1
|
Carvalho LRRA, Shimari M, Boeder AM, Zhuge Z, Cai M, Leijding C, Gastaldello S, Kleschyov AL, Schiffer TA, Guimarães DD, Picozzi G, Lund LH, Fellström B, Weitzberg E, Lundberg JO, Hagberg CE, Pironti G, Andersson DC, Carlström M. A novel model of cardiovascular-kidney-metabolic syndrome combining unilateral nephrectomy and high-salt-sugar-fat diet in mice. Lab Anim (NY) 2024; 53:336-346. [PMID: 39438661 PMCID: PMC11519006 DOI: 10.1038/s41684-024-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The aim of this study was to explore biological interaction and pathophysiology mechanisms in a new mouse model of cardiovascular-kidney-metabolic (CKM) syndrome, induced by chronic moderate renal failure in combination with consumption of a customized Western diet rich in carbohydrates, fat and salt. Male C57BL/6J mice were subjected to unilateral nephrectomy, fed a customized Western diet rich not only in sugar and fat but also in salt, and followed for 12 weeks or 20 weeks. Sham-operated mice on a standard chow served as healthy controls. Body composition, weight gain, glucose metabolism, fat distribution, blood pressure, cardiac function, vascular reactivity, renal function, inflammation and mitochondrial function were measured and combined with biochemical and histopathological analyses. The novel triple-hit model of CKM syndrome showed signs and symptoms of metabolic syndrome, disturbed glucose metabolism, impaired adipocyte physiology and fat redistribution, cardiovascular dysfunction, renal damage and dysfunction, systemic inflammation, elevated blood pressure and cardiac remodeling. The pathological changes were more pronounced in mice after prolonged exposure for 20 weeks, but no deaths occurred. In the present mouse model of CKM syndrome, profound and significant metabolic, cardiac, vascular and renal dysfunctions and injuries emerged by using a Western diet rich not only in fat and carbohydrates but also in salt. This multisystem disease model could be used for mechanistic studies and the evaluation of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Miho Shimari
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ariela Maína Boeder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Min Cai
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Leijding
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei L Kleschyov
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Gaia Picozzi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars H Lund
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Fellström
- Department of Medical Science, Renal Unit, University Hospital, Uppsala, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gianluigi Pironti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Heart, Vascular and Neurology Theme, Cardiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Vilela WR, Ramalho LS, Bechara LRG, Cabral-Costa JV, Serna JDC, Kowaltowski AJ, Xavier GF, Ferreira JCB, de Bem AF. Metabolic dysfunction induced by HFD + L-NAME preferentially affects hippocampal mitochondria, impacting spatial memory in rats. J Bioenerg Biomembr 2024; 56:87-99. [PMID: 38374292 DOI: 10.1007/s10863-024-10005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
High-fat diet-induced metabolic changes are not restricted to the onset of cardiovascular diseases, but also include effects on brain functions related to learning and memory. This study aimed to evaluate mitochondrial markers and function, as well as cognitive function, in a rat model of metabolic dysfunction. Eight-week-old male Wistar rats were subjected to either a control diet or a two-hit protocol combining a high fat diet (HFD) with the nitric oxide synthase inhibitor L-NAME in the drinking water. HFD plus L-NAME induced obesity, hypertension, and increased serum cholesterol. These rats exhibited bioenergetic dysfunction in the hippocampus, characterized by decreased oxygen (O2) consumption related to ATP production, with no changes in H2O2 production. Furthermore, OPA1 protein expression was upregulated in the hippocampus of HFD + L-NAME rats, with no alterations in other morphology-related proteins. Consistently, HFD + L-NAME rats showed disruption of performance in the Morris Water Maze Reference Memory test. The neocortex did not exhibit either bioenergetic changes or alterations in H2O2 production. Calcium uptake rate and retention capacity in the neocortex of HFD + L-NAME rats were not altered. Our results indicate that hippocampal mitochondrial bioenergetic function is disturbed in rats exposed to a HFD plus L-NAME, thus disrupting spatial learning, whereas neocortical function remains unaffected.
