1
|
Lo JO, Hedges JC, Chou WH, Tager KR, Bachli ID, Hagen OL, Murphy SK, Hanna CB, Easley CA. Influence of substance use on male reproductive health and offspring outcomes. Nat Rev Urol 2024; 21:534-564. [PMID: 38664544 DOI: 10.1038/s41585-024-00868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/30/2024]
Abstract
The prevalence of substance use globally is rising and is highest among men of reproductive age. In Africa, and South and Central America, cannabis use disorder is most prevalent and in Eastern and South-Eastern Europe, Central America, Canada and the USA, opioid use disorder predominates. Substance use might be contributing to the ongoing global decline in male fertility, and emerging evidence has linked paternal substance use with short-term and long-term adverse effects on offspring development and outcomes. This trend is concerning given that substance use is increasing, including during the COVID-19 pandemic. Preclinical studies have shown that male preconception substance use can influence offspring brain development and neurobehaviour through epigenetic mechanisms. Additionally, human studies investigating paternal health behaviours during the prenatal period suggest that paternal tobacco, opioid, cannabis and alcohol use is associated with reduced offspring mental health, in particular hyperactivity and attention-deficit hyperactivity disorder. The potential effects of paternal substance use are areas in which to focus public health efforts and health-care provider counselling of couples or individuals interested in conceiving.
Collapse
Affiliation(s)
- Jamie O Lo
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA.
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA.
| | - Jason C Hedges
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wesley H Chou
- Department of Urology, Oregon Heath & Science University, Portland, OR, USA
| | - Kylie R Tager
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| | - Ian D Bachli
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| | - Olivia L Hagen
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA
| |
Collapse
|
2
|
Banerjee S, Saha D, Sharma R, Jaidee W, Puttarak P, Chaiyakunapruk N, Chaoroensup R. Phytocannabinoids in neuromodulation: From omics to epigenetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118201. [PMID: 38677573 DOI: 10.1016/j.jep.2024.118201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Recent developments in metabolomics, transcriptomic and epigenetics open up new horizons regarding the pharmacological understanding of phytocannabinoids as neuromodulators in treating anxiety, depression, epilepsy, Alzheimer's, Parkinson's disease and autism. METHODS The present review is an extensive search in public databases, such as Google Scholar, Scopus, the Web of Science, and PubMed, to collect all the literature about the neurobiological roles of cannabis extract, cannabidiol, 9-tetrahydrocannabinol specially focused on metabolomics, transcriptomic, epigenetic, mechanism of action, in different cell lines, induced animal models and clinical trials. We used bioinformatics, network pharmacology and enrichment analysis to understand the effect of phytocannabinoids in neuromodulation. RESULTS Cannabidomics studies show wide variability of metabolites across different strains and varieties, which determine their medicinal and abusive usage, which is very important for its quality control and regulation. CB receptors interact with other compounds besides cannabidiol and Δ9-tetrahydrocannabinol, like cannabinol and Δ8-tetrahydrocannabinol. Phytocannabinoids interact with cannabinoid and non-cannabinoid receptors (GPCR, ion channels, and PPAR) to improve various neurodegenerative diseases. However, its abuse because of THC is also a problem found across different epigenetic and transcriptomic studies. Network enrichment analysis shows CNR1 expression in the brain and its interacting genes involve different pathways such as Rap1 signalling, dopaminergic synapse, and relaxin signalling. CBD protects against diseases like epilepsy, depression, and Parkinson's by modifying DNA and mitochondrial DNA in the hippocampus. Network pharmacology analysis of 8 phytocannabinoids revealed an interaction with 10 (out of 60) targets related to neurodegenerative diseases, with enrichment of ErbB and PI3K-Akt signalling pathways which helps in ameliorating neuro-inflammation in various neurodegenerative diseases. The effects of phytocannabinoids vary across sex, disease state, and age which suggests the importance of a personalized medicine approach for better success. CONCLUSIONS Phytocannabinoids present a range of promising neuromodulatory effects. It holds promise if utilized in a strategic way towards personalized neuropsychiatric treatment. However, just like any drug irrational usage may lead to unforeseen negative effects. Exploring neuro-epigenetics and systems pharmacology of major and minor phytocannabinoid combinations can lead to success.
Collapse
Affiliation(s)
- Subhadip Banerjee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand
| | - Debolina Saha
- School of Bioscience and Engineering, Jadavpur University, Kolkata, 700032, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Wuttichai Jaidee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand
| | - Panupong Puttarak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | | | - Rawiwan Chaoroensup
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| |
Collapse
|
3
|
Hawkey AB, Natarajan S, Kelly O, Gondal A, Wells C, Jones ML, Rezvani AH, Murphy SK, Levin ED. Persisting neurobehavioral consequences of daily or intermittent paternal cannabis administration in F1 and F2 Rats. Neurotoxicology 2024; 103:27-38. [PMID: 38810733 DOI: 10.1016/j.neuro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Repeated paternal preconception exposure to Δ9-tetrahydrocannabinol (Δ9-THC) alone or together with the other constituents in a cannabis extract has been shown in our earlier studies in rats to cause significant neurobehavioral impairment in their offspring. In the current study, we compared the effects of daily cannabis extract (CE) exposure to cannabis on two consecutive days per week, modeling weekend cannabis use in human. The CE contained Δ9-THC as well as cannabidiol and cannabinol. We also extended the investigation of the study to cross-generational effects of grand-paternal cannabis exposure on the F2 generation and included testing the effects of paternal cannabis exposure on responding for opiate self-administration in F1 and F2 generation offspring. We replicated the findings of neurobehavioral impairment in F1 offspring of male rats exposed to cannabis extract containing 4 mg/kg/day of Δ9-THC daily for four weeks prior to mating with drug naïve females. The 4-week cannabis extract exposure caused a significant decrease in weight gain in the male rats exposed daily. In contrast, their offspring showed significantly greater body weights and anogenital distances (AGD) in the third to fourth weeks after birth. The behavioral effects seen in the F1 generation were increased habituation of locomotor activity in the figure-8 maze in female offspring and increased lever pressing for the opiate drug remifentanil in male offspring. The F2 generation showed significantly impaired negative geotaxis and an elimination of the typical sex-difference in locomotor activity, with effects not seen in the F1 generation. This study shows that daily paternal cannabis exposure for four weeks prior to mating causes significant neurobehavioral impairment in the F1 and F2 offspring. Intermittent exposure on two consecutive days per week for four weeks caused comparable neurobehavioral impairment. In sum, there should be concern about paternal as well as maternal exposure to cannabis concerning neurobehavioral development of their offspring.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Biomedical Sciences, Midwestern University, Downers Grove, IL, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sarabesh Natarajan
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Olivia Kelly
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Anas Gondal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Corinne Wells
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Michelle Louise Jones
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Moore BF. Prenatal Exposure to Cannabis: Effects on Childhood Obesity and Cardiometabolic Health. Curr Obes Rep 2024; 13:154-166. [PMID: 38172481 PMCID: PMC10933144 DOI: 10.1007/s13679-023-00544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW To consolidate information on the obesogenic and cardiometabolic effects of prenatal exposure to cannabis. RECENT FINDINGS A PubMed search strategy updated from January 1, 2014, through 14 June 2023, produced a total of 47 epidemiologic studies and 12 animal studies. Prenatal exposure to cannabis is consistently associated with small for gestational age and low birth weight. After birth, these offspring gain weight rapidly and have increased adiposity and higher glucose (fat mass percentage) in childhood. More preclinical and prospective studies are needed to deepen our understanding of whether these associations vary by sex, dose, timing, and composition of cannabis (e.g., ratio of delta-Δ9-tetrahydrocannabinol [Δ9-THC] to cannabidiol [CBD]). Addressing these gaps may help to solidify causality and identify intervention strategies. Based on the available data, clinicians and public health officials should continue to caution against cannabis use during pregnancy to limit its potential obesogenic and adverse cardiometabolic effects on the offspring.
