1
|
Wei RM, Zhang MY, Fang SK, Liu GX, Hu F, Li XY, Zhang KX, Zhang JY, Liu XC, Zhang YM, Chen GH. Melatonin attenuates intermittent hypoxia-induced cognitive impairment in aged mice: The role of inflammation and synaptic plasticity. Psychoneuroendocrinology 2024; 171:107210. [PMID: 39378690 DOI: 10.1016/j.psyneuen.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Intermittent hypoxia (IH), a major pathophysiologic alteration in obstructive sleep apnea syndrome (OSAS), is an important contributor to cognitive impairment. Increasing research suggests that melatonin has anti-inflammatory properties and improves functions related to synaptic plasticity. However, it is unclear whether melatonin has a protective effect against OSAS-induced cognitive dysfunction in aged individuals and the involved mechanisms are also unclear. Therefore, in the study, the effects of exposure to IH alone and IH in combination with daily melatonin treatment were investigated in C57BL/6 J mice aged 18 months. Assessment of the cognitive ability of mice in a Morris water maze showed that melatonin attenuated IH-induced impairment of learning and memory in aged mice. Enzyme-linked immunosorbent assay, polymerase chain reaction, and western blotting molecular techniques showed that melatonin treatment reduced the levels of the proinflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, decreased the levels of NOD-like receptor thermal protein domain associated protein 3 and nuclear factor kappa-B, lowered the levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and increased the levels of the synaptic proteins, activity-regulated cytoskeleton-associated protein, growth-associated protein-43, postsynaptic density protein 95, and synaptophysin in IH-exposed mice. Moreover, electrophysiological results showed that melatonin ameliorated the decline in long-term potentiation induced by IH. The results suggest that melatonin can ameliorate IH-induced cognitive deficits by inhibiting neuroinflammation and improving synaptic plasticity in aged mice.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Meng-Ying Zhang
- Department of Anesthesiology, the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Shi-Kun Fang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gao-Xia Liu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Fei Hu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Yan Li
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Kai-Xuan Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Jing-Ya Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Chun Liu
- Department of Neurology, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Yue-Ming Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gui-Hai Chen
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| |
Collapse
|
2
|
Cui C, Jiang X, Wang Y, Li C, Lin Z, Wei Y, Ni Q. Cerebral Hypoxia-Induced Molecular Alterations and Their Impact on the Physiology of Neurons and Dendritic Spines: A Comprehensive Review. Cell Mol Neurobiol 2024; 44:58. [PMID: 39105862 PMCID: PMC11303443 DOI: 10.1007/s10571-024-01491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
This article comprehensively reviews how cerebral hypoxia impacts the physiological state of neurons and dendritic spines through a series of molecular changes, and explores the causal relationship between these changes and neuronal functional impairment. As a severe pathological condition, cerebral hypoxia can significantly alter the morphology and function of neurons and dendritic spines. Specifically, dendritic spines, being the critical structures for neurons to receive information, undergo changes such as a reduction in number and morphological abnormalities under hypoxic conditions. These alterations further affect synaptic function, leading to neurotransmission disorders. This article delves into the roles of molecular pathways like MAPK, AMPA receptors, NMDA receptors, and BDNF in the hypoxia-induced changes in neurons and dendritic spines, and outlines current treatment strategies. Neurons are particularly sensitive to cerebral hypoxia, with their apical dendrites being vulnerable to damage, thereby affecting cognitive function. Additionally, astrocytes and microglia play an indispensable role in protecting neuronal and synaptic structures, regulating their normal functions, and contributing to the repair process following injury. These studies not only contribute to understanding the pathogenesis of related neurological diseases but also provide important insights for developing novel therapeutic strategies. Future research should further focus on the dynamic changes in neurons and dendritic spines under hypoxic conditions and their intrinsic connections with cognitive function.
Collapse
Affiliation(s)
- Chao Cui
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Xue Jiang
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Yumei Wang
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Chao Li
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Zhaochen Lin
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Youzhen Wei
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China.
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200000, China.
| | - Qingbin Ni
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China.
| |
Collapse
|
3
|
Mikhailenko VA, Butkevich IP, Vershinina EA. The Influence of Maternal Hypoxia and Buspirone during Pregnancy on Cognitive Abilities and a Stress Response in Adult Male Offspring. Bull Exp Biol Med 2024; 177:10-14. [PMID: 38954295 DOI: 10.1007/s10517-024-06121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 07/04/2024]
Abstract
Spatial learning, memory, and reactivity of the hypothalamic-pituitary-adrenocortical system (HPA axis) were studied in adult male rats, whose mothers during pregnancy were subjected to acute moderate normobaric hypoxia, or repeated injections of buspirone, an agonist of type 1A serotonergic receptors (5HT1A), or their combination. Prenatal treatment with buspirone in rats with prenatal hypoxia impaired learning ability during the first day of 5-day training. A decrease in the effectiveness of long-term memory in comparison with short-term memory was revealed in two groups of rats: prenatal treatment with buspirone in combination with hypoxia and injection of physiological saline without hypoxia. The effectiveness of long-term memory and the level of corticosterone in response to stress did not differ between the groups, which can indicate adaptation of the 5HT1A receptor and the HPA axis to the prenatal buspirone and normobaric hypoxia during ontogeny.
