.
Collapse
Affiliation(s)
- Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University Of Medical Sciences, Ardabil, 5618985991, Iran
| | - Hamidreza Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University Of Medical Sciences, Ardabil, 5618985991, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University Of Medical Sciences, Ardabil, 5618985991, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University Of Medical Sciences, Ardabil, 5618985991, Iran.
| |
Collapse
|
11
|
Reyes LZ, Winterberg PD, George RP, Kelleman M, Harris F, Jo H, Brown LAS, Morris CR. Arginine Dysregulation and Myocardial Dysfunction in a Mouse Model and Children with Chronic Kidney Disease. Nutrients 2023; 15:2162. [PMID: 37432321 PMCID: PMC10181438 DOI: 10.3390/nu15092162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in chronic kidney disease (CKD). Arginine, the endogenous precursor for nitric oxide synthesis, is produced in the kidneys. Arginine bioavailability contributes to endothelial and myocardial dysfunction in CKD. Plasma from 129X1/SvJ mice with and without CKD (5/6th nephrectomy), and banked plasma from children with and without CKD were analyzed for amino acids involved in arginine metabolism, ADMA, and arginase activity. Echocardiographic measures of myocardial function were compared with plasma analytes. In a separate experiment, a non-specific arginase inhibitor was administered to mice with and without CKD. Plasma citrulline and glutamine concentrations correlated with multiple measures of myocardial dysfunction. Plasma arginase activity was significantly increased in CKD mice at 16 weeks vs. 8 weeks (p = 0.002) and ventricular strain improved after arginase inhibition in mice with CKD (p = 0.03). In children on dialysis, arginase activity was significantly increased vs. healthy controls (p = 0.04). Increasing ADMA correlated with increasing RWT in children with CKD (r = 0.54; p = 0.003). In a mouse model, and children, with CKD, arginine dysregulation correlates with myocardial dysfunction.
Collapse
Affiliation(s)
- Loretta Z. Reyes
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Pamela D. Winterberg
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Roshan Punnoose George
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Michael Kelleman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Frank Harris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hanjoong Jo
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lou Ann S. Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia R. Morris
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Division of Pediatric Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Szlęzak D, Ufnal M, Drapała A, Samborowska E, Wróbel M. Urinary excretion of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine is positively related to nitric oxide level in tissues of normotensive and hypertensive rats. Amino Acids 2023; 55:529-539. [PMID: 36802034 PMCID: PMC10140227 DOI: 10.1007/s00726-023-03246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Nitric oxide (NO) is one of the gaseous transmitters which play a very important role in the regulation of the circulatory system. Decreased NO availability is associated with hypertension, cardiovascular and kidney diseases. Endogenous NO is generated enzymatically by nitric oxide synthase (NOS) depending on the availability of the substrate, cofactors, or presence/absence of inhibitors, such as asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). The objective of this study was to evaluate the potential relationship between NO level in rat tissues (heart and kidneys) and the concentrations of endogenous metabolites related to NO in plasma and urine. The experiment was carried out with 16- and 60-week-old male Wistar Kyoto (WKY) and age-matched male Spontaneously Hypertensive Rats (SHR). NO level in tissue homogenates was determined by the colorimetric method. RT-qPCR was used to verify the expression of the eNOS (endothelial NOS) gene. Plasma and urine concentrations of arginine, ornithine, citrulline, and dimethylarginines were examined by the UPLC-MS/MS method. 16-week-old WKY rats had the highest tissue NO and plasma citrulline levels. Furthermore, 16-week-old WKY rats showed higher urinary excretion of ADMA/SDMA compared to other experimental groups, however, plasma concentrations of arginine, ADMA, and SDMA were comparable between the groups. In conclusion, our research shows that hypertension and aging decrease tissue NO levels and are associated with reduced urinary excretion of NOS inhibitors, i.e., ADMA and SDMA.
Collapse
Affiliation(s)
- Dominika Szlęzak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St, 02-097, Warsaw, Poland
| | - Adrian Drapała
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St, 02-097, Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawińskiego St, 02-106, Warsaw, Poland
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland.
| |
Collapse
|
13
|
Associations of Biopterins and ADMA with Vascular Function in Peripheral Microcirculation from Patients with Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24065582. [PMID: 36982658 PMCID: PMC10056709 DOI: 10.3390/ijms24065582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
We hypothesized that patients with chronic kidney disease (CKD) display an altered plasma amino acid (AA) metabolomic profile that could contribute to abnormal vascular maintenance of peripheral circulation in uremia. The relationships between plasma AAs and endothelial and vascular smooth muscle function in the microcirculation of CKD patients are not well understood. The objective of this study is to investigate to what extent the levels of AAs and its metabolites are changed in CKD patients and to test their relationship with endothelial and vascular smooth muscle function. Patients with CKD stages 3 and 5 and non-CKD controls are included in this study. We report that there was a significant reduction of the biopterin (BH4/BH2) ratio, which was accompanied by increased plasma levels of BH2, asymmetric dimethylarginine (ADMA) and citrulline in patients with CKD-5 vs. CKD-3 vs. controls. In vivo augmentation index measurement showed a positive association with ADMA in all participants. The contribution of nitric oxide, assessed by ex vivo assay, showed a negative association with creatinine, ADMA and citrulline in all participants. In CKD-5, BH4 negatively correlated with ADMA and ornithine levels, and the ex vivo endothelium-mediated dilatation positively correlated with phenylalanine levels. In conclusion, uremia is associated with alterations in AA metabolism that may affect endothelium-dependent dilatation and vascular stiffness in microcirculation. Interventional strategies aiming to normalize the AA metabolism could be of interest as treatment options.
Collapse
|
14
|
Wu Y, Shen S, Chen J, Ni W, Wang Q, Zhou H, Chen J, Zhang H, Mei Z, Sun X, Shen P, Jie Z, Xu W, Hong Z, Ma Y, Wang K, Wan S, Wu H, Xie Z, Qin A, Fan S. Metabolite asymmetric dimethylarginine (ADMA) functions as a destabilization enhancer of SOX9 mediated by DDAH1 in osteoarthritis. SCIENCE ADVANCES 2023; 9:eade5584. [PMID: 36753544 PMCID: PMC9908022 DOI: 10.1126/sciadv.ade5584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease with a series of metabolic changes accompanied by many altered enzymes. Here, we report that the down-regulated dimethylarginine dimethylaminohydrolase-1 (DDAH1) is accompanied by increased asymmetric dimethylarginine (ADMA) in degenerated chondrocytes and in OA samples. Global or chondrocyte-conditional knockout of ADMA hydrolase DDAH1 accelerated OA development in mice. ADMA induces the degeneration and senescence of chondrocytes and reduces the extracellular matrix deposition, thereby accelerating OA progression. ADMA simultaneously binds to SOX9 and its deubiquitinating enzyme USP7, blocking the deubiquitination effects of USP7 on SOX9 and therefore leads to SOX9 degradation. The ADMA level in synovial fluids of patients with OA is increased and has predictive value for OA diagnosis with good sensitivity and specificity. Therefore, activating DDAH1 to reduce ADMA level might be a potential therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiaxin Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qinxin Wang
- Department of Orthopaedic Surgery, China Coast Guard Hospital of the People’s Armed Police Force, Jiaxing, China
| | - Hongyi Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haitao Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zixuan Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhenghua Hong
- Department of Orthopaedic Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Kefan Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuanglin Wan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongfei Wu
- Department of Orthopaedic Surgery, China Coast Guard Hospital of the People’s Armed Police Force, Jiaxing, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Zhao N, Wang Y, Ma Y, Liang X, Zhang X, Gao Y, Dong Y, Bai D, Hu J. Jia-Wei-Si-Miao-Yong-An decoction modulates intestinal flora and metabolites in acute coronary syndrome model. Front Cardiovasc Med 2023; 9:1038273. [PMID: 36684592 PMCID: PMC9845626 DOI: 10.3389/fcvm.2022.1038273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Aims We assessed the efficacy of the traditional Chinese medicine formulation Jia-Wei-Si-Miao-Yong-An decoction (HJ11) in the treatment of acute coronary syndrome and evaluated its impact on the intestinal microbiota and their metabolites. Methods An acute coronary syndrome model was established in rats, which were randomly assigned to the model, HJ11 treatment, and atorvastatin treatment groups. Rats were then administered saline solution (model and sham operation control groups) or drugs by oral gavage for 28 d. Echocardiography was performed and serum creatine kinase-MB and cardiac troponin I levels were monitored to examine the cardiac function. Inflammation was evaluated using hematoxylin and eosin staining of heart tissue, and serum interleukin-2, interleukin-6, tumor necrosis factor alpha, and high-sensitivity C-reactive protein measurements. Gut microbiota composition was analyzed via 16S rRNA gene sequencing. Metabolomics was used to determine fecal metabolites and elucidate the modes of action of HJ11 in acute coronary syndrome treatment. Results HJ11 improved cardiac function and attenuated inflammation in rats with acute coronary syndrome. Relative to the untreated model group, the HJ11-treated group presented normalized Firmicutes/Bacteroidetes ratio and reduced abundances of the bacterial genera norank_f__Ruminococcaceae, Desulfovibrio, Clostridium_sensu_stricto_1, Adlercreutzia, Staphylococcus, Bacteroides, Prevotella, Rikenellaceae_RC9_gut_group, unclassified_o__Bacteroidales, and Ruminococcus_gauvreauii_group. We found 23 differentially expressed intestinal metabolites, and the enriched metabolic pathways were mainly related to amino acid metabolism. We also discovered that asymmetric dimethylarginine levels were strongly associated with cardiovascular disease. Correlation analyses revealed strong associations among intestinal microflora, their metabolites, proinflammatory factors, and cardiac function. Hence, the therapeutic effects of HJ11 on acute coronary syndrome are related to specific alterations in gut microbiota and their metabolites. Conclusion This work demonstrated that HJ11 effectively treats acute coronary syndrome. HJ11 seems to increase the abundance of beneficial bacterial taxa (Bacteroides and Rikenellaceae_RC9_gut_group), mitigate the risk factors associated with cardiovascular disease, alter bacterial metabolites, lower asymmetric dimethylarginine levels, and effectively treat acute coronary syndrome.