Collapse
Affiliation(s)
- Brianna F Moore
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, 1890 N Revere Ct, Aurora, 80045, CO, USA.
| |
Collapse
|
6
|
Munetomo-Aoki S, Kaizaki-Mitsumoto A, Nakano R, Numazawa S. Paternal methamphetamine exposure differentially affects first and second generations in mice. J Toxicol Sci 2024; 49:9-26. [PMID: 38191192 DOI: 10.2131/jts.49.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Amphetamine-type stimulants are abused worldwide, and methamphetamine (METH) accounts for a large majority of seized abused drug cases. Recently, the paternal origin of health and disease theory has been proposed as a concept wherein paternal factors influence descendants. Although METH abuse is more common among males, its effects on their descendants were not examined. Therefore, we investigated the effects of paternal METH exposure on F1 and F2 levels in a mouse model. Sires were administered METH for 21 days and mated with female mice to obtain F1 mice. Growth evaluations (number of births, survival rate, body weight, righting reflex, cliff avoidance tests, and wire-hanging maneuver) were performed on F1 mice. Upon reaching six weeks of age, the mice were subjected to spontaneous locomotion, elevated plus-maze, acute METH treatment, and passive avoidance tests. Additionally, RNA-seq was performed on the striatum of male mice. Male F1 mice were mated with female mice to obtain F2 mice. They were subjected to the same tests as the F1 mice. Paternal METH exposure resulted in delayed growth and decreased memory function in F1 mice, overweight in F2 mice, decreased METH sensitivity, and reduced anxiety-related behaviors in female F2 mice. Enrichment analysis revealed significant enrichment of terms related to behavior in F1 and protein folding in F2. These results indicated that the effects of paternal METH exposure vary across generations. The effects of paternal factors need to be examined not only in F1, but also in F2 and beyond.
Collapse
Affiliation(s)
| | | | - Ryota Nakano
- Department of Physiology, Showa University Graduate School of Pharmacy
| | - Satoshi Numazawa
- Department of Toxicology, Showa University Graduate School of Pharmacy
| |
Collapse
|
7
|
Jones SK, McCarthy DM, Stanwood GD, Schatschneider C, Bhide PG. Learning and memory deficits produced by aspartame are heritable via the paternal lineage. Sci Rep 2023; 13:14326. [PMID: 37652922 PMCID: PMC10471780 DOI: 10.1038/s41598-023-41213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Environmental exposures produce heritable traits that can linger in the population for one or two generations. Millions of individuals consume substances such as artificial sweeteners daily that are declared safe by regulatory agencies without evaluation of their potential heritable effects. We show that consumption of aspartame, an FDA-approved artificial sweetener, daily for up to 16-weeks at doses equivalent to only 7-15% of the FDA recommended maximum daily intake value (equivalent to 2-4 small, 8 oz diet soda drinks per day) produces significant spatial learning and memory deficits in mice. Moreover, the cognitive deficits are transmitted to male and female descendants along the paternal lineage suggesting that aspartame's adverse cognitive effects are heritable, and that they are more pervasive than current estimates, which consider effects in the directly exposed individuals only. Traditionally, deleterious environmental exposures of pregnant and nursing women are viewed as risk factors for the health of future generations. Environmental exposures of men are not considered to pose similar risks. Our findings suggest that environmental exposures of men can produce adverse impact on cognitive function in future generations and demonstrate the need for considering heritable effects via the paternal lineage as part of the regulatory evaluations of artificial sweeteners.
Collapse
Affiliation(s)
- Sara K Jones
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
| | - Deirdre M McCarthy
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA.
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
| |
Collapse
|
8
|
Coelho A, Lima-Bastos S, Gobira P, Lisboa S. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal 2023; 7:NS20220034. [PMID: 37520658 PMCID: PMC10372471 DOI: 10.1042/ns20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.