Collapse
Affiliation(s)
- V A Mikhailenko
- Laboratory of Ontogenesis of Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - I P Butkevich
- Laboratory of Ontogenesis of Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - E A Vershinina
- Laboratory of Information Technologies and Mathematical Modeling, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Bakhtazad S, Ghotbeddin Z, Tabandeh MR, Rahimi K. Alpha-pinene ameliorate behavioral deficit induced by early postnatal hypoxia in the rat: study the inflammatory mechanism. Sci Rep 2024; 14:6416. [PMID: 38494527 PMCID: PMC10944845 DOI: 10.1038/s41598-024-56756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Neonatal hypoxia has a negative impact on the developing brain during the sensitive period. Inflammation plays a key role in the physiological response to hypoxic stress. Considering the anti-inflammatory properties of alpha-pinene, which has received a lot of attention in recent years, in this research we focused on the impact of alpha-pinene on the behavioral responses and proinflammatory factors in rats subjected to the neonatal hypoxia. This study involved Wistar rats (7-day-old) that were divided into six experimental groups, including a control group, groups receiving different doses of alpha-pinene (5 and 10 mg/kg), a hypoxia group receiving 7% O2 and 93% N2, 90 min duration for 7 days, and groups receiving alpha-pinene 30 min before hypoxia. All injections were done intraperitoneally. The rats were evaluated for proinflammatory factors 24 h after exposure to hypoxia (PND14) and at the end of the behavioral test (PND54). The results showed that hypoxia led to decreased motor activity, coordination, and memory, as well as increased inflammation. However, the rats that received alpha-pinene showed improved behavioral responses and reduced inflammation compared to the hypoxia group (all cases p < 0.05). This suggests that alpha-pinene may have a protective effect via anti-inflammatory properties against the negative impacts of hypoxia on the developing brain.
Collapse
Affiliation(s)
- Sharareh Bakhtazad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Griflyuk AV, Postnikova TY, Malkin SL, Zaitsev AV. Alterations in Rat Hippocampal Glutamatergic System Properties after Prolonged Febrile Seizures. Int J Mol Sci 2023; 24:16875. [PMID: 38069200 PMCID: PMC10706123 DOI: 10.3390/ijms242316875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Febrile seizures during early childhood may result in central nervous system developmental disorders. However, the specific mechanisms behind the impact of febrile seizures on the developing brain are not well understood. To address this gap in knowledge, we employed a hyperthermic model of febrile seizures in 10-day-old rats and tracked their development over two months. Our objective was to determine the degree to which the properties of the hippocampal glutamatergic system are modified. We analyzed whether pyramidal glutamatergic neurons in the hippocampus die after febrile seizures. Our findings indicate that there is a reduction in the number of neurons in various regions of the hippocampus in the first two days after seizures. The CA1 field showed the greatest susceptibility, and the reduction in the number of neurons in post-FS rats in this area appeared to be long-lasting. Electrophysiological studies indicate that febrile seizures cause a reduction in glutamatergic transmission, leading to decreased local field potential amplitude. This impairment could be attributable to diminished glutamate release probability as evidenced by decreases in the frequency of miniature excitatory postsynaptic currents and increases in the paired-pulse ratio of synaptic responses. We also found higher threshold current causing hind limb extension in the maximal electroshock seizure threshold test of rats 2 months after febrile seizures compared to the control animals. Our research suggests that febrile seizures can impair glutamatergic transmission, which may protect against future seizures.
Collapse
Affiliation(s)
| | | | | | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.V.G.); (T.Y.P.); (S.L.M.)
| |
Collapse
|
6
|
Li W, Liu D, Chen B, Chen X, Yu H. Ferulic acid improves cognitive impairment by regulating jumonji C domain-containing protein 6 and synaptophysin in the hippocampus in neonatal and juvenile rats with intrauterine hypoxia during pregnancy. Anat Rec (Hoboken) 2023; 306:2636-2645. [PMID: 36922637 DOI: 10.1002/ar.25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
To investigate the impacts of ferulic acid (FA) on jumonji C domain-containing protein 6 (JMJD6) and synaptophysin in the tissues of the hippocampus in neonatal and juvenile rats with intrauterine hypoxia-induced cognitive impairment. The Sprague-Dawley pregnant rats were randomly divided into three groups: control, hypoxia, and hypoxia + FA. On day 14 of pregnancy, the intrauterine hypoxia model was created by placing pregnant rats in the hypoxic and low-pressure experimental chamber for 2 hr a day for 3 days. In the hypoxia + FA group, pregnant rats were injected intraperitoneally with 4% FA, once a day for 7 days. The hypoxia group was treated with equal amounts of saline. After delivery, JMJD6 and synaptophysin mRNA and proteins in the hippocampus regions were detected by in situ hybridization and western blotting. The Morris water maze was used to evaluate cognitive function. The neonatal and juvenile rats in the hypoxia group had significantly increased expression of JMJD6 and decreased expression of synaptophysin protein and synaptophysin I mRNA in the hippocampus than those in the control group. Meanwhile, hypoxia also clearly prolonged the escape latency and shortened the stay time in the target quadrant. FA decreased the expression of JMJD6 and increased the expression of synaptophysin and improved cognitive function compared with those in the hypoxia group. FA probably ameliorated the cognitive impairment by regulating JMJD6 and synaptophysin in the hippocampus of neonatal and juvenile rats who had intrauterine hypoxia during pregnancy.