Collapse
Affiliation(s)
- Ning Zhao
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Pharmacy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Wang
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Vienna General Hospital, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Xiaoxue Liang
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xi Zhang
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Gao
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Dong
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong Bai
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingqing Hu
- Formula-Syndrome Research Center, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Ivnitsky JJ, Schäfer TV, Rejniuk VL, Golovko AI. Endogenous humoral determinants of vascular endothelial dysfunction as triggers of acute poisoning complications. J Appl Toxicol 2023; 43:47-65. [PMID: 35258106 DOI: 10.1002/jat.4312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
The vascular endothelium is not only the semipermeable membrane that separates tissue from blood but also an organ that regulates inflammation, vascular tone, blood clotting, angiogenesis and synthesis of connective tissue proteins. It is susceptible to the direct cytotoxic action of numerous xenobiotics and to the acute hypoxia that accompanies acute poisoning. This damage is superimposed on the preformed state of the vascular endothelium, which, in turn, depends on many humoral factors. The probability that an exogenous toxicant will cause life-threatening dysfunction of the vascular endothelium, thereby complicating the course of acute poisoning, increases with an increase in the content of endogenous substances in the blood that disrupt endothelial function. These include ammonia, bacterial endotoxin, indoxyl sulfate, para-cresyl sulfate, trimethylamine N-oxide, asymmetric dimethylarginine, glucose, homocysteine, low-density and very-low-density lipoproteins, free fatty acids and products of intravascular haemolysis. Some other endogenous substances (albumin, haptoglobin, haemopexin, biliverdin, bilirubin, tetrahydrobiopterin) or food-derived compounds (ascorbic acid, rutin, omega-3 polyunsaturated fatty acids, etc.) reduce the risk of lethal vascular endothelial dysfunction. The individual variability of the content of these substances in the blood contributes to the stochasticity of the complications of acute poisoning and is a promising target for the risk reduction measures. Another feasible option may be the repositioning of drugs that affect the function of the vascular endothelium while being currently used for other indications.
Collapse
Affiliation(s)
- Jury Ju Ivnitsky
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Timur V Schäfer
- State Scientific Research Test Institute of the Military Medicine of Defense Ministry of the Russian Federation, Saint Petersburg, Russia
| | - Vladimir L Rejniuk
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Alexandr I Golovko
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| |
Collapse
|
17
|
Parthasarathy S, Soundararajan P, Sakthivelu M, Karuppiah KM, Velusamy P, Gopinath SC, Pachaiappan R. The role of prognostic biomarkers and their implications in early detection of preeclampsia: A systematic review. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Guo X, Xing Y, Jin W. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1183586. [PMID: 37152974 PMCID: PMC10160678 DOI: 10.3389/fendo.2023.1183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic microangiopathy is a typical and severe problem in diabetics, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiomyopathy. Patients with type 2 diabetes and diabetic microvascular complications have significantly elevated levels of Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS). ADMA facilitates the occurrence and progression of microvascular complications in type 2 diabetes through its effects on endothelial cell function, oxidative stress damage, inflammation, and fibrosis. This paper reviews the association between ADMA and microvascular complications of diabetes and elucidates the underlying mechanisms by which ADMA contributes to these complications. It provides a new idea and method for the prevention and treatment of microvascular complications in type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Wei Jin
- *Correspondence: Yiqiao Xing, ; Wei Jin,
| |
Collapse
|
19
|
Abd El-Hakam FEZ, Abo Laban G, Badr El-Din S, Abd El-Hamid H, Farouk MH. Apitherapy combination improvement of blood pressure, cardiovascular protection, and antioxidant and anti-inflammatory responses in dexamethasone model hypertensive rats. Sci Rep 2022; 12:20765. [PMID: 36456799 PMCID: PMC9714403 DOI: 10.1038/s41598-022-24727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Hypertension-induced ventricular and vascular remodeling causes myocardial infarction, heart failure, and sudden death. Most available pharmaceutical products used to treat hypertension lead to adverse effects on human health. Limited data is available on apitherapy (bee products) combinations for treatment of hypertension. This study aims to evaluate the antihypertensive effects of combinations of natural apitherapy compounds used in the medical sector to treat a variety of diseases. Rats were assigned into six groups consisting of one control group and five hypertensive groups where hypertension (blood pressure > 140/90) was induced with dexamethasone. One of these groups was used as a hypertension model, while the remaining four hypertensive groups were treated with a propolis, royal jelly, and bee venom combination (PRV) at daily oral doses of 0.5, 1.0, and 2.0 mg/kg, and with losartan 10 mg/kg. The PRV combination at all doses decreased arterial blood pressure below the suboptimal value (p < 0.001), and PRV combination treatment improved dexamethasone-induced-ECG changes. The same treatment decreased angiotensin-II, endothelin-1, and tumor growth factor β serum levels in hypertensive rats. Additionally, PRV combination improved histopathological structure, and decreased serum levels of NF-kB and oxidative stress biomarkers. We concluded that PRV combination therapy may be used as a potential treatment for a variety of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Gomaa Abo Laban
- Plant Protection Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Sahar Badr El-Din
- Pharmacology Department, Faculty of Medicine for Girls, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Hala Abd El-Hamid
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
20
|
Dague A, Chavva H, Brazeau DA, Denvir J, Rorabaugh BR. Maternal use of methamphetamine induces sex-dependent changes in myocardial gene expression in adult offspring. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 2022; 10:e15509. [PMID: 36426716 PMCID: PMC9693808 DOI: 10.14814/phy2.15509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
Methamphetamine is a commonly abused illicit stimulant that has prevalent use among women of child-bearing age. While there are extensive studies on the neurological effects of prenatal methamphetamine exposure, relatively little is known about the effect of prenatal methamphetamine on the adult cardiovascular system. Earlier work demonstrated that prenatal methamphetamine exposure sex dependently (females only) sensitizes the adult heart to ischemic injury. These data suggest that prenatal exposure to methamphetamine may induce sex-dependent changes in cardiac gene expression that persist in adult offspring. The goal of this study was to test the hypothesis that prenatal methamphetamine exposure induces changes in cardiac gene expression that persist in the adult heart. Hearts of prenatally exposed female offspring exhibited a greater number of changes in gene expression compared to male offspring (184 changes compared with 74 in male offspring and 89 changes common between both sexes). Dimethylarginine dimethylaminohydrolase 2 and 3-hydroxybutyrate dehydrogenase 1 (genes implicated in heart failure) were shown by Western Blot to be under expressed in adult females that were prenatally exposed to methamphetamine, while males were deficient in 3-Hydroxybutyrate Dehydrogenase 1 only. These data indicate that prenatal methamphetamine exposure induces changes in gene expression that persist into adulthood. This is consistent with previous findings that prenatal methamphetamine sex dependently sensitizes the adult heart to ischemic injury and may increase the risk of developing cardiac disorders during adulthood.
