1
|
Seemiller LR, Goldberg LR, Sebastian A, Siegel SR, Praul C, Zeid D, Albert I, Beierle J, Bryant CD, Gould TJ. Alcohol and fear conditioning produce strain-specific changes in the dorsal hippocampal transcriptome of adolescent C57BL/6J and DBA/2J mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2022-2034. [PMID: 39279663 DOI: 10.1111/acer.15440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Adolescent sensitivity to alcohol is influenced by genetic background. Data from our laboratory suggested that adolescent C57BL/6J and DBA/2J inbred mice differed in susceptibility to alcohol-induced deficits in dorsal hippocampus-dependent contextual fear learning. METHODS To investigate the biological underpinnings of this strain difference, we examined dorsal hippocampus gene expression using RNA-sequencing after alcohol or saline administration followed by Pavlovian fear conditioning across male and female C57BL/6J and DBA/2J adolescents. RESULTS Strains exhibited dramatic differences in dorsal hippocampus gene expression. Specifically, C57BL/6J and DBA/2J strains differed by 3526 transcripts in males and 2675 transcripts in females. We identified pathways likely to be involved in mediating alcohol's effects on learning, including networks associated with Chrna7, a gene encoding the nicotinic cholinergic receptor alpha 7 subunit, and Fmr1, a gene encoding the fragile X messenger ribonucleoprotein. CONCLUSIONS These findings provide insight into the mechanisms underlying strain differences in alcohol's effects on learning and suggest that different biological networks are recruited for learning based on genetics, sex, and alcohol exposure.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Sue Rutherford Siegel
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Craig Praul
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Jacob Beierle
- Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Camron D Bryant
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Seemiller LR, Garcia-Trevizo P, Novoa C, Goldberg LR, Murray S, Gould TJ. Adolescent intermittent alcohol exposure produces strain-specific cross-sensitization to nicotine and other behavioral adaptations in adulthood in C57BL/6J and DBA/2J mice. Pharmacol Biochem Behav 2023; 232:173655. [PMID: 37802393 PMCID: PMC10995114 DOI: 10.1016/j.pbb.2023.173655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Adolescent alcohol exposure is associated with lasting behavioral changes in humans and in mice. Prior work from our laboratory and others have demonstrated that C57BL/6J and DBA/2J mice differ in sensitivity to some effects of acute alcohol exposure during adolescence and adulthood. However, it is unknown if these strains differ in cognitive, anxiety-related, and addiction-related long-term consequences of adolescent intermittent alcohol exposure. This study examined the impact of a previously validated adolescent alcohol exposure paradigm (2-3 g/kg, i.p., every other day PND 30-44) in C57BL/6J and DBA/2J male and female mice on adult fear conditioning, anxiety-related behavior (elevated plus maze), and addiction-related phenotypes including nicotine sensitivity (hypothermia and locomotor depression) and alcohol sensitivity (loss of righting reflex; LORR). Both shared and strain-specific long-term consequences of adolescent alcohol exposure were found. Most notably, we found a strain-specific alcohol-induced increase in sensitivity to nicotine's hypothermic effects during adulthood in the DBA/2J strain but not in the C57BL/6J strain. Conversely, both strains demonstrated a robust increased latency to LORR during adulthood after adolescent alcohol exposure. Thus, we observed strain-dependent cross-sensitization to nicotine and strain-independent tolerance to alcohol due to adolescent alcohol exposure. Several strain and sex differences independent of adolescent alcohol treatment were also observed. These include increased sensitivity to nicotine-induced hypothermia in the C57BL/6J strain relative to the DBA/2J strain, in addition to DBA/2J mice showing more anxiety-like behaviors in the elevated plus maze relative to the C57BL/6J strain. Overall, these results suggest that adolescent alcohol exposure results in altered adult sensitivity to nicotine and alcohol with some phenotypes mediated by genetic background.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | | | - Carlos Novoa
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Samantha Murray
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
3
|
Bariselli S, Mateo Y, Reuveni N, Lovinger DM. Gestational ethanol exposure impairs motor skills in female mice through dysregulated striatal dopamine and acetylcholine function. Neuropsychopharmacology 2023; 48:1808-1820. [PMID: 37188849 PMCID: PMC10579353 DOI: 10.1038/s41386-023-01594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Fetal alcohol exposure has deleterious consequences on the motor skills of patients affected by Fetal Alcohol Spectrum Disorder (FASD) and in pre-clinical models of gestational ethanol exposure (GEE). Deficits in striatal cholinergic interneurons (CINs) and dopamine function impair action learning and execution, yet the effects of GEE on acetylcholine (ACh) and striatal dopamine release remain unexplored. Here, we report that alcohol exposure during the first ten postnatal days (GEEP0-P10), which mimics ethanol consumption during the last gestational trimester in humans, induces sex-specific anatomical and motor skill deficits in female mice during adulthood. Consistent with these behavioral impairments, we observed increased stimulus evoked-dopamine levels in the dorsolateral striatum (DLS) of GEEP0-P10 female, but not male, mice. Further experiments revealed sex-specific deficits in β2-containing nicotinic ACh receptor (nAChR)-modulation of electrically evoked dopamine release. Moreover, we found a reduced decay of ACh transients and a decreased excitability of striatal CINs in DLS of GEEP0-P10 females, indicating striatal CIN dysfunctions. Finally, the administration of varenicline, a β2-containing nAChR partial agonist, and chemogenetic-mediated increase in CIN activity improved motor performance in adult GEEP0-P10 females. Altogether, these data shed new light on GEE-induced striatal deficits and establish potential pharmacological and circuit-specific interventions to ameliorate motor symptoms of FASD.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- Laboratory for Integrative Neuroscience (LIN), NIH-NIAAA, 5625 Fishers Lane, Bethesda, MD, 20892, USA.