Collapse
Affiliation(s)
- Wenying Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Dunyu Liu
- Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Bo Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xingshu Chen
- Department of Histology and Embryology, Chongqing Institute of Neuroscience, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Hong Yu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
7
|
Postnikova TY, Griflyuk AV, Zhigulin AS, Soboleva EB, Barygin OI, Amakhin DV, Zaitsev AV. Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat. Int J Mol Sci 2023; 24:12621. [PMID: 37628802 PMCID: PMC10454714 DOI: 10.3390/ijms241612621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Febrile seizures (FSs) are a relatively common early-life condition that can cause CNS developmental disorders, but the specific mechanisms of action of FS are poorly understood. In this work, we used hyperthermia-induced FS in 10-day-old rats. We demonstrated that the efficiency of glutamatergic synaptic transmission decreased rapidly after FS by recording local field potentials. This effect was transient, and after two days there were no differences between control and post-FS groups. During early ontogeny, the proportion of calcium-permeable (CP)-AMPA receptors in the synapses of the principal cortical and hippocampal neurons is high. Therefore, rapid internalization of CP-AMPA receptors may be one of the mechanisms underlying this phenomenon. Using the whole-cell patch-clamp method and the selective CP-AMPA receptor blocker IEM-1460, we tested whether the proportion of CP-AMPA receptors changed. We have demonstrated that FS rapidly reduces synaptic CP-AMPA receptors in both the hippocampus and the entorhinal cortex. This process was accompanied by a sharp decrease in the calcium permeability of the membrane of principal neurons, which we revealed in experiments with kainate-induced cobalt uptake. Our experiments show that FSs cause rapid changes in the function of the glutamatergic system, which may have compensatory effects that prevent excessive excitotoxicity and neuronal death.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (T.Y.P.); (A.V.G.); (A.S.Z.); (E.B.S.); (O.I.B.); (D.V.A.)
| |
Collapse
|
8
|
Maternal Hyperhomocysteinemia Produces Memory Deficits Associated with Impairment of Long-Term Synaptic Plasticity in Young Rats. Cells 2022; 12:cells12010058. [PMID: 36611852 PMCID: PMC9818716 DOI: 10.3390/cells12010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Maternal hyperhomocysteinemia (HCY) is a common pregnancy complication caused by high levels of the homocysteine in maternal and fetal blood, which leads to the alterations of the cognitive functions, including learning and memory. In the present study, we investigated the mechanisms of these alterations in a rat model of maternal HCY. The behavioral tests confirmed the memory impairments in young and adult rats following the prenatal HCY exposure. Field potential recordings in hippocampal slices demonstrated that the long-term potentiation (LTP) was significantly reduced in HCY rats. The whole-cell patch-clamp recordings in hippocampal slices demonstrated that the magnitude of NMDA receptor-mediated currents did not change while their desensitization decreased in HCY rats. No significant alterations of glutamate receptor subunit expression except GluN1 were detected in the hippocampus of HCY rats using the quantitative real-time PCR and Western blot methods. The immunofluorescence microscopy revealed that the number of synaptopodin-positive spines is reduced, while the analysis of the ultrastructure of hippocampus using the electron microscopy revealed the indications of delayed hippocampal maturation in young HCY rats. Thus, the obtained results suggest that maternal HCY disturbs the maturation of hippocampus during the first month of life, which disrupts LTP formation and causes memory impairments.
Collapse
|
9
|
Wilson EN, Mabry S, Bradshaw JL, Gardner JJ, Rybalchenko N, Engelland R, Fadeyibi O, Osikoya O, Cushen SC, Goulopoulou S, Cunningham RL. Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring. Biol Sex Differ 2022; 13:54. [PMID: 36175941 PMCID: PMC9524087 DOI: 10.1186/s13293-022-00463-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hypoxia is associated with pregnancy complications, such as preeclampsia, placental abruption, and gestational sleep apnea. Hypoxic insults during gestation can impact the brain maturation of cortical and subcortical pathways, such as the nigrostriatal pathway. However, the long-term effects of in utero hypoxic stress exposure on brain maturation in offspring are unclear, especially exposure during late gestation. The purpose of this study was to determine the impact of gestational hypoxia in late pregnancy on developmental programming of subcortical brain maturation by focusing on the nigrostriatal pathway. METHODS Timed pregnant Long-Evans rats were exposed to chronic intermittent hypoxia or room air normoxia from gestational day (GD) 15-19 (term 22-23 days). Male and female offspring were assessed during two critical periods: puberty from postnatal day (PND) 40-45 or young adulthood (PND 60-65). Brain maturation was quantified by examining (1) the structural development of the nigrostriatal pathway via analysis of locomotor behaviors and the substantia nigra dopaminergic neuronal cell bodies and (2) the refinement of the nigrostriatal pathway by quantifying ultrasonic vocalizations (USVs). RESULTS The major findings of this study are gestational hypoxia has age- and sex-dependent effects on subcortical brain maturation in offspring by adversely impacting the refinement of the nigrostriatal pathway in the absence of any effects on the structural development of the pathway. During puberty, female offspring were impacted more than male offspring, as evidenced by decreased USV call frequency, chirp USV call duration, and simple call frequency. In contrast, male offspring were impacted more than female offspring during young adulthood, as evidenced by increased latency to first USV, decreased simple USV call intensity, and increased harmonic USV call bandwidth. No effects of gestational hypoxia on the structural development of the nigrostriatal pathway were observed. CONCLUSIONS These novel findings demonstrate hypoxic insults during pregnancy mediate developmental programming of the cortical and subcortical pathways, in which male offspring exhibit long-term adverse effects compared to female offspring. Impairment of cortical and subcortical pathways maturation, such as the nigrostriatal pathway, may increase risk for neuropsychiatric disorders (e.g., mood disorders, cognitive dysfunction, brain connectivity dysfunction).
