1
|
Hirako S, Wada N, Iizuka Y, Hirabayashi T, Kageyama H, Kim H, Kaibara N, Yanagisawa N, Takenoya F, Shioda S. Effect of Intracerebroventricular Administration of Galanin-Like Peptide on Hepatokines in C57BL/6 J Mice. J Mol Neurosci 2024; 74:25. [PMID: 38386221 DOI: 10.1007/s12031-024-02200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Galanin-like peptide (GALP) is a neuropeptide that was first isolated and identified from the porcine hypothalamus. Studies have described an anti-obesity effect of GALP. We previously found that intracerebroventricular administration of GALP in mice resulted in an increase in respiratory exchange rate 12 to 16 h later. GALP may also affect glucose metabolism, but the detailed mechanism has not been elucidated. In this study, we investigated the effects of GALP on glucose and lipid metabolism in the liver. Nine-week-old male C57BL / 6 J mice were administered a single intracerebroventricular dose of saline or GALP and dissected 16 h later. There were no significant between-group differences in body weight and blood glucose levels. With regard to gene and protein expression, G6Pase associated with hepatic gluconeogenesis was significantly reduced in the GALP group. In addition, the hepatokines selenoprotein P and fetuin-A, which induce insulin resistance in the liver, were significantly decreased in the GALP group. These results suggest that intracerebroventricular administration of GALP decreases the expression of key hepatokines, thereby enhancing glucose metabolism.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, 1288 Magome, Iwatsuki-ku, Saitama-shi, Saitama, 339-8539, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0806, Japan
| | - Haruaki Kageyama
- Department of Nutrition and Dietetics, Faculty of Family and Consumer Sciences, Kamakura Women's University, 6-1-3 Ofuna, Kamakura-shi, Kanagawa, 247-8512, Japan
| | - Hyounju Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Naoko Kaibara
- Department of Health and Nutrition, University of Human Arts and Sciences, 1288 Magome, Iwatsuki-ku, Saitama-shi, Saitama, 339-8539, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Fumiko Takenoya
- Department of Sport Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Seiji Shioda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10, Kamishinano, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0806, Japan
| |
Collapse
|
2
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
3
|
Eskova A, Frohnhöfer HG, Nüsslein-Volhard C, Irion U. Galanin Signaling in the Brain Regulates Color Pattern Formation in Zebrafish. Curr Biol 2020; 30:298-303.e3. [PMID: 31902721 PMCID: PMC6971688 DOI: 10.1016/j.cub.2019.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/02/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022]
Abstract
Color patterns are prominent features of many animals and are of high evolutionary relevance. In basal vertebrates, color patterns are composed of specialized pigment cells that arrange in multilayered mosaics in the skin. Zebrafish (Danio rerio), the preeminent model system for vertebrate color pattern formation, allows genetic screens as powerful approaches to identify novel functions in a complex biological system. Adult zebrafish display a series of blue and golden horizontal stripes, composed of black melanophores, silvery or blue iridophores, and yellow xanthophores. This stereotyped pattern is generated by self-organization involving direct cell contacts between all three types of pigment cells mediated by integral membrane proteins [1, 2, 3, 4, 5]. Here, we show that neuropeptide signaling impairs the striped pattern in a global manner. Mutations in the genes coding either for galanin receptor 1A (npm/galr1A) or for its ligand galanin (galn) result in fewer stripes, a pale appearance, and the mixing of cell types, thus resembling mutants with thyroid hypertrophy [6]. Zebrafish chimeras obtained by transplantations of npm/galr1A mutant blastula cells indicate that mutant pigment cells of all three types can contribute to a normal striped pattern in the appropriate host. However, loss of galr1A expression in a specific region of the brain is sufficient to cause the mutant phenotype in an otherwise wild-type fish. Increased thyroid hormone levels in mutant fish suggest that galanin signaling through Galr1A in the pituitary is an upstream regulator of the thyroid hormone pathway, which in turn promotes precise interactions of pigment cells during color pattern formation. Zebrafish stripes are generated by three types of self-organizing pigment cells Galanin signaling through Galr1A impairs zebrafish stripe formation globally Galr1A function in a specific brain region is required for pigment cell interactions Galanin signaling functions to downregulate thyroid hormone levels
Collapse
Affiliation(s)
- Anastasia Eskova
- Max-Planck-Institute for Developmental Biology, Department ECNV, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Hans Georg Frohnhöfer
- Max-Planck-Institute for Developmental Biology, Department ECNV, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | | | - Uwe Irion
- Max-Planck-Institute for Developmental Biology, Department ECNV, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Fang P, Zhang L, Yu M, Sheng Z, Shi M, Zhu Y, Zhang Z, Bo P. Activiated galanin receptor 2 attenuates insulin resistance in skeletal muscle of obese mice. Peptides 2018; 99:92-98. [PMID: 29183756 DOI: 10.1016/j.peptides.2017.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 01/28/2023]
Abstract
The results of our and other's studies showed that activation of galanin receptor 1 could mitigate insulin resistance via promoting glucose transporter 4 (GLUT4) expression and translocation in the skeletal muscle of rats. But no literature are available regarding the effect of galanin receptor 2 (GALR2) on insulin resistance in skeletal muscle of type 2 diabetes. Herein, in this study we intended to survey the effect of GALR2 and its signal mechanisms in the mice with high fat diet-induced obese. The mice were intraperitoneally injected with vehicle, GALR2 agonist M1145 and antagonist M871 respectively once a day for continuous 21 days. The skeletal muscles were processed for determination of glucose uptake, and GLUT4 mRNA and protein expression levels. The PGC-1α, AKT, p38MAPK, AS160, pAKT, pP38MAPK and pAS160 expression levels were quantitatively assessed too. We found that pharmacological activation of GALR2 enhanced energy expenditure, and increased GLUT4 expression and translocation in skeletal muscle of mice during high-fat diet regimens. Activation of GALR2 alleviated insulin resistance through P38MAPK/PGC-1α/GLUT4 and AKT/AS160/GLUT4 pathway in the skeletal muscle of mice. Overall, these results identify that GALR2 is a regulator of insulin resistance and activation of GALR2 represents a promising strategy against obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Zhongqi Sheng
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Ihnatko R, Theodorsson E. Short N-terminal galanin fragments are occurring naturally in vivo. Neuropeptides 2017; 63:1-13. [PMID: 28434790 DOI: 10.1016/j.npep.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/08/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Abstract
UNLABELLED The galanin family currently consists of four peptides, namely galanin, galanin-message associated peptide, galanin-like peptide and alarin. Unlike galanin that signals through three different G protein-coupled receptors; GAL1, GAL2, and GAL3, binding at its N-terminal end, the cognate receptors for other members of the galanin family are currently unknown. Research using short N-terminal galanin fragments generated either by enzymatic cleavage or solid-phase synthesis has revealed differences in their receptor binding properties exerting numerous biological effects distinct from galanin(1-29) itself. Our studies on tissue extracts derived from rat small intestine and bovine gut using chromatographic techniques and sensitive galanin(1-16)-specific radioimmunoassay revealed the presence of immunoreactive compounds reacting with antiserum against galanin(1-16) distributed in distinct elution volumes. These results suggested a possible presence of short N-terminal galanin fragments also in vivo. Moreover, employing immunoaffinity chromatography and reverse-phase high performance liquid chromatography (HPLC) followed by mass spectrometry allowed specific enrichment of these immunoreactive compounds from rat tissues and identification of their molecular structure. Indeed, our study revealed presence of several distinct short N-terminal galanin sequences in rat tissue. To prove their receptor binding, four of the identified sequences were synthetized, namely, galanin(1-13), galanin(1-16), galanin(1-20), galanin(6-20), and tested on coronal rat brain sections competing with 125I-labeled galanin(1-29). Our autoradiographs confirmed that galanin(1-13), galanin(1-16), and galanin(1-20) comprehensively displaced 125I-galanin(1-29) but galanin(6-20) did not. Here we show, for the first time, that short N-terminal galanin fragments occur naturally in rat tissues and that similar or identical galanin sequences can be present also in tissues of other species. BIOLOGICAL SIGNIFICANCE This study is first to provide an evidence of the presence of short N-terminal galanin fragments in vivo in a biological system and provides further foundations for the previous studies using synthetized short N-terminal galanin fragments.