Collapse
Affiliation(s)
- Alex Dague
- Department of Pharmaceutical SciencesMarshall University School of PharmacyHuntingtonWest VirginiaUSA
| | - Hasitha Chavva
- Department of Pharmaceutical SciencesMarshall University School of PharmacyHuntingtonWest VirginiaUSA
| | - Daniel A. Brazeau
- Department of Pharmaceutical SciencesMarshall University School of PharmacyHuntingtonWest VirginiaUSA,Department of Biomedical ScienceMarshall University School of MedicineHuntingtonWest VirginiaUSA
| | - James Denvir
- Department of Biomedical ScienceMarshall University School of MedicineHuntingtonWest VirginiaUSA
| | - Boyd R. Rorabaugh
- Department of Pharmaceutical SciencesMarshall University School of PharmacyHuntingtonWest VirginiaUSA,Department of Biomedical ScienceMarshall University School of MedicineHuntingtonWest VirginiaUSA
| |
Collapse
|
21
|
Kaneko YK, Morioka A, Sano M, Tashiro M, Watanabe N, Kasahara N, Nojiri M, Ishiwatari C, Ichinose K, Minami A, Suzuki T, Yamaguchi M, Kimura T, Ishikawa T. Asymmetric dimethylarginine accumulation under hyperglycemia facilitates β-cell apoptosis via inhibiting nitric oxide production. Biochem Biophys Res Commun 2022; 637:108-116. [DOI: 10.1016/j.bbrc.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
|
22
|
Priyadarshini G, Rajappa M. Predictive markers in chronic kidney disease. Clin Chim Acta 2022; 535:180-186. [PMID: 35995274 DOI: 10.1016/j.cca.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Chronic kidney disease (CKD) is defined by gradual deterioration of the renal parenchyma and decline of functioning nephrons. CKD is now recognized as a distinct risk factor for cardiovascular disease (CVD). This risk rises in tandem with the decline in kidney function and peaks at the end-stage. It is important to identify individuals with CKD who are at a higher risk of advancing to end-stage renal disease (ESRD) and the beginning of CVD. This will enhance the clinical benefits and so that evidence-based therapy may be started at the initial stages for those individuals. A promising biomarker must represent tissue damage, and be easy to detect using non-invasive methods. Current CKD progression indicators have difficulties in reaching this aim. Hence this review presents an update on markers studied in the last decade, which help in the prediction of CKD progression such as neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, urinary liver-type fatty acid-binding protein, cystatin-C, asymmetric dimethylarginine, symmetric dimethylarginine, endotrophin, methylglyoxal, sclerostin, uric acid, and miRNA-196a. Additional research is needed to determine the predictive usefulness of these indicators in clinical samples for disease development. Their utility as surrogate markers need to be explored further for the early identification of CKD progression.
Collapse
Affiliation(s)
- G Priyadarshini
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Medha Rajappa
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| |
Collapse
|
23
|
Chen YC, Chen YC, Chiou WY, Yu BH. Impact of Acid Suppression Therapy on Renal and Survival Outcomes in Patients with Chronic Kidney Disease: A Taiwanese Nationwide Cohort Study. J Clin Med 2022; 11:jcm11195612. [PMID: 36233478 PMCID: PMC9570958 DOI: 10.3390/jcm11195612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 12/16/2022] Open
Abstract
Histamine-2-receptor antagonist (H2RA) has shown beneficial effects on the kidney, heart, and sepsis in animal models and on the heart and COVID-19 infection in clinical studies. However, H2RAshave been used as a reference in most epidemiological studies examining the association of proton pump inhibitors (PPI) with outcomes. Therefore, we aimed to evaluate the effect of H2RA on renal and survival outcomes in chronic kidney disease (CKD) patients. We used a Taiwanese nationalhealth insurance database from 2001 to 2016 to screen 45,767 CKD patients for eligibility. We identified new users of PPI (n = 7121), H2RA (n = 48,609), and users of neither PPI nor H2RA (as controls) (n = 47,072) during follow-up, and finally created 1:1:1 propensityscore-matchedcohorts; each cohort contained 4361 patients. Participants were followed up after receivingacid-suppression agents or on the corresponding date until the occurrence of end-stage renal disease (ESRD) in the presence of competing mortality, death, or through the end of 2016. Compared toneither users, H2RAand PPI users demonstrated adjusted hazard ratios of 0.40 (95% confidence interval, 0.30–0.53) for ESRDand 0.64 (0.57–0.72) for death and 1.15 (0.91–1.45) for ESRD and 1.83 (1.65–2.03) for death, respectively. A dose-response relationship betweenH2RA use with ESRD and overall, cardiovascular, and non-cardiovascular mortality was detected. H2RA consistently provided renal and survival benefits on multivariable stratified analyses and multiple sensitivity analyses. In conclusion, dose-dependent H2RA use was associated with a reduced risk of ESRD and overall mortality in CKD patients, whereas PPI use was associated with an increased risk of overall mortality, not in a dose-dependent manner.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-5-264-8000
| | - Yen-Chun Chen
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Wen-Yen Chiou
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Ben-Hui Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| |
Collapse
|
24
|
Lu YP, Zhang ZY, Wu HW, Fang LJ, Hu B, Tang C, Zhang YQ, Yin L, Tang DE, Zheng ZH, Zhu T, Dai Y. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J Transl Med 2022; 20:420. [PMID: 36104729 PMCID: PMC9476562 DOI: 10.1186/s12967-022-03629-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. SGLT2 inhibitors are clinically effective in halting DKD progression. However, the underlying mechanisms remain unclear. The serum and kidneys of mice with DKD were analyzed using liquid chromatography with tandem mass spectrometry (LC–MS/MS)-based metabolomic and proteomic analyses. Three groups were established: placebo-treated littermate db/m mice, placebo-treated db/db mice and EMPA-treated db/db mice. Empagliflozin (EMPA) and placebo (10 mg/kg/d) were administered for 12 weeks. EMPA treatment decreased Cys-C and urinary albumin excretion compared with placebo by 78.60% and 57.12%, respectively (p < 0.001 in all cases). Renal glomerular area, interstitial fibrosis and glomerulosclerosis were decreased by 16.47%, 68.50% and 62.82%, respectively (p < 0.05 in all cases). Multi-omic analysis revealed that EMPA treatment altered the protein and metabolic profiles in the db/db group, including 32 renal proteins, 51 serum proteins, 94 renal metabolites and 37 serum metabolites. Five EMPA-related metabolic pathways were identified by integrating proteomic and metabolomic analyses, which are involved in renal purine metabolism; pyrimidine metabolism; tryptophan metabolism; nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism in serum. In conclusion, this study demonstrated metabolic reprogramming in mice with DKD. EMPA treatment improved kidney function and morphology by regulating metabolic reprogramming, including regulation of renal reductive stress, alleviation of mitochondrial dysfunction and reduction in renal oxidative stress reaction.
Collapse
|
25
|
Huang T, Pu Y, Wang X, Li Y, Yang H, Luo Y, Liu Y. Metabolomic analysis in spondyloarthritis: A systematic review. Front Microbiol 2022; 13:965709. [PMID: 36118235 PMCID: PMC9479008 DOI: 10.3389/fmicb.2022.965709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of rheumatic diseases that cause joint inflammation. Accumulating studies have focused on the metabolomic profiling of SpA in recent years. We conducted a systematic review to provide a collective summary of previous findings on metabolomic profiling associated with SpA. We systematically searched PubMed, Medline, Embase and Web of Science for studies on comparisons of the metabolomic analysis of SpA patients and non-SpA controls. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included articles. From 482 records identified, 31 studies were included in the analysis. A number of metabolites were differentially distributed between SpA and non-SpA cases. SpA patients showed higher levels of glucose, succinic acid, malic acid and lactate in carbohydrate metabolism, higher glycerol levels and lower fatty acid (especially unsaturated fatty acid) levels in lipid metabolism, and lower levels of tryptophan and glutamine in amino acid metabolism than healthy controls. Both conventional and biological therapy of SpA can insufficiently reverse the aberrant metabolism state toward that of the controls. However, the differences in the results of metabolic profiling between patients with SpA and other inflammatory diseases as well as among patients with several subtypes of SpA are inconsistent across studies. Studies on metabolomics have provided insights into etiological factors and biomarkers for SpA. Supplementation with the metabolites that exhibit decreased levels, such as short-chain fatty acids (SCFAs), has good treatment prospects for modulating immunity. Further studies are needed to elucidate the role of disordered metabolic molecules in the pathogenesis of SpA.