Collapse
Affiliation(s)
- E Nicole Wilson
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Nataliya Rybalchenko
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
10
|
Mishchenko TA, Yarkov RS, Saviuk MO, Krivonosov MI, Perenkov AD, Gudkov SV, Vedunova MV. Unravelling Contributions of Astrocytic Connexin 43 to the Functional Activity of Brain Neuron-Glial Networks under Hypoxic State In Vitro. MEMBRANES 2022; 12:948. [PMID: 36295708 PMCID: PMC9609249 DOI: 10.3390/membranes12100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Brain hypoxia remains an Achilles' heel for public health that must be urgently addressed. Hypoxic damage affects both neurons and glial cells, particularly astrocytes, which are in close dynamic bi-directional communication, and are organized in plastic and tightly regulated networks. However, astroglial networks have received limited attention regarding their influence on the adaptive functional rearrangements of neural networks to oxygen deficiency. Herein, against the background of astrocytic Cx43 gap junction blockade by the selective blocker Gap19, we evaluated the features of spontaneous calcium activity and network characteristics of cells in primary cultures of the cerebral cortex, as well as the expression levels of metabotropic glutamate receptors 2 (mGluR2) and 5 (mGluR5) in the early and late periods after simulated hypoxia in vitro. We showed that, under normoxic conditions, blockade of Cx43 leads to an increase in the expression of metabotropic glutamate receptors mGluR2 and mGluR5 and long-term modulation of spontaneous calcium activity in primary cortical cultures, primarily expressed in the restructuring of the functional architectonics of neuron-glial networks through reducing the level of correlation between cells in the network and the percentage of existing correlated connections between cells. Blocking Cx43 during hypoxic injury has a pronounced neuroprotective effect. Together with the increased expression of mGluR5 receptors, a decrease in mGluR2 expression to the physiological level was found, which suggests the triggering of alternative molecular mechanisms of cell adaptation to hypoxia. Importantly, the blockade of Cx43 in hypoxic damage contributed to the maintenance of both the main parameters of the spontaneous calcium activity of primary cortical cultures and the functional architectonics of neuron-glial networks while maintaining the profile of calcium oscillations and calcium signal communications between cells at a highly correlated level. Our results demonstrate the crucial importance of astrocytic networks in functional brain adaptation to hypoxic damage and could be a promising target for the development of rational anti-hypoxic therapy.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Mariia O. Saviuk
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Mikhail I. Krivonosov
- Institute of Information, Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Alexey D. Perenkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
11
|
Insight into the Effects of High-Altitude Hypoxic Exposure on Learning and Memory. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4163188. [PMID: 36160703 PMCID: PMC9492407 DOI: 10.1155/2022/4163188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.
Collapse
|
12
|
Hif-1α regulates Tet1-c-Myc binding involved in depression-like behavior in prenatal hypoxia offspring. Neuroscience 2022; 502:41-51. [PMID: 36041588 DOI: 10.1016/j.neuroscience.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Prenatal hypoxia (PH) is one of the most common adverse stimulation during pregnancy. The brain is fragile in the fetal period and sensitive to hypoxia. The offspring who have experienced PH may be at increased risk of developing neurodevelopmental disorders after birth and various neuropsychiatric diseases after adulthood. In this study, pregnant mice used to generate PH offspring were treated with hypoxia (10.5% oxygen) from gestational day 12.5 to 17.5. Compared with control mice, the birth weight of offspring in the PH group was significantly lower and the male adult offspring exhibited significant depression-like behavior. The expression of the oxygen-sensitive subunit of hypoxia-inducible factor (Hif-1α) was significantly elevated, whereas Ten-eleven translocated methylcytosine dioxygenase 1 (Tet1) and c-Myc, which is closely related to cell proliferation, was significantly decreased in the hippocampus of the male offspring in the PH group. In addition, the PH group showed increased binding of Hif-1α to Tet1, and decreased binding of Tet1 to c-Myc, resulting in increased ubiquitinated degradation of c-Myc and decreased neurogenesis in the hippocampus of the male offspring. These findings suggest that Hif-1α regulates Tet1-c-Myc binding involved in depression-like behavior in PH offspring and Hif-1α can be used as a detection index of stress-related diseases.