Collapse
Affiliation(s)
- Robert Ihnatko
- Department of Clinical Chemistry, Department of Clinical and Experimental Medicine, Linköping University, 58285 Linköping, Sweden.
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Department of Clinical and Experimental Medicine, Linköping University, 58285 Linköping, Sweden
| |
Collapse
|
6
|
Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide. Proc Natl Acad Sci U S A 2016; 113:E8472-E8481. [PMID: 27940914 DOI: 10.1073/pnas.1617824113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL1-3, are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region- and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL3 antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation.
Collapse
|
7
|
Webling K, Groves-Chapman JL, Runesson J, Saar I, Lang A, Sillard R, Jakovenko E, Kofler B, Holmes PV, Langel Ü. Pharmacological stimulation of GAL1R but not GAL2R attenuates kainic acid-induced neuronal cell death in the rat hippocampus. Neuropeptides 2016; 58:83-92. [PMID: 26764217 DOI: 10.1016/j.npep.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/23/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
The neuropeptide galanin is widely distributed in the central and peripheral nervous systems and part of a bigger family of bioactive peptides. Galanin exerts its biological activity through three G-protein coupled receptor subtypes, GAL1-3R. Throughout the last 20years, data has accumulated that galanin can have a neuroprotective effect presumably mediated through the activation of GAL1R and GAL2R. In order to test the pharmaceutical potential of galanin receptor subtype selective ligands to inhibit excitotoxic cell death, the GAL1R selective ligand M617 and the GAL2R selective ligand M1145 were compared to the novel GAL1/2R ligand M1154, in their ability to reduce the excitotoxic effects of intracerebroventricular injected kainate acid in rats. The peptide ligands were evaluated in vitro for their binding preference in a competitive (125)I-galanin receptor subtype binding assay, and G-protein signaling was evaluated using both classical signaling and a label-free real-time technique. Even though there was no significant difference in the time course or severity of the kainic acid induced epileptic behavior in vivo, administration of either M617 or M1154 before kainic acid administration significantly attenuated the neuronal cell death in the hippocampus. Our results indicate the potential therapeutic value of agonists selective for GAL1R in the prevention of neuronal cell death.
Collapse
MESH Headings
- Animals
- Bradykinin/analogs & derivatives
- Bradykinin/pharmacology
- Cell Death/drug effects
- Cell Line, Tumor
- Cyclic AMP/metabolism
- Galanin/analogs & derivatives
- Galanin/pharmacology
- Hippocampus/drug effects
- Hippocampus/pathology
- Humans
- Kainic Acid/toxicity
- Ligands
- Male
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Peptide Fragments/pharmacology
- Protein Binding
- Rats
- Rats, Sprague-Dawley
- Receptor, Galanin, Type 1/agonists
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/agonists
- Receptor, Galanin, Type 2/metabolism
Collapse
Affiliation(s)
- Kristin Webling
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 16B, SE-10691, Stockholm, Sweden.
| | - Jessica L Groves-Chapman
- Neuroscience Program, Biomedical and Health Science Institute, Department of Psychology, The University of Georgia, Athens, GA, USA
| | - Johan Runesson
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 16B, SE-10691, Stockholm, Sweden
| | - Indrek Saar
- Institute of technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Andreas Lang
- Research Program for Receptorbiochemistry and Tumormetabolism, Laura Bassi Centre of Expertise THERAPEP, Department of Pediatrics/University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Rannar Sillard
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 16B, SE-10691, Stockholm, Sweden
| | - Erik Jakovenko
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 16B, SE-10691, Stockholm, Sweden
| | - Barbara Kofler
- Research Program for Receptorbiochemistry and Tumormetabolism, Laura Bassi Centre of Expertise THERAPEP, Department of Pediatrics/University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Philip V Holmes
- Neuroscience Program, Biomedical and Health Science Institute, Department of Psychology, The University of Georgia, Athens, GA, USA
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 16B, SE-10691, Stockholm, Sweden; Institute of technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
8
|
Petschner P, Juhasz G, Tamasi V, Adori C, Tothfalusi L, Hökfelt T, Bagdy G. Chronic venlafaxine treatment fails to alter the levels of galanin system transcripts in normal rats. Neuropeptides 2016; 57:65-70. [PMID: 26891823 DOI: 10.1016/j.npep.2016.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/22/2016] [Accepted: 01/31/2016] [Indexed: 11/16/2022]
Abstract
It is widely accepted that efficacy and speed of current antidepressants' therapeutic effect are far from optimal. Thus, there is a need for the development of antidepressants with new mechanisms of action. The neuropeptide galanin and its receptors (GalR1, GalR2 and GalR3) are among the promising targets. However, it is not clear whether or not the galanin system is involved in the antidepressant effect exerted by the currently much used inhibitors of the reuptake of serotonin and/or noradrenaline. To answer this question we administered the selective serotonin and noradrenaline reuptake inhibitor (SNRI) venlafaxine (40mg/kg/day via osmotic minipumps) to normal rats and examined the levels of the transcripts for galanin and GalR1-3 after a 3-week venlafaxine treatment in the dorsal raphe, hippocampus and frontal cortex. These areas are known to be involved in the effects of antidepressants and in depression itself. Venlafaxine failed to alter the expression of any of the galanin system genes in these areas. Our results show that one of the most efficient, currently used SNRIs does not alter transcript levels of galanin or its three receptors in normal rats. These findings suggest that the pro- and antidepressive-like effects of galanin reported in animal experiments may employ a novel mechanism(s).
