1
|
Muller Guzzo EF, Rosa G, Lourenço de Lima AMD, Padilha R, Coitinho A. Piroxicam reduced the intensity of epileptic seizures in a kindling seizure model. Neurol Res 2024; 46:717-726. [PMID: 38679045 DOI: 10.1080/01616412.2024.2345032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.
Collapse
Affiliation(s)
| | - Gabriel Rosa
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rafael Padilha
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Coitinho
- Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Patrick MB, Omar N, Werner CT, Mitra S, Jarome TJ. The ubiquitin-proteasome system and learning-dependent synaptic plasticity - A 10 year update. Neurosci Biobehav Rev 2023; 152:105280. [PMID: 37315660 PMCID: PMC11323321 DOI: 10.1016/j.neubiorev.2023.105280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Over 25 years ago, a seminal paper demonstrated that the ubiquitin-proteasome system (UPS) was involved in activity-dependent synaptic plasticity. Interest in this topic began to expand around 2008 following another seminal paper showing that UPS-mediated protein degradation controlled the "destabilization" of memories following retrieval, though we remained with only a basic understanding of how the UPS regulated activity- and learning-dependent synaptic plasticity. However, over the last 10 years there has been an explosion of papers on this topic that has significantly changed our understanding of how ubiquitin-proteasome signaling regulates synaptic plasticity and memory formation. Importantly, we now know that the UPS controls much more than protein degradation, is involved in plasticity underlying drugs of abuse and that there are significant sex differences in how ubiquitin-proteasome signaling is used for memory storage processes. Here, we aim to provide a critical 10-year update on the role of ubiquitin-proteasome signaling in synaptic plasticity and memory formation, including updated cellular models of how ubiquitin-proteasome activity could be regulating learning-dependent synaptic plasticity in the brain.
Collapse
Affiliation(s)
- Morgan B Patrick
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nour Omar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Craig T Werner
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; National Center for Wellness and Recovery, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA.
| | - Swarup Mitra
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Farrell K, McFadden T, Jarome TJ. Neuronal and astrocytic protein degradation are critical for fear memory formation. Learn Mem 2023; 30:70-73. [PMID: 36921984 PMCID: PMC10027238 DOI: 10.1101/lm.053716.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
Strong evidence has implicated proteasome-mediated protein degradation in the memory consolidation process. However, due to the use of pharmacological approaches, the cell type specificity of this remains unknown. Here, we used neuron-specific and novel astrocyte-specific CRISPR-dCas9-KRAB-MECP2 plasmids to inhibit protein degradation in a cell type-specific manner in the amygdala of male rats. We found that while inhibition of neuronal, but not astrocytic, protein degradation impaired performance during the training session, both resulted in impaired contextual fear memory retention. Together, these data provide the first evidence of a cell type-specific role for protein degradation in the memory consolidation process.
Collapse
Affiliation(s)
- Kayla Farrell
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Taylor McFadden
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Timothy J Jarome
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
4
|
Bisphenol-A (BPA) Impairs Hippocampal Neurogenesis via Inhibiting Regulation of the Ubiquitin Proteasomal System. Mol Neurobiol 2023; 60:3277-3298. [PMID: 36828952 DOI: 10.1007/s12035-023-03249-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023]
Abstract
The ubiquitin-proteasome system (UPS) controls protein homeostasis to maintain cell functionality and survival. Neurogenesis relies on proteasome function, and a defective proteasome system during brain development leads to neurological disorders. An endocrine-disrupting xenoestrogen bisphenol-A (BPA) used in plastic products adversely affects human health and causes neurotoxicity. Previously, we reported that BPA reduces neural stem cells (NSCs) proliferation and differentiation, impairs myelination and mitochondrial protein import, and causes excessive mitochondrial fragmentation leading to cognitive impairments in rats. Herein, we examined the effect(s) of prenatal BPA exposure on UPS functions during NSCs proliferation and differentiation in the hippocampus. Rats were orally treated with 40 µg/kg body weight BPA during day 6 gestation to day 21 postnatal. BPA significantly reduced proteasome activity in a cellular extract of NSCs. Immunocytochemistry exhibited a significant reduction of 20S proteasome/Nestin+ and PSMB5/Nestin+ cells in NSCs culture. BPA decreased 20S/Tuj1+ and PSMB5/Tuj1+ cells, indicating disrupted UPS during neuronal differentiation. BPA reduced the expression of UPS genes, 20S, and PSMB5 protein levels and proteasome activity in the hippocampus. It significantly reduced overall protein synthesis by the loss of Nissl substances in the hippocampus. Pharmacological activation of UPS by a bioactive triterpenoid 18α-glycyrrhetinic acid (18α GA) caused increased proteasome activities, significantly increased neurosphere size and number, and enhanced NSCs proliferation in BPA exposed culture, while proteasome inhibition by MG132 further aggravates BPA-mediated effects. In silico studies demonstrated that BPA strongly binds to catalytic sites of UPS genes (PSMB5, TRIM11, Parkin, and PSMD4) which may result in UPS inactivation. These results suggest that BPA significantly reduces NSCs proliferation by impairing UPS, and UPS activation by 18α GA could suppress BPA-mediated neurotoxicity and exerts neuroprotection.