Collapse
|
13
|
Amakhin DV, Soboleva EB, Postnikova TY, Tumanova NL, Dubrovskaya NM, Kalinina DS, Vasilev DS, Zaitsev AV. Maternal Hypoxia Increases the Excitability of Neurons in the Entorhinal Cortex and Dorsal Hippocampus of Rat Offspring. Front Neurosci 2022; 16:867120. [PMID: 35495064 PMCID: PMC9042652 DOI: 10.3389/fnins.2022.867120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prenatal hypoxia is a widespread condition that causes various disturbances in later life, including aberrant central nervous system development, abnormalities in EEG rhythms, and susceptibility to seizures. Hypoxia in rats on the 14th day of embryogenesis (E14) disrupts cortical neuroblast radial migration, mainly affecting the progenitors of cortical glutamatergic neurons but not GABAergic interneurons or hippocampal neurons. Thus, hypoxia at this time point might affect the development of the neocortex to a greater extent than the hippocampus. In the present study, we investigated the long-term effects of hypoxia on the properties of the pyramidal neurons in the hippocampus and entorhinal cortex (EC) in 3-week-old rats subjected to hypoxia on E14. We observed a reduction in the total number of NeuN-positive neurons in EC but not in the CA1 field of the hippocampus, indicating an increased cell loss in EC. However, the principal neuron electrophysiological characteristics were altered in the EC and hippocampus of animals exposed to hypoxia. The whole-cell patch-clamp recordings revealed a similar increase in input resistance in neurons from the hippocampus and EC. However, the resting membrane potential was increased in the EC neurons only. The recordings of field postsynaptic potentials (fPSPs) in the CA1 hippocampal area showed that both the threshold currents inducing fPSPs and population spikes were lower in hypoxic animals compared to age-matched controls. Using the dosed electroshock paradigm, we found that seizure thresholds were lower in the hypoxic group. Thus, the obtained results suggest that maternal hypoxia during the generation of the pyramidal cortical neurons leads to the increased excitability of neuronal circuitries in the brain of young rats. The increased excitability can be attributed to the changes in intrinsic neuronal properties.
Collapse
Affiliation(s)
- Dmitry V. Amakhin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena B. Soboleva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Tatiana Yu. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia L. Tumanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nadezhda M. Dubrovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Daria S. Kalinina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg, Russia
| | - Dmitrii S. Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
14
|
Sokolov AV, Dubrovskaya NM, Kostevich VA, Vasilev DS, Voynova IV, Zakharova ET, Runova OL, Semak IV, Budevich AI, Nalivaeva NN, Vasilyev VB. Lactoferrin Induces Erythropoietin Synthesis and Rescues Cognitive Functions in the Offspring of Rats Subjected to Prenatal Hypoxia. Nutrients 2022; 14:nu14071399. [PMID: 35406012 PMCID: PMC9003537 DOI: 10.3390/nu14071399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The protective effects of recombinant human lactoferrin rhLF (branded “CAPRABEL™”) on the cognitive functions of rat offspring subjected to prenatal hypoxia (7% O2, 3 h, 14th day of gestation) have been analyzed. About 90% of rhLF in CAPRABEL was iron-free (apo-LF). Rat dams received several injections of 10 mg of CAPRABEL during either gestation (before and after the hypoxic attack) or lactation. Western blotting revealed the appearance of erythropoietin (EPO) alongside the hypoxia-inducible factors (HIFs) in organ homogenates of apo-rhLF-treated pregnant females, their embryos (but not placentas), and in suckling pups from the dams treated with apo-rhLF during lactation. Apo-rhLF injected to rat dams either during pregnancy or nurturing the pups was able to rescue cognitive deficits caused by prenatal hypoxia and improve various types of memory both in young and adult offspring when tested in the radial maze and by the Novel Object Recognition (NOR) test. The data obtained suggested that the apo-form of human LF injected to female rats during gestation or lactation protects the cognitive functions of their offspring impaired by prenatal hypoxia.
Collapse
Affiliation(s)
- Alexey V. Sokolov
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
- Faculty of Dental Medicine and Medical Technologies, Saint Petersburg State University, 8A 21st Line V.O., 199034 Saint-Petersburg, Russia
- Correspondence: (A.V.S.); (V.B.V.)
| | - Nadezhda M. Dubrovskaya
- Laboratory of Physiology and Pathology of CNS, Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave., 194223 Saint-Petersburg, Russia; (N.M.D.); (D.S.V.); (N.N.N.)
| | - Valeria A. Kostevich
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
| | - Dmitrii S. Vasilev
- Laboratory of Physiology and Pathology of CNS, Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave., 194223 Saint-Petersburg, Russia; (N.M.D.); (D.S.V.); (N.N.N.)