Collapse
Affiliation(s)
- Arthur A. Coelho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sávio Lima-Bastos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Pedro H. Gobira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sabrina F. Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
9
|
Mazzeo F, Meccariello R. Cannabis and Paternal Epigenetic Inheritance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095663. [PMID: 37174181 PMCID: PMC10177768 DOI: 10.3390/ijerph20095663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Cannabis is the most widely used illicit drug in Western counties and its abuse is particularly high in male adolescents and young adults. Its main psychotropic component, the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), interferes in the endogenous endocannabinoid system. This signaling system is involved in the control of many biological activities, including the formation of high-quality male gametes. Direct adverse effects of Δ9-THC in male reproduction are well known in both animal models and humans. Nevertheless, the possibility of long-term effects due to epigenetic mechanisms has recently been reported. In this review, we summarize the main advances in the field suggesting the need to pay attention to the possible long-term epigenetic risks for the reproductive health of cannabis users and the health of their offspring.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Dipartimento di Scienze Economiche, Giuridiche, Informatiche e Motorie, Università di Napoli Parthenope, Nola, 80035 Naples, Italy
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", Nola, 80133 Naples, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy
- Department of Movement Sciences and Wellbeing, University "Parthenope", 80133 Naples, Italy
| |
Collapse
|
10
|
Emerging Roles of Endocannabinoids as Key Lipid Mediators for a Successful Pregnancy. Int J Mol Sci 2023; 24:ijms24065220. [PMID: 36982295 PMCID: PMC10048990 DOI: 10.3390/ijms24065220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, Cannabis use/misuse for treating pregnancy-related symptoms and other chronic conditions has increased among pregnant women, favored by decriminalization and/or legalization of its recreational uses in addition to its easy accessibility. However, there is evidence that prenatal Cannabis exposure might have adverse consequences on pregnancy progression and a deleterious impact on proper neurodevelopmental trajectories in the offspring. Maternal Cannabis use could interfere with the complex and finely controlled role performed by the endocannabinoid system in reproductive physiology, impairing multiple gestational processes from blastocyst implantation to parturition, with long-lasting intergenerational effects. In this review, we discuss current clinical and preclinical evidence regarding the role of endocannabinoids in development, function, and immunity of the maternal–fetal interface, focusing on the impact of Cannabis constituents on each of these gestational processes. We also discuss the intrinsic limitations of the available studies and the future perspectives in this challenging research field.
Collapse
|
11
|
Niknam Y, Iyer P, Campbell MA, Moran F, Sandy MS, Zeise L. Animal evidence considered in determination of cannabis smoke and Δ 9 -tetrahydrocannabinol as causing reproductive toxicity (developmental endpoint): Part III. Proposed neurodevelopmental mechanisms of action. Birth Defects Res 2022; 114:1169-1185. [PMID: 36125082 DOI: 10.1002/bdr2.2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/09/2022]
Abstract
This review summarizes the most common potential pathways of neurodevelopmental toxicity due to perinatal exposure to Δ9 -tetrahydrocannabinol (Δ9 -THC) that lead to behavioral and other adverse outcomes (AOs). This is Part III in a set of reviews highlighting the animal-derived data considered by California's Developmental and Reproductive Toxicant Identification Committee (DARTIC) in 2019. The Hazard Identification Document (HID) provided to the DARTIC included a summary of human, whole animal, and mechanistic data on the neurodevelopmental toxicity of cannabis smoke and Δ9 -THC. The literature search for mechanistic data has been updated through 2020. We focus on mechanistic pathways relating to behavioral and other neurodevelopmental outcomes of perinatal exposure to Δ9 -THC. The endocannabinoid system (EC system) plays a crucial role in many processes involved in neurodevelopment and exposure to Δ9 -THC can alter these processes. Whole animal studies report changes in cognitive ability, behavior, and motor function after prenatal exposure to Δ9 -THC. Findings from mechanistic studies add to this evidence and further provide information regarding the pathways leading to these outcomes. Neuromechanistic studies can bridge the gaps between molecular initiating events and apical neurodevelopmental endpoints caused by a chemical. They offer insight into potential alterations in the same pathways by other chemicals that can also result in AOs. Studies of cannabinoid receptor agonist-induced molecular alterations and provide deep biological plausibility at the mechanistic level for the cognitive, behavioral, and motor impairments observed in animal studies after perinatal exposure to Δ9 -THC.
Collapse
Affiliation(s)
- Yassaman Niknam
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Poorni Iyer
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Marlissa A Campbell
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| |
Collapse
|
12
|
Iyer P, Niknam Y, Campbell M, Moran F, Kaufman F, Kim A, Sandy M, Zeise L. Animal evidence considered in determination of cannabis smoke and
Δ
9
‐tetrahydrocannabinol (
Δ
9
‐THC
) as causing reproductive toxicity (developmental endpoint); part
II
. Neurodevelopmental effects. Birth Defects Res 2022; 114:1155-1168. [DOI: 10.1002/bdr2.2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Poorni Iyer
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Yassaman Niknam
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Marlissa Campbell
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Farla Kaufman
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Allegra Kim
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Martha Sandy
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| |
Collapse
|
13
|
Sperm DNA methylation alterations from cannabis extract exposure are evident in offspring. Epigenetics Chromatin 2022; 15:33. [PMID: 36085240 PMCID: PMC9463823 DOI: 10.1186/s13072-022-00466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cannabis legalization is expanding and men are the predominant users. We have limited knowledge about how cannabis impacts sperm and whether the effects are heritable.
Results
Whole genome bisulfite sequencing (WGBS) data were generated for sperm of rats exposed to: (1) cannabis extract (CE) for 28 days, then 56 days of vehicle only (~ one spermatogenic cycle); (2) vehicle for 56 days, then 28 days of CE; or (3) vehicle only. Males were then mated with drug-naïve females to produce F1 offspring from which heart, brain, and sperm tissues underwent analyses. There were 3321 nominally significant differentially methylated CpGs in F0 sperm identified via WGBS with select methylation changes validated via bisulfite pyrosequencing. Significant methylation changes validated in F0 sperm of the exposed males at the gene 2-Phosphoxylose Phosphatase 1 (Pxylp1) were also detectable in their F1 sperm but not in controls. Changes validated in exposed F0 sperm at Metastasis Suppressor 1-Like Protein (Mtss1l) were also present in F1 hippocampal and nucleus accumbens (NAc) of the exposed group compared to controls. For Mtss1l, a significant sex-specific relationship between DNA methylation and gene expression was demonstrated in the F1 NAc. Phenotypically, rats born to CSE-exposed fathers exhibited significant cardiomegaly relative to those born to control fathers.
Conclusions
This is the first characterization of the effect of cannabis exposure on the entirety of the rat sperm methylome. We identified CE-associated methylation changes across the sperm methylome, some of which persisted despite a “washout” period. Select methylation changes validated via bisulfite pyrosequencing, and genes associated with methylation changes were involved in early developmental processes. Preconception CE exposure is associated with detectable changes in offspring DNA methylation that are functionally related to changes in gene expression and cardiomegaly.
These results support that paternal preconception exposure to cannabis can influence offspring outcomes.