Collapse
Affiliation(s)
- Peter Petschner
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE-NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Hungary
| | - Viola Tamasi
- Department of Genetics-, Cell and Immunobiology, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Csaba Adori
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; Retzius Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | - Laszlo Tothfalusi
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Tomas Hökfelt
- Retzius Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary.
| |
Collapse
|
9
|
Molnár CS, Sárvári M, Vastagh C, Maurnyi C, Fekete C, Liposits Z, Hrabovszky E. Altered Gene Expression Profiles of the Hypothalamic Arcuate Nucleus of Male Mice Suggest Profound Developmental Changes in Peptidergic Signaling. Neuroendocrinology 2016; 103:369-82. [PMID: 26338351 DOI: 10.1159/000439430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022]
Abstract
Neuropeptides of the hypothalamic arcuate nucleus (ARC) regulate important homeostatic and endocrine functions and also play critical roles in pubertal development. The altered peptidergic and aminoacidergic neurotransmission accompanying pubertal maturation of the ARC is not fully understood. Here we studied the developmental shift in the gene expression profile of the ARC of male mice. RNA samples for quantitative RT-PCR studies were isolated from the ARC of 14-day-old infantile and 60-day-old adult male mice with laser capture microdissection. The expression of 18 neuropeptide, 15 neuropeptide receptor, 4 sex steroid receptor and 6 classic neurotransmitter marker mRNAs was compared between the two time points. The adult animals showed increased mRNA levels encoding cocaine- and amphetamine-regulated transcripts, galanin-like peptide, dynorphin, kisspeptin, proopiomelanocortin, proenkephalin and galanin and a reduced expression of mRNAs for pituitary adenylate cyclase-activating peptide, calcitonin gene-related peptide, neuropeptide Y, substance P, agouti-related protein, neurotensin and growth hormone-releasing hormone. From the neuropeptide receptors tested, melanocortin receptor-4 showed the most striking increase (5-fold). Melanocortin receptor-3 and the Y1 and Y5 neuropeptide Y receptors increased 1.5- to 1.8-fold, whereas δ-opioid receptor and neurotensin receptor-1 transcripts were reduced by 27 and 21%, respectively. Androgen receptor, progesterone receptor and α-estrogen receptor transcripts increased by 54-72%. The mRNAs of glutamic acid decarboxylases-65 and -67, vesicular GABA transporter and choline acetyltransferase remained unchanged. Tyrosine hydroxylase mRNA increased by 44%, whereas type-2 vesicular glutamate transporter mRNA decreased by 43% by adulthood. Many of the developmental changes we revealed in this study suggest a reduced inhibitory and/or enhanced excitatory neuropeptidergic drive on fertility in adult animals.
Collapse
Affiliation(s)
- Csilla S Molnár
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
10
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
11
|
Wodowska J, Ciosek J. Galanin and galanin-like peptide modulate vasopressin and oxytocin release in vitro: the role of galanin receptors. Neuropeptides 2014; 48:387-97. [PMID: 25464889 DOI: 10.1016/j.npep.2014.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/18/2014] [Accepted: 10/22/2014] [Indexed: 12/17/2022]
Abstract
Galanin (Gal) and galanin-like peptide (GALP) may be involved in the mechanisms of the hypothalamo-neurohypophysial system. The aim of the present in vitro study was to compare the influence of Gal and GALP on vasopressin (AVP) and oxytocin (OT) release from isolated rat neurohypophysis (NH) or hypothalamo-neurohypophysial explants (Hth-NH). The effect of Gal/GALP on AVP/OT secretion was also studied in the presence of galantide, the non-selective galanin receptors antagonist. Gal at concentrations of 10(-10 )M and 10(-8 )M distinctly inhibited basal and K(+)-stimulated AVP release from the NH and Hth-NH explants, whereas Gal exerted a similar action on OT release only during basal incubation. Gal added to the incubation medium in the presence of galantide did not exert any action on the secretion of either neurohormone from NH and Hth-NH explants. GALP (10(-10 )M and 10(-9 )M) induced intensified basal AVP release from the NH and Hth-NH complex as well as the release of potassium-evoked AVP from the Hth-NH. The same effect of GALP has been observed in the presence of galantide. GALP added to basal incubation medium was the reason for stimulated OT release from the NH as well as from the Hth-NH explants. However, under potassium-stimulated conditions, OT release from the NH and Hth-NH complexes has been observed to be distinctly impaired. Galantide did not block this inhibitory effect of GALP on OT secretion. It may be concluded that: (i) Gal as well as GALP modulate AVP and OT release at every level of the hypothalamo-neurohypophysial system; (ii) Gal acts in the rat central nervous system as the inhibitory neuromodulator for AVP and OT release via its galanin receptors; (iii) the stimulatory effect of GALP on AVP and OT release is likely to be mediated via an unidentified specific GALP receptor(s).