Collapse
Affiliation(s)
- Wembley R Vilela
- Department of Physiological Sciences, University of Brasilia, Federal District, Brasília, DF, 70910-900, Brazil
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, 22362, Sweden
| | - Lisley S Ramalho
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Luiz R G Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - João V Cabral-Costa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Gilberto F Xavier
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508- 090, Brazil
| | - Julio C B Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Andreza Fabro de Bem
- Department of Physiological Sciences, University of Brasilia, Federal District, Brasília, DF, 70910-900, Brazil.
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 85, Sweden.
| |
Collapse
|
3
|
Carvalho LRRA, Boeder AM, Shimari M, Kleschyov AL, Esberg A, Johansson I, Weitzberg E, Lundberg JO, Carlstrom M. Antibacterial mouthwash alters gut microbiome, reducing nutrient absorption and fat accumulation in Western diet-fed mice. Sci Rep 2024; 14:4025. [PMID: 38369624 PMCID: PMC10874955 DOI: 10.1038/s41598-024-54068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
Prolonged use of antibacterial mouthwash is linked to an increased risk of systemic disease. We aimed to investigate if disturbing the oral microbiota would impact the lower gut microbiome with functional effects in diet-induced obesity. Mice were exposed to oral chlorhexidine and fed a Western diet (WD). Food intake and weight gain were monitored, and metabolic function, blood pressure, and microbiota were analyzed. Chlorhexidine reduced the number of viable bacteria in the mouth and lowered species richness in the gut but with proportional enrichment of some bacteria linked to metabolic pathways. In mice fed a Western diet, chlorhexidine reduced weight gain, body fat, steatosis, and plasma insulin without changing caloric intake, while increasing colon triglycerides and proteins, suggesting reduced absorption of these nutrients. The mechanisms behind these effects as well as the link between the oral microbiome and small intestinal function need to be pinpointed. While the short-term effects of chlorhexidine in this model appear beneficial, potential long-term disruptions in the oral and gut microbiota and possible malabsorption should be considered.
Collapse
Affiliation(s)
| | - Ariela M Boeder
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Miho Shimari
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden
| | - Andrei L Kleschyov
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden
| | - Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska Hospital, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden.
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
4
|
Bondonno CP, Zhong L, Bondonno NP, Sim M, Blekkenhorst LC, Liu A, Rajendra A, Pokharel P, Erichsen DW, Neubauer O, Croft KD, Hodgson JM. Nitrate: The Dr. Jekyll and Mr. Hyde of human health? Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Bock JM, Hanson BE, Miller KA, Seaberg NT, Ueda K, Feider AJ, Hanada S, Lira VA, Casey DP. Eight weeks of inorganic nitrate/nitrite supplementation improves aerobic exercise capacity and the gas exchange threshold in patients with type 2 diabetes. J Appl Physiol (1985) 2022; 133:1407-1414. [PMID: 36326473 PMCID: PMC9762960 DOI: 10.1152/japplphysiol.00478.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have reduced exercise capacity, indexed by lower maximal oxygen consumption (V̇o2max) and achievement of the gas exchange threshold (GET) at a lower % V̇o2max. The ubiquitous signaling molecule nitric oxide (NO) plays a multifaceted role during exercise and, as patients with T2DM have poor endogenous NO production, we investigated if inorganic nitrate/nitrite supplementation (an exogenous source of NO) improves exercise capacity in patients with T2DM. Thirty-six patients with T2DM (10F, 59 ± 9 yr, 32.0 ± 5.1 kg/m2, HbA1c = 7.4 ± 1.4%) consumed beetroot juice containing either inorganic nitrate/nitrite (4.03 mmol/0.29 mmol) or a placebo (0.8 mmol/0.00 mmol) for 8 wk. A maximal exercise test was completed before and after both interventions. V̇o2max was determined by averaging 15-s data, whereas the GET was identified using the V-slope