Collapse
|
5
|
Farrell K, Auerbach A, Musaus M, Jarome TJ. The epigenetic role of proteasome subunit RPT6 during memory formation in female rats. Learn Mem 2022; 29:256-264. [PMID: 36206393 PMCID: PMC9488026 DOI: 10.1101/lm.053498.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Reports of sex differences in the neurobiology of memory formation are becoming more prevalent. Despite this, much remains unknown about the role of sex in this process. We previously reported the first evidence of a novel epigenetic role for proteasome subunit RPT6 during memory formation in the hippocampus of male rodents whereby it associated with monoubiquitinated histone H2B (H2Bubi). Here, we used molecular, biochemical, and behavioral approaches to investigate whether RPT6 has a similar epigenetic role during memory formation in female rats. Following contextual fear conditioning, we found that RPT6 levels and DNA binding at regions coding for c-fos, the previously identified target of RPT6 in males, were unchanged in the hippocampus of females and that loss of RPT6 did not alter learning-induced increases in c-fos However, RPT6 was in complex with H2Bubi in the female hippocampus and this association increased with fear conditioning, suggesting that it could still retain an epigenetic function. Consistent with this, hippocampal siRNA-mediated knockdown of the RPT6-coding gene, Psmc5, impaired memory in females. These results suggest that while RPT6 does associate with epigenetic H2Bubi during memory formation in both males and females, it has sex-specific gene targets during the memory consolidation process.
Collapse
Affiliation(s)
- Kayla Farrell
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Aubrey Auerbach
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Timothy J Jarome
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
6
|
Beamish SB, Gross KS, Anderson MM, Helmstetter FJ, Frick KM. Sex differences in training-induced activity of the ubiquitin proteasome system in the dorsal hippocampus and medial prefrontal cortex of male and female mice. Learn Mem 2022; 29:302-311. [PMID: 36206392 PMCID: PMC9488027 DOI: 10.1101/lm.053492.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
The ubiquitin proteasome system (UPS) is a primary mechanism through which proteins are degraded in cells. UPS activity in the dorsal hippocampus (DH) is necessary for multiple types of memory, including object memory, in male rodents. However, sex differences in DH UPS activation after fear conditioning suggest that other forms of learning may also differentially regulate DH UPS activity in males and females. Here, we examined markers of UPS activity in the synaptic and cytoplasmic fractions of DH and medial prefrontal cortex (mPFC) tissue collected 1 h following object training. In males, training increased phosphorylation of proteasomal subunit Rpt6, 20S proteasome activity, and the amount of PSD-95 in the DH synaptic fraction, as well as proteasome activity in the mPFC synaptic fraction. In females, training did not affect measures of UPS or synaptic activity in the DH synaptic fraction or in either mPFC fraction but increased Rpt6 phosphorylation in the DH cytoplasmic fraction. Overall, training-induced UPS activity was greater in males than in females, greater in the DH than in the mPFC, and greater in synaptic fractions than in cytosol. These data suggest that object training drives sex-specific alterations in UPS activity across brain regions and subcellular compartments important for memory.
Collapse
Affiliation(s)
- Sarah B Beamish
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - McKenna M Anderson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
7
|
Gustin A, Navabpour S, Farrell K, Martin K, DuVall J, Keith Ray W, Helm RF, Jarome TJ. Protein SUMOylation is a sex-specific regulator of fear memory formation in the amygdala. Behav Brain Res 2022; 430:113928. [PMID: 35597476 PMCID: PMC10431910 DOI: 10.1016/j.bbr.2022.113928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Strong evidence has implicated ubiquitin signaling in the process of fear memory formation. While less abundant than ubiquitination, evidence suggests that protein SUMOylation may also be involved in fear memory formation in neurons. However, the importance of amygdala protein SUMOylation in fear memory formation has never been directly examined. Furthermore, while recent evidence indicates that males and females differ significantly in the requirement for ubiquitin signaling during fear memory formation, whether sex differences also exist in the importance of protein SUMOylation to this process remains unknown. Here we found that males and females differ in the requirement for protein SUMOylation in the amygdala during fear memory formation. Western blot analysis revealed that while females had higher resting levels of SUMOylation, both sexes showed global increases following fear conditioning. However, SUMOylation-specific proteomic analysis revealed that only females have increased targeting of individual proteins by SUMOylation following fear conditioning, some of which were heat shock proteins. This suggests that protein SUMOylation is more robustly engaged in the amygdala of females following fear conditioning. In vivo siRNA mediated knockdown of Ube2i, the coding gene for the essential E2 ligase for SUMOylation conjugation, in the amygdala impaired fear memory in males without any effect in females. Importantly, higher siRNA concentrations than what was needed to impair memory in males reduced Ube2i levels in the amygdala of females but resulted in an increase in SUMOylation levels, suggesting a compensatory effect in females that was not observed in males. Collectively, these data reveal a novel, sex-specific role for protein SUMOylation in the amygdala during fear memory formation and expand our understanding of how ubiquitin-like signaling regulates memory formation.