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience (LIN), NIH-NIAAA, 5625 Fishers Lane, Bethesda, MD, 20892, USA
| | - Noa Reuveni
- Laboratory for Integrative Neuroscience (LIN), NIH-NIAAA, 5625 Fishers Lane, Bethesda, MD, 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience (LIN), NIH-NIAAA, 5625 Fishers Lane, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Seemiller LR, Goldberg LR, Garcia-Trevizo P, Gould TJ. Interstrain differences in adolescent fear conditioning after acute alcohol exposure. Brain Res Bull 2023; 194:35-44. [PMID: 36681252 PMCID: PMC10921434 DOI: 10.1016/j.brainresbull.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Adolescent sensitivity to alcohol is a predictor of continued alcohol use and misuse later in life. Thus, it is important to understand the many factors that can impact alcohol sensitivity. Data from our laboratory suggested that susceptibility to alcohol-associated contextual fear learning deficits varied among adolescent and adult mice from two mouse strains. To investigate the extent of genetic background's influences on adolescent learning after alcohol exposure, we examined how 9 inbred mouse strains differed in vulnerability to alcohol-induced contextual and cued fear conditioning deficits. We demonstrated significant strain- and sex-dependent effects of acute alcohol exposure on adolescent fear learning, with alcohol having most pronounced effects on contextual fear learning. Female adolescents were more susceptible than males to alcohol-induced impairments in contextual, but not cued, fear learning, independent of genetic background. Heritability for contextual and cued fear learning after alcohol exposure was estimated to be 31 % and 18 %, respectively. Learning data were compared to Blood Ethanol Concentrations (BEC) to assess whether strain differences in alcohol metabolism contributed to strain differences in learning after alcohol exposure. There were no clear relationships between BEC and learning outcomes, suggesting that strains differed in learning outcomes for reasons other than strain differences in alcohol metabolism. Genetic analyses revealed polymorphisms across strains in notable genes, such as Chrna7, a promising genetic candidate for susceptibility to alcohol-induced fear conditioning deficits. These results are the first to demonstrate the impact of genetic background on alcohol-associated fear learning deficits during adolescence and suggest that the mechanisms underlying this sensitivity are distinct from alcohol metabolism.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | | | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
5
|
Spasova V, Mehmood S, Minhas A, Azhar R, Anand S, Abdelaal S, Sham S, Chauhan TM, Dragas D. Impact of Nicotine on Cognition in Patients With Schizophrenia: A Narrative Review. Cureus 2022; 14:e24306. [PMID: 35475247 PMCID: PMC9020415 DOI: 10.7759/cureus.24306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Nicotine is the psychoactive component given tobacco has several main components and acts as an agonist for nicotinic acetylcholine receptors (nAChRs) in the nervous system. Although the ligand-gated cation channels known as nAChRs are found throughout the nervous system and body, this review focuses on neuronal nAChRs. Individuals with psychiatric diseases such as schizophrenia, comorbid substance use disorders, attention-deficit hyperactivity disorder, major depression, and bipolar disorder have increased rates of smoking. These psychiatric disorders are associated with various cognitive deficits, including working memory, deficits in attention, and response inhibition functions. The cognitive-enhancing effects of nicotine may be particularly relevant predictors of smoking initiation and continuation in this comorbid population. Individuals with schizophrenia make up a significant proportion of smokers. Literature suggests that patients smoke to alleviate cognitive deficiencies due to the stimulating effects of nicotine. This narrative review examines the role of nicotine on cognition in schizophrenia.
Collapse
|
6
|
Seemiller LR, Gould TJ. Adult and adolescent C57BL/6J and DBA/2J mice are differentially susceptible to fear learning deficits after acute ethanol or MK-801 treatment. Behav Brain Res 2021; 410:113351. [PMID: 33974921 PMCID: PMC8403488 DOI: 10.1016/j.bbr.2021.113351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Ethanol and other drugs of abuse disrupt learning and memory processes, creating problems associated with drug use and addiction. Understanding individual factors that determine susceptibility to drug-induced cognitive deficits, such as genetic background, age, and sex, is important for prevention and treatment. Comparison of adolescent and adult mice of both sexes across inbred mouse strains can reveal age, sex, and genetic contributions to phenotypes. We treated adolescent and adult, male and female, C57BL/6J and DBA/2J inbred mice with ethanol (1 g/kg or 1.5 g/kg) or MK-801 (0.05 mg/kg or 0.1 mg/kg), an NMDA receptor antagonist, prior to fear conditioning training. Contextual and cued fear retention were tested one day and eight or nine days after training. After ethanol exposure, adult C57BL/6J mice experienced greater deficits in contextual learning than adult DBA/2J mice. C57BL/6 J adolescents were less susceptible to ethanol-induced contextual learning disruptions than C57BL/6J adults, and adolescent males of both strains exhibited greater ethanol-induced contextual learning deficits than adolescent females. After MK-801 exposure, adolescent C57BL/6J mice experienced more severe contextual learning deficits than adolescent DBA/2J mice. Both ethanol and MK-801 had greater effects on contextual learning than cued learning. Collectively, we demonstrate that genetic background contributes to contextual and cued learning outcomes after ethanol or MK-801 exposure. Further, we report age-dependent drug sensitivities that are strain-, sex-, and drug-specific, suggesting that age, sex, and genetic background interact to determine contextual and cued learning impairments after ethanol or MK-801 exposure.