method and breath-by-breath data. Inorganic nitrate/nitrite increased both absolute (1.96 ± 0.67 to 2.07 ± 0.75 L/min) and relative (20.7 ± 7.0 to 21.9 ± 7.4 mL/kg/min, P < 0.05 for both) V̇o2max, whereas no changes were observed following placebo (1.94 ± 0.40 to 1.90 ± 0.39 L/min, P = 0.33; 20.0 ± 4.2 to 19.7 ± 4.6 mL/kg/min, P = 0.39). Maximal workload was also increased following inorganic nitrate/nitrite supplementation (134 ± 47 to 140 ± 51 W, P < 0.05) but not placebo (138 ± 32 to 138 ± 32 W, P = 0.98). V̇o2 at the GET (1.11 ± 0.27 to 1.27 ± 0.38L/min) and the %V̇o2max in which GET occurred (56 ± 8 to 61 ± 7%, P < 0.05 for both) increased following inorganic nitrate/nitrite supplementation but not placebo (1.10 ± 0.23 to 1.08 ± 0.21 L/min, P = 0.60; 57 ± 9 to 57 ± 8%, P = 0.90) although the workload at GET did not achieve statistical significance (group-by-time P = 0.06). Combined inorganic nitrate/nitrite consumption improves exercise capacity, maximal workload, and promotes a rightward shift in the GET in patients with T2DM. This manuscript reports data from a registered Clinical Trial at ClinicalTrials.gov ID: NCT02804932.NEW & NOTEWORTHY We report that increasing nitric oxide bioavailability via 8 wk of inorganic nitrate/nitrite supplementation improves maximal aerobic exercise capacity in patients with type 2 diabetes mellitus. Similarly, we observed a rightward shift in the gas exchange threshold. Taken together, these data indicate inorganic nitrate/nitrite may serve as a means to improve fitness in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kayla A Miller
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Nathanael T Seaberg
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Vitor A Lira
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
6
|
Acute inorganic nitrate intake increases regional insulin action in the brain: Results of a double-blind, randomized, controlled cross-over trial with abdominally obese men. Neuroimage Clin 2022; 35:103115. [PMID: 35843050 PMCID: PMC9421446 DOI: 10.1016/j.nicl.2022.103115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 01/01/2023]
Abstract
AIMS Improving brain insulin sensitivity may be a promising approach in the prevention and treatment of metabolic and cognitive diseases. Our aim was to investigate acute effects of inorganic nitrate on regional cerebral blood flow (CBF) responses to intranasal insulin in abdominally obese men. METHODS Eighteen apparently healthy men, aged 18-60 years and with a waist circumference ≥ 102 cm, participated in a randomized, double-blind, placebo-controlled cross-over trial. The study consisted of two test days separated by at least one week. Men received in random order a drink providing 10 mmol (i.e., 625 mg nitrate) potassium nitrate or an isomolar placebo drink with potassium chloride. Brain insulin action was assessed 120-150 min after the drinks by quantifying acute effects of nasal insulin on regional CBF using arterial spin labeling Magnetic Resonance Imaging. Glucose and insulin concentrations were measured at regular intervals, while blood pressure was determined fasted and at 240 min. RESULTS Inorganic nitrate intake increased regional insulin action in five brain clusters. The two largest clusters were located in the right temporal lobe (ΔCBF: 7.0 ± 3.8 mL/100 g/min, volume: 5296 mm3, P < 0.001; and ΔCBF: 6.5 ± 4.3 mL/100 g/min, volume: 3592 mm3, P < 0.001), while two other cortical clusters were part of the right frontal (ΔCBF: 9.0 ± 6.0 mL/100 g/min, volume: 1096 mm3, P = 0.007) and the left parietal lobe (ΔCBF: 6.1 ± 4.3 mL/100 g/min, volume: 1024 mm3, P = 0.012). One subcortical cluster was located in the striatum (ΔCBF: 5.9 ± 3.2 mL/100 g/min, volume: 1792 mm3, P < 0.001). No effects of nitrate were observed on CBF before administration. Following nitrate intake, circulating nitrate plus nitrite concentrations increased over time (P = 0.003), but insulin and glucose concentrations and blood pressure did not change. CONCLUSION Acute inorganic nitrate intake may improve regional brain insulin action in abdominally obese men. These regions are involved in the regulation of different metabolic and cognitive processes. The trial was registered on January 6th, 2021 at ClinicalTrials.gov as NCT04700241.