Collapse
Affiliation(s)
- Aspen Gustin
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Kayla Farrell
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica DuVall
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Timothy J Jarome
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Beamish SB, Frick KM. A Putative Role for Ubiquitin-Proteasome Signaling in Estrogenic Memory Regulation. Front Behav Neurosci 2022; 15:807215. [PMID: 35145382 PMCID: PMC8821141 DOI: 10.3389/fnbeh.2021.807215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Sex steroid hormones such as 17β-estradiol (E2) are critical neuromodulators of hippocampal synaptic plasticity and hippocampus-dependent memory in both males and females. However, the mechanisms through which E2 regulates memory formation in both sexes remain unclear. Research to date suggests that E2 regulates hippocampus-dependent memory by activating numerous cell-signaling cascades to promote the synthesis of proteins that support structural changes at hippocampal synapses. However, this work has largely overlooked the equally important contributions of protein degradation mediated by the ubiquitin proteasome system (UPS) in remodeling the synapse. Despite being critically implicated in synaptic plasticity and successful formation of long-term memories, it remains unclear whether protein degradation mediated by the UPS is necessary for E2 to exert its beneficial effects on hippocampal plasticity and memory formation. The present article provides an overview of the receptor and signaling mechanisms so far identified as critical for regulating hippocampal E2 and UPS function in males and females, with a particular emphasis on the ways in which these mechanisms overlap to support structural integrity and protein composition of hippocampal synapses. We argue that the high degree of correspondence between E2 and UPS activity warrants additional study to examine the contributions of ubiquitin-mediated protein degradation in regulating the effects of sex steroid hormones on cognition.
Collapse
|
9
|
Farrell K, Musaus M, Navabpour S, Martin K, Ray WK, Helm RF, Jarome TJ. Proteomic Analysis Reveals Sex-Specific Protein Degradation Targets in the Amygdala During Fear Memory Formation. Front Mol Neurosci 2021; 14:716284. [PMID: 34658783 PMCID: PMC8511838 DOI: 10.3389/fnmol.2021.716284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-proteasome mediated protein degradation has been widely implicated in fear memory formation in the amygdala. However, to date, the protein targets of the proteasome remain largely unknown, limiting our understanding of the functional significance for protein degradation in fear memory formation. Additionally, whether similar proteins are targeted by the proteasome between sexes has yet to be explored. Here, we combined a degradation-specific K48 Tandem Ubiquitin Binding Entity (TUBE) with liquid chromatography mass spectrometry (LC/MS) to identify the target substrates of the protein degradation process in the amygdala of male and female rats following contextual fear conditioning. We found that males (43) and females (77) differed in the total number of proteins that had significant changes in K48 polyubiquitin targeting in the amygdala following fear conditioning. Many of the identified proteins (106) had significantly reduced levels in the K48-purified samples 1 h after fear conditioning, suggesting active degradation of the substrate due to learning. Interestingly, only 3 proteins overlapped between sexes, suggesting that targets of the protein degradation process may be sex-specific. In females, many proteins with altered abundance in the K48-purified samples were involved in vesicle transport or are associated with microtubules. Conversely, in males, proteins involved in the cytoskeleton, ATP synthesis and cell signaling were found to have significantly altered abundance. Only 1 protein had an opposite directional change in abundance between sexes, LENG1, which was significantly enhanced in males while lower in females. This suggests a more rapid degradation of this protein in females during fear memory formation. Interestingly, GFAP, a critical component of astrocyte structure, was a target of K48 polyubiquitination in both males and females, indicating that protein degradation is likely occurring in astrocytes following fear conditioning. Western blot assays revealed reduced levels of these target substrates following fear conditioning in both sexes, confirming that the K48 polyubiquitin was targeting these proteins for degradation. Collectively, this study provides strong evidence that sex differences exist in the protein targets of the degradation process in the amygdala following fear conditioning and critical information regarding how ubiquitin-proteasome mediated protein degradation may contribute to fear memory formation in the brain.
Collapse
Affiliation(s)
- Kayla Farrell
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Shaghayegh Navabpour
- Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Timothy J Jarome
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| |
Collapse
|
10
|
Lissner LJ, Wartchow KM, Toniazzo AP, Gonçalves CA, Rodrigues L. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol Biochem Behav 2021; 210:173273. [PMID: 34536480 DOI: 10.1016/j.pbb.2021.173273] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Object recognition (OR) and the Morris water maze (MWM) are classical tasks widely used to assess memory parameters and deficits in rodents. Learning processes in both tasks involve integrity of the hippocampus and associated regions, and prefrontal cortex connections. Here, we highlight the idea that these classical tests can be used to indicate memory deficits caused by models of disease that affect hippocampal function in rats, and identify some practical issues of OR and MWM, based on the literature and our experience. Additionally, we have shown that the performance of both tasks does not alter blood levels of corticosterone, considering exposure to a single task. Hence, taking into consideration the difficulties and care required during task execution, the infrastructure needed and the training of the experimenter, we suggest that OR and its variations offer minimal manageable stressful conditions, representing an effective and practical tool for hippocampal-related memory assessment of rats. Thus, OR may provide similar information to that of the MWM, despite controversy regarding hippocampus participation in OR and given due differences in the types of memory evaluated and researchers' objectives. We recommend the observation of some important precautions and details, also based on the literature and our own experience.