| | - Irina V. Voynova
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
| | - Elena T. Zakharova
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
| | - Olga L. Runova
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
| | - Igor V. Semak
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Nezavisimisty Ave. 4, 220030 Minsk, Belarus;
| | - Alexander I. Budevich
- Scientific and Practical Centre on Animal Husbandry of the National Academy of Sciences of Belarus, 11 Frunze Str., 222160 Zhodino, Belarus;
| | - Natalia N. Nalivaeva
- Laboratory of Physiology and Pathology of CNS, Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave., 194223 Saint-Petersburg, Russia; (N.M.D.); (D.S.V.); (N.N.N.)
| | - Vadim B. Vasilyev
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
- Faculty of Dental Medicine and Medical Technologies, Saint Petersburg State University, 8A 21st Line V.O., 199034 Saint-Petersburg, Russia
- Correspondence: (A.V.S.); (V.B.V.)
| |
Collapse
|
15
|
Ochozková A, Mihalčíková L, Yamamotová A, Šlamberová R. Can prenatal methamphetamine exposure be considered a good animal model for ADHD? Physiol Res 2021; 70:S431-S440. [PMID: 35099261 PMCID: PMC8884398 DOI: 10.33549/physiolres.934815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a mental disorder with a heterogeneous origin with a global incidence that continues to grow. Its causes and pathophysiological mechanisms are not fully understood. It includes a combination of persistent symptoms such as difficulty in concentration, hyperactivity and impulsive behavior. Maternal methamphetamine (MA) abuse is a serious problem worldwide, it can lead to behavioral changes in their offspring that have similarities with behavioral changes seen in children with ADHD. There are several types of ADHD animal models, e.g. genetic models, pharmacologically, chemically and exogenously induced models. One of the exogenously induced ADHD models is the hypoxia-induced model. Our studies, as well as those of others, have demonstrated that maternal MA exposure can lead to abnormalities in the placenta and umbilical cord that result in prenatal hypoxia as well as fetal malnutrition that can result in irreversible changes to experimental animals. Therefore, the aim the present study was to compare the cognitive impairments in MA exposure model with those in established model of ADHD - prenatal hypoxia model, to test whether MA exposure is a valid model of ADHD. Pregnant Wistar rats were divided into four groups based on their gestational exposure to MA: (1) daily subcutaneous injections of MA (5 mg/kg), (2) saline injections at the same time and volume, (3) daily 1-hr hypoxia (10 % O2), and (4) no gestational exposure (controls). Male rat offspring were tested for short-term memory in the Novel Object Recognition Test and the Object Location Test between postnatal days 35 and 40. Also their locomotor activity in both tests was measured. Based on the present results, it seems that prenatal MA exposure is not the best animal model for ADHD since it shows corresponding symptoms only in certain measures. Given our previous results supporting our hypothesis, more experiments are needed to further test possible use of prenatal MA exposure as an animal model of the ADHD.
Collapse
Affiliation(s)
- A Ochozková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Wang B, Zeng H, Liu J, Sun M. Effects of Prenatal Hypoxia on Nervous System Development and Related Diseases. Front Neurosci 2021; 15:755554. [PMID: 34759794 PMCID: PMC8573102 DOI: 10.3389/fnins.2021.755554] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis, which was proposed by David Barker in the United Kingdom in the late 1980s, posited that adult chronic diseases originated from various adverse stimuli in early fetal development. FOAD is associated with a wide range of adult chronic diseases, including cardiovascular disease, cancer, type 2 diabetes and neurological disorders such as schizophrenia, depression, anxiety, and autism. Intrauterine hypoxia/prenatal hypoxia is one of the most common complications of obstetrics and could lead to alterations in brain structure and function; therefore, it is strongly associated with neurological disorders such as cognitive impairment and anxiety. However, how fetal hypoxia results in neurological disorders remains unclear. According to the existing literature, we have summarized the causes of prenatal hypoxia, the effects of prenatal hypoxia on brain development and behavioral phenotypes, and the possible molecular mechanisms.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Camm EJ, Cross CM, Kane AD, Tarry-Adkins JL, Ozanne SE, Giussani DA. Maternal antioxidant treatment protects adult offspring against memory loss and hippocampal atrophy in a rodent model of developmental hypoxia. FASEB J 2021; 35:e21477. [PMID: 33891326 DOI: 10.1096/fj.202002557rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023]
Abstract