Collapse
Affiliation(s)
- Tianwen Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Hang Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Chengdu, China
| |
Collapse
|
26
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
27
|
Smith CA, Ebrahimpour A, Novikova L, Farina D, Bailey AO, Russell WK, Jain A, Saltzman AB, Malovannaya A, Prasad BVV, Hu L, Ghebre YT. Esomeprazole covalently interacts with the cardiovascular enzyme dimethylarginine dimethylaminohydrolase: Insights into the cardiovascular risk of proton pump inhibitors. Biochim Biophys Acta Gen Subj 2022; 1866:130149. [PMID: 35472493 DOI: 10.1016/j.bbagen.2022.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) are widely prescribed drugs for the treatment of gastroesophageal reflux disease (GERD). Several meta-analysis studies have reported associations between prolonged use of PPIs and major adverse cardiovascular events. However, interaction of PPIs with biological molecules involved in cardiovascular health is incompletely characterized. Dimethylarginine dimethylaminohydrolase (DDAH) is a cardiovascular enzyme expressed in cardiomyocytes, and other somatic cell types in one of two isotypes (DDAH1 and DDAH2) to metabolize asymmetric dimethylarginine (ADMA); a cardiovascular risk factor and competitive inhibitor of nitric oxide synthases (NOSs). METHODS We performed high throughput drug screening of over 130,000 small molecules to discover human DDAH1 inhibitors and found that PPIs directly inhibit DDAH1. We expressed and purified the enzyme for structural and mass spectrometry proteomics studies to understand how a prototype PPI, esomeprazole, interacts with DDAH1. We also performed molecular docking studies to model the interaction of DDAH1 with esomeprazole. X-ray crystallography was used to determine the structure of DDAH1 alone and bound to esomeprazole at resolutions ranging from 1.6 to 2.9 Å. RESULTS Analysis of the enzyme active site shows that esomeprazole interacts with the active site cysteine (Cys273) of DDAH1. The structural studies were corroborated by mass spectrometry which indicated that cysteine was targeted by esomeprazole to inactivate DDAH1. CONCLUSIONS The inhibition of this important cardiovascular enzyme by a PPI may help explain the reported association of PPI use and increased cardiovascular risk in patients and the general population. GENERAL SIGNIFICANCE Our study calls for pharmacovigilance studies to monitor adverse cardiovascular events in chronic PPI users.
Collapse
Affiliation(s)
- Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Afshin Ebrahimpour
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lyudmila Novikova
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Dominic Farina
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander B Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - B V Venkataram Prasad
- Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liya Hu
- Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yohannes T Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
29
|
Rodionov RN, Jarzebska N, Burdin D, Todorov V, Martens-Lobenhoffer J, Hofmann A, Kolouschek A, Cordasic N, Jacobi J, Rubets E, Morawietz H, O'Sullivan JF, Markov AG, Bornstein SR, Hilgers K, Maas R, Pfluecke C, Chen Y, Bode-Böger SM, Hugo CPM, Hohenstein B, Weiss N. Overexpression of alanine-glyoxylate aminotransferase 2 protects from asymmetric dimethylarginine-induced endothelial dysfunction and aortic remodeling. Sci Rep 2022; 12:9381. [PMID: 35672381 PMCID: PMC9174227 DOI: 10.1038/s41598-022-13169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) are associated with an increased risk of mortality and adverse cardiovascular outcomes. ADMA can be metabolized by dimethylarginine dimethylaminohydrolases (DDAHs) and by alanine-glyoxylate aminotransferase 2 (AGXT2). Deletion of DDAH1 in mice leads to elevation of ADMA in plasma and increase in blood pressure, while overexpression of human DDAH1 is associated with a lower plasma ADMA concentration and protective cardiovascular effects. The possible role of alternative metabolism of ADMA by AGXT2 remains to be elucidated. The goal of the current study was to test the hypothesis that transgenic overexpression of AGXT2 leads to lowering of plasma levels of ADMA and protection from vascular damage in the setting of DDAH1 deficiency. We generated transgenic mice (TG) with ubiquitous overexpression of AGXT2. qPCR and Western Blot confirmed the expression of the transgene. Systemic ADMA levels were decreased by 15% in TG mice. In comparison with wild type animals plasma levels of asymmetric dimethylguanidino valeric acid (ADGV), the AGXT2 associated metabolite of ADMA, were six times higher. We crossed AGXT2 TG mice with DDAH1 knockout mice and observed that upregulation of AGXT2 lowers plasma ADMA and pulse pressure and protects the mice from endothelial dysfunction and adverse aortic remodeling. Upregulation of AGXT2 led to lowering of ADMA levels and protection from ADMA-induced vascular damage in the setting of DDAH1 deficiency. This is especially important, because all the efforts to develop pharmacological ADMA-lowering interventions by means of upregulation of DDAHs have been unsuccessful.
Collapse
Affiliation(s)
- Roman N Rodionov
- University Center for Vascular Medicine and Department of Medicine III, Section Angiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Natalia Jarzebska
- University Center for Vascular Medicine and Department of Medicine III, Section Angiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Dmitrii Burdin
- Department of General Physiology, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Vladimir Todorov
- Department of Medicine III, Section Nephrology, Technische Universität Dresden, 01307, Dresden, Germany
| | | | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Anne Kolouschek
- University Center for Vascular Medicine and Department of Medicine III, Section Angiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Johannes Jacobi
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Elena Rubets
- Department of General Physiology, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - John F O'Sullivan
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
- The University of Sydney, Heart Research Institute, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Alexander G Markov
- Department of General Physiology, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Karl Hilgers
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Renke Maas
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christian Pfluecke
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden, University Clinic, Technische Universität Dresden, 01307, Dresden, Germany
| | - YingJie Chen
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 5455, USA
| | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-Von-Guericke University, 39120, Magdeburg, Germany
| | - Christian P M Hugo
- Department of Medicine III, Section Nephrology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Bernd Hohenstein
- Department of Medicine III, Section Nephrology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Norbert Weiss
- University Center for Vascular Medicine and Department of Medicine III, Section Angiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
30
|
Abdel Sater AH, Bouferraa Y, Amhaz G, Haibe Y, Lakkiss AE, Shamseddine A. From Tumor Cells to Endothelium and Gut Microbiome: A Complex Interaction Favoring the Metastasis Cascade. Front Oncol 2022; 12:804983. [PMID: 35600385 PMCID: PMC9117727 DOI: 10.3389/fonc.2022.804983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Metastasis is a complicated process through which tumor cells disseminate to distant organs and adapt to novel tumor microenvironments. This multi-step cascade relies on the accumulation of genetic and epigenetic alterations within the tumor cells as well as the surrounding non-tumor stromal cells. Endothelial cells constitute a major player in promoting metastasis formation either by inducing the growth of tumor cells or by directing them towards dissemination in the blood or lymph. In fact, the direct and indirect interactions between tumor and endothelial cells were shown to activate several mechanisms allowing cancer cells’ invasion and extravasation. On the other side, gastrointestinal cancer development was shown to be associated with the disruption of the gut microbiome. While several proposed mechanisms have been investigated in this regard, gut and tumor-associated microbiota were shown to impact the gut endothelial barrier, increasing the dissemination of bacteria through the systemic circulation. This bacterial dislocation allows the formation of an inflammatory premetastatic niche in the distant organs promoting the metastatic cascade of primary tumors. In this review, we discuss the role of the endothelial cells in the metastatic cascade of tumors. We will focus on the role of the gut vascular barrier in the regulation metastasis. We will also discuss the interaction between this vascular barrier and the gut microbiota enhancing the process of metastasis. In addition, we will try to elucidate the different mechanisms through which this bacterial dislocation prepares the favorable metastatic niche at distant organs allowing the dissemination and successful deposition of tumor cells in the new microenvironments. Finally, and given the promising results of the studies combining immune checkpoint inhibitors with either microbiota alterations or anti-angiogenic therapy in many types of cancer, we will elaborate in this review the complex interaction between these 3 factors and their possible therapeutic combination to optimize response to treatment.
Collapse
Affiliation(s)
- Ali H Abdel Sater
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Youssef Bouferraa
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghid Amhaz
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yolla Haibe
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmed El Lakkiss
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
31
|
Ponikowska B, Iwanek G, Zdanowicz A, Urban S, Zymliński R, Ponikowski P, Biegus J. Biomarkers of Myocardial Injury and Remodeling in Heart Failure. J Pers Med 2022; 12:799. [PMID: 35629221 PMCID: PMC9144334 DOI: 10.3390/jpm12050799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
With its complicated pathophysiology, high incidence and prevalence, heart failure remains a major public concern. In hopes of improving diagnosis, treatment and prognosis, the utility of many different biomarkers is researched vigorously around the world. In this review, biomarkers of myocardial remodeling and fibrosis (galectin-3, soluble isoform of suppression of tumorigenicity 2, matrix metalloproteinases, osteopontin, interleukin-6, syndecan-4, myostatin, procollagen type I C-terminal propeptide, procollagen type III N-terminal propeptide, vascular endothelial growth factor, nitric oxidase synthetase and asymmetric dimethylarginine), myocyte injury (heart-type fatty acid-binding protein, glutathione S-transferase P1 and heat shock protein 60), as well as iron metabolism (ferritin, transferrin saturation, soluble transferrin receptor and hepcidin), are considered in terms of possible clinical applicability and significance. Our short review consists of a summary of the aforementioned cardiovascular biomarkers' clinical relevance and perspectives.