Collapse
Affiliation(s)
- L R Seemiller
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, United States
| | - T J Gould
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, United States.
| |
Collapse
|
7
|
McNamara TA, Ito R. Relationship between voluntary ethanol drinking and approach-avoidance biases in the face of motivational conflict: novel sex-dependent associations in rats. Psychopharmacology (Berl) 2021; 238:1817-1832. [PMID: 33783557 DOI: 10.1007/s00213-021-05810-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
RATIONALE Aberrant approach-avoidance conflict processing may contribute to compulsive seeking that characterizes addiction. Exploration of the relationship between drugs of abuse and approach-avoidance behavior remains limited, especially with ethanol. OBJECTIVES To investigate the effects of voluntary ethanol consumption on approach-avoidance conflict behavior and to examine the potential approach/avoidance bias to predict drinking in male and female rats. METHODS Long-Evans rats consumed ethanol for 5 weeks under the intermittent access two-bottle choice (IA2BC) paradigm. Approach-avoidance tendencies were assessed before and after IA2BC drinking using a previously established cued approach-avoidance conflict maze task and the elevated plus maze (EPM). RESULTS Female rats displayed higher consumption of and preference for ethanol than males. In the conflict task, males showed greater approach bias towards cues predicting conflict than females. In females only, a median split and regression analysis of cued-conflict preference scores revealed that the more conflict-avoidant group displayed higher intake and preference for ethanol in the first few weeks of drinking. In both sexes, ethanol drinking did not affect cued-conflict preference, but ethanol exposure led to increased time spent in the central hub in the males only. Finally, anxiety levels in EPM predicted subsequent onset of ethanol drinking in males only. CONCLUSIONS Our results highlight sex and individual differences in both drinking and approach-avoidance bias in the face of cued conflict and further suggest that cued-conflict preference should be examined as a potential predictor of ethanol drinking. Ethanol exposure may also affect the timing of decision-making in the face of conflict.
Collapse
Affiliation(s)
- Tanner A McNamara
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada. .,Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
8
|
Miller CN, Kamens HM. The role of nicotinic acetylcholine receptors in alcohol-related behaviors. Brain Res Bull 2020; 163:135-142. [PMID: 32707263 DOI: 10.1016/j.brainresbull.2020.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022]
Abstract
Alcohol use disorder (AUD) causes an alarming economic and health burden in the United States. Unfortunately, this disease does not exist in isolation; AUD is highly comorbid with nicotine use. Results from both human and animal models demonstrate a genetic correlation between alcohol and nicotine behaviors. These data support the idea of shared genetic and neural mechanisms underlying these behaviors. Nicotine acts directly at nicotinic acetylcholine receptors (nAChR) to have its pharmacological effect. Interestingly, alcohol also acts both directly and indirectly at these receptors. Research utilizing genetically engineered rodents and pharmacological manipulations suggest a role for nAChR in several ethanol behaviors. The current manuscript collates this literature and discusses findings that implicate specific nAChR subunits in ethanol phenotypes. These data suggest future directions for targeting nAChR as novel therapeutics for AUD.
Collapse
Affiliation(s)
- C N Miller
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - H M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
9
|
Sabzalizadeh M, Afarinesh MR, Mafi F, Mosanejad E, Haghpanah T, Golshan F, Koohkan F, Ezzatabadipour M, Sheibani V. Alcohol and nicotine co-Administration during pregnancy and lactation periods alters sensory discrimination of adult NMRI mice offspring. Physiol Behav 2019; 213:112731. [PMID: 31682889 DOI: 10.1016/j.physbeh.2019.112731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
Abstract
The present study investigated the impacts of alcohol, nicotine, and their co-administration during pregnancy and lactation on sensory information processing including visual, tactile, and auditory discrimination in adult NMRI mice offspring. Pregnant mice were injected with saline or 20% alcohol (3 g/kg), or nicotine (1 mg/kg) or their co-administration alcohol+nicotine, intraperitoneally until the end of lactation. The offspring were separated from their mothers after lactation period on postnatal day (PND) 28. The locomotor activity, novel object recognition-dependent on visual system (NOR-VS), novel texture discrimination- dependent on somatosensory system (NTR-SS), and acoustic startle reflex were evaluated in PND90. The results revealed no statistical significance for locomotor activity of alcohol, nicotine, and co-administration alcohol+nicotine groups compared to the saline group in the open field task. The results, however, showed a significant decline in the ability of novel object discrimination in the nicotine and co-administration alcohol + nicotine groups compared to the saline group (P < 0.05) in the NOR-VS task. In the NTR-SS and acoustic startle reflex tasks, texture discrimination and the prepulse inhibition abilities in the offspring administered with nicotine and alcohol alone were reduced when compared to the saline group. Also, co-administration of alcohol+nicotine groups showed a decline in the aforementioned tests compared to the saline group (P <0.05). Administration of alcohol and nicotine during fetal and postpartum development disrupts sensory processing of inputs of visual, tactile, and auditory systems in adult mice.