Collapse
|
14
|
Ellis RJ, Bara A, Vargas CA, Frick AL, Loh E, Landry J, Uzamere TO, Callens JE, Martin Q, Rajarajan P, Brennand K, Ramakrishnan A, Shen L, Szutorisz H, Hurd YL. Prenatal Δ 9-Tetrahydrocannabinol Exposure in Males Leads to Motivational Disturbances Related to Striatal Epigenetic Dysregulation. Biol Psychiatry 2022; 92:127-138. [PMID: 34895699 PMCID: PMC8957623 DOI: 10.1016/j.biopsych.2021.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cannabis remains one of the most widely abused drugs during pregnancy. In utero exposure to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC), can result in long-term neuropsychiatric risk for the progeny. This study investigated epigenetic signatures underlying these enduring consequences. METHODS Rat dams were exposed daily to THC (0.15 mg/kg) during pregnancy, and adult male offspring were examined for reward and depressive-like behavioral endophenotypes. Using unbiased sequencing approaches, we explored transcriptional and epigenetic profiles in the nucleus accumbens (NAc), a brain area central to reward and emotional processing. An in vitro CRISPR (clustered regularly interspaced short palindromic repeats) activation model coupled with RNA sequencing was also applied to study specific consequences of epigenetic dysregulation, and altered molecular signatures were compared with human major depressive disorder transcriptome datasets. RESULTS Prenatal THC exposure induced increased motivation for food, heightened learned helplessness and anhedonia, and altered stress sensitivity. We identified a robust increase specific to males in the expression of Kmt2a (histone-lysine N-methyltransferase 2A) that targets H3K4 (lysine 4 on histone H3) in cellular chromatin. Normalizing Kmt2a in the NAc rescued the motivational phenotype of prenatally THC-exposed animals. Comparison of RNA- and H3K4me3-sequencing datasets from the NAc of rat offspring with the in vitro model of Kmt2a upregulation revealed overlapping, significant disturbances in pathways that mediate synaptic plasticity. Similar transcriptional alterations were detected in human major depressive disorder. CONCLUSIONS These studies provide direct evidence for the persistent effects of prenatal cannabis exposure on transcriptional and epigenetic deviations in the NAc via Kmt2a dysregulation and associated psychiatric vulnerability.
Collapse
Affiliation(s)
- Randall J. Ellis
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA,Addiction Institute of Mount Sinai, New York, NY, USA
| | - Anissa Bara
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA,Friedman Brain Institute, Department of Psychiatry, New York, NY, USA
| | - Claudia A. Vargas
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA
| | - Amy L. Frick
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA
| | - Eddie Loh
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA
| | - Joseph Landry
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA,Addiction Institute of Mount Sinai, New York, NY, USA
| | - Teddy O. Uzamere
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA,Addiction Institute of Mount Sinai, New York, NY, USA
| | - James E. Callens
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA,Addiction Institute of Mount Sinai, New York, NY, USA
| | - Qammarah Martin
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA,Addiction Institute of Mount Sinai, New York, NY, USA
| | - Prashanth Rajarajan
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA
| | - Kristen Brennand
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA,Addiction Institute of Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA
| | - Li Shen
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, Department of Neuroscience, New York, NY, USA
| | - Henrietta Szutorisz
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Yasmin L Hurd
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Addiction Institute of Mount Sinai, New York, New York.
| |
Collapse
|
15
|
Fuchs Weizman N, Wyse BA, Montbriand J, Jahangiri S, Librach CL. Cannabis significantly alters DNA methylation of the human ovarian follicle in a concentration-dependent manner. Mol Hum Reprod 2022; 28:gaac022. [PMID: 35674367 PMCID: PMC9247704 DOI: 10.1093/molehr/gaac022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabis is increasingly consumed by women of childbearing age, and the reproductive and epigenetic effects are unknown. The purpose of this study was to evaluate the potential epigenetic implications of cannabis use on the female ovarian follicle. Whole-genome methylation was assessed in granulosa cells from 14 matched case-control patients. Exposure status was determined by liquid chromatography-mass spectrometry (LC-MS/MS) measurements of five cannabis-derived phytocannabinoids in follicular fluid. DNA methylation was measured using the Illumina TruSeq Methyl Capture EPIC kit. Differential methylation, pathway analysis and correlation analysis were performed. We identified 3679 differentially methylated sites, with two-thirds affecting coding genes. A hotspot region on chromosome 9 was associated with two genomic features, a zinc-finger protein (ZFP37) and a long non-coding RNA (FAM225B). There were 2214 differentially methylated genomic features, 19 of which have been previously implicated in cannabis-related epigenetic modifications in other organ systems. Pathway analysis revealed enrichment in G protein-coupled receptor signaling, cellular transport, immune response and proliferation. Applying strict criteria, we identified 71 differentially methylated regions, none of which were previously annotated in this context. Finally, correlation analysis revealed 16 unique genomic features affected by cannabis use in a concentration-dependent manner. Of these, the histone methyltransferases SMYD3 and ZFP37 were hypomethylated, possibly implicating histone modifications as well. Herein, we provide the first DNA methylation profile of human granulosa cells exposed to cannabis. With cannabis increasingly legalized worldwide, further investigation into the heritability and functional consequences of these effects is critical for clinical consultation and for legalization guidelines.