Collapse
Affiliation(s)
- Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Ana Paula Toniazzo
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| |
Collapse
|
11
|
de Souza LO, Machado GDB, de Freitas BS, Rodrigues SLC, Severo MPA, Molz P, da Silva JAC, Bromberg E, Roesler R, Schröder N. The G protein-coupled estrogen receptor (GPER) regulates recognition and aversively-motivated memory in male rats. Neurobiol Learn Mem 2021; 184:107499. [PMID: 34352396 DOI: 10.1016/j.nlm.2021.107499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Estrogens, particularly 17β-estradiol (estradiol, E2), regulate memory formation. E2 acts through its intracellular receptors, estrogen receptors (ER) ERα and ERβ, as well as a recently identified G protein-coupled estrogen receptor (GPER). Although the effects of E2 on memory have been investigated, studies examining the effects of GPER stimulation are scarce. Selective GPER agonism improves memory in ovariectomized female rats, but little information is available regarding the effects of GPER stimulation in male rodents. The aim of the present study was to investigate the effects of the GPER agonist, G1, on consolidation and reconsolidation of inhibitory avoidance (IA) and object recognition (OR) memory in male rats. Animals received vehicle, G1 (15, 75, 150 µg/kg; i.p.), or the GPER antagonist G15 (100 µg/kg; i.p.) immediately after training, or G1 (150 µg/kg; i.p.) 3 or 6 h after training. To investigate reconsolidation, G1 was administered immediately after IA retention Test 1. Results indicated that G1 administered immediately after training at the highest dose enhanced both OR and IA memory consolidation, while GPER blockade immediately after training impaired OR. No effects of GPER stimulation were observed when G1 was given 3 or 6 h after training or after Test 1. The present findings provide evidence that GPER is involved in the early stages of memory consolidation in both neutral and emotional memory tasks in male adult rats.
Collapse
Affiliation(s)
- Lariza Oliveira de Souza
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Dalto Barroso Machado
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sarah Luize Camargo Rodrigues
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Paula Arakaki Severo
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Molz
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Afonso Corrêa da Silva
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nadja Schröder
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
| |
Collapse
|
12
|
Tidmore A, Dutta SM, Fesshaye AS, Russell WK, Duncan VD, Britten RA. Space Radiation-Induced Alterations in the Hippocampal Ubiquitin-Proteome System. Int J Mol Sci 2021; 22:ijms22147713. [PMID: 34299332 PMCID: PMC8304141 DOI: 10.3390/ijms22147713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.
Collapse
Affiliation(s)
- Alyssa Tidmore
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Sucharita M. Dutta
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Arriyam S. Fesshaye
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Vania D. Duncan
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Correspondence:
| |
Collapse
|
13
|
Martin K, Musaus M, Navabpour S, Gustin A, Ray WK, Helm RF, Jarome TJ. Females, but not males, require protein degradation in the hippocampus for contextual fear memory formation. ACTA ACUST UNITED AC 2021; 28:248-253. [PMID: 34266989 PMCID: PMC8284313 DOI: 10.1101/lm.053429.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
Strong evidence supports a role for protein degradation in fear memory formation. However, these data have been largely done in only male animals. Here, we found that following contextual fear conditioning, females, but not males, had increased levels of proteasome activity and K48 polyubiquitin protein targeting in the dorsal hippocampus, the latter of which occurred at chaperones or RNA processing proteins. In vivo CRISPR–dCas9-mediated repression of protein degradation in the dorsal hippocampus impaired contextual fear memory in females, but not males. These results suggest a sex-specific role for protein degradation in the hippocampus during the consolidation of a contextual fear memory.
Collapse
Affiliation(s)
- Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Department of Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016, USA
| | - Aspen Gustin
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.,Fralin Biomedical Research Institute, Department of Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016, USA.,Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
14
|
Musaus M, Farrell K, Navabpour S, Ray WK, Helm RF, Jarome TJ. Sex-Specific Linear Polyubiquitination Is a Critical Regulator of Contextual Fear Memory Formation. Front Behav Neurosci 2021; 15:709392. [PMID: 34305548 PMCID: PMC8298817 DOI: 10.3389/fnbeh.2021.709392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Strong evidence supports that protein ubiquitination is a critical regulator of fear memory formation. However, as this work has focused on protein degradation, it is currently unknown whether polyubiquitin modifications that are independent of the proteasome are involved in learning-dependent synaptic plasticity. Here, we present the first evidence that atypical linear (M1) polyubiquitination, the only ubiquitin chain that does not occur at a lysine site and is largely independent of the proteasome, is critically involved in contextual fear memory formation in the amygdala in a sex-specific manner. Using immunoblot and unbiased proteomic analyses, we found that male (49) and female (14) rats both had increased levels of linear polyubiquitinated substrates following fear conditioning, though none of these protein targets overlapped between sexes. In males, target protein functions involved cell junction and axonal guidance signaling, while in females the primary target was Adiponectin A, a critical regulator of neuroinflammation, synaptic plasticity, and memory, suggesting sex-dependent functional roles for linear polyubiquitination during fear memory formation. Consistent with these increases, in vivo siRNA-mediated knockdown of Rnf31, an essential component of the linear polyubiquitin E3 complex LUBAC, in the amygdala impaired contextual fear memory in both sexes without affecting memory retrieval. Collectively, these results provide the first evidence that proteasome-independent linear polyubiquitination is a critical regulator of fear memory formation, expanding the potential roles of ubiquitin-signaling in learning-dependent synaptic plasticity. Importantly, our data identify a novel sex difference in the functional role of, but not a requirement for, linear polyubiquitination in fear memory formation.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kayla Farrell