Collapse
Affiliation(s)
- Barbara Ponikowska
- Student Scientific Organization, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Gracjan Iwanek
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.Z.); (S.U.); (R.Z.); (P.P.); (J.B.)
| | - Agata Zdanowicz
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.Z.); (S.U.); (R.Z.); (P.P.); (J.B.)
| | - Szymon Urban
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.Z.); (S.U.); (R.Z.); (P.P.); (J.B.)
| | - Robert Zymliński
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.Z.); (S.U.); (R.Z.); (P.P.); (J.B.)
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.Z.); (S.U.); (R.Z.); (P.P.); (J.B.)
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.Z.); (S.U.); (R.Z.); (P.P.); (J.B.)
| |
Collapse
|
32
|
Bou-Fakhredin R, De Franceschi L, Motta I, Eid AA, Taher AT, Cappellini MD. Redox Balance in β-Thalassemia and Sickle Cell Disease: A Love and Hate Relationship. Antioxidants (Basel) 2022; 11:antiox11050967. [PMID: 35624830 PMCID: PMC9138068 DOI: 10.3390/antiox11050967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia and sickle cell disease (SCD) are inherited hemoglobinopathies that result in both quantitative and qualitative variations in the β-globin chain. These in turn lead to instability in the generated hemoglobin (Hb) or to a globin chain imbalance that affects the oxidative environment both intracellularly and extracellularly. While oxidative stress is not among the primary etiologies of β-thalassemia and SCD, it plays a significant role in the pathogenesis of these diseases. Different mechanisms exist behind the development of oxidative stress; the result of which is cytotoxicity, causing the oxidation of cellular components that can eventually lead to cell death and organ damage. In this review, we summarize the mechanisms of oxidative stress development in β-thalassemia and SCD and describe the current and potential antioxidant therapeutic strategies. Finally, we discuss the role of targeted therapy in achieving an optimal redox balance.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Ali T. Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
33
|
Quiroga B, Ortiz A, Navarro-González JF, Santamaría R, de Sequera P, Díez J. From cardiorenal syndromes to cardionephrology: a reflection by nephrologists on renocardiac syndromes. Clin Kidney J 2022; 16:19-29. [PMID: 36726435 PMCID: PMC9871856 DOI: 10.1093/ckj/sfac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiorenal syndromes (CRS) are broadly defined as disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. CRS are currently classified into five categories, mostly based on disease-initiating events and their acuity or chronicity. CRS types 3 and 4 (also called renocardiac syndromes) refer to acute and chronic kidney dysfunction resulting in acute and chronic heart dysfunction, respectively. The notion of renocardiac syndromes has broadened interest in kidney-heart interactions but uncertainty remains in the nephrological community's understanding of the clinical diversity, pathophysiological mechanisms and optimal management approaches of these syndromes. This triple challenge that renocardiac syndromes (and likely other cardiorenal syndromes) pose to the nephrologist can only be faced through a specific and demanding training plan to enhance his/her cardiological scientific knowledge and through an appropriate clinical environment to develop his/her cardiological clinical skills. The first must be the objective of the subspecialty of cardionephrology (or nephrocardiology) and the second must be the result of collaboration with cardiologists (and other specialists) in cardiorenal care units. This review will first consider various aspects of the challenges that renocardiac syndromes pose to nephrologists and, then, will discuss those aspects of cardionephrology and cardiorenal units that can facilitate an effective response to the challenges.
Collapse
Affiliation(s)
| | | | - Juan F Navarro-González
- RICORS2040, Carlos III Institute of Health, Madrid, Spain,Division of Nephrology and Research Unit, University Hospital Nuestra Señora de Candelaria, and University Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Rafael Santamaría
- RICORS2040, Carlos III Institute of Health, Madrid, Spain,Division of Nephrology, University Hospital Reina Sofia, Cordoba, Spain,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Patricia de Sequera
- Department of Nephrology, University Hospital Infanta Leonor, University Complutense of Madrid, Madrid, Spain
| | | |
Collapse
|
34
|
Lee Y, Steinbach SML, Basile D, Singh J. A Therapeutic Extracorporeal Device for Specific Removal of Pathologic Asymmetric Dimethylarginine from the Blood. Blood Purif 2022; 51:889-898. [PMID: 35249015 PMCID: PMC9440949 DOI: 10.1159/000522294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Blood levels of uremic toxin, asymmetric dimethylarginine (ADMA), are strongly associated with mortality in sepsis, renal failure, and cardiovascular and renal disease patients. METHODS An extracorporeal approach to reduce pathological ADMA was developed. The dimethylarginine dimethylaminohydrolase (DDAH) was immobilized on agarose beads to prepare a cartridge. The efficacy of cartridge for ADMA lowering in blood was investigated. RESULTS The DDAH beads and cartridge reduced ADMA from solution or plasma. The magnitude of ADMA removal was dependent on the quantity of DDAH linked to the beads and the flow rate. When tested in association with plasmapheresis, the DDAH-cartridge was highly effective in ADMA removal from the blood and improved the arginine/ADMA ratio in a pig model. CONCLUSION A new, safe, and effective extracorporeal approach to lower ADMA was developed which may have application in improving outcomes in patients with vascular complications and risk of mortality associated with high ADMA.
Collapse
Affiliation(s)
- Young Lee
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana, USA,
| | - Sarah M L Steinbach
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - David Basile
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jaipal Singh
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Vasculonics Inc., Indianapolis, Indiana, USA
| |
Collapse
|
35
|
Basir SS, Mirzaei B. Effects of moderate-intensity concurrent exercise training on cardiovascular risk factors in patients with chronic kidney disease undergoing hemodialysis: a randomized control trial. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
El-Salam MA, Abdelrahman T, Youssef M, Osama F, Youssef N. Evaluation of Asymmetric Dimethylarginine Serum Level and Left Ventricular Function by 2D Speckle Tracking Echocardiography in Children on Regular Hemodialysis. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2022; 33:259-271. [PMID: 37417178 DOI: 10.4103/1319-2442.379024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in children with chronic kidney disease. Asymmetric dimethylarginine (ADMA) is thought to be related to chronic kidney disease patients' adverse cardiovascular effects. Our study is to assess ADMA concentrations in children on hemodialysis (HD) as a marker of cardiovascular risk and detect the relation to the left ventricular (LV) function by traditional and speckled tracking echo. Forty children with end-stage renal disease on regular HD were enrolled in the study and selected from the nephrology HD unit of Al-Zahraa Hospital, Al-Azhar University. Another group of 40 healthy children matches age and sex with the patient's group as a control. ADMA serum level, traditional echo, and tissue Doppler imaging spackled tracking were performed to assess: LV functions for both groups in the same line with the routine laboratory investigations. Moreover, bioimpedance was assessed after the HD session. Children on regular HD have a significantly higher (ADMA) serum level compared to their controls; the median is (72.5 ng/mL) and (25 ng/mL), respectively (P = 0.001) and a significant increase in high-sensitivity C-reactive protein and the median is (3.6 ng/mL) and (2.5 ng/mL), respectively (P = 0.001). Moreover, conventional echo detects 27 (67.5%) patients out of 40 had an impaired LV function; meanwhile, 33 (82.5%) had a global LV strain (LV GLS) detected by 2D (Speckle echo), a negative correlation between LV ejection fraction with serum (urea, cholesterol, and triglyceride) and a positive correlation between ADMA and LV systolic diameter. LV GLS (Speckle echo) is negatively correlated with LV end-diastolic diameter, LV end-systolic diameter and positively correlated with LV inter ventricular septum in diastole and reduced average systolic velocity (ml). The sensitivity and specificity of (ADMA), high-sensitivity C-reactive protein (hs-CRP), traditional, and Speckle echo for early left ventricular (LV) dysfunction were 92.50, 92, and 67.50, 97 and 67.50, 90.00, and 80.00, 92, respectively. An ADMA emerges as a sensitive and specific marker for early LV dysfunction in children on hemodialysis (HD); drugs targeting ADMA isessential in the future direction after clinical approval, to avoid early LV changes, furthermore (Speckle echo) is superior to the traditional echo for early detection of LV changes in chronic kidney disease (CKD) children.