Collapse
Affiliation(s)
- Justyna Wodowska
- Department of Neuropeptides Research, Faculty of Health Sciences, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Joanna Ciosek
- Department of Neuropeptides Research, Faculty of Health Sciences, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland.
| |
Collapse
|
12
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
13
|
Robinson J, Smith A, Sturchler E, Tabrizifard S, Kamenecka T, McDonald P. Development of a high-throughput screening-compatible cell-based functional assay to identify small molecule probes of the galanin 3 receptor (GalR3). Assay Drug Dev Technol 2013; 11:468-77. [PMID: 24116939 DOI: 10.1089/adt.2013.526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The galanin 3 receptor (GalR3) belongs to the large G protein-coupled receptor (GPCR) family of proteins. GalR3 and two other closely related receptors, GalR1 and GalR2, together with their endogenous ligand galanin, are involved in a variety of physiological and pathophysiological processes. GalR3 in particular has been strongly implicated in addiction and mood-related disorders such as anxiety and depression. It has been the target of many drug discovery programs within the pharmaceutical industry, but despite the significant resources and effort devoted to discovery of galanin receptor subtype selective small molecule modulators, there have been very few reports for the discovery of such molecules. GalR3 has proven difficult to enable in cell-based functional assays due to its apparent poor cell surface expression in recombinant systems. Here, we describe the generation of a modified GalR3 that facilitates its cell surface expression while maintaining wild-type receptor pharmacology. The modified GalR3 has been used to develop a high-throughput screening-compatible, cell-based, cAMP biosensor assay to detect selective small molecule modulators of GalR3. The performance of the assay has been validated by challenging it against a test library of small molecules with known pharmacological activities (LOPAC; Sigma Aldrich). This approach will enable identification of GalR3 selective modulators (chemical probes) that will facilitate dissection of the biological role(s) that GalR3 plays in normal physiological processes as well as in disease states.
Collapse
Affiliation(s)
- James Robinson
- 1 Department of Molecular Therapeutics, The Scripps Research Institute , Jupiter, Florida
| | | | | | | | | | | |
Collapse
|
14
|
Kageyama H, Endo K, Osaka T, Watanabe J, Wang LH, Ito K, Suzuki M, Sakagami J, Takenoya F, Shioda S. Galanin-like peptide (GALP) facilitates thermogenesis via synthesis of prostaglandin E2 by astrocytes in the periventricular zone of the third ventricle. J Mol Neurosci 2013; 50:443-52. [PMID: 23354880 DOI: 10.1007/s12031-013-9952-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/02/2013] [Indexed: 11/25/2022]
Abstract
Administration of galanin-like peptide (GALP) leads to a decrease in both total food intake and body weight 24 h after injection, compared to controls. Moreover, GALP induces an increase in core body temperature. To elucidate the mechanism by which GALP exerts its effect on energy homeostasis, urethane-anesthetized rats were intracerebroventricularly injected with GALP or saline, after which oxygen consumption, heart rate, and body temperature were monitored for 4 h. In some cases, animals were also pretreated with the cyclooxygenase (COX) inhibitor, diclofenac, via intracerebroventricular (i.c.v.) or intravenous (i.v.) injection. c-Fos expression in the brain was also examined after injection of GALP, and the levels of COX and prostaglandin E(2) synthetase (PGES) mRNA in primary cultured astrocytes treated with GALP were analyzed by using qPCR. The i.c.v. injection of GALP caused biphasic thermogenesis, an effect which could be blocked by pretreatment with centrally (i.c.v.), but not peripherally (i.v.) administered diclofenac. c-Fos immunoreactivity was observed in astrocytes in the periventricular zone of the third ventricle. GALP treatment also increased COX-2 and cytosolic PGES, but not COX-1, microsomal PGES-1, or microsomal PGES-2 mRNA levels in cultured astrocytes. We, therefore, suggest that GALP elicits thermogenesis via a prostaglandin E(2)-mediated pathway in astrocytes of the central nervous system.
Collapse
Affiliation(s)
- Haruaki Kageyama
- Faculty of Health Care, Kiryu University, Midori City, Gunma, 379-2392, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ho JCW, Jacobs T, Wang Y, Leung FC. Identification and characterization of the chicken galanin receptor GalR2 and a novel GalR2-like receptor (GalR2-L). Gen Comp Endocrinol 2012; 179:305-12. [PMID: 22982974 DOI: 10.1016/j.ygcen.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/29/2012] [Accepted: 09/02/2012] [Indexed: 01/13/2023]
Abstract
In mammals, the neuropeptide galanin exerts a variety of physiological roles in the neuroendocrine system through its interactions with three galanin receptor subtypes (GalR1, GalR2 and GalR3). However, little is known about the characteristics of galanin receptors in birds, and it is only recently that avian GalR1 and a novel GalR1-like receptor were first identified in chickens. In this study, we report the cDNA cloning and characterization of the other two chicken galanin receptors, the galanin type II receptor (cGalR2) and a novel GalR2-like receptor (GalR2-L), which share high degrees of similarity in sequence identity, gene structure and signaling properties. cGalR2 and cGalR2-L cDNAs encode two putative receptors of 371 and 370 amino acids, in which they show considerable amino acid sequence identities (65-67%, and 53-55%, respectively) with the mammalian GalR2. RT-PCR assays revealed that cGalR2 and cGalR2-L mRNA were widely expressed in the adult chicken tissues including the whole brain, intestine, lung, ovary, pituitary and different regions of the oviduct. As assayed with different luciferase reporter systems, chicken galanin (cGal 1-29) and human galanin-like peptide (hGALP 1-60) were demonstrated to stimulate the luciferase activities in Chinese hamster ovary cells expressing cGalR2 and cGalR2-L through the activations of cAMP/PKA, Ca(2+)/calcineurin and MAPK/ERK signaling pathways, hence suggesting that both receptors are functionally coupled to the G(s) and G(q) proteins. Furthermore, the previously identified cGalR1 and cGalR1-L were found to be solely coupled to the G(i/o) proteins, and the hGALP (1-60) exhibited only a low potency to cGalR1, cGalR1-L, cGalR2 and cGalR2-L activations.
Collapse
Affiliation(s)
- John Chi Wang Ho
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
16
|
Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 2012; 63:18-30. [PMID: 22369786 DOI: 10.1016/j.neuropharm.2012.02.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/23/2011] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.
Collapse
|
17
|
Webling KEB, Runesson J, Bartfai T, Langel Ü. Galanin receptors and ligands. Front Endocrinol (Lausanne) 2012; 3:146. [PMID: 23233848 PMCID: PMC3516677 DOI: 10.3389/fendo.2012.00146] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/08/2012] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family consists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP), and alarin and this family has been shown to be involved in a wide variety of biological and pathological functions. The effect is mediated through three GPCR subtypes, GalR1-3. The limited number of specific ligands to the galanin receptor subtypes has hindered the understanding of the individual effects of each receptor subtype. This review aims to summarize the current data of the importance of the galanin receptor subtypes and receptor subtype specific agonists and antagonists and their involvement in different biological and pathological functions.