Collapse
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Fatemeh Mafi
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elahe Mosanejad
- Department of anatomy, School of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Department of anatomy, School of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Golshan
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Faezeh Koohkan
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Department of anatomy, School of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Montgomery KS, Bancroft EA, Fincher AS, Migut EA, Provasek V, Murchison D, DuBois DW. Effects of ethanol and varenicline on female Sprague-Dawley rats in a third trimester model of fetal alcohol syndrome. Alcohol 2018; 71:75-87. [PMID: 30059955 PMCID: PMC6223131 DOI: 10.1016/j.alcohol.2018.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/03/2018] [Accepted: 02/26/2018] [Indexed: 12/17/2022]
Abstract
Perinatal ethanol exposure disrupts a variety of developmental processes in neurons important for establishing a healthy brain. These ethanol-induced impairments known as fetal alcohol spectrum disorder (FASD) are not fully understood, and currently, there is no effective treatment. Further, growing evidence suggests that adult females are more susceptible to ethanol, with the effects of perinatal ethanol exposure also being sexually divergent. Female models have been historically underutilized in neurophysiological investigations, but here, we used a third-trimester binge-ethanol model of FASD to examine changes to basal forebrain (BF) physiology and behavior in female Sprague-Dawley rats. We also tested varenicline as a potential cholinomimetic therapeutic. Rat pups were gavage-treated with binge-like ethanol, varenicline and ethanol, and varenicline alone. Using patch-clamp electrophysiology in BF slices, we observed that binge-ethanol exposure increased spontaneous post-synaptic current (sPSC) frequency. Varenicline exposure alone also enhanced sPSC frequency. Varenicline plus ethanol co-treatment prevented the sPSC frequency increase. Changes in BF synaptic transmission persisted into adolescence after binge-ethanol treatment. Behaviorally, binge-ethanol treated females displayed increased anxiety (thigmotaxis) and demonstrated learning deficits in the water maze. Varenicline/ethanol co-treatment was effective at reducing these behavioral deficits. In the open field, ethanol-treated rats displayed longer distances traveled and spent less time in the center of the open field box. Co-treated rats displayed less anxiety, demonstrating a possible effect of varenicline on this measure. In conclusion, ethanol-induced changes in both BF synaptic transmission and behavior were reduced by varenicline in female rats, supporting a role for cholinergic therapeutics in FASD treatment.
Collapse
Affiliation(s)
- Karienn S Montgomery
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Eric A Bancroft
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Annette S Fincher
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Ewelina A Migut
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Vincent Provasek
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - David Murchison
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Dustin W DuBois
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States.
| |
Collapse
|
11
|
Valentine G, Sofuoglu M. Cognitive Effects of Nicotine: Recent Progress. Curr Neuropharmacol 2018; 16:403-414. [PMID: 29110618 PMCID: PMC6018192 DOI: 10.2174/1570159x15666171103152136] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/11/2017] [Accepted: 07/30/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cigarette smoking is the main cause of preventable death in developed countries. While the direct positive behavioral reinforcing effect of nicotine has historically been considered the primary mechanism driving the development of TUD, accumulating contemporary research suggests that the cognitive-enhancing effects of nicotine may also significantly contribute to the initiation and maintenance of TUD, especially in individuals with pre-existing cognitive deficits. METHODS We provide a selective overview of recent advances in understanding nicotine's effects on cognitive function, a discussion of the role of cognitive function in vulnerability to TUD, followed by an overview of the neurobiological mechanisms underlying the cognitive effects of nicotine. RESULTS Preclinical models and human studies have demonstrated that nicotine has cognitiveenhancing effects. Attention, working memory, fine motor skills and episodic memory functions are particularly sensitive to nicotine's effects. Recent studies have demonstrated that the α4, β2, and α7 subunits of the nicotinic acetylcholine receptor (nAChR) participate in the cognitive-enhancing effects of nicotine. Imaging studies have been instrumental in identifying brain regions where nicotine is active, and research on the dynamics of large-scale networks after activation by, or withdrawal from, nicotine hold promise for improved understanding of the complex actions of nicotine on human cognition. CONCLUSION Because poor cognitive performance at baseline predicts relapse among smokers who are attempting to quit smoking, studies examining the potential efficacy of cognitive-enhancement as strategy for the treatment of TUD may lead to the development of more efficacious interventions.
Collapse
Affiliation(s)
| | - Mehmet Sofuoglu
- Address correspondence to this author at the Yale University School of Medicine, Department of Psychiatry, New Haven, CT 06510, USA; Tel: 1 203 737 4882; Fax: 1 203 737 3591; E-mail:
| |
Collapse
|
12
|
D’Souza GX, Waldvogel HJ. Targeting the Cholinergic System to Develop a Novel Therapy for Huntington's Disease. J Huntingtons Dis 2017; 5:333-342. [PMID: 27983560 PMCID: PMC5181681 DOI: 10.3233/jhd-160200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this review, we outline the role of the cholinergic system in Huntington’s disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington’s disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington’s disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies.