Collapse
|
7
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
8
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
9
|
Cavalcanti ALDM, Rocha PKL, Zhuge Z, Paulo LL, Mendes-Júnior LDG, Brandão MCR, Athayde-Filho PF, Lundberg JO, Weitzberg E, Carlström M, Braga VDA, Montenegro MF. Cardiovascular characterization of the novel organic mononitrate NDIBP in rats. Nitric Oxide 2022; 119:50-60. [PMID: 34958954 DOI: 10.1016/j.niox.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Organic nitrates are widely used to restore endogenous nitric oxide (NO) levels reduced by endothelial nitric oxide synthase dysfunction. However, these drugs are associated with undesirable side effects, including tolerance. This study aims to investigate the cardiovascular effects of the new organic nitrate 1,3-diisobutoxypropan-2-yl nitrate (NDIBP). Specifically, we assessed its effects on blood pressure, vascular reactivity, acute toxicity, and the ability to induce tolerance. In vitro and ex vivo techniques showed that NDIBP released NO both in a cell-free system and in isolated mesenteric arteries preparations through a process catalyzed by xanthine oxidoreductase. NDIBP also evoked endothelium-independent vasorelaxation, which was significantly attenuated by 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO, 300 μM), a nitric oxide scavenger; 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM), a soluble guanylyl cyclase inhibitor; tetraethylammonium (TEA, 3 mM), a potassium channel blocker; febuxostat (500 nM), a xanthine oxidase inhibitor; and proadifen (10 μM), an inhibitor of cytochrome P450 enzyme. Furthermore, this organic nitrate did not induce tolerance in isolated vessels and presented low toxicity following acute oral administration. In vivo changes on cardiovascular parameters were assessed using normotensive and renovascular hypertensive rats. NDIBP evoked a reduction of blood pressure that was significantly higher in hypertensive animals. Our results suggest that NDIBP acts as a NO donor, inducing blood pressure reduction without having the undesirable effects of tolerance. Those effects seem to be mediated by activation of NO-sGC-cGMP pathway and positive modulation of K+ channels in vascular smooth muscle.
Collapse
Affiliation(s)
| | - Patrícia Keytth Lins Rocha
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Luciano Leite Paulo
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil
| | | | | | - Petrônio F Athayde-Filho
- Department of Chemistry, Federal University of Paraíba, Cidade Universitária, 58059900, João Pessoa, PB, Brazil
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Valdir de Andrade Braga
- Biotechnology Center, Federal University of Paraíba, Cidade Universitária, 58051970, João Pessoa, PB, Brazil.
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| |
Collapse
|
10
|
Inorganic nitrate and nitrite ameliorate kidney fibrosis by restoring lipid metabolism via dual regulation of AMP-activated protein kinase and the AKT-PGC1α pathway. Redox Biol 2022; 51:102266. [PMID: 35217293 PMCID: PMC8866060 DOI: 10.1016/j.redox.2022.102266] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background Renal fibrosis, associated with oxidative stress and nitric oxide (NO) deficiency, contributes to the development of chronic kidney disease and renal failure. As major energy source in maintaining renal physiological functions, tubular epithelial cells with decreased fatty acid oxidation play a key role in renal fibrosis development. Inorganic nitrate, found in high levels in certain vegetables, can increase the formation and signaling by bioactive nitrogen species, including NO, and dampen oxidative stress. In this study, we evaluated the therapeutic value of inorganic nitrate treatment on development of kidney fibrosis and investigated underlying mechanisms including regulation of lipid metabolism in tubular epithelial cells. Methods Inorganic nitrate was supplemented in a mouse model of complete unilateral ureteral obstruction (UUO)-induced fibrosis. Inorganic nitrite was applied in transforming growth factor β-induced pro-fibrotic cells in vitro. Metformin was administrated as a positive control. Fibrosis, oxidative stress and lipid metabolism were evaluated. Results Nitrate treatment boosted the nitrate-nitrite-NO pathway, which ameliorated UUO-induced renal dysfunction and fibrosis in mice, represented by improved glomerular filtration and morphological structure and decreased renal collagen deposition, pro-fibrotic marker expression, and inflammation. In human proximal tubule epithelial cells (HK-2), inorganic nitrite treatment prevented transforming growth factor β-induced pro-fibrotic changes. Mechanistically, boosting the nitrate-nitrite-NO pathway promoted AMP-activated protein kinase (AMPK) phosphorylation, improved AKT-mediated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) activity and restored mitochondrial function. Accordingly, treatment with nitrate (in vivo) or nitrite (in vitro) decreased lipid accumulation, which was associated with dampened NADPH oxidase activity and mitochondria-derived oxidative stress. Conclusions Our findings indicate that inorganic nitrate and nitrite treatment attenuates the development of kidney fibrosis by targeting oxidative stress and lipid metabolism. Underlying mechanisms include modulation of AMPK and AKT-PGC1α pathways. Inorganic nitrate treatment attenuates renal fibrosis in ureteral obstructed mice Underlying mechanisms include:dampened oxidative stress. increased formation/signaling of nitrogen species including nitric oxide.