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Shaghayegh Navabpour
- Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - W. Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Richard F. Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Timothy J. Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| |
Collapse
|
15
|
Luft C, Levices IP, da Costa MS, de Oliveira JR, Donadio MVF. Effects of running before pregnancy on long-term memory and hippocampal alterations induced by prenatal stress. Neurosci Lett 2021; 746:135659. [PMID: 33482306 DOI: 10.1016/j.neulet.2021.135659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022]
Abstract
Studies have shown that an adverse environment in utero influences fetal growth and development, leading to several neuroendocrine and behavioral changes in adult life. Nevertheless, the mechanisms involved in the long-term benefits of pregestational exercise are still poorly understood. Thus, this study aimed to evaluate the effects of physical exercise before the gestational period on memory behavior and gene expression in the hippocampus of adult mice submitted to prenatal stress. Female Balb/c mice were divided into three groups: control (CON), prenatal restraint stress (PNS), and exercise before the gestational period plus PNS (EX + PNS). When adults, male and female offspring were submitted to the object recognition test followed by the hippocampal evaluation of BDNF exons I and IV mRNA expression, as well as hypothalamic-pituitary-adrenal axis related genes. Pregestational exercise did not prevent the decreased recognition index, as well as GR and CRHR1 gene expression observed in PNS males. Conversely, prenatal stress did not influence female memory behavior. Moreover, exercise attenuated the effects of prenatal stress on female BDNF IV gene expression. The results indicate that pregestational exercise was able to prevent the effects of maternal stress on hippocampal BDNF IV gene expression in females, although no effects were seen on the stress-induced memory impairment in males.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Isadora Perez Levices
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
16
|
Musaus M, Navabpour S, Jarome TJ. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Neurobiol Learn Mem 2020; 174:107286. [PMID: 32745599 DOI: 10.1016/j.nlm.2020.107286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Over the last 20 years, a number of studies have provided strong support for protein degradation mediated by the ubiquitin-proteasome system in synaptic plasticity and memory formation. In this system, target substrates become covalently modified by the small protein ubiquitin through a series of enzymatic reactions involving hundreds of different ligases. While some substrates will acquire only a single ubiquitin, most will be marked by multiple ubiquitin modifications, which link together at specific lysine sites or the N-terminal methionine on the previous ubiquitin to form a polyubiquitin chain. There are at least eight known linkage-specific polyubiquitin chains a target protein can acquire, many of which are independent of the proteasome, and these chains can be homogenous, mixed, or branched in nature, all of which result in different functional outcomes and fates for the target substrate. However, as the focus has remained on protein degradation, much remains unknown about the role of these diverse ubiquitin chains in the brain, particularly during activity- and learning-dependent synaptic plasticity. Here, we review the different types and functions of ubiquitin chains and summarize evidence suggesting a role for these diverse ubiquitin modifications in synaptic plasticity and memory formation. We conclude by discussing how technological limitations have limited our ability to identify and elucidate the role of different ubiquitin chains in the brain and speculate on the future directions and implications of understanding linkage-specific ubiquitin modifications in activity- and learning-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
17
|
Freudenthal RAM, Romano A, Baez MV. Editorial: Changes in Molecular Expression After Memory Acquisition and Plasticity. Looking for the Memory Trace. Front Mol Neurosci 2020; 13:50. [PMID: 32317930 PMCID: PMC7146821 DOI: 10.3389/fnmol.2020.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ramiro A M Freudenthal
- CONICET Institute of Physiology, Molecular Biology and Neurosciences (IFIBYNE), Buenos Aires, Argentina.,Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Arturo Romano
- CONICET Institute of Cell Biology and Neuroscience (IBCN), Buenos Aires, Argentina
| | - Maria Veronica Baez
- CONICET Institute of Cell Biology and Neuroscience (IBCN), Buenos Aires, Argentina.,Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
19
|
Ramirez J, Lectez B, Osinalde N, Sivá M, Elu N, Aloria K, Procházková M, Perez C, Martínez-Hernández J, Barrio R, Šašková KG, Arizmendi JM, Mayor U. Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome. Hum Mol Genet 2019; 27:1955-1971. [PMID: 29788202 DOI: 10.1093/hmg/ddy103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Angelman syndrome is a complex neurodevelopmental disorder caused by the lack of function in the brain of a single gene, UBE3A. The E3 ligase coded by this gene is known to build K48-linked ubiquitin chains, a modification historically considered to target substrates for degradation by the proteasome. However, a change in protein abundance is not proof that a candidate UBE3A substrate is indeed ubiquitinated by UBE3A. We have here used an unbiased ubiquitin proteomics approach, the bioUb strategy, to identify 79 proteins that appear more ubiquitinated in the Drosophila photoreceptor cells when Ube3a is over-expressed. We found a significantly high number of those proteins to be proteasomal subunits or proteasome-interacting proteins, suggesting a wide proteasomal perturbation in the brain of Angelman patients. We focused on validating the ubiquitination by Ube3a of Rngo, a proteasomal component conserved from yeast (Ddi1) to humans (DDI1 and DDI2), but yet scarcely characterized. Ube3a-mediated Rngo ubiquitination in fly neurons was confirmed by immunoblotting. Using human neuroblastoma SH-SY5Y cells in culture, we also observed that human DDI1 is ubiquitinated by UBE3A, without being targeted for degradation. The novel observation that DDI1 is expressed in the developing mice brain, with a significant peak at E16.5, strongly suggests that DDI1 has biological functions not yet described that could be of relevance for Angelman syndrome clinical research.