Chronic fetal hypoxia is one of the most common outcomes in complicated pregnancy in humans. Despite this, its effects on the long-term health of the brain in offspring are largely unknown. Here, we investigated in rats whether hypoxic pregnancy affects brain structure and function in the adult offspring and explored underlying mechanisms with maternal antioxidant intervention. Pregnant rats were randomly chosen for normoxic or hypoxic (13% oxygen) pregnancy with or without maternal supplementation with vitamin C in their drinking water. In one cohort, the placenta and fetal tissues were collected at the end of gestation. In another, dams were allowed to deliver naturally, and offspring were reared under normoxic conditions until 4 months of age (young adult). Between 3.5 and 4 months, the behavior, cognition and brains of the adult offspring were studied. We demonstrated that prenatal hypoxia reduced neuronal number, as well as vascular and synaptic density, in the hippocampus, significantly impairing memory function in the adult offspring. These adverse effects of prenatal hypoxia were independent of the hypoxic pregnancy inducing fetal growth restriction or elevations in maternal or fetal plasma glucocorticoid levels. Maternal vitamin C supplementation during hypoxic pregnancy protected against oxidative stress in the placenta and prevented the adverse effects of prenatal hypoxia on hippocampal atrophy and memory loss in the adult offspring. Therefore, these data provide a link between prenatal hypoxia, placental oxidative stress, and offspring brain health in later life, providing insight into mechanism and identifying a therapeutic strategy.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine M Cross
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew D Kane
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.,Cambridge Strategic Initiative in Reproduction, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Strategic Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
18
|
Vasilev DS, Dubrovskaya NM, Zhuravin IA, Nalivaeva NN. Developmental Profile of Brain Neprilysin Expression Correlates with Olfactory Behaviour of Rats. J Mol Neurosci 2021; 71:1772-1785. [PMID: 33433852 DOI: 10.1007/s12031-020-01786-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/25/2020] [Indexed: 12/26/2022]
Abstract
A neuropeptidase, neprilysin (NEP), is a major amyloid (Aβ)-degrading enzyme involved in the pathogenesis of Alzheimer's disease (AD). The olfactory system is affected early in AD with characteristic Aβ accumulation, but data on the dynamics of NEP expression in the olfactory system are absent. Our study demonstrates that NEP mRNA expression in rat olfactory bulbs (OB), entorhinal cortex (ECx), hippocampus (Hip), parietal cortex (PCx) and striatum (Str) increases during the first postnatal month being the highest in the OB and Str. By 3 months, NEP mRNA levels sharply decrease in the ECx, Hip and PCx and by 9 months in the OB, but not in the Str, which correlates with declining olfaction in aged rats tested in the food search paradigm. One-month-old rats subjected to prenatal hypoxia on E14 had lower NEP mRNA levels in the ECx, Hip and PCx (but not in the OB and Str) compared with the control offspring and demonstrated impaired olfaction in the odour preference and food search paradigms. Administration to these rats of a histone deacetylase inhibitor, sodium valproate, restored NEP expression in the ECx, Hip and PCx and improved olfaction. Our data support NEP involvement in olfactory function.
Collapse
Affiliation(s)
- Dimitrii S Vasilev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg, 194223, Russia
| | - Nadezhda M Dubrovskaya
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg, 194223, Russia
| | - Igor A Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg, 194223, Russia
| | - Natalia N Nalivaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg, 194223, Russia. .,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Vetrovoy O, Stratilov V, Nimiritsky P, Makarevich P, Tyulkova E. Prenatal Hypoxia Induces Premature Aging Accompanied by Impaired Function of the Glutamatergic System in Rat Hippocampus. Neurochem Res 2021; 46:550-563. [PMID: 33389385 DOI: 10.1007/s11064-020-03191-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022]
Abstract
Prenatal hypoxia is among leading causes of progressive brain pathologies in postnatal life. This study aimed to analyze the characteristics of the hippocampal glutamatergic system and behavior of rats in early (2 weeks), adult (3 months) and advanced (18 months) postnatal ontogenesis after exposure to prenatal severe hypoxia (PSH, 180 Torr, 5% O2, 3 h) during the critical period in the formation of the hippocampus (days 14-16 of gestation). We have shown an age-dependent progressive decrease in the hippocampal glutamate levels, a decrease of the neuronal cell number in the CA1 hippocampal region, as well as impairment of spatial long-term memory in the Morris water navigation task. The gradual decrease of glutamate was accompanied by decreased expression of the genes that mediate glutamate metabolism and recycling in the hippocampus. That deficiency apparently correlated with an increase of the metabotropic glutamate receptor type 1 (mGluR1) and synaptophysin expression. Generation of the lipid peroxidation products in the hippocampus of adult rats subjected to prenatal severe hypoxia (PSH rats) was not increased compared to the control animals when tested in a model of glutamate excitotoxicity induced by severe hypoxia. This demonstrates that excessive glutamate sensitivity in PSH rats does not compensate for glutamate deficiency. Our results show a significant contribution of the glutamate system dysfunction to age-associated decrease of this mediator, cognitive decline, and early neuronal loss in PSH rats.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, Saint-Petersburg, Russia, 199034. .,Department of Biochemistry, Faculty of Biology, Saint-Petersburg State University, Universitetskaya emb. 7-9, Saint-Petersburg, Russia, 199034.