Collapse
Affiliation(s)
| | - Henry J. Waldvogel
- Correspondence to: Associate Professor Henry J. Waldvogel, Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand. Tel.: +64 9 923 6051; E-mail:
| |
Collapse
|
13
|
Obsada N, Zalewska-Kaszubska J. Wareniklina – częściowy agonista receptorów nikotynowych w terapii zespołu uzależnienia od alkoholu. ALCOHOLISM AND DRUG ADDICTION 2016. [DOI: 10.1016/j.alkona.2016.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Dar MS. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms. THE CEREBELLUM 2016; 14:447-65. [PMID: 25578036 DOI: 10.1007/s12311-014-0638-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA,
| |
Collapse
|
15
|
Hall FS, Der-Avakian A, Gould TJ, Markou A, Shoaib M, Young JW. Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev 2015; 58:168-85. [PMID: 26054790 DOI: 10.1016/j.neubiorev.2015.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/13/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation treatments.
Collapse
Affiliation(s)
- F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
16
|
Goktalay T, Buyukuysal S, Uslu G, Coskun AS, Yorgancioglu A, Kayir H, Uzbay T, Goktalay G. Varenicline disrupts prepulse inhibition only in high-inhibitory rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:54-60. [PMID: 24632394 DOI: 10.1016/j.pnpbp.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 11/29/2022]
Abstract
Varenicline, a widely used smoking cessation drug, has partial agonistic activity at α4β2 nicotinic receptors, and full agonistic activity at α7 nicotinic receptors. Thus it may interact with cognitive processes and may alleviate some of the cognitive disturbances observed in psychotic illnesses such as schizophrenia. We aimed to test the effects of varenicline on sensorimotor gating functioning, which is crucial for normal cognitive processes, especially for the integration of sensory and cognitive information processing and the execution of appropriate motor responses. Prepulse inhibition (PPI) of the acoustic startle reflex was used to test the sensorimotor gating functioning. First, the effects of varenicline and nicotine on rats having high or low baseline PPI levels were evaluated; then, varenicline was applied prior to apomorphine (0.5 mg/kg), and MK-801 (0.15 mg/kg), which are used as comparative models of PPI disruption. Varenicline (0.5-3 mg/kg) did not change PPI when given alone in naïve animals. When rats were selected according to their baseline PPI values, varenicline (1 mg/kg) significantly decreased PPI in high-inhibitory (HI) but not in low-inhibitory (LI) rats. Nicotine (1 mg/kg; tartrate salt) produced a similar activity in LI and HI groups. In combination experiments, varenicline did not reverse either apomorphine or the MK-801-induced disruption of PPI. These results demonstrate that the effects of both varenicline and nicotine on sensorimotor gating are influenced by the baseline PPI levels. Moreover, varenicline has no effect on apomorphine or the MK-801-induced disruption of PPI.
Collapse
Affiliation(s)
- Tugba Goktalay
- Department of Chest Diseases, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Sema Buyukuysal
- Department of Medical Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gulsah Uslu
- Department of Medical Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Aysin S Coskun
- Department of Chest Diseases, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Arzu Yorgancioglu
- Department of Chest Diseases, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Hakan Kayir
- Department of Medical Pharmacology, Psychopharmacology Research Unit, Gulhane Military Medical Academy, Ankara, Turkey
| | - Tayfun Uzbay
- Neuropsychopharmacology Application and Research Center, Uskudar University, Istanbul, Turkey
| | - Gokhan Goktalay
- Department of Medical Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey.
| |
Collapse
|
17
|
Nocente R, Vitali M, Balducci G, Enea D, Kranzler HR, Ceccanti M. Varenicline and neuronal nicotinic acetylcholine receptors: a new approach to the treatment of co-occurring alcohol and nicotine addiction? Am J Addict 2013; 22:453-9. [PMID: 23952890 DOI: 10.1111/j.1521-0391.2013.12037.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/06/2011] [Accepted: 03/12/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Alcohol and nicotine dependence are serious public health problems worldwide. They are associated with substantial morbidity and mortality, as well as adverse social effects and increased healthcare costs. Although efficacious treatments are available for these disorders, additional therapeutic options are required to ensure greater treatment utilization. In this paper, we describe the empirical basis on which varenicline, a nicotinic partial agonist approved for smoking cessation, may also have utility in the treatment of alcohol addiction. METHODS We sought to identify papers examining nicotine dependence, alcohol dependence, smoking, alcohol, and varenicline for possible inclusion in the present review. We identified over 600 papers through Pubmed/Medline, PsychINFO, and Google Scholar. We found 12 papers taking into consideration the following criteria: original language English, varenicline effect on alcohol consumption. RESULTS Animal studies have shown that varenicline reduces alcohol consumption. Two recent studies showed that varenicline also reduces alcohol consumption in humans. Both nicotine and alcohol interact with α4β2 and α3β4 nicotinic acetylcholine (ACh) receptors located in the ventral tegmental area of the brain, inducing dopamine (DA) release at the nucleus accumbens. Varenicline binds to nicotinic ACh receptors, where it has partial agonist effects, producing a moderate and constant level of DA release both in the mesolimbic pathway and in the prefrontal cortex. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE Through these effects, varenicline may reduce alcohol craving, seeking, and consumption, in addition to promoting smoking cessation. Additional studies are needed to confirm the efficacy of varenicline in the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Roberto Nocente