Collapse
Affiliation(s)
- Kristin E. B. Webling
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- *Correspondence: Kristin E. B. Webling, Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm University, Svante Arrheniusv. 21A, 10691 Stockholm, Sweden. e-mail:
| | - Johan Runesson
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
| | - Tamas Bartfai
- Molecular and Integrative Neurosciences Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Ülo Langel
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- Institute of Technology, University of TartuTartu, Estonia
| |
Collapse
|
18
|
Boughton CK, Patterson M, Bewick GA, Tadross JA, Gardiner JV, Beale KEL, Chaudery F, Hunter G, Busbridge M, Leavy EM, Ghatei MA, Bloom SR, Murphy KG. Alarin stimulates food intake and gonadotrophin release in male rats. Br J Pharmacol 2011; 161:601-13. [PMID: 20880399 DOI: 10.1111/j.1476-5381.2010.00893.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Alarin is a recently discovered member of the galanin peptide family encoded by a splice variant of galanin-like peptide (GALP) mRNA. Galanin and GALP regulate energy homeostasis and reproduction. We therefore investigated the effects of alarin on food intake and gonadotrophin release. EXPERIMENTAL APPROACH Alarin was administered into the third cerebral ventricle (i.c.v.) of rats, and food intake or circulating hormone levels were measured. The effect of alarin on the hypothalamo-pituitary-gonadal axis was investigated in vitro using hypothalamic and anterior pituitary explants, and immortalized cell lines. Receptor binding assays were used to determine whether alarin binds to galanin receptors. KEY RESULTS The i.c.v. administration of alarin (30 nmol) to ad libitum fed male rats significantly increased acute food intake to 500%, and plasma luteinizing hormone (LH) levels to 170% of responses to saline. In vitro, 100 nM alarin stimulated neuropeptide Y (NPY) and gonadotrophin-releasing hormone (GnRH) release from hypothalamic explants from male rats, and 1000 nM alarin increased GnRH release from GT1-7 cells. In vivo, pretreatment with the GnRH receptor antagonist cetrorelix prevented the increase in plasma LH levels observed following i.c.v. alarin administration. Receptor binding studies confirmed alarin did not bind to any known galanin receptor, or compete with radiolabelled galanin for hypothalamic binding sites. CONCLUSIONS AND IMPLICATIONS These results suggest alarin is a novel orexigenic peptide, and that it increases circulating LH levels via hypothalamic GnRH. Further work is required to identify the receptor(s) mediating the biological effects of alarin.
Collapse
Affiliation(s)
- C K Boughton
- Department of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shiba K, Kageyama H, Takenoya F, Shioda S. Galanin-like peptide and the regulation of feeding behavior and energy metabolism. FEBS J 2011; 277:5006-13. [PMID: 21126314 DOI: 10.1111/j.1742-4658.2010.07933.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamic neuropeptides modulate physiological activity via G protein-coupled receptors (GPCRs). Galanin-like peptide (GALP) is a 60 amino acid neuropeptide that was originally isolated from porcine hypothalamus using a binding assay for galanin receptors, which belong to the GPCR family. GALP is mainly produced in neurons in the hypothalamic arcuate nucleus. GALP-containing neurons form neuronal networks with several other types of peptide-containing neurons and then regulate feeding behavior and energy metabolism. In rats, the central injection of GALP produces a dichotomous action that involves transient hyperphasia followed by hypophasia and a reduction in body weight, whereas, in mice, it has only one action that reduces both food intake and body weight. In the present minireview, we discuss current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also examine the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery. We conclude that GALP may be of therapeutic value for obesity and life-style-related diseases in the near future.
Collapse
Affiliation(s)
- Kanako Shiba
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
20
|
Lawrence C, Fraley GS. Galanin-like peptide (GALP) is a hypothalamic regulator of energy homeostasis and reproduction. Front Neuroendocrinol 2011; 32:1-9. [PMID: 20558195 PMCID: PMC2950899 DOI: 10.1016/j.yfrne.2010.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/26/2010] [Accepted: 06/09/2010] [Indexed: 12/30/2022]
Abstract
Galanin-like peptide (GALP) was discovered in 1999 in the porcine hypothalamus and was found to be a 60 amino acid neuropeptide. GALP shares sequence homology to galanin (1-13) in position 9-21 and can bind to, as well as activate, the three galanin receptor subtypes (GalR1-3). GALP-expressing cells are limited, and are mainly found in the arcuate nucleus of the hypothalamus (ARC) and the posterior pituitary. GALP-positive neurons in the ARC project to several brain regions where they appear to make contact with multiple neuromodulators. These neuromodulators are involved in the regulation of energy homeostasis and reproduction, anatomical evidence that suggests a role for GALP in these physiological functions. In support of this idea, GALP gene expression is regulated by several factors that reflect metabolic state including the metabolic hormones leptin and insulin, thyroid hormones, and blood glucose. Considerable evidence now exists to support the hypothesis that GALP has a role in the regulation of energy homeostasis and reproduction; and, that GALP's role may be independent of the known galanin receptors. In this review, we (1) provide an overview of the distribution of GALP, and discuss the potential relationship between GALP and other neuromodulators of energy homeostasis and reproduction, (2) discuss the metabolic factors that regulate GALP expression, (3) review the evidence for the role of GALP in energy homeostasis and reproduction, (4) discuss the potential downstream mediators and mechanisms underlying GALP's effects, and (5) discuss the possibility that GALP may mediate its effects via an as yet unidentified GALP-specific receptor.
Collapse
|
21
|
Determining receptor–ligand interaction of human galanin receptor type 3. Neurochem Int 2010; 57:804-11. [DOI: 10.1016/j.neuint.2010.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/20/2010] [Accepted: 08/25/2010] [Indexed: 11/18/2022]
|
22
|
Shioda S, Kageyama H, Takenoya F, Shiba K. Galanin-like peptide: a key player in the homeostatic regulation of feeding and energy metabolism? Int J Obes (Lond) 2010; 35:619-28. [PMID: 20938442 DOI: 10.1038/ijo.2010.202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hypothalamus has a critical role in the regulation of feeding behavior, energy metabolism and reproduction. Galanin-like peptide (GALP), a novel 60 amino-acid peptide with a nonamidated C-terminus, was first discovered in porcine hypothalamus. GALP is mainly produced in the hypothalamic arcuate nucleus and is involved in the regulation of feeding behavior and energy metabolism, with GALP-containing neurons forming networks with several feeding-regulating peptide-containing neurons. The effects of GALP on food intake and body weight are complex. In rats, the central effect of GALP is to first stimulate and then reduce food intake, whereas in mice, GALP has an anorectic function. Furthermore, GALP regulates plasma luteinizing hormone levels through activation of gonadotropin-releasing hormone-producing neurons, suggesting that it is also involved in the reproductive system. This review summarizes the research on these topics and discusses current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also discuss the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery.