Collapse
Affiliation(s)
- Noga Fuchs Weizman
- CReATe Fertility Centre, Toronto, ON, Canada
- Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Sahar Jahangiri
- CReATe Fertility Centre, Toronto, ON, Canada
- CReATe BioBank, Toronto, Canada
| | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- CReATe BioBank, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Reece AS, Hulse GK. Epidemiology of Δ8THC-Related Carcinogenesis in USA: A Panel Regression and Causal Inferential Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7726. [PMID: 35805384 PMCID: PMC9265369 DOI: 10.3390/ijerph19137726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
The use of Δ8THC is increasing at present across the USA in association with widespread cannabis legalization and the common notion that it is "legal weed". As genotoxic actions have been described for many cannabinoids, we studied the cancer epidemiology of Δ8THC. Data on 34 cancer types was from the Centers for Disease Control Atlanta Georgia, substance abuse data from the Substance Abuse and Mental Health Services Administration, ethnicity and income data from the U.S. Census Bureau, and cannabinoid concentration data from the Drug Enforcement Agency, were combined and processed in R. Eight cancers (corpus uteri, liver, gastric cardia, breast and post-menopausal breast, anorectum, pancreas, and thyroid) were related to Δ8THC exposure on bivariate testing, and 18 (additionally, stomach, Hodgkins, and Non-Hodgkins lymphomas, ovary, cervix uteri, gall bladder, oropharynx, bladder, lung, esophagus, colorectal cancer, and all cancers (excluding non-melanoma skin cancer)) demonstrated positive average marginal effects on fully adjusted inverse probability weighted interactive panel regression. Many minimum E-Values (mEVs) were infinite. p-values rose from 8.04 × 10-78. Marginal effect calculations revealed that 18 Δ8THC-related cancers are predicted to lead to a further 8.58 cases/100,000 compared to 7.93 for alcoholism and -8.48 for tobacco. Results indicate that between 8 and 20/34 cancer types were associated with Δ8THC exposure, with very high effect sizes (mEVs) and marginal effects after adjustment exceeding tobacco and alcohol, fulfilling the epidemiological criteria of causality and suggesting a cannabinoid class effect. The inclusion of pediatric leukemias and testicular cancer herein demonstrates heritable malignant teratogenesis.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
17
|
Mooney SM, Petrenko CL, Hamre KM, Brigman J. Proceedings of the 2021 annual meeting of the Fetal Alcohol Spectrum Disorders Study Group. Alcohol 2022; 102:23-33. [PMID: 35597423 PMCID: PMC10084849 DOI: 10.1016/j.alcohol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The 2021 meeting of the Fetal Alcohol Spectrum Disorders Study Group (FASDSG) was titled "Role of Parental Experiences in Offspring Outcomes". The theme was reflected in the presentations of two keynote speakers: Edward Levin, Ph.D., who spoke about the role of paternal exposures in offspring development, and Catherine Monk, Ph.D., who spoke about the effects of maternal exposures and maternal mental health on offspring development. The conference included updates from three government agencies, short presentations by junior and senior investigators showcasing late-breaking FASD research, a report on international efforts to streamline FASD classifications for research, a presentation of observations from adults with FASD, a short film of people with FASDs describing their experiences, and a poster session. The conference was capped by awarding the 2021 Henry Rosett award for career-long contributions to the field to Cynthia J.M. Kane, Ph.D.
Collapse
|
18
|
Reece AS, Hulse GK. Geospatiotemporal and causal inference study of cannabis and other drugs as risk factors for female breast cancer USA 2003-2017. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac006. [PMID: 35386387 PMCID: PMC8978645 DOI: 10.1093/eep/dvac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 05/11/2023]
Abstract
Breast cancer (BC) is the commonest human cancer and its incidence (BC incidence, BCI) is rising worldwide. Whilst both tobacco and alcohol have been linked to BCI genotoxic cannabinoids have not been investigated. Age-adjusted state-based BCI 2003-2017 was taken from the Surveillance Epidemiology and End Results database of the Centers for Disease Control. Drug use from the National Survey of Drug Use and Health, response rate 74.1%. Median age, median household income and ethnicity were from US census. Inverse probability weighted (ipw) multivariable regression conducted in R. In bivariate analysis BCI was shown to be significantly linked with rising cannabis exposure {β-est. = 3.93 [95% confidence interval 2.99, 4.87], P = 1.10 × 10-15}. At 8 years lag cigarettes:cannabis [β-est. = 2660 (2150.4, 3169.3), P = 4.60 × 10-22] and cannabis:alcoholism [β-est. = 7010 (5461.6, 8558.4), P = 1.80 × 10-17] were significant in ipw-panel regression. Terms including cannabidiol [CBD; β-est. = 16.16 (0.39, 31.93), P = 0.446] and cannabigerol [CBG; β-est. = 6.23 (2.06, 10.39), P = 0.0034] were significant in spatiotemporal models lagged 1:2 years, respectively. Cannabis-liberal paradigms had higher BCI [67.50 ± 0.26 v. 65.19 ± 0.21/100 000 (mean ± SEM), P = 1.87 × 10-11; β-est. = 2.31 (1.65, 2.96), P = 9.09 × 10-12]. 55/58 expected values >1.25 and 13/58 >100. Abortion was independently and causally significant in space-time models. Data show that exposure to cannabis and the cannabinoids Δ9-tetrahydrocannabinol, CBD, CBG and alcoholism fulfil quantitative causal criteria for BCI across space and time. Findings are robust to adjustment for age and several known sociodemographic, socio-economic and hormonal risk factors and establish cannabinoids as an additional risk factor class for breast carcinogenesis. BCI is higher under cannabis-liberal legal paradigms.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, 27 Joondalup Dr., Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, 27 Joondalup Dr., Joondalup, WA 6027, Australia
| |
Collapse
|
19
|
Lallai V, Manca L, Sherafat Y, Fowler CD. Effects of Prenatal Nicotine, THC, or Co-Exposure on Cognitive Behaviors in Adolescent Male and Female Rats. Nicotine Tob Res 2022; 24:1150-1160. [PMID: 35090174 PMCID: PMC9278841 DOI: 10.1093/ntr/ntac018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Although there has been a decrease in the prevalence of tobacco smoking, exposure to nicotine during pregnancy remains a substantial problem worldwide. Further, given the recent escalation in e-cigarette use and legalization of cannabis, it has become essential to understand the effects of nicotine and cannabinoid co-exposure during early developmental stages. AIMS AND METHODS We systematically examined the effects of nicotine and/or THC prenatal exposure on cognitive behaviors in male and female offspring. Dams were exposed to nicotine vape or vehicle, and oral edible THC or vehicle, throughout pregnancy. Adolescent offspring were then tested in the prepulse inhibition test, novel object recognition task, and novelty suppressed feeding task. RESULTS At birth, pups from mothers exposed to nicotine vape or oral THC exhibited reduced body weight, compared to control pups. Prenatal nicotine vape exposure resulted in a decreased baseline startle reactivity in adolescent male and female rats, and in females, enhanced sensorimotor gating in the prepulse inhibition test. Prenatal nicotine and THC co-exposure resulted in significant deficits in the prepulse inhibition test in males. Deficits in short-term memory were also found in males prenatally exposed to THC, either alone or with nicotine co-exposure, and in females exposed to THC alone. Finally, in males, a modest increase in anxiety-associated behaviors was found with THC or nicotine exposure in the latency to approach a novel palatable food. CONCLUSIONS These studies demonstrate differential effects of prenatal exposure to e-cigarette nicotine vape and/or edible THC on cognitive function, with differing effects within male and female groups. IMPLICATIONS These studies demonstrate an impact of nicotine, THC, or co-exposure during early developmental stages in utero on behavioral outcomes in adolescence. These findings have important translational implications given the continued use of nicotine and THC containing products by pregnant women worldwide, which can be applied to support healthcare and policy efforts restricting nicotine and THC use during pregnancy.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Letizia Manca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Christie D Fowler