Collapse
Affiliation(s)
- Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Benoit Lectez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Monika Sivá
- Department of Genetics and Microbiology, Charles University, 12843 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.,First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Michaela Procházková
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Coralia Perez
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Jose Martínez-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Rosa Barrio
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Klára Grantz Šašková
- Department of Genetics and Microbiology, Charles University, 12843 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jesus M Arizmendi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
20
|
PKMζ Inhibition Disrupts Reconsolidation and Erases Object Recognition Memory. J Neurosci 2019; 39:1828-1841. [PMID: 30622166 DOI: 10.1523/jneurosci.2270-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022] Open
Abstract
Object recognition memory (ORM) confers the ability to discriminate the familiarity of previously encountered items. Reconsolidation is the process by which reactivated memories become labile and susceptible to modifications. The hippocampus is specifically engaged in reconsolidation to integrate new information into the original ORM through a mechanism involving activation of brain-derived neurotrophic factor (BDNF) signaling and induction of LTP. It is known that BDNF can control LTP maintenance through protein kinase Mζ (PKMζ), an atypical protein kinase C isoform that is thought to sustain memory storage by modulating glutamatergic neurotransmission. However, the potential involvement of PKMζ in ORM reconsolidation has never been studied. Using a novel ORM task combined with pharmacological, biochemical, and electrophysiological tools, we found that hippocampal PKMζ is essential to update ORM through reconsolidation, but not to maintain the inactive recognition memory trace stored over time, in adult male Wistar rats. Our results also indicate that hippocampal PKMζ acts downstream of BDNF and controls AMPAR synaptic insertion to elicit reconsolidation and suggest that blocking PKMζ activity during this process deletes active ORM.SIGNIFICANCE STATEMENT Object recognition memory (ORM) is essential to remember facts and events. Reconsolidation integrates new information into ORM through changes in hippocampal plasticity and brain-derived neurotrophic factor (BDNF) signaling. In turn, BDNF enhances synaptic efficacy through protein kinase Mζ (PKMζ), which might preserve memory. Here, we present evidence that hippocampal PKMζ acts downstream of BDNF to regulate AMPAR recycling during ORM reconsolidation and show that this kinase is essential to update the reactivated recognition memory trace, but not to consolidate or maintain an inactive ORM. We also demonstrate that the amnesia provoked by disrupting ORM reconsolidation through PKMζ inhibition is due to memory erasure and not to retrieval failure.
Collapse
|
21
|
Orsi SA, Devulapalli RK, Nelsen JL, McFadden T, Surineni R, Jarome TJ. Distinct subcellular changes in proteasome activity and linkage-specific protein polyubiquitination in the amygdala during the consolidation and reconsolidation of a fear memory. Neurobiol Learn Mem 2018; 157:1-11. [PMID: 30458285 DOI: 10.1016/j.nlm.2018.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/30/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Numerous studies have supported a critical role for the ubiquitin-proteasome system (UPS) in the memory consolidation and reconsolidation processes. The protein targets and functional role of ubiquitin-proteasome activity can vary widely across cellular compartments, however, it is unknown how UPS activity changes within the nuclear, cytoplasmic, and synaptic regions in response to learning or memory retrieval. Additionally, while previous studies have focused on degradation-specific protein polyubiquitination, it is unknown how learning alters other polyubiquitin tags that are not targeted by the proteasome. Using cellular fractionation protocols in combination with linkage-specific polyubiquitin antibodies, we examined subcellular changes in ubiquitin-proteasome activity in the amygdala during memory consolidation and reconsolidation. Following memory acquisition, overall protein ubiquitination and proteasome activity simultaneously increased in the nucleus and decreased in the synaptic and cytoplasmic regions. The nuclear increases were associated with upregulation of degradation-specific (K48) and degradation-independent (K63, M1) polyubiquitin tags, suggesting multiple functions for ubiquitin signaling within this region. Interestingly, retrieval induced a very different pattern of ubiquitin-proteasome activity in the amygdala, consisting of increases in overall protein ubiquitination and proteasome activity and K48-, K63-, and M1-polyubiquitin tags in the synaptic, but not nuclear or cytoplasmic regions. Collectively, learning and memory retrieval dynamically and differentially alter degradation-dependent and degradation-independent ubiquitin-proteasome activity across different cellular compartments, suggesting that the UPS may serve unique functions during memory consolidation and reconsolidation.