Collapse
Affiliation(s)
- Manal Abd El-Salam
- Department of Pediatrics, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Tagreed Abdelrahman
- Department of Cardiology, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Maha Youssef
- Department of Pediatrics, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Osama
- Department of Pediatrics, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Nadia Youssef
- Department of Clinical Pathology, National Heart Institute, Cairo, Egypt
| |
Collapse
|
37
|
Catalán Ú, Pedret A, Yuste S, Rubió L, Piñol C, Sandoval-Ramírez BA, Companys J, Foguet E, Herrero P, Canela N, Motilva MJ, Solà R. Red-Fleshed Apples Rich in Anthocyanins and White-Fleshed Apples Modulate the Aorta and Heart Proteome in Hypercholesterolaemic Rats: The AppleCOR Study. Nutrients 2022; 14:nu14051047. [PMID: 35268023 PMCID: PMC8912372 DOI: 10.3390/nu14051047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
The impact of a red-fleshed apple (RFA) rich in anthocyanins (ACNs), a white-fleshed apple (WFA) without ACNs, and an extract infusion from Aronia fruit (AI) equivalent in dose of cyanidin-3-O-galactoside (main ACN) as RFA was determined by the proteome profile of aorta and heart as key cardiovascular tissues. Hypercholesterolaemic Wistar rats were separated into six groups (n = 6/group; three males and three females) and the proteomic profiles were analyzed using nanoliquid chromatography coupled to mass spectrometry. No adverse events were reported and all products were well tolerated. RFA downregulated C1QB and CFP in aorta and CRP in heart. WFA downregulated C1QB and CFP in aorta and C9 and C3 in aorta and heart, among other proteins. AI downregulated PRKACA, IQGAP1, and HSP90AB1 related to cellular signaling. Thus, both apples showed an anti-inflammatory effect through the complement system, while RFA reduced CRP. Regardless of the ACN content, an apple matrix effect was observed that involved different bioactive components, and inflammatory proteins were reduced.
Collapse
Affiliation(s)
- Úrsula Catalán
- Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Medicine and Surgery Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain; (Ú.C.); (B.A.S.-R.); (R.S.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Unitat de Nutrició i Salut, Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain;
| | - Anna Pedret
- Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Medicine and Surgery Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain; (Ú.C.); (B.A.S.-R.); (R.S.)
- Unitat de Nutrició i Salut, Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain;
- Correspondence: ; Tel.: +34-977-75-9375
| | - Silvia Yuste
- Food Technology Department, Universitat de Lleida-AGROTECNIO Center, 25198 Lleida, Spain; (S.Y.); (L.R.)
| | - Laura Rubió
- Food Technology Department, Universitat de Lleida-AGROTECNIO Center, 25198 Lleida, Spain; (S.Y.); (L.R.)
| | - Carme Piñol
- Department of Medicine, Universitat de Lleida, 25008 Lleida, Spain;
- Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré-IRBLleida, 25198 Lleida, Spain
| | - Berner Andrée Sandoval-Ramírez
- Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Medicine and Surgery Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain; (Ú.C.); (B.A.S.-R.); (R.S.)
| | - Judit Companys
- Unitat de Nutrició i Salut, Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain;
| | - Elisabet Foguet
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (E.F.); (P.H.); (N.C.)
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (E.F.); (P.H.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (E.F.); (P.H.); (N.C.)
| | - Maria-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja, CSIC, Universidad de La Rioja, 26007 Logroño, Spain;
| | - Rosa Solà
- Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Medicine and Surgery Department, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain; (Ú.C.); (B.A.S.-R.); (R.S.)
- Unitat de Nutrició i Salut, Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain;
- Hospital Universitari Sant Joan de Reus (HUSJR), 43204 Reus, Spain
| |
Collapse
|
38
|
Xie Z, Hou L, Shen S, Wu Y, Wang J, Jie Z, Zhao X, Li X, Zhang X, Chen J, Xu W, Ning L, Ma Q, Wang S, Wang H, Yuan P, Fang X, Qin A, Fan S. Mechanical force promotes dimethylarginine dimethylaminohydrolase 1-mediated hydrolysis of the metabolite asymmetric dimethylarginine to enhance bone formation. Nat Commun 2022; 13:50. [PMID: 35013196 PMCID: PMC8748781 DOI: 10.1038/s41467-021-27629-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Mechanical force is critical for the development and remodeling of bone. Here we report that mechanical force regulates the production of the metabolite asymmetric dimethylarginine (ADMA) via regulating the hydrolytic enzyme dimethylarginine dimethylaminohydrolase 1 (Ddah1) expression in osteoblasts. The presence of -394 4 N del/ins polymorphism of Ddah1 and higher serum ADMA concentration are negatively associated with bone mineral density. Global or osteoblast-specific deletion of Ddah1 leads to increased ADMA level but reduced bone formation. Further molecular study unveils that mechanical stimulation enhances TAZ/SMAD4-induced Ddah1 transcription. Deletion of Ddah1 in osteoblast-lineage cells fails to respond to mechanical stimulus-associated bone formation. Taken together, the study reveals mechanical force is capable of down-regulating ADMA to enhance bone formation.
Collapse
Affiliation(s)
- Ziang Xie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lei Hou
- Department of Cardiology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuying Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yizheng Wu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jian Wang
- Department of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiang Li
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Junxin Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lei Ning
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haoming Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangqian Fang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
39
|
Berg AH, Kumar S, Karumanchi SA. Indoxyl sulfate in uremia: an old idea with updated concepts. J Clin Invest 2022; 132:155860. [PMID: 34981787 PMCID: PMC8718144 DOI: 10.1172/jci155860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Patients with end-stage kidney disease (ESKD) have increased vascular disease. While protein-bound molecules that escape hemodialysis may contribute to uremic toxicity, specific contributing toxins remain ambiguous. In this issue of the JCI, Arinze et al. explore the role of tryptophan metabolites in chronic kidney disease–associated (CKD-associated) peripheral arterial disease. The authors used mouse and zebrafish models to show that circulating indoxyl sulfate (IS) blocked endothelial Wnt signaling, which impaired angiogenesis. Plasma levels of IS and other tryptophan metabolites correlated with adverse peripheral vascular disease events in humans. These findings suggest that lowering IS may benefit individuals with CKD and ESKD.
Collapse
Affiliation(s)
| | - Sanjeev Kumar
- Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - S Ananth Karumanchi
- Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Deparment of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Chakkarwar VA, Kawtikwar P. Fenofibrate Prevents nicotine-induced Acute Kidney Injury: Possible Involvement of Endothelial Nitric Oxide Synthase. Indian J Nephrol 2021; 31:435-441. [PMID: 34880552 PMCID: PMC8597793 DOI: 10.4103/ijn.ijn_380_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022] Open
Abstract
Objective: The present study investigated the possible effect of fenofibrate (peroxisome proliferator-activated receptors-α agonist) in nicotine-induced acute kidney injury (AKI) in rats. Materials and Methods: Nicotine (2 mg/kg/day, intraperitoneally) was administered for 4 weeks to induce AKI in rats. Lipid profile and renal oxidative stress were measured and expression of mRNA for eNOS was assessed using reverse transcription-polymerase chain reaction along with serum and renal tissue nitrite levels. Serum creatinine, blood urea nitrogen and microproteinuria were estimated along with the kidney histology, as markers of kidney function. Treatment with fenofibrate (30 mg/kg per oral, 4 weeks) was initiated 3 days before the administration of nicotine and continued for 4 weeks from the day of administration of nicotine. Results: Nicotine administered rats developed apparent AKI confirmed by elevated markers of kidney function and noticeable glomerulosclerosis and tubular cell degeneration. Nicotine decreases the expression of mRNA for eNOS, along with serum and renal tissue nitrite levels. In addition, nicotine showed significantly lipid alteration beside decrease oxidative stress, assessed in terms of increase in serum thiobarbituric acid reactive substance and a marked decrease in tissue reduced glutathione. However, fenofibrate significantly prevented the development of nicotine-AKI by reducing serum creatinine, BUN, and urinary protein, normalizing the lipid profile, reducing renal oxidative stress, increases the eNOS expression and concentration of serum and renal nitrate levels. Conclusion: Fenofibrate attenuates nicotine-induced AKI, via its antihyperlipidemic and antioxidant property. Moreover, fenofibrate induced upregulation of eNOS expression additionally play key roles in the improvement of nicotine-induced AKI could be the future alternative.