- Department of Clinical Medicine, Sapienza-University of Rome, Italy
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Therapeutic potential of histaminergic compounds in the treatment of addiction and drug-related cognitive disorders. Behav Brain Res 2013; 237:357-68. [DOI: 10.1016/j.bbr.2012.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022]
|
20
|
Sanday L, Patti CL, Zanin KA, Fernandes-Santos L, Oliveira LC, Kameda SR, Tufik S, Frussa-Filho R. Ethanol-Induced Memory Impairment in a Discriminative Avoidance Task is State-Dependent. Alcohol Clin Exp Res 2012; 37 Suppl 1:E30-9. [DOI: 10.1111/j.1530-0277.2012.01905.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 06/06/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Leandro Sanday
- Departamento de Farmacologia; Universidade Federal de São Paulo; São Paulo; SP; Brasil
| | | | | | | | - Larissa C. Oliveira
- Departamento de Farmacologia; Universidade Federal de São Paulo; São Paulo; SP; Brasil
| | | | - Sergio Tufik
- Departamento de Psicobiologia; Universidade Federal de São Paulo; São Paulo; SP; Brasil
| | | |
Collapse
|
21
|
Ralevski E, Perry EB, D'Souza DC, Bufis V, Elander J, Limoncelli D, Vendetti M, Dean E, Cooper TB, McKee S, Petrakis I. Preliminary findings on the interactive effects of IV ethanol and IV nicotine on human behavior and cognition: a laboratory study. Nicotine Tob Res 2012; 14:596-606. [PMID: 22180582 PMCID: PMC6281082 DOI: 10.1093/ntr/ntr258] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/07/2011] [Indexed: 11/13/2022]
Abstract
INTRODUCTION There are mixed reports on nicotine's effects on alcohol-induced impairment in cognitive performance and behavior in humans. The main objective of this study was to characterize the interactive effects of acute intravenous (IV) alcohol and nicotine administration on behavior and cognition in healthy nonsmokers. METHODS Healthy subjects aged 21-44 years participated in 3 test days. On each test day, they received in a double-blind randomized manner one of three IV alcohol infusion conditions using a "clamp": placebo, targeted breathalyzer of 40 mg%, or targeted breathalyzer of 80 mg%. Alcohol infusion was delivered over 20 min and lasted for 120 min. They also received both placebo and active nicotine in a fixed order delivered intravenously. Placebo nicotine was delivered first over 10 min at the timepoint when the breath alcohol was "clamped"; active nicotine (1.0 mcg/kg/min) was delivered for 10 min, 70 min after the alcohol infusion was clamped. Subjective effects of alcohol were measured using the Biphasic Alcohol Effects Scale and the Number of Drinks Scale. Cognitive inhibition and attention were measured by the Continuous Performance Task-Identical Pairs and working memory by the Rey Auditory Verbal Learning Task (RAVLT). RESULTS Nicotine significantly reversed subjective intoxication and sedation of alcohol at the low dose. Alcohol impaired performance on the RAVLT, and nicotine further impaired verbal learning and recall at both doses of alcohol. CONCLUSIONS The data showed that nicotine had an effect on subjective alcohol effects but did not reverse and actually worsened alcohol-induced deficits in memory.
Collapse
Affiliation(s)
- Elizabeth Ralevski
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hall FS, Markou A, Levin ED, Uhl GR. Mouse models for studying genetic influences on factors determining smoking cessation success in humans. Ann N Y Acad Sci 2012; 1248:39-70. [PMID: 22304675 DOI: 10.1111/j.1749-6632.2011.06415.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans differ in their ability to quit using addictive substances, including nicotine, the major psychoactive ingredient in tobacco. For tobacco smoking, a substantial body of evidence, largely derived from twin studies, indicates that approximately half of these individual differences in ability to quit are heritable genetic influences that likely overlap with those for other addictive substances. Both twin and molecular genetic studies support overlapping influences on nicotine addiction vulnerability and smoking cessation success, although there is little formal analysis of the twin data that support this important point. None of the current datasets provides clarity concerning which heritable factors might provide robust dimensions around which individuals differ in ability to quit smoking. One approach to this problem is to test mice with genetic variations in genes that contain human variants that alter quit success. This review considers which features of quit success should be included in a comprehensive approach to elucidate the genetics of quit success, and how those features may be modeled in mice.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
23
|
Positive and negative effects of alcohol and nicotine and their interactions: a mechanistic review. Neurotox Res 2011; 21:57-69. [PMID: 21932109 DOI: 10.1007/s12640-011-9275-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/14/2011] [Accepted: 08/31/2011] [Indexed: 12/30/2022]
Abstract
Nicotine and alcohol are two of the most commonly abused legal substances. Heavy use of one drug can often lead to, or is predictive of, heavy use of the other drug in adolescents and adults. Heavy drinking and smoking alone are of significant health hazard. The combination of the two, however, can result in synergistic adverse effects particularly in incidences of various cancers (e.g., esophagus). Although detrimental consequences of smoking are well established, nicotine by itself might possess positive and even therapeutic potential. Similarly, alcohol at low or moderated doses may confer beneficial health effects. These opposing findings have generated considerable interest in how these drugs act. Here we will briefly review the negative impact of drinking-smoking co-morbidity followed by factors that appear to contribute to the high rate of co-use of alcohol and nicotine. Our main focus will be on what research is telling us about the central actions and interactions of these drugs, and what has been elucidated about the mechanisms of their positive and negative effects. We will conclude by making suggestions for future research in this area.