- Corresponding Author: Christie D. Fowler, PhD, Department of Neurobiology and Behavior, University of California Irvine, 1232 McGaugh Hall, Irvine, CA 92697-4550, USA. Telephone: 949-824-8363; Fax: 949-824-2447; E-mail:
| |
Collapse
|
20
|
Mihalčíková L, Ochozková A, Šlamberová R. Does paternal methamphetamine exposure affect the behavior of rat offspring during development and in adulthood? Physiol Res 2021; 70:S419-S430. [PMID: 35099260 DOI: 10.33549/physiolres.934814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Methamphetamine (MA) is one of the most abused psychostimulants in the Czech Republic and worldwide. Previous studies have demonstrated the adverse effects of maternal drug abuse. However, the father's contribution as a parent and donor of the half genetic information is unclear. The present study aimed to examine the effect of paternal MA exposure on behavioral development and locomotor activity in rat offspring. MA was administrated subcutaneously for 30 days at a dose of 5 mg/kg to adult male rats. The impact of paternal MA exposure on rat pups was investigated using behavioral tests during development and locomotor activity tests in adulthood. Prior to testing, adult offspring were exposed to an acute challenge dose of MA (1 mg/kg) to examine the possible sensitizing effect of the paternal treatment. Our results found no significant differences in behavioral development or locomotor activity in adulthood of offspring linked to paternal MA application. These results differ from the effects induced by maternal MA application. Further, our results demonstrated a significant increase in locomotor activity on the Laboras test after acute MA application. When comparing sex differences, females showed more activity than males in adulthood, whereas males were more active during development.
Collapse
Affiliation(s)
- L Mihalčíková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
21
|
Slotkin TA, Levin ED, Seidler FJ. Paternal Cannabis Exposure Prior to Mating, but Not Δ9-Tetrahydrocannabinol, Elicits Deficits in Dopaminergic Synaptic Activity in the Offspring. Toxicol Sci 2021; 184:252-264. [PMID: 34590702 DOI: 10.1093/toxsci/kfab117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The legalization and increasing availability of cannabis products raises concerns about the impact on offspring of users, and little has appeared on the potential contribution of paternal use. We administered cannabis extract to male rats prior to mating, with two different 28-day exposures, one where there was a 56-day interval between the end of exposure and mating ("Early Cannabis"), and one just prior to mating ("Late Cannabis"); the extract delivered 4 mg/kg/day of the main psychoactive component, Δ9-tetrahydrocannabinol. We then assessed the impact on dopamine (DA) systems in the offspring from the onset of adolescence (postnatal day 30) through middle age (postnatal day 150), measuring the levels of DA and its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) in various brain regions. Paternal cannabis with either regimen elicited a profound and persistent deficit in DA utilization (DOPAC/DA ratio) in the offspring, indicative of subnormal presynaptic activity. However, the two regimens differed in the underlying mechanism, with Early Cannabis reducing DOPAC whereas Late Cannabis increased DA and elicited a smaller reduction in DOPAC. Effects were restricted to male offspring. The effects of cannabis were not reproduced by equivalent exposure to its Δ9-tetrahydrocannabinol, nor did we see the effects with perinatal exposure to tobacco smoke or some of its fetotoxic contributors (benzo[a]pyrene without or with nicotine). Our studies provide some of the first evidence for adverse effects of paternal cannabis administration on neurodevelopment in the offspring, and reinforce the important consequences of paternal drug use in the preconception period.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
22
|
Massarotti C, Sbragia E, Gazzo I, Stigliani S, Inglese M, Anserini P. Effect of Multiple Sclerosis and Its Treatments on Male Fertility: Cues for Future Research. J Clin Med 2021; 10:jcm10225401. [PMID: 34830684 PMCID: PMC8623707 DOI: 10.3390/jcm10225401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022] Open
Abstract
Multiple sclerosis is a chronic disease that may lead to different types of symptoms and disabilities. with the better quality of life and decreased disability due to early diagnosis and the availability of disease-modifying therapies (DMTs), the treating physician is increasingly asked to counsel patients on its effects on fertility and reproduction. In particular, reproductive issues are still scarcely studied and discussed in men. Among the still open questions are the following: (a) Does multiple sclerosis cause infertility per sè? (b) Is multiple sclerosis correlated with conditions that increase the risk of infertility? (c) Do DMTs or other therapies for multiple sclerosis impact gonadal function in men? The aim of this review is to provide an overview on the available literature data about the reproductive issues unique to men with multiple sclerosis, underlining the numerous areas where evidence is lacking and, therefore, the priorities for future research.
Collapse
Affiliation(s)
- Claudia Massarotti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16128 Genova, Italy; (C.M.); (I.G.)
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elvira Sbragia
- Center of Excellence for Biomedical Research and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16128 Genova, Italy; (E.S.); (M.I.)
| | - Irene Gazzo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16128 Genova, Italy; (C.M.); (I.G.)
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sara Stigliani
- Physiopathology of Human Reproduction Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Matilde Inglese
- Center of Excellence for Biomedical Research and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16128 Genova, Italy; (E.S.); (M.I.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Anserini
- Physiopathology of Human Reproduction Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence:
| |
Collapse
|
23
|
Lee K, Hardy DB. Metabolic Consequences of Gestational Cannabinoid Exposure. Int J Mol Sci 2021; 22:9528. [PMID: 34502436 PMCID: PMC8430813 DOI: 10.3390/ijms22179528] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Up to 20% of pregnant women ages 18-24 consume cannabis during pregnancy. Moreover, clinical studies indicate that cannabis consumption during pregnancy leads to fetal growth restriction (FGR), which is associated with an increased risk of obesity, type II diabetes (T2D), and cardiovascular disease in the offspring. This is of great concern considering that the concentration of Δ9- tetrahydrocannabinol (Δ9-THC), a major psychoactive component of cannabis, has doubled over the last decade and can readily cross the placenta and enter fetal circulation, with the potential to negatively impact fetal development via the endocannabinoid (eCB) system. Cannabis exposure in utero could also lead to FGR via placental insufficiency. In this review, we aim to examine current pre-clinical and clinical findings on the direct effects of exposure to cannabis and its constituents on fetal development as well as indirect effects, namely placental insufficiency, on postnatal metabolic diseases.