Collapse
Affiliation(s)
- Sabrina A Orsi
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rishi K Devulapalli
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jacob L Nelsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Taylor McFadden
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rithika Surineni
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Timothy J Jarome
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Jarome TJ, Devulapalli RK. The Ubiquitin-Proteasome System and Memory: Moving Beyond Protein Degradation. Neuroscientist 2018. [DOI: 10.1177/1073858418762317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular models of memory formation have focused on the need for protein synthesis. Recently, evidence has emerged that protein degradation mediated by the ubiquitin-proteasome system (UPS) is also important for this process. This has led to revised cellular models of memory formation that focus on a balance between protein degradation and synthesis. However, protein degradation is only one function of the UPS. Studies using single-celled organisms have shown that non-proteolytic ubiquitin-proteasome signaling is involved in histone modifications and DNA methylation, suggesting that ubiquitin and the proteasome can regulate chromatin remodeling independent of protein degradation. Despite this evidence, the idea that the UPS is more than a protein degradation pathway has not been examined in the context of memory formation. In this article, we summarize recent findings implicating protein degradation in memory formation and discuss various ways in which both ubiquitin signaling and the proteasome could act independently to regulate epigenetic-mediated transcriptional processes necessary for learning-dependent synaptic plasticity. We conclude by proposing comprehensive models of how non-proteolytic functions of the UPS could work in concert to control epigenetic regulation of the cellular memory consolidation process, which will serve as a framework for future studies examining the role of the UPS in memory formation.
Collapse
Affiliation(s)
- Timothy J. Jarome
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rishi K. Devulapalli
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
23
|
Cullen PK, Ferrara NC, Pullins SE, Helmstetter FJ. Context memory formation requires activity-dependent protein degradation in the hippocampus. ACTA ACUST UNITED AC 2017; 24:589-596. [PMID: 29038220 PMCID: PMC5647928 DOI: 10.1101/lm.045443.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/09/2017] [Indexed: 01/10/2023]
Abstract
Numerous studies have indicated that the consolidation of contextual fear memories supported by an aversive outcome like footshock requires de novo protein synthesis as well as protein degradation mediated by the ubiquitin-proteasome system (UPS). Context memory formed in the absence of an aversive stimulus by simple exposure to a novel environment requires de novo protein synthesis in both the dorsal (dHPC) and ventral (vHPC) hippocampus. However, the role of UPS-mediated protein degradation in the consolidation of context memory in the absence of a strong aversive stimulus has not been investigated. In the present study, we used the context preexposure facilitation effect (CPFE) procedure, which allows for the dissociation of context learning from context-shock learning, to investigate the role of activity-dependent protein degradation in the dHPC and vHPC during the formation of a context memory. We report that blocking protein degradation with the proteasome inhibitor clasto-lactacystin β-lactone (βLac) or blocking protein synthesis with anisomycin (ANI) immediately after context preexposure significantly impaired context memory formation. Additionally, we examined 20S proteasome activity at different time points following context exposure and saw that the activity of proteasomes in the dHPC increases immediately after stimulus exposure while the vHPC exhibits a biphasic pattern of proteolytic activity. Taken together, these data suggest that the requirement of increased proteolysis during memory consolidation is not driven by processes triggered by the strong aversive outcome (i.e., shock) normally used to support fear conditioning.
Collapse
Affiliation(s)
- Patrick K Cullen
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | - Nicole C Ferrara
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | - Shane E Pullins
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
24
|
Arc ubiquitination in synaptic plasticity. Semin Cell Dev Biol 2017; 77:10-16. [PMID: 28890418 DOI: 10.1016/j.semcdb.2017.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 12/30/2022]
Abstract
The activity-regulated cytoskeleton-associated protein (Arc) is a neuron-expressed activity regulated immediate early gene (IEG) product that is essential for memory consolidation and serves as a direct readout for neural activation during learning. Arc contributes to diverse forms of synaptic plasticity mediated by the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Notably, Arc protein expression abruptly increases and then rapidly decreases following augmented network activity. A large body of work has focused on Arc transcription and translation. Far fewer studies have explored the relevance of Arc protein stability and turnover. Here, we review recent findings on the mechanisms controlling Arc degradation and discuss its contributions to AMPA receptor trafficking and synaptic plasticity.
Collapse
|
25
|
Lyons LC, Gardner JS, Gandour CE, Krishnan HC. Role of proteasome-dependent protein degradation in long-term operant memory in Aplysia. ACTA ACUST UNITED AC 2016; 24:59-64. [PMID: 27980077 PMCID: PMC5159658 DOI: 10.1101/lm.043794.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023]
Abstract
We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in Aplysia using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through inhibition of protein synthesis using either anisomycin or rapamycin in conjunction with proteasome inhibition permitted the formation of robust 24 h LTM. Our studies suggest a primary role for proteasomal activity in facilitation of gene transcription for LTM and raise the possibility that synaptic mechanisms are sufficient to sustain 24 h memory.
Collapse
Affiliation(s)
- Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Jacob S Gardner
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Catherine E Gandour
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Harini C Krishnan
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4295, USA
| |
Collapse
|
26
|
Louros SR, Osterweil EK. Perturbed proteostasis in autism spectrum disorders. J Neurochem 2016; 139:1081-1092. [PMID: 27365114 PMCID: PMC5215415 DOI: 10.1111/jnc.13723] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/10/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022]
Abstract
Dynamic changes in synaptic strength rely on de novo protein synthesis and protein degradation by the ubiquitin proteasome system (UPS). Disruption of either of these cellular processes will result in significant impairments in synaptic plasticity and memory formation. Mutations in several genes encoding regulators of mRNA translation and members of the UPS have been associated with an increased risk for the development of autism spectrum disorders. It is possible that these mutations result in a similar imbalance in protein homeostasis (proteostasis) at the synapse. This review will summarize recent work investigating the role of the UPS in synaptic plasticity at glutamatergic synapses, and propose that dysfunctional proteostasis is a common consequence of several genetic mutations linked to autism spectrum disorders.