A novel TGFβ-AKT-kidney fibrosis pathway are related to lipid metabolism.
Collapse
|
11
|
Wang L, Fu Z, Zheng J, Wang S, Ping Y, Gao B, Mo X, Liang P, Huang J. Exposure to perchlorate, nitrate and thiocyanate was associated with the prevalence of cardiovascular diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113161. [PMID: 34999343 DOI: 10.1016/j.ecoenv.2022.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
AIMS To determine the association between urinary levels of perchlorate, nitrate and thiocyanate, and the prevalence of cardiovascular diseases (CVD) among general population. METHODS A total of 16, 570 participants were enrolled from the National Health and Nutrition Examination Surveys (NHANES). Urinary levels of perchlorate, nitrate and thiocyanate were measured using ion chromatography coupled with electrospray tandem mass spectrometry. Multivariable linear regressions and logistic regressions were performed to explore the associations of exposure to perchlorate, nitrate and thiocyanate, and the prevalence of total and specific CVD, including chronic heart failure (CHF), coronary heart disease (CHD), angina, heart failure and stroke. Restricted cubic splines were used to explore the nonlinearity. RESULTS Participants with CVD had a lower urinary level of nitrate and thiocyanate (all P < 0.001). A null association between urinary perchlorate and total CVD or specific CVD was observed. Comparing with the lowest quartile, the highest quartile of urinary nitrate was independently associated with a decreased presence of total CVD (odds ratio [OR] 0.66, 95% confidence interval [CI] [0.53, 0.82]), CHF (OR 0.48, 95% CI [0.33, 0.71]), and stroke (OR 0.63, 95%CI [0.45, 0.88]). In addition, per one-fold increasement of urinary nitrate decreased a 0.15-fold prevalence of total CVD, 0.29-fold prevalence of CHF, and 0.16-fold prevalence of stroke. However, for urinary thiocyanate, we found that the 2nd and 3rd quartile were associated with total CVD, the 2nd quartile associated with heart attack, and the 2nd, 3rd and 4th quartile associated with stroke. What's more, restricted cubic splines confirmed that the relation between urinary nitrate and CVD was linear (P for nonlinearity = 0.242) and the inverse relation between urinary thiocyanate and CVD was nonlinear (P for nonlinearity < 0.001). CONCLUSION In the general population, low levels of nitrate were linearly while thiocyanate were nonlinearly associated with an increased presence of cardiovascular diseases.