Collapse
|
24
|
Varenicline attenuates cue-induced relapse to alcohol, but not nicotine seeking, while reducing inhibitory response control. Psychopharmacology (Berl) 2011; 216:267-77. [PMID: 21331520 PMCID: PMC3121941 DOI: 10.1007/s00213-011-2213-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/27/2011] [Indexed: 11/17/2022]
Abstract
RATIONALE Treatment of the most widely abused drugs, nicotine and alcohol, is hampered by high rates of relapse. Varenicline tartrate, an α4β2 nicotinic receptor partial agonist, is currently prescribed as a smoking cessation aid. However, there is emerging evidence that it may also modulate alcohol seeking and cognitive functioning in rats. OBJECTIVES As preclinical data on alcohol taking and relapse are limited, we used a self-administration-reinstatement model to evaluate the effects of varenicline on operant responding for alcohol (12%, v/v), intravenous nicotine (40 μg/kg/inf.), sucrose (10%, w/v) and on cue-induced relapse to alcohol and nicotine seeking in rats. At the cognitive level, we assed varenicline's effects on 5-choice serial reaction time task (5-CSRTT) performance with a focus on correct responses (attention) and premature responding (impulsivity), modalities that have previously been associated with addictive behaviour. RESULTS Varenicline, at doses of 1.5 and 2.5 mg/kg, reduced alcohol and nicotine self-administration and enhanced operant responding for sucrose. At these doses, varenicline reduced cue-induced relapse to alcohol, but not nicotine seeking. In contrast, at 0.5 mg/kg, varenicline facilitated cue-induced nicotine seeking. Similar to nicotine, varenicline increased premature responding at low doses, but had no effect on any of the other behavioural parameters in the 5-CSRTT. CONCLUSIONS Our data indicate that varenicline specifically reduced responding for nicotine and alcohol, but not for natural reinforcers such as sucrose. Interestingly, varenicline strongly attenuated cue-induced relapse to alcohol seeking, but not nicotine seeking. Varenicline may therefore be a promising aid in the treatment of alcohol addiction.
Collapse
|
25
|
Taslim N, Saeed Dar M. The role of nicotinic acetylcholine receptor (nAChR) α7 subtype in the functional interaction between nicotine and ethanol in mouse cerebellum. Alcohol Clin Exp Res 2010; 35:540-9. [PMID: 21143250 DOI: 10.1111/j.1530-0277.2010.01371.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Many epidemiological studies report that alcoholics overwhelmingly smoke tobacco and vice versa, which suggests a possible functional interaction between ethanol and nicotine. Although nicotine-ethanol interaction is well documented within the central nervous system, the mechanism is not well understood. Therefore, it is important from a public health standpoint to understand the mechanisms involved in nicotine and ethanol functional interaction. The intracerebellar (ICB) administration of nicotine significantly attenuates ethanol ataxia through nicotinic acetylcholine receptor (nAChR) α(4)β(2) subtype. This study, an extension of earlier work, was intended to investigate the possible role of nAChR subtype α(7) in mitigating ethanol ataxia. METHODS The effect of ICB injection of PNU-282987 (α(7) agonist; 25 ng to 2.5 μg) and the antagonist methyllycaconitine was evaluated on ethanol (2 g/kg; i.p.)-induced ataxia with a Rotorod. Cerebellar nitric oxide was determined fluorometrically in the presence of ethanol and/or PNU-282987. RESULTS Attenuation of ethanol-induced ataxia following PNU-282987 microinfusion was dose-dependent suggesting the participation of α(7) subtype in nicotine and ethanol interaction. Intracerebellar pretreatment with methyllycaconitine (α(7) -selective antagonist; 6 ng) virtually abolished the attenuating effect of PNU-282987 as well as the effect of nicotine, but not of RJR-2403 (α(4)β(2) -selective agonist; 125 ng) on ethanol-induced ataxia. Finally, ethanol administration significantly decreased cerebellar NO(x), whereas ICB PNU-282987 significantly increased and/or opposed ethanol-induced decrease in NO(x). These results were functionally in agreement with our Rotorod data. CONCLUSIONS These observations confirmed the following: (i) α(7) participation in nicotine-ethanol interaction and (ii) α(7) selectivity of methyllycaconitine. Overall, the results demonstrate the role of cerebellar nAChR α(7) subtype in nicotine-induced attenuation of ethanol-induced ataxia in cerebellar NO(x)-sensitive manner.
Collapse
Affiliation(s)
- Najla Taslim
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | |
Collapse
|
26
|
Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors as pharmacotherapeutic targets for the treatment of alcohol use disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:60-76. [PMID: 20201817 DOI: 10.2174/187152710790966597] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/13/2009] [Indexed: 12/20/2022]
Abstract
Alcohol use disorders (AUDs) are complex, and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and non-specific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.