Collapse
Affiliation(s)
- S Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
23
|
Galanin-Like Peptide: Neural Regulator of Energy Homeostasis and Reproduction. EXPERIENTIA SUPPLEMENTUM 2010; 102:263-80. [DOI: 10.1007/978-3-0346-0228-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Abstract
Galanin has diverse physiological functions, including nociception, arousal/sleep regulation, cognition, and many aspects of neuroendocrine activities that are associated with feeding, energy metabolism, thermoregulation, osmotic and water balance, and reproduction. This review will provide a brief overview of galanin action in some major neuroendocrine processes. Most of the recent data are about the role of galanin in the central regulation of food intake and energy metabolism, and to some extent, in the regulation of reproduction. It seems that galanin plays a modulatory role rather than a regulatory one in the central and peripheral branches of the neuroendocrine systems. In the hypothalamus, it functions as a neurotransmitter/ neuromodulator. In the pituitary and the peripheral endocrine glands, it acts via its receptors in a paracrine/autocrine fashion. The development of new, selective, and potent antagonists of GALRs should keep advancing our knowledge not only in the physiology of galanin but also in its pathophysiology.
Collapse
Affiliation(s)
- Istvan Merchenthaler
- Department of Epidemiology & Preventive Medicine, University of Maryland, 10 S. Pine Street, MSTYF 900-F, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
|
26
|
|
27
|
Lawrence CB. Galanin-like peptide modulates energy balance by affecting inflammatory mediators? Physiol Behav 2009; 97:515-9. [DOI: 10.1016/j.physbeh.2009.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/16/2009] [Accepted: 02/18/2009] [Indexed: 12/25/2022]
|
28
|
Abstract
Galanin-like peptide (GALP) is a neuropeptide that has complex actions on energy balance, producing orexigenic effects in the short term in rats but anorexigenic and febrile effects over the longer term in rats and mice. GALP is thought to promote feeding via neuropeptide Y and orexin neurons, but the mediators of the anorexia are unknown. However, the anorexic and febrile actions of GALP are similar in magnitude and profile to those seen after central injections of the cytokine IL-1. Thus, the aim of this study was to test the hypothesis that IL-1 mediates the effects of GALP on energy balance. Intracerebroventricular injection of GALP (1.5 nmol) in male Sprague-Dawley rats stimulated production of IL-1alpha and IL-1beta protein in macrophages and/or microglia in selected brain areas, including the meninges, and periventricular brain regions. Intracerebroventricular injection of GALP in rats stimulated food intake over 1 h but decreased feeding and body weight at 24 h and caused a rise in core body temperature over 8 h. Coinfusion of the IL-1 receptor antagonist had no effect on the GALP-induced orexigenic response but significantly reduced the longer-term actions of GALP observed at 24 h and its effect on body temperature. Furthermore, the actions of GALP on feeding, body weight, and body temperature were significantly reduced in IL-1alpha/beta-, IL-1beta-, or IL-1 type I receptor (IL-1RI)-deficient mice. These data suggest that GALP induces expression of IL-1 in the brain, and its anorexic and febrile actions are mediated by this cytokine acting via IL-1 type I receptor.
Collapse
Affiliation(s)
- Pui-Sin Man
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
29
|
Man PS, Lawrence CB. Galanin-like peptide: a role in the homeostatic regulation of energy balance? Neuropharmacology 2008; 55:1-7. [PMID: 18538801 DOI: 10.1016/j.neuropharm.2008.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 11/23/2022]
Abstract
Galanin-like peptide (GALP) is a neuropeptide that has been proposed to play a role in the regulation of food intake behaviour and body weight. However, the actions of GALP on energy balance are complex. In rats, it appears to impel both appetite stimulating and suppressing effects, whereas in mice, the only effect is a reduction in food intake. Thus, it is currently unclear whether GALP is important in the homeostatic regulation of energy balance, or if it produces effects on appetite and body weight by non-specific actions. This review discusses current evidence of the role of GALP with respect to energy balance, and the mechanisms involved in its regulation. We describe recent evidence that suggests that GALP may elicit differential effects in different rodent species. Furthermore, we provide an insight into a potential novel role for GALP in inflammation, and discuss how this may relate to the non-homeostatic regulation of energy balance.
Collapse
Affiliation(s)
- Pui-Sin Man
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
30
|
Uenoyama Y, Tsukamura H, Kinoshita M, Yamada S, Iwata K, Pheng V, Sajapitak S, Sakakibara M, Ohtaki T, Matsumoto H, Maeda KI. Oestrogen-dependent stimulation of luteinising hormone release by galanin-like peptide in female rats. J Neuroendocrinol 2008; 20:626-31. [PMID: 18363811 DOI: 10.1111/j.1365-2826.2008.01703.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galanin-like peptide (GALP), a ligand for three types of galanin receptor, is reported to have a role in regulating luteinising hormone (LH) release in male rodents and primates, but its role in LH release in female rodents remains controversial. The present study was conducted to test whether GALP has a stimulatory role in regulating LH secretion in female rats. The effect of i.c.v. infusion of GALP (5 nmol) on pulsatile LH release was investigated in Wistar-Imamichi strain female rats, or lean and obese Zucker rats. In oestradiol-17beta (oestradiol)-primed ovariectomised (OVX) Wistar-Imamichi female rats, i.c.v. infusion of GALP caused a gradual increase in LH release for the first 1.5 h after the infusion followed by an increased LH pulse frequency during the next 1.5 h, resulting in a significant increase in the mean LH concentrations and baseline levels of LH pulses throughout the sampling period and in the frequency of LH pulses at the last half of the period compared to vehicle-treated controls. The stimulatory effect of GALP was oestrogen-dependent because the same GALP treatment did not affect LH release in OVX rats in the absence of oestradiol. In lean Zucker rats, LH pulses were found in oestradiol-primed OVX individuals and central GALP infusion increased mean LH concentrations in the last half of the period. By contrast, few LH pulses were found in oestradiol-primed OVX obese Zucker rats reportedly with lower hypothalamic GALP expression. Central GALP infusion caused an apparent but transient increase in LH release, resulting in the significant increase in all pulse parameters of LH pulses compared to vehicle-treated controls in the first half of the sampling period. These results suggest that hypothalamic GALP is likely involved in stimulating GnRH/LH release, and that the stimulatory effect of GALP on LH release is oestrogen-dependent in female rats.