Collapse
Affiliation(s)
- Long Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Fu
- Department of Cardio-macrovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jie Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuai Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Ping
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Gao
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Jinyu Huang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Aggarwal H, Pathak P, Kumar Y, Jagavelu K, Dikshit M. Modulation of Insulin Resistance, Dyslipidemia and Serum Metabolome in iNOS Knockout Mice following Treatment with Nitrite, Metformin, Pioglitazone, and a Combination of Ampicillin and Neomycin. Int J Mol Sci 2021; 23:195. [PMID: 35008623 PMCID: PMC8745663 DOI: 10.3390/ijms23010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative and nitrosative stress plays a pivotal role in the incidence of metabolic disorders. Studies from this lab and others in iNOS-/- mice have demonstrated occurrence of insulin resistance (IR), hyperglycemia and dyslipidemia highlighting the importance of optimal redox balance. The present study evaluates role of nitrite, L-arginine, antidiabetics (metformin, pioglitazone) and antibiotics (ampicillin-neomycin combination, metronidazole) on metabolic perturbations observed in iNOS-/- mice. The animals were monitored for glucose tolerance (IPGTT), IR (insulin, HOMA-IR, QUICKI), circulating lipids and serum metabolomics (LC-MS). Hyperglycemia, hyperinsulinemia and IR were rescued by nitrite, antidiabetics, and antibiotics treatments in iNOS-/- mice. Glucose intolerance was improved with nitrite, metformin and pioglitazone treatment, while ampicillin-neomycin combination normalised the glucose utilization in iNOS-/- mice. Increased serum phosphatidylethanolamine lipids in iNOS-/- mice were reversed by metformin, pioglitazone and ampicillin-neomycin; dyslipidemia was however marginally improved by nitrite treatment. The metabolic improvements were associated with changes in selected serum metabolites-purines, ceramide, 10-hydroxydecanoate, glucosaminate, diosmetin, sebacic acid, 3-nitrotyrosine and cysteamine. Bacterial metabolites-hippurate, indole-3-ethanol; IR marker-aminoadipate and oxidative stress marker-ophthalmate were reduced by pioglitazone and ampicillin-neomycin, but not by nitrite and metformin treatment. Results obtained in the present study suggest a crucial role of gut microbiota in the metabolic perturbations observed in iNOS-/- mice.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (H.A.); (P.P.); (K.J.)
| | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (H.A.); (P.P.); (K.J.)
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad 121001, India;
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (H.A.); (P.P.); (K.J.)
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (H.A.); (P.P.); (K.J.)
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad 121001, India;
| |
Collapse
|
13
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Lost-in-Translation of Metabolic Effects of Inorganic Nitrate in Type 2 Diabetes: Is Ascorbic Acid the Answer? Int J Mol Sci 2021; 22:4735. [PMID: 33947005 PMCID: PMC8124635 DOI: 10.3390/ijms22094735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Beneficial metabolic effects of inorganic nitrate (NO3-) and nitrite (NO2-) in type 2 diabetes mellitus (T2DM) have been documented in animal experiments; however, this is not the case for humans. Although it has remained an open question, the redox environment affecting the conversion of NO3- to NO2- and then to NO is suggested as a potential reason for this lost-in-translation. Ascorbic acid (AA) has a critical role in the gastric conversion of NO2- to NO following ingestion of NO3-. In contrast to AA-synthesizing species like rats, the lack of ability to synthesize AA and a lower AA body pool and plasma concentrations may partly explain why humans with T2DM do not benefit from NO3-/NO2- supplementation. Rats also have higher AA concentrations in their stomach tissue and gastric juice that can significantly potentiate gastric NO2--to-NO conversion. Here, we hypothesized that the lack of beneficial metabolic effects of inorganic NO3- in patients with T2DM may be at least in part attributed to species differences in AA metabolism and also abnormal metabolism of AA in patients with T2DM. If this hypothesis is proved to be correct, then patients with T2DM may need supplementation of AA to attain the beneficial metabolic effects of inorganic NO3- therapy.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (Z.B.); (P.M.)
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (Z.B.); (P.M.)
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran
| |
Collapse
|
14
|
High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Med 2021; 19:37. [PMID: 33568158 PMCID: PMC7875684 DOI: 10.1186/s12916-021-01913-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic inflammation, which can be modulated by diet, is linked to high white blood cell counts and correlates with higher cardiometabolic risk and risk of more severe infections, as in the case of COVID-19. METHODS Here, we assessed the association between white blood cell profile (lymphocytes, basophils, eosinophils, neutrophils, monocytes and total white blood cells) as markers of chronic inflammation, habitual diet and gut microbiome composition (determined by sequencing of the 16S RNA) in 986 healthy individuals from the PREDICT-1 nutritional intervention study. We then investigated whether the gut microbiome mediates part of the benefits of vegetable intake on lymphocyte counts. RESULTS Higher levels of white blood cells, lymphocytes and basophils were all significantly correlated with lower habitual intake of vegetables, with vegetable intake explaining between 3.59 and 6.58% of variation in white blood cells after adjusting for covariates and multiple testing using false discovery rate (q < 0.1). No such association was seen with fruit intake. A mediation analysis found that 20.00% of the effect of vegetable intake on lymphocyte counts was mediated by one bacterial genus, Collinsella, known to increase with the intake of processed foods and previously associated with fatty liver disease. We further correlated white blood cells to other inflammatory markers including IL6 and GlycA, fasting and post-prandial glucose levels and found a significant relationship between inflammation and diet. CONCLUSION A habitual diet high in vegetables, but not fruits, is linked to a lower inflammatory profile for white blood cells, and a fifth of the effect is mediated by the genus Collinsella. TRIAL REGISTRATION The ClinicalTrials.gov registration identifier is NCT03479866 .