Collapse
Affiliation(s)
- Vishal Arvind Chakkarwar
- Department of Pharmacology, SN Institute of Pharmacy, Pusad, Yavatmal, India.,Senior Editor, Prime Editors, SN 40, Besides Prozone Mall, Golden City Centre, Aurangabad, Maharashtra, India
| | - Pravin Kawtikwar
- Department of Pharmacology, SN Institute of Pharmacy, Pusad, Yavatmal, India
| |
Collapse
|
41
|
Eryavuz Onmaz D, Abusoglu S, Yaglioglu H, Abusoglu G, Unlu A. Developing a robust, fast and reliable measurement method for the analysis of methylarginine derivatives and related metabolites. J Mass Spectrom Adv Clin Lab 2021; 19:34-45. [PMID: 34820664 PMCID: PMC8601011 DOI: 10.1016/j.jmsacl.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Background Nitric oxide (NO) plays an important role in endothelial homeostasis. Asymmetric dimethyl arginine (ADMA), L-N monomethyl arginine (L-NMMA) and symmetric dimethyl arginine (SDMA), which are derivatives of methylarginine, directly or indirectly reduce NO production. Therefore, these metabolites are an important risk factor for various diseases, including cardiovascular diseases. Numerous methods have been developed for the measurement of methylarginine derivatives, but various difficulties have been encountered. This study aimed to develop a reliable, fast and cost-effective method for the analysis and measurement of methylarginine derivatives (ADMA, SDMA, L-NMMA) and related metabolites (arginine, citrulline, homoarginine, ornithine), and to validate this method according to Clinical and Laboratory Standards Institute (CLSI) protocols. Methods For the analysis of ADMA, SDMA, L-NMMA, arginine, homoarginine, citrulline, ornithine, 200 µl of serum were precipitated with methanol, and subsequently derivatized with a butanol solution containing 5% acetyl chloride. Butyl derivatives were separated using a C18 reverse phase column with a 5 min run time. Detection of analytes was achieved by utilising the specific fragmentation patterns identified through tandem mass spectrometry. Results The method was linear for ADMA, SDMA, L-NMMA, ornithine, arginine, homoarginine and citrulline in the ranges of 0.023–6.0, 0.021–5.5, 0.019–5.0, 0.015–250, 0.015–250, 0.019–5 and 0.015–250 µM, respectively. The inter-assay CV% values for all analytes was less than 9.8%. Conclusions Data obtained from method validation studies shows that the developed method is highly sensitive, precise and accurate. Short analysis time, cost-effectiveness, and multiplexed analysis of these metabolites, with the same pretreatment steps, are the main advantages of the method.
Collapse
Key Words
- ADMA
- ADMA, asymmetric dimethyl arginine
- CE, capillary electrophoresis
- CE, collision energy
- CLSI, The Clinical & Laboratory Standards Institute
- CXP, collision cell exit potential
- DDAH, dimethylaminohydrolase
- DP, declustering potential
- EP, enterance potential
- FDA, Food and Drug Administration
- GC–MS, gas chromatography–mass spectrometry
- HPLC, high performance liquid chromatography
- L-NMMA, L-N monomethyl arginine
- LC-MS, liquid chromatography–mass spectrometry
- LC-MS/MS, liquid chromatography tandem-mass spectrometry
- MRM, multiple reaction monitoring
- Methylarginines
- NO, nitric oxide
- NOS, nitric oxide synthase
- PRMTs, protein arginine methyltransferases
- SDMA, symmetric dimethyl arginine
- Tandem mass spectrometry
- Validation
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Havva Yaglioglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques, Selcuk University Vocational School of Health, Konya, Turkey
| | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
42
|
Ni GH, Cheng JF, Li YJ, Xie QY, Yang TL, Chen MF. Effect of profilin-1 on the asymmetric dimethylarginine-induced vascular lesion-associated hypertension. Kaohsiung J Med Sci 2021; 38:149-156. [PMID: 34741409 DOI: 10.1002/kjm2.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022] Open
Abstract
Previous studies have demonstrated that the levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, are strongly associated with hypertension, diabetes, and cardiovascular diseases. Profilin-1, an actin-binding protein, has been documented to be involved in endothelial injury and in the proliferation of vascular smooth muscle cells resulting from hypertension. However, the role of profilin-1 in ADMA-induced vascular injury in hypertension remains largely unknown. Forty healthy subjects and forty-two matched patients with essential hypertension were enrolled, and the related indexes of vascular injury in plasma were detected. Rat aortic smooth muscle cells (RASMCs) were treated with different concentrations of ADMA for different periods of time and transfected with profilin-1 small hairpin RNA to interrupt the expression of profilin-1. To determine the role of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, RASMCs were pretreated with AG490 or rapamycin. The expression of profilin-1 was tested using real-time polymerase chain reaction (PCR) and western blot analysis. Cell proliferation was measured by flow cytometry and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide assays. Compared with healthy subjects, the levels of ADMA and profilin-1 were markedly elevated in hypertensive individuals, while the levels of NO were significantly decreased (p < 0.05). In vitro, studies showed ADMA-induced profilin-1 expression in a concentration- and time-dependent manner in RASMCs (p < 0.05), concomitantly with promoting the proliferation of RASMCs. Furthermore, ADMA-mediated proliferation of RASMCs and upregulation expression of profilin-1 were inhibited by blockade of the JAK2/STAT3 pathway or knockdown of profilin-1. Profilin-1 implicated in the ADMA-mediated vascular lesions in hypertension.
Collapse
Affiliation(s)
- Guo-Hua Ni
- Health Management Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (Chengdu Jinjiang Sohome Comprehensive Outpatient Clinic), Chengdu, China
| | - Jin-Fang Cheng
- Department of Cardiology, Shanxi Baiqiuen Hospital, Taiyuan, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi-Ying Xie
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian-Lun Yang
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mei-Fang Chen
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Valente C, Guglielmini C, Baron Toaldo M, Romito G, Artusi C, Brugnolo L, Contiero B, Poser H. Plasmatic Dimethylarginines in Dogs With Myxomatous Mitral Valve Disease. Front Vet Sci 2021; 8:738898. [PMID: 34604374 PMCID: PMC8481685 DOI: 10.3389/fvets.2021.738898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Plasmatic dimethylarginines, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are considered biomarkers of endothelial and renal dysfunction, respectively, in humans. We hypothesize that plasmatic concentration of dimethylarginines in dogs with myxomatous mitral valve disease (MMVD) is influenced by heart disease stage. Eighty-five client-owned dogs with MMVD, including 39, 19, and 27 dogs in ACVIM stages B1, B2, and C+D, respectively, and a control group of 11 clinically healthy dogs were enrolled. A prospective, multicentric, case-control study was performed. Each dog underwent a complete clinical examination, arterial blood pressure measurement, thoracic radiography, six-lead standard electrocardiogram, transthoracic echocardiography, CBC, biochemical profile, and urinalysis. Plasmatic concentration of dimethylarginines was determined through high-performance liquid chromatography coupled with tandem mass spectrometry. Median ADMA was significantly increased in dogs of group C+D (2.5 μmol/L [2.1–3.0]) compared to those of group B1 (1.8 μmol/L [1.6–2.3]; p < 0.001) and healthy dogs (1.9 μmol/L [1.7–2.3]; p = 0.02). Median SDMA was significantly increased in dogs of group C+D (0.7 μmol/L [0.5–0.9]) compared to those of groups B1 (0.4 μmol/L [0.3–0.5]; p < 0.001), B2 (0.4 μmol/L [0.3–0.6]; p < 0.01), and the control group (0.4 μmol/L [0.35–0.45]; p = 0.001). In the final multivariable analysis, ADMA and SDMA were significantly associated with left atrium to aorta ratio (p < 0.001), and creatinine (p < 0.001), respectively. Increased plasmatic concentrations of dimethylarginines suggest a possible role as biomarkers of disease severity in dogs with decompensated MMVD.
Collapse
Affiliation(s)
- Carlotta Valente
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - Carlo Guglielmini
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - Marco Baron Toaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giovanni Romito
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Carlo Artusi
- Department of Laboratory Medicine, University-Hospital of Padua, Padua, Italy
| | - Laura Brugnolo
- Department of Laboratory Medicine, University-Hospital of Padua, Padua, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - Helen Poser
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| |
Collapse
|
44
|
Carpentieri G, Leoni C, Pietraforte D, Cecchetti S, Iorio E, Belardo A, Pietrucci D, Di Nottia M, Pajalunga D, Megiorni F, Mercurio L, Tatti M, Camero S, Marchese C, Rizza T, Tirelli V, Onesimo R, Carrozzo R, Rinalducci S, Chillemi G, Zampino G, Tartaglia M, Flex E. Hyperactive HRAS dysregulates energetic metabolism in fibroblasts from patients with Costello syndrome via enhanced production of reactive oxidizing species. Hum Mol Genet 2021; 31:561-575. [PMID: 34508588 DOI: 10.1093/hmg/ddab270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Germline activating mutations in HRAS cause Costello Syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via ROS-dependent AMPKα and p38 hyperactivation, occurs in CS, resulting in accelerated glycolysis, and increased fatty acid synthesis and storage as lipid droplets in primary fibroblasts. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.