Collapse
Affiliation(s)
- Y Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Man PS, Lawrence CB. The effects of galanin-like peptide on energy balance, body temperature and brain activity in the mouse and rat are independent of the GALR2/3 receptor. J Neuroendocrinol 2008; 20:128-37. [PMID: 18081561 PMCID: PMC3306895 DOI: 10.1111/j.1365-2826.2007.01625.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Galanin-like peptide (GALP) is a neuropeptide that is thought to act on the galanin receptors GALR1, GALR2 and GALR3. In rats, i.c.v. injection of GALP has dichotomous actions on energy balance, stimulating feeding over the first hour, but reducing food intake and body weight at 24 h, as well as causing an increase in core body temperature. In mice, GALP only induces an anorexic action, and its effects on core body temperature are unknown. One aim of the present study was to determine the effects of GALP on core body temperature in mice. Intracerebroventricular injection of GALP into conscious mice had no effect on feeding over 1 h, but caused a significant reduction in food intake and body weight at 24 h. It also caused an immediate drop in core body temperature, which was followed by an increase in body temperature. To understand these different effects of GALP on energy balance in mice compared to rats, and to determine the involvement of GALR2 and GALR3, immunohistochemistry was performed to localise c-Fos, a marker of cell activation. Intracerebroventricular injection of GALP induced c-Fos expression in the parenchyma surrounding the ventricles, the ventricular ependymal cells and the meninges in mice and rats. GALP also induced c-Fos expression in the supraoptic nucleus, dorsomedial hypothalamic nucleus, lateral hypothalamus and nucleus tractus solitarius in rats but not in mice. Central administration of a GALR2/3 agonist in rats did not induce c-Fos in any of the brain regions that expressed this protein after GALP injection, and had no effect on food intake, body weight and body temperature in rats or mice. These data suggest that GALP induces differential effects on energy balance and brain activity in mice compared to rats, which are unlikely to be due to activation of the GALR2 or GALR3 receptor.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Body Temperature/drug effects
- Body Weight/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiology
- Cells, Cultured
- Eating/drug effects
- Energy Metabolism/drug effects
- Galanin/administration & dosage
- Galanin/pharmacology
- Galanin-Like Peptide/administration & dosage
- Galanin-Like Peptide/pharmacology
- Homeostasis/drug effects
- Injections, Intraventricular
- Male
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/administration & dosage
- Peptide Fragments/pharmacology
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Galanin, Type 2/agonists
- Receptor, Galanin, Type 2/physiology
- Receptor, Galanin, Type 3/agonists
- Receptor, Galanin, Type 3/physiology
Collapse
Affiliation(s)
- Pui-Sin Man
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
32
|
Santic R, Schmidhuber SM, Lang R, Rauch I, Voglas E, Eberhard N, Bauer JW, Brain SD, Kofler B. Alarin is a vasoactive peptide. Proc Natl Acad Sci U S A 2007; 104:10217-22. [PMID: 17535903 PMCID: PMC1891251 DOI: 10.1073/pnas.0608585104] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin-like peptide (GALP) is a hypothalamic neuropeptide belonging to the galanin family of peptides. The GALP gene is characterized by extensive differential splicing in a variety of murine tissues. One splice variant excludes exon 3 and results in a frame shift leading to a novel peptide sequence and a stop codon after 49 aa. In this peptide, which we termed alarin, the signal sequence of the GALP precursor peptide and the first 5 aa of the mature GALP are followed by 20 aa without homology to any other murine protein. Alarin mRNA was detected in murine brain, thymus, and skin. In accordance with its vascular localization, the peptide exhibited potent and dose-dependent vasoconstrictor and anti-edema activity in the cutaneous microvasculature, as was also observed with other members of the galanin peptide family. However, in contrast to galanin peptides in general, the physiological effects of alarin do not appear to be mediated via the known galanin receptors. Alarin adds another facet to the surprisingly high-functional redundancy of the galanin family of peptides.
Collapse
Affiliation(s)
| | | | - Roland Lang
- Dermatology, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria; and
| | | | | | | | - Johann W. Bauer
- Dermatology, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria; and
| | - Susan D. Brain
- Cardiovascular Division, King's College London, Franklin Wilkins Building, Waterloo Campus, London SE1 9NH, United Kingdom
| | - Barbara Kofler
- Departments of *Pediatrics and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Takenoya F, Guan JL, Kato M, Sakuma Y, Kintaka Y, Kitamura Y, Kitamura S, Okuda H, Takeuchi M, Kageyama H, Shioda S. Neural interaction between galanin-like peptide (GALP)- and luteinizing hormone-releasing hormone (LHRH)-containing neurons. Peptides 2006; 27:2885-93. [PMID: 16793173 DOI: 10.1016/j.peptides.2006.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Galanin-like peptide (GALP), commonly known as an appetite-regulating peptide, has been shown to increase plasma luteinizing hormone (LH) through luteinizing hormone-releasing hormone (LHRH). This led us to investigate, using both light and electron microscopy, whether GALP-containing neurons in the rat brain make direct inputs to LHRH-containing neurons. As LHRH-containing neurons are very difficult to demonstrate immunohistochemically with LHRH antiserum without colchicine treatment, we used a transgenic rat in which LHRH tagged with enhanced green fluorescence protein facilitated the precise detection of LHRH-producing neuronal cell bodies and processes. This is the first study to report on synaptic inputs to LHRH-containing neurons at the ultrastructural level using this transgenic model. We also used immunohistochemistry to investigate the neuronal interaction between GALP- and LHRH-containing neurons. The experiments revealed that GALP-containing nerve terminals lie in close apposition with LHRH-containing cell bodies and processes in the medial preoptic area and the bed nucleus of the stria terminalis. At the ultrastructural level, the GALP-positive nerve terminals were found to make axo-somatic and axo-dendritic synaptic contacts with the EGFP-positive neurons in these areas. These results strongly suggest that GALP-containing neurons provide direct input to LHRH-containing neurons and that GALP plays a crucial role in the regulation of LH secretion via LHRH.