Collapse
Affiliation(s)
- Kendrick Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
24
|
Hines LA, Spry EA, Moreno-Betancur M, Mohamad Husin H, Becker D, Middleton M, Craig JM, Doyle LW, Olsson CA, Patton G. Cannabis and tobacco use prior to pregnancy and subsequent offspring birth outcomes: a 20-year intergenerational prospective cohort study. Sci Rep 2021; 11:16826. [PMID: 34413325 PMCID: PMC8376878 DOI: 10.1038/s41598-021-95460-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 11/15/2022] Open
Abstract
There is increasing evidence that the life-course origins of health and development begin before conception. We examined associations between timing and frequency of preconception cannabis and tobacco use and next generation preterm birth (PTB), low birth weight (LBW) and small for gestational age. 665 participants in a general population cohort were repeatedly assessed on tobacco and cannabis use between ages 14-29 years, before pregnancy. Associations were estimated using logistic regression. Preconception parent (either maternal or paternal) daily cannabis use age 15-17 was associated with sixfold increases in the odds of offspring PTB (aOR 6.65, 95% CI 1.92, 23.09), and offspring LBW (aOR 5.84, 95% CI 1.70-20.08), after adjusting for baseline sociodemographic factors, parent sex, offspring sex, family socioeconomic status, parent mental health at baseline, and concurrent tobacco use. There was little evidence of associations with preconception parental cannabis use at other ages or preconception parental tobacco use. Findings support the hypothesis that the early life origins of growth begin before conception and provide a compelling rationale for prevention of frequent use during adolescence. This is pertinent given liberalisation of cannabis policy.
Collapse
Affiliation(s)
- Lindsey A Hines
- Centre for Academic Mental Health, Population Health Sciences Institute, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences Institute, University of Bristol, Bristol, UK.
| | - Elizabeth A Spry
- Centre for Social and Early Emotional Development, Faculty of Health, Deakin University, Melbourne, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Margarita Moreno-Betancur
- University of Melbourne, Melbourne, Australia
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Hanafi Mohamad Husin
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Denise Becker
- Biostatistics Unit, Faculty of Health, Deakin University, Melbourne, Australia
| | - Melissa Middleton
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeffrey M Craig
- Centre for Molecular and Medical Research, Deakin University School of Medicine, Geelong, Australia
| | - Lex W Doyle
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, University of Melbourne, Melbourne, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paedatrics, University of Melbourne, Melbourne, Australia
| | - Craig A Olsson
- Centre for Social and Early Emotional Development, Faculty of Health, Deakin University, Melbourne, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - George Patton
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
25
|
Yusoff NA, Taib IS, Budin SB, Mohamed M. Paternal Fenitrothion Exposures in Rats Causes Sperm DNA Fragmentation in F0 and Histomorphometric Changes in Selected Organs of F1 Generation. TOXICS 2021; 9:toxics9070159. [PMID: 34357902 PMCID: PMC8309826 DOI: 10.3390/toxics9070159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/27/2021] [Accepted: 07/03/2021] [Indexed: 12/23/2022]
Abstract
The adverse effects of maternal pesticides exposure on the progeny is very well established. However, the impact of paternal exposure to pesticides such as Fenitrothion (FNT) on the histomorphometry of progeny’s organs in unexposed mothers are much less well studied. Therefore, this study aims to evaluate the effects of paternal FNT exposure on the sperm quality of the parent rat and its effects on the histomorphometry of the progeny’s organs. Randomly, male Sprague Dawley rats (n = 24) categorized as F0 were distributed equally into three groups namely Control, FNT-10, and FNT-20. Control received 1 mL/kg corn oil while FNT-10 and FNT-20 received 10 mg/kg and 20 mg/kg of FNT, respectively, via oral force feeding for 28 consecutive days. At the end of the study, male rats were mated with unexposed female rats and the male rats were sacrificed to obtain sperm for sperm characterization and DNA damage evaluation. Meanwhile, the rats’ progeny (F1) namely pControl, pFNT-10, and pFNT-20 were left to grow until postnatal day 70 before being sacrificed to obtain the matured organs for histology and morphometric analysis. Our results showed that both doses of FNT reduced sperm quality and caused DNA fragmentation in F0 rats compared with the control group (p < 0.05). The number of Leydig cells as well as the diameter of the seminiferous tubules and glomerulus of the pFNT-20 group had significantly decreased (p < 0.05) compared with the pControl group. The Bowman’s space of the pFNT-20 group had significantly increased (p < 0.05) compared with the pFNT-10 and pControl groups. Therefore, paternal exposure to FNT reduced the sperm quality and increased sperm DNA fragmentation in F0 male Sprague Dawley rats and altered the histology and morphometry of the selected organs in the F1 progeny.
Collapse
Affiliation(s)
- Nur Afizah Yusoff
- Biomedical Science Programme, Centre of Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.Y.); (S.B.B.)
| | - Izatus Shima Taib
- Biomedical Science Programme, Centre of Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.Y.); (S.B.B.)
- Correspondence: ; Tel.: +60-392-897-608
| | - Siti Balkis Budin
- Biomedical Science Programme, Centre of Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.Y.); (S.B.B.)