Dynamic changes in synaptic strength rely on de novo protein synthesis and protein degradation by the ubiquitin proteasome system (UPS). Disruption of either of these cellular processes will result in significant impairments in synaptic plasticity and memory formation. Mutations in several genes encoding regulators of mRNA translation (i.e. FMR1) and protein degradation (i.e. UBE3A) have been associated with an increased risk for autism spectrum disorders and intellectual disability (ASD/ID). These mutations similarly disrupt protein homeostasis (proteostasis). Compensatory changes that reset the rate of proteostasis may contribute to the neurological symptoms of ASD/ID. This review summarizes recent work investigating the role of the UPS in synaptic plasticity at glutamatergic synapses, and proposes that dysfunctional proteostasis is a common consequence of several genetic mutations linked to ASD.
This article is part of a mini review series: “Synaptic Function and Dysfunction in Brain Diseases”.
Collapse
Affiliation(s)
- Susana R Louros
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|
27
|
mAChR-dependent decrease in proteasome activity in the gustatory cortex is necessary for novel taste learning. Neurobiol Learn Mem 2016; 135:115-124. [PMID: 27481223 DOI: 10.1016/j.nlm.2016.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/24/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
Abstract
Regulation of protein degradation via the ubiquitin proteasome system is crucial for normal learning and synaptic plasticity processes. While some studies reveal that increased proteasome degradation is necessary for different types of learning, others suggest the proteasome to be a negative regulator of plasticity. We aim to understand the molecular and cellular processes taking place in the gustatory cortex (GC), which underlie appetitive and aversive forms of taste learning. Previously, we have shown that N-methyl d-aspartic acid receptor (NMDAR)-dependent upregulation of proteasome activity 4h after novel taste learning is necessary for the association of novel taste with malaise and formation of conditioned taste aversion (CTA). Here, we first identify a correlative increase in proteasome activity in the GC immediately after novel taste learning and study the upstream and downstream effectors of this modulated proteasome activity. Interestingly, proteasome-mediated degradation was reduced in the GC, 20min after novel taste consumption in a muscarinic acetylcholine receptor (mAChR)-dependent and NMDAR-independent manner. This reduction in protein degradation led to an increased amount of p70 S6 kinase (p70S6k), which was abolished in the presence of mAChR antagonist scopolamine. Infusion of lactacystin, a proteasome inhibitor, to the GC precluded the amnestic effect of scopolamine. This study shows for the first time that following novel taste learning there is a cortical, mAChR-dependent reduced proteasome activity that enables the memory of taste familiarity. Moreover, inhibition of degradation in the GC attenuates novel taste learning and of p70 S6 kinase correlative increased expression. These results shed light on the complex regulation of protein synthesis and degradation machineries in the cortex following novel taste experience.
Collapse
|
28
|
Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory. Mol Neurobiol 2015; 53:6228-6239. [DOI: 10.1007/s12035-015-9514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
|
29
|
Furini CRG, Myskiw JDC, Schmidt BE, Zinn CG, Peixoto PB, Pereira LD, Izquierdo I. The relationship between protein synthesis and protein degradation in object recognition memory. Behav Brain Res 2015. [PMID: 26200717 DOI: 10.1016/j.bbr.2015.07.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For decades there has been a consensus that de novo protein synthesis is necessary for long-term memory. A second round of protein synthesis has been described for both extinction and reconsolidation following an unreinforced test session. Recently, it was shown that consolidation and reconsolidation depend not only on protein synthesis but also on protein degradation by the ubiquitin-proteasome system (UPS), a major mechanism responsible for protein turnover. However, the involvement of UPS on consolidation and reconsolidation of object recognition memory remains unknown. Here we investigate in the CA1 region of the dorsal hippocampus the involvement of UPS-mediated protein degradation in consolidation and reconsolidation of object recognition memory. Animals with infusion cannulae stereotaxically implanted in the CA1 region of the dorsal hippocampus, were exposed to an object recognition task. The UPS inhibitor β-Lactacystin did not affect the consolidation and the reconsolidation of object recognition memory at doses known to affect other forms of memory (inhibitory avoidance, spatial learning in a water maze) while the protein synthesis inhibitor anisomycin impaired the consolidation and the reconsolidation of the object recognition memory. However, β-Lactacystin was able to reverse the impairment caused by anisomycin on the reconsolidation process in the CA1 region of the hippocampus. Therefore, it is possible to postulate a direct link between protein degradation and protein synthesis during the reconsolidation of the object recognition memory.
Collapse
Affiliation(s)
- Cristiane R G Furini
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jociane de C Myskiw
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Bianca E Schmidt
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Carolina G Zinn
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Patricia B Peixoto
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Luiza D Pereira
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Ivan Izquierdo
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd Floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|