Collapse
Affiliation(s)
- Fumiko Takenoya
- Department of Anatomy I, Showa University School of Medicine, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schmidhuber SM, Santic R, Tam CW, Bauer JW, Kofler B, Brain SD. Galanin-like peptides exert potent vasoactive functions in vivo. J Invest Dermatol 2006; 127:716-21. [PMID: 17024098 DOI: 10.1038/sj.jid.5700569] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cutaneous vasculature plays a key role in the pathophysiology of inflammatory skin diseases. The vascular activity is under the control of the peripheral nervous system that includes locally released neuropeptides. Recently, we detected receptors for the neuropeptide galanin in association with dermal blood vessels, suggesting a role of the galanin-peptide-family in the regulation of the cutaneous microvasculature. Therefore, we have investigated galanin and galanin-like peptide (GALP), a neuropeptide previously only considered to be involved in metabolism and reproduction in the central nervous system, for vaso-modulatory activity in the murine skin in vivo. Picomole amounts of intradermally injected galanin and GALP decreased cutaneous blood flow and inhibited inflammatory edema formation. Both the full-length GALP (1-60) and the putative smaller proteolytic fragment GALP (3-32) showed similar effects. These activities are most likely mediated by galanin receptors galanin receptor subtype 2 (GalR2) and/or galanin receptor subtype 3 (GalR3), because reverse transcription-PCR analysis of murine skin revealed messenger RNA (mRNA) expression of GalR2 and GalR3 but not of galanin receptor subtype 1. The lack of galanin receptor mRNAs in endothelial and smooth muscle cells indicates a neuronal localization of these receptors around the vessels. These results indicate functional activity of GALP in the periphery in vivo and suggest a potential role as an inflammatory modulator.
Collapse
Affiliation(s)
- Sabine M Schmidhuber
- Department of Pediatrics, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Patterson M, Murphy KG, Thompson EL, Smith KL, Meeran K, Ghatei MA, Bloom SR. Microinjection of galanin-like peptide into the medial preoptic area stimulates food intake in adult male rats. J Neuroendocrinol 2006; 18:742-7. [PMID: 16965292 DOI: 10.1111/j.1365-2826.2006.01473.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Galanin-like peptide (GALP) is a neuropeptide implicated in the regulation of feeding behaviour, metabolism and reproduction. GALP is an endogenous ligand of the galanin receptors, which are widely expressed in the hypothalamus. GALP is predominantly expressed in arcuate nucleus (ARC) neurones, which project to the paraventricular nucleus (PVN) and medial preoptic area (mPOA). Intracerebroventricular or intraparaventricular (iPVN) injection of GALP acutely increases food intake in rats. The effect of GALP injection into the mPOA on feeding behaviour has not previously been studied. In the present study, intra-mPOA (imPOA) injection of GALP potently increased 0-1-h food intake in rats. The dose-response effect of imPOA GALP administration on food intake was similar to that previously observed following iPVN administration. The effects of GALP (1 nmol) or galanin (1 nmol) on food intake were then compared following injection into the PVN, mPOA, ARC, dorsal medial nucleus (DMN), lateral hypothalamus and rostral preoptic area (rPOA). GALP (1 nmol) increased food intake to a similar degree when injected into the imPOA or iPVN, but produced no significant effect when injected into the ARC, DMN, lateral hypothalamus or rPOA. Similarly, galanin (1 nmol) significantly increased food intake following injection imPOA and iPVN. However, the effect was significantly smaller than that following administration of GALP (1 nmol). Galanin also had no significant effect on food intake when administered into the ARC, DMN, lateral hypothalamus and rPOA. These data suggest that the mPOA and the PVN may have specific roles in mediating the orexigenic effect of GALP and galanin.
Collapse
Affiliation(s)
- M Patterson
- Department of Metabolic Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Dong Y, Tyszkiewicz JP, Fong TM. Galanin and galanin-like peptide differentially modulate neuronal activities in rat arcuate nucleus neurons. J Neurophysiol 2006; 95:3228-34. [PMID: 16481456 DOI: 10.1152/jn.01117.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuropeptides galanin and galanin-like peptide (GALP) share similar amino acid sequence and presumably interact with the same group of receptors, but they differentially regulate a variety of physiological and pathophysiological processes including metabolism and reproduction. Here we explored the neurophysiological basis of the in vivo differential effect between galanin and GALP by examining galanin and GALP modulation of neuronal activities of neurons in the arcuate nucleus (Arc), a brain region critically involved in energy homeostasis and reproductive function. We demonstrated that galanin and GALP inhibited excitatory and inhibitory postsynaptic currents in a similar way. In contrast, galanin and GALP differentially affected the intrinsic membrane property. In most recorded Arc neurons, galanin perfusion induced significant hyperpolarization of the resting membrane potential, which was not affected by GALP perfusion. In addition, galanin perfusion substantially suppressed the spontaneous spike firing in most Arc neurons, whereas in response to GALP perfusion, about half of the Arc neurons exhibited mild reduction in spontaneous spike firing and the other half showed enhancement. Furthermore, the Arc neurons that had been previously responsive to galanin perfusion no longer responded to galanin if co-applied with GALP, indicating that GALP can physiologically antagonize galanin effect. This differential effect appears to be mediated by G protein within the recorded cell, as the galanin effect on firing rate was abolished when the recorded cell was loaded with GDP-betaS, an agent that blocks G protein activity. Taken together, these differential effects of galanin and GALP may provide a neurophysiological mechanism through which galanin and GALP differentially regulate energy balance, reproductive function, and other physiological processes.
Collapse
Affiliation(s)
- Yan Dong
- Merck Research Laboratories, P. O. Box 2000; R80M213, Rahway, NJ 07065, USA.
| | | | | |
Collapse
|
37
|
Hökfelt T. Galanin and its receptors: introduction to the Third International Symposium, San Diego, California, USA, 21-22 October 2004. Neuropeptides 2005; 39:125-42. [PMID: 15908000 DOI: 10.1016/j.npep.2005.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Third Galanin Symposium presented many different and exciting results on galanin research reflecting a major progress since the previous symposium in 1998. A major impression was the many possible relationships of galaninergic mechanisms to important brain functions such as development, cognition and ageing as well as many aspects related to a wide spectrum of diseases, including Alzheimer's disease, anxiety/depression, addiction, obesity, pain and tumour growth. These studies were based on an extensive armament of methodologies including various strains of transgenic mice. Unfortunately, the pharmaceutical industry had only a minor participation. Nevertheless, exciting developments in the generation of agonists and antagonists are emerging, providing hope that we at the next symposium will be able to validitate many of the challenging hypotheses concerning galanin and disease with the help of pharmacological tools.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-171 77 Stockholm, Sweden.
| |
Collapse
|