Collapse
|
15
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
16
|
Bahadoran Z, Norouzirad R, Mirmiran P, Gaeini Z, Jeddi S, Shokri M, Azizi F, Ghasemi A. Effect of inorganic nitrate on metabolic parameters in patients with type 2 diabetes: A 24-week randomized double-blind placebo-controlled clinical trial. Nitric Oxide 2020; 107:58-65. [PMID: 33340674 DOI: 10.1016/j.niox.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
AIM In this randomized placebo-controlled clinical trial, effect of oral inorganic nitrate (NO3-) on metabolic parameters was assessed in patients with type 2 diabetes mellitus (T2DM). METHODS Seventy-four eligible patients with T2DM were randomly assigned to NO3--rich beetroot powder (5 g/d contains ~250 mg NO3-) and placebo groups to complete intervention over a 24-week period. Blood HbA1c, fasting serum glucose, insulin, C-peptide, as well as lipid profile were assessed at baseline and again at weeks 4, 12, and 24; indices of insulin resistance were also calculated. To assess safety of long-term oral NO3-, liver and renal function tests were measured. An intention-to-treat approach was used for data analysis. To compare effect of intervention over time between the groups (time×group), repeated measures generalized estimating equation (GEE) linear regression models were used. RESULTS Mean age of the participants was 54.0 ± 8.5 (47.9% were male) and mean duration of diabetes was 8.5 ± 6.1 years. A total of 64 patients (n = 35 in beetroot group and n = 29 in placebo group) completed at least two visits and were included in the analyses. No significant difference was observed between the groups for glycemic and lipid parameters over time. Liver and renal function tests, as safety outcome measures, showed no undesirable changes during the study follow-up. CONCLUSION Supplementation with inorganic NO3- had no effect on metabolic parameters in patients with T2DM.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- Department of Biochemistry, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Gaeini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Schiffer TA, Lundberg JO, Weitzberg E, Carlström M. Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165811. [PMID: 32339643 DOI: 10.1016/j.bbadis.2020.165811] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria play fundamental role in maintaining cellular metabolic homeostasis, and metabolic disorders including type 2 diabetes (T2D) have been associated with mitochondrial dysfunction. Pathophysiological mechanisms are coupled to increased production of reactive oxygen species and oxidative stress, together with reduced bioactivity/signaling of nitric oxide (NO). Novel strategies restoring these abnormalities may have therapeutic potential in order to prevent or even treat T2D and associated cardiovascular and renal co-morbidities. A diet rich in green leafy vegetables, which contains high concentrations of inorganic nitrate, has been shown to reduce the risk of T2D. To this regard research has shown that in addition to the classical NO synthase (NOS) dependent pathway, nitrate from our diet can work as an alternative precursor for NO and other bioactive nitrogen oxide species via serial reductions of nitrate (i.e. nitrate-nitrite-NO pathway). This non-conventional pathway may act as an efficient back-up system during various pathological conditions when the endogenous NOS system is compromised (e.g. acidemia, hypoxia, ischemia, aging, oxidative stress). A number of experimental studies have demonstrated protective effects of nitrate supplementation in models of obesity, metabolic syndrome and T2D. Recently, attention has been directed towards the effects of nitrate/nitrite on mitochondrial functions including beiging/browning of white adipose tissue, PGC-1α and SIRT3 dependent AMPK activation, GLUT4 translocation and mitochondrial fusion-dependent improvements in glucose homeostasis, as well as dampening of NADPH oxidase activity. In this review, we examine recent research related to the effects of bioactive nitrogen oxide species on mitochondrial function with emphasis on T2D.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|