Collapse
Affiliation(s)
- S Chatterjee
- Ernest Gallo Clinic and Research Center at the University of California San Francisco, 5858 Horton Street, Suite 200 Emeryville, CA 94608, USA
| | | |
Collapse
|
27
|
Kamens HM, Andersen J, Picciotto MR. Modulation of ethanol consumption by genetic and pharmacological manipulation of nicotinic acetylcholine receptors in mice. Psychopharmacology (Berl) 2010; 208:613-26. [PMID: 20072781 PMCID: PMC2901400 DOI: 10.1007/s00213-009-1759-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/09/2009] [Indexed: 12/12/2022]
Abstract
RATIONALE Alcohol and nicotine are commonly co-abused. Genetic correlations between responses to these drugs have been reported, providing evidence that common genes underlie the response to alcohol and nicotine. Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system are important in mediating nicotine response, and several studies suggest that alcohol may also interact with these nAChRs. OBJECTIVE The aim of this study was to examine the role of nAChRs containing α7 or β2 subunits in ethanol consumption. METHODS A two-bottle choice paradigm was used to determine ethanol consumption in wild-type and nAChR subunit knockout mice. Challenge studies were performed using the α4β2 nAChR partial agonist varenicline. RESULTS Mice lacking the β2 subunit consumed a similar amount of ethanol compared to their wild-type siblings in an ethanol-drinking paradigm. In contrast, mice lacking the α7 nAChR receptor subunit consumed significantly less ethanol than wild-type mice but consumed comparable amounts of water, saccharin, and quinine. In C57BL/6J mice, varenicline dose-dependently decreased ethanol consumption with a significant effect of 2 mg/kg, without affecting water or saccharin consumption. This effect of varenicline was not reversed in mice lacking either the α7 or β2 subunit, providing evidence that nAChRs containing one of these subunits are not required for this effect of varenicline. CONCLUSIONS This study provides evidence that α7 nAChRs are involved in ethanol consumption and supports the idea that pharmacological manipulation of nAChRs reduces ethanol intake. Additional nAChRs may also be involved in ethanol intake, and there may be functional redundancy in the nicotinic control of alcohol drinking.
Collapse
Affiliation(s)
- Helen M. Kamens
- Department of Psychiatry, School of Medicine, Yale University, 34 Park Street—3rd floor research, New Haven, CT 06508, USA
| | - Jimena Andersen
- Department of Psychiatry, School of Medicine, Yale University, 34 Park Street—3rd floor research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, School of Medicine, Yale University, 34 Park Street—3rd floor research, New Haven, CT 06508, USA
| |
Collapse
|
28
|
Abstract
BACKGROUND No medications have been proven to be effective for cocaine and methamphetamine addiction. Attenuation of drug reward has been the main strategy for medications development, but this approach has not led to effective treatments. Thus, there is a need to identify novel treatment targets in addition to the brain reward system. AIM To propose a novel treatment strategy for stimulant addiction that will focus on medications enhancing cognitive function and attenuating drug reward. METHODS Pre-clinical and clinical literature on potential use of cognitive enhancers for stimulant addiction pharmacotherapy was reviewed. RESULTS AND CONCLUSIONS Cocaine and methamphetamine users show significant cognitive impairments, especially in attention, working memory and response inhibition functions. The cognitive impairments seem to be predictive of poor treatment retention and outcome. Medications targeting acetylcholine and norepinephrine are particularly well suited for enhancing cognitive function in stimulant users. Many cholinergic and noradrenergic medications are on the market and have a good safety profile and low abuse potential. These include galantamine, donepezil and rivastigmine (cholinesterase inhibitors), varenicline (partial nicotine agonist), guanfacine (alpha(2)-adrenergic agonist) and atomoxetine (norepinephrine transporter inhibitor). Future clinical studies designed optimally to measure cognitive function as well as drug use behavior would be needed to test the efficacy of these cognitive enhancers for stimulant addiction.
Collapse
Affiliation(s)
- Mehmet Sofuoglu
- Yale University, School of Medicine, Department of Psychiatry and VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| |
Collapse
|
29
|
Rollema H, Hajós M, Seymour PA, Kozak R, Majchrzak MJ, Guanowsky V, Horner WE, Chapin DS, Hoffmann WE, Johnson DE, McLean S, Freeman J, Williams KE. Preclinical pharmacology of the alpha4beta2 nAChR partial agonist varenicline related to effects on reward, mood and cognition. Biochem Pharmacol 2009; 78:813-24. [PMID: 19501054 DOI: 10.1016/j.bcp.2009.05.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 05/23/2009] [Accepted: 05/26/2009] [Indexed: 12/12/2022]
Abstract
The pharmacological properties and pharmacokinetic profile of the alpha4beta2 nicotinic acetylcholine receptor (nAChR) partial agonist varenicline provide an advantageous combination of free brain levels and functional potencies at the target receptor that for a large part explain its efficacy as a smoking cessation aid. Since alpha4beta2 and other nAChR subtypes play important roles in mediating central processes that control reward, mood, cognition and attention, there is interest in examining the effects of selective nAChR ligands such as varenicline in preclinical animal models that assess these behaviors. Here we describe results from studies on varenicline's effects in animal models of addiction, depression, cognition and attention and discuss these in the context of recently published preclinical and preliminary clinical studies that collected data on varenicline's effects on mood, cognition and alcohol abuse disorder. Taken together, the preclinical and the limited clinical data show beneficial effects of varenicline, but further clinical studies are needed to evaluate whether the preclinical effects observed in animal models are translatable to the clinic.
Collapse
Affiliation(s)
- Hans Rollema
- Department of Neuroscience Biology, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|