| | - Viktor Stratilov
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, Saint-Petersburg, Russia, 199034
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave. 27-10, Moscow, Russia, 119192.,Faculty of Medicine, Lomonosov Moscow State University, Lomonosov Ave. 31-5, Moscow, Russia, 119192
| | - Pavel Makarevich
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave. 27-10, Moscow, Russia, 119192.,Faculty of Medicine, Lomonosov Moscow State University, Lomonosov Ave. 31-5, Moscow, Russia, 119192
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, Saint-Petersburg, Russia, 199034
| |
Collapse
|
20
|
Yakovleva O, Bogatova K, Mukhtarova R, Yakovlev A, Shakhmatova V, Gerasimova E, Ziyatdinova G, Hermann A, Sitdikova G. Hydrogen Sulfide Alleviates Anxiety, Motor, and Cognitive Dysfunctions in Rats with Maternal Hyperhomocysteinemia via Mitigation of Oxidative Stress. Biomolecules 2020; 10:biom10070995. [PMID: 32630731 PMCID: PMC7408246 DOI: 10.3390/biom10070995] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is endogenously produced from sulfur containing amino acids, including homocysteine and exerts neuroprotective effects. An increase of homocysteine during pregnancy impairs fetal growth and development of the offspring due to severe oxidative stress. We analyzed the effects of the H2S donor—sodium hydrosulfide (NaHS) administered to female rats with hyperhomocysteinemia (hHcy) on behavioral impairments and levels of oxidative stress of their offspring. Rats born from females fed with control or high methionine diet, with or without H2S donor injections were investigated. Rats with maternal hHcy exhibit increased levels of total locomotor activity and anxiety, decreased muscle endurance and motor coordination, abnormalities of fine motor control, as well as reduced spatial memory and learning. Oxidative stress in brain tissues measured by activity of glutathione peroxidases and the level of malondialdehyde was higher in rats with maternal hHcy. Concentrations of H2S and the activity and expression of the H2S generating enzyme—cystathionine-beta synthase—were lower compared to the control group. Administration of the H2S donor to females with hHcy during pregnancy prevented behavioral alterations and oxidative stress of their offspring. The acquisition of behavioral together with biochemical studies will add to our knowledge about homocysteine neurotoxicity and proposes H2S as a potential agent for therapy of hHcy associated disorders.
Collapse
Affiliation(s)
- Olga Yakovleva
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Ksenia Bogatova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Renata Mukhtarova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Aleksey Yakovlev
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Viktoria Shakhmatova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Elena Gerasimova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
| | - Guzel Ziyatdinova
- Department of analytical chemistry, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia;
| | - Anton Hermann
- Department of Biosciences, University of Salzburg, Salzburg 5020, Austria;
| | - Guzel Sitdikova
- Department of Human and Animal physiology, Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russia; (O.Y.); (K.B.); (R.M.); (A.Y.); (V.S.); (E.G.)
- Correspondence: ; Tel.: +7-903-306-1092
| |
Collapse
|
21
|
Son JH, Stevenson TJ, Bowles MD, Scholl EA, Bonkowsky JL. Dopaminergic Co-Regulation of Locomotor Development and Motor Neuron Synaptogenesis is Uncoupled by Hypoxia in Zebrafish. eNeuro 2020; 7:ENEURO.0355-19.2020. [PMID: 32001551 PMCID: PMC7046933 DOI: 10.1523/eneuro.0355-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Hypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish. We found that developmental hypoxia resulted in decreased spontaneous swimming behavior in larva, and that this motor impairment persisted into adulthood. In evaluation of the diencephalic dopaminergic neurons, which regulate early development of locomotion and constitute an evolutionarily conserved component of the vertebrate dopaminergic system, hypoxia caused a decrease in the number of synapses from the descending dopaminergic diencephalospinal tract (DDT) to spinal cord motor neurons. Moreover, dopamine signaling from the DDT was coupled jointly to motor neuron synaptogenesis and to locomotor development. Together, these results demonstrate the developmental processes regulating early locomotor development and a requirement for dopaminergic projections and motor neuron synaptogenesis. Our findings suggest new insights for understanding the mechanisms leading to motor disability from hypoxic injury of prematurity.
Collapse
Affiliation(s)
- Jong-Hyun Son
- Department of Biology, University of Scranton, Scranton, PA 18510
| | - Tamara J Stevenson
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Miranda D Bowles
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Erika A Scholl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
- Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT 84108
| |
Collapse
|
22
|
Riljak V, Laštůvka Z, Mysliveček J, Borbélyová V, Otáhal J. Early postnatal hypoxia induces behavioral deficits but not morphological damage in the hippocampus in adolescent rats. Physiol Res 2019; 69:165-179. [PMID: 31852194 DOI: 10.33549/physiolres.934234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hypoxia is one of the major pathological factors affecting brain function. The aim of the present study was to describe the effect of neonatal hypobaric hypoxia on the behavior of rats and to analyze its effect on hippocampal neurodegeneration. Hypobaric hypoxia at a simulated altitude of 9000 m was induced for one hour in neonatal rat pups (PND7 and PND9) of both sexes. Subsequently, the rats underwent behavioral testing on PND25 and PND35 using a LABORAS apparatus to assess spontaneous behavior. Hypoxia did not cause any morphological damage in the hippocampus of rats. However, hypoxia on PND7 led to less horizontal locomotor activity both, in males (on PND25) and females (on PND35). Hypoxia on PND9 led to higher rearing in females on PND25. Hypoxic males exhibited higher grooming activity, while females lower grooming activity on PND35 following hypoxia induced on PND7. In females, hypoxia on PND9 resulted in higher grooming activity on PND25. Sex differences in the effect of hypoxia was observed on PND35, when hypoxic males compared to hypoxic females displayed more locomotor, rearing and grooming activity. Our data suggest that hypoxia on PND7 versus PND9 differentially affects locomotion and grooming later in adolescence and these effects are sex-dependent.
Collapse
Affiliation(s)
- V Riljak
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|