Collapse
Affiliation(s)
- Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | | | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
| | - Michela Di Nottia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167 Rome, Italy
| | - Massimo Tatti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simona Camero
- Department Maternal Infantile and Urological Sciences, SAPIENZA University, 00161 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Teresa Rizza
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rosalba Carrozzo
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
45
|
Unlu A, Eryavuz Onmaz D, Abusoglu S, Abusoglu G. HPLC and LC-MS/MS measurement methods for the quantification of asymmetric dimethylarginine (ADMA) and related metabolites. TURKISH JOURNAL OF BIOCHEMISTRY 2021; 46:327-347. [DOI: 10.1515/tjb-2020-0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Methyl arginine derivatives such as asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), L-N-monomethyl arginine (L-NMMA) are formed by proteolytic catalysis following methylation of arginine residues in proteins. These metabolites reduce NO production. Methylated arginines are an important biomarker for various diseases such as cardiovascular and renal diseases. Therefore, many methods have been developed to reliably and accurately measure the levels of these metabolites. This review, HPLC and LC-MS/MS methods developed for the measurement of methylarginine derivatives are discussed. In HPLC methods, solid phase extraction, derivatization and subsequent separation by reverse phase chromatography were performed. Since these metabolites are polar, they are difficult to retain in conventional reverse phase columns. In addition, as serum levels of these metabolites are low, sensitivity problems have been observed in HPLC methods. Derivatization has been applied to eliminate these problems. However, there have been problems with the stability of derivatives formed. Another important problem is that the separation of stereoisomer ADMA and SDMA can only be achieved chromatographically. Tandem mass spectrometric methods are accurate, selective, sensitive and rapid since analytes are separated depending on m/z ratios rather than chromatographic separation. Therefore, tandem mass spectrometry methods might be considered as the goal standard for these analytes.
Collapse
Affiliation(s)
- Ali Unlu
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Sedat Abusoglu
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques , Selcuk University Vocational School of Health , Konya , Turkey
| |
Collapse
|
46
|
Grazioli E, Romani A, Marrone G, Di Lauro M, Cerulli C, Urciuoli S, Murri A, Guerriero C, Tranchita E, Tesauro M, Parisi A, Di Daniele N, Noce A. Impact of Physical Activity and Natural Bioactive Compounds on Endothelial Dysfunction in Chronic Kidney Disease. Life (Basel) 2021; 11:life11080841. [PMID: 34440585 PMCID: PMC8402113 DOI: 10.3390/life11080841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) represents a world-wide public health problem. Inflammation, endothelial dysfunction (ED) and vascular calcifications are clinical features of CKD patients that increase cardiovascular (CV) mortality. CKD-related CV disease pathogenic mechanisms are not only associated with traditional factors such as arterial hypertension and dyslipidemia, but also with ED, oxidative stress and low-grade inflammation. The typical comorbidities of CKD contribute to reduce the performance and the levels of the physical activity in nephropathic patients compared to healthy subjects. Currently, the effective role of physical activity on ED is still debated, but the available few literature data suggest its positive contribution. Another possible adjuvant treatment of ED in CKD patients is represented by natural bioactive compounds (NBCs). Among these, minor polar compounds of extra virgin olive oil (hydroxytyrosol, tyrosol and oleocanthal), polyphenols, and vitamin D seem to exert a beneficial role on ED in CKD patients. The objective of the review is to evaluate the effectiveness of physical exercise protocols and/or NBCs on ED in CKD patients.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (A.R.); (S.U.)
| | - Giulia Marrone
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Manuela Di Lauro
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Claudia Cerulli
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (A.R.); (S.U.)
| | - Arianna Murri
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Cristina Guerriero
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Eliana Tranchita
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Manfredi Tesauro
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
- Correspondence: (M.T.); (A.N.); Tel.: +39-06-2090-2982 (M.T.); +39-06-2090-2194 (A.N.)
| | - Attilio Parisi
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Nicola Di Daniele
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Annalisa Noce
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
- Correspondence: (M.T.); (A.N.); Tel.: +39-06-2090-2982 (M.T.); +39-06-2090-2194 (A.N.)
| |
Collapse
|
47
|
Onmaz DE, Isik K, Sivrikaya A, Abusoglu S, Gezer İA, Abusoglu G, Yerlikaya FH, Unlu A. Determination of serum methylarginine levels by tandem mass spectrometric method in patients with ankylosing spondylitis. Amino Acids 2021; 53:1329-1338. [PMID: 34273021 DOI: 10.1007/s00726-021-03046-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Our aim in this study was to measure serum levels of methylarginines and related metabolites in patients with ankylosing spondylitis (AS), moreover, to investigate the relationship between these parameters and various clinical and laboratory parameters of patients with AS. The study included 60 patients with AS and 60 healthy volunteers. Serum asymmetric dimethylarginine (ADMA), L-N monomethylarginine (L-NMMA), symmetric dimethylarginine (SDMA), arginine (Arg), homoarginine (hArg), ornithine, and citrulline concentrations were measured with tandem mass spectrometry. In addition, participants were divided into three groups according to the treatment regimen: TNF-α inhibitor group (n = 25), conventional therapy group (n = 35), and control group (n = 60). These groups were compared in terms of serum levels of methylarginine pathway metabolites and various biochemical parameters. It was found that total methylated arginine load significantly increased in patients with AS (p < 0.001), and the Arg/ADMA ratio was positively correlated with HDL levels and negatively correlated with glucose, ESR, total cholesterol, triglyceride, and LDL levels. In addition, serum ADMA, SDMA, total methylated arginine load, and CRP levels were lower (p < 0.05) in the TNF-α group compared to the conventional treatment group. To the best of our knowledge, this is the first study to comprehensively investigate serum methylarginine levels in patients with AS. Elevated total methylated arginine load and decreased global arginine bioavailability ratio (GABR) indicate that NO metabolism is impaired in patients with AS. Therefore, the increased cardiovascular risk in patients with AS may be related to the decreased NO production or bioavailability due to the elevated total methylarginine load.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine Alaaddin Keykubat Campus, 42075, Selcuklu, Konya, Turkey.
| | - Kevser Isik
- Department of Physical Medicine and Rehabilitation, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Selcuk University Faculty of Medicine Alaaddin Keykubat Campus, 42075, Selcuklu, Konya, Turkey
| | - Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine Alaaddin Keykubat Campus, 42075, Selcuklu, Konya, Turkey
| | - İlknur Albayrak Gezer
- Department of Physical Medicine and Rehabilitation, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques, Selcuk University Vocational School of Health, Konya, Turkey
| | - Fatma Humeyra Yerlikaya
- Department of Biochemistry, Selcuk University Faculty of Medicine Alaaddin Keykubat Campus, 42075, Selcuklu, Konya, Turkey
| | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine Alaaddin Keykubat Campus, 42075, Selcuklu, Konya, Turkey
| |
Collapse
|
48
|
Wiecek M, Szygula Z, Gradek J, Kusmierczyk J, Szymura J. Whole-Body Cryotherapy Increases the Activity of Nitric Oxide Synthase in Older Men. Biomolecules 2021; 11:biom11071041. [PMID: 34356664 PMCID: PMC8301999 DOI: 10.3390/biom11071041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Aging causes oxidative stress, endothelial dysfunction and a reduction in the bioavailability of nitric oxide. The study aim was to determine whether, as a result of repeated whole-body exposure to cryogenic temperature (3 min −130 °C), there is an increase of inducible nitric oxide synthase (iNOS) concentration in senior subjects (59 ± 6 years), and if this effect is stronger in athletes. In 10 long-distance runners (RUN) and 10 untraining (UTR) men, 24 whole-body cryotherapy (WBC) procedures were performed. Prior to WBC, after 12th and 24th treatments and 7 days later, the concentration of iNOS, asymmetric dimethylarginine (ADMA), 3-nitrotyrosine (3-NTR), homocysteine (HCY), C-reactive protein (CRP) and interleukins such as: IL-6, IL-1β, IL-10 were measured. In the RUN and UTR groups, after 24 WBC, iNOS concentration was found to be comparable and significantly higher (F = 5.95, p < 0.01) (large clinical effect size) compared to before 1st WBC and after 12th WBC sessions. There were no changes in the concentration of the remaining markers as a result of WBC (p > 0.05). As a result of applying 24 WBC treatments, using the every-other-day model, iNOS concentration increased in the group of older men, regardless of their physical activity level. Along with this increase, there were no changes in nitro-oxidative stress or inflammation marker levels.
Collapse
Affiliation(s)
- Magdalena Wiecek
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
- Correspondence: (M.W.); (J.S.)
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Joanna Gradek
- Department of Athletics, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Justyna Kusmierczyk
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Kraków, Poland
- Correspondence: (M.W.); (J.S.)
| |
Collapse
|
49
|
Couto E Silva A, Wu CYC, Clemons GA, Acosta CH, Chen CT, Possoit HE, Citadin CT, Lee RHC, Brown JI, Frankel A, Lin HW. Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. J Neurochem 2021; 159:742-761. [PMID: 34216036 DOI: 10.1111/jnc.15462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate (OCR), and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as TNF-α and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.
Collapse
Affiliation(s)
| | | | | | | | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - HarLee E Possoit
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy.,Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
50
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|