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| |
Collapse
|
26
|
Rimawi I, Ornoy A, Yanai J. Paternal and/or maternal preconception-induced neurobehavioral teratogenicity in animal and human models. Brain Res Bull 2021; 174:103-121. [PMID: 34087361 DOI: 10.1016/j.brainresbull.2021.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 01/15/2023]
Abstract
Prenatal insult exposure effects on the offspring, have and are still considered the main interest of most teratological studies, while paternal and maternal preconception effects have received relatively little interest. Once thought to be a myth, paternal exposure to insults leading to numerous detrimental effects in the offspring, has been confirmed on several occasions and is gaining increased attention. These effects could be demonstrated molecularly, biochemically and/or behaviorally. Different epigenetic mechanisms have been proposed for these effects to occur, including DNA methylation, histone modification and sperm RNA transmission. Paternal insult exposure has been shown to cause several neurobehavioral and developmental defects in the offspring. Findings on parental insult exposure effects on the progeny will be discussed in this review, with the main focus being on neurobehavioral effects after parental preconceptional exposure. The exposure to the insults induced long-lasting, mostly marked, defects. A few pioneering, prevention and reversal studies were published. Interestingly, most studies were conducted on paternal exposure and, at the present state of this field, on animal models. Clinical translation remains the subsequent challenge.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada and The Hebrew University-Hadassah Medical School, Box 12272, 91120, Jerusalem, Israel
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Israel; Laboratory of Teratology, department of Medical Neurobiology, Institute for Medical Research - Israel-Canada and The Hebrew University-Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada and The Hebrew University-Hadassah Medical School, Box 12272, 91120, Jerusalem, Israel; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Slotkin TA, Skavicus S, Levin ED, Seidler FJ. Paternal Δ9-Tetrahydrocannabinol Exposure Prior to Mating Elicits Deficits in Cholinergic Synaptic Function in the Offspring. Toxicol Sci 2021; 174:210-217. [PMID: 32077955 DOI: 10.1093/toxsci/kfaa004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Little attention has been paid to the potential impact of paternal marijuana use on offspring brain development. We administered Δ9-tetrahydrocannabinol (THC, 0, 2, or 4 mg/kg/day) to male rats for 28 days. Two days after the last THC treatment, the males were mated to drug-naïve females. We then assessed the impact on development of acetylcholine (ACh) systems in the offspring, encompassing the period from the onset of adolescence (postnatal day 30) through middle age (postnatal day 150), and including brain regions encompassing the majority of ACh terminals and cell bodies. Δ9-Tetrahydrocannabinol produced a dose-dependent deficit in hemicholinium-3 binding, an index of presynaptic ACh activity, superimposed on regionally selective increases in choline acetyltransferase activity, a biomarker for numbers of ACh terminals. The combined effects produced a persistent decrement in the hemicholinium-3/choline acetyltransferase ratio, an index of impulse activity per nerve terminal. At the low THC dose, the decreased presynaptic activity was partially compensated by upregulation of nicotinic ACh receptors, whereas at the high dose, receptors were subnormal, an effect that would exacerbate the presynaptic defect. Superimposed on these effects, either dose of THC also accelerated the age-related decline in nicotinic ACh receptors. Our studies provide evidence for adverse effects of paternal THC administration on neurodevelopment in the offspring and further demonstrate that adverse impacts of drug exposure on brain development are not limited to effects mediated by the embryonic or fetal chemical environment, but rather that vulnerability is engendered by exposures occurring prior to conception, involving the father as well as the mother.
Collapse
Affiliation(s)
| | | | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
28
|
Bara A, Ferland JMN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci 2021; 22:423-438. [PMID: 34021274 DOI: 10.1038/s41583-021-00465-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Recent years have been transformational in regard to the perception of the health risks and benefits of cannabis with increased acceptance of use. This has unintended neurodevelopmental implications given the increased use of cannabis and the potent levels of Δ9-tetrahydrocannabinol today being consumed by pregnant women, young mothers and teens. In this Review, we provide an overview of the neurobiological effects of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which the endogenous cannabinoid system plays a fundamental role in neurodevelopmental processes. We highlight impaired synaptic plasticity as characteristic of developmental exposure and the important contribution of epigenetic reprogramming that maintains the long-term impact into adulthood and across generations. Such epigenetic influence by its very nature being highly responsive to the environment also provides the potential to diminish neural perturbations associated with developmental cannabis exposure.
Collapse
Affiliation(s)
- Anissa Bara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Jacqueline-Marie N Ferland
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Gregory Rompala
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Henrietta Szutorisz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA. .,Friedman Brain Institute, Mount Sinai, NY, USA.
| |
Collapse
|
29
|
Vilar-Ribó L, Sánchez-Mora C, Rovira P, Richarte V, Corrales M, Fadeuilhe C, Arribas L, Casas M, Ramos-Quiroga JA, Ribasés M, Soler Artigas M. Genetic overlap and causality between substance use disorder and attention-deficit and hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2021; 186:140-150. [PMID: 33244849 DOI: 10.1002/ajmg.b.32827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
Substance use disorder (SUD) often co-occur at high prevalence with other psychiatric conditions. Among them, attention-deficit and hyperactivity disorder (ADHD) is present in almost one out of every four subjects with SUD and is associated with higher severity, more frequent polysubstance dependence and increased risk for other mental health problems in SUD patients. Despite studies suggesting a genetic basis in the co-occurrence of these two conditions, the genetic factors involved in the joint development of both disorders and the mechanisms mediating these causal relationships are still unknown. In this study, we tested whether the genetic liability to five SUD-related phenotypes share a common background in the general population and clinically diagnosed ADHD individuals from an in-house sample of 989 subjects and further explored the genetic overlap and the causal relationship between ADHD and SUD using pre-existing GWAS datasets. Our results confirm a common genetic background between ADHD and SUD and support the current literature on the causal effect of the liability to ADHD on the risk for SUD. We added novel findings on the effect of the liability of lifetime cannabis use on ADHD and found evidence of shared genetic background underlying SUD in general population and in ADHD, at least for lifetime cannabis use, alcohol dependence and smoking initiation. These findings are in agreement with the high comorbidity observed between ADHD and SUD and highlight the need to control for substance use in ADHD and to screen for ADHD comorbidity in all SUD patients to provide optimal clinical interventions.
Collapse
Affiliation(s)
- Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Miquel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Schrott R, Murphy SK, Modliszewski JL, King DE, Hill B, Itchon-Ramos N, Raburn D, Price T, Levin ED, Vandrey R, Corcoran DL, Kollins SH, Mitchell JT. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab009. [PMID: 34557312 PMCID: PMC8455898 DOI: 10.1093/eep/dvab009] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 05/20/2023]
Abstract
Cannabis use alters sperm DNA methylation, but the potential reversibility of these changes is unknown. Semen samples from cannabis users and non-user controls were collected at baseline and again following a 77-day period of cannabis abstinence (one spermatogenic cycle). Users and controls did not significantly differ by demographics or semen analyses. Whole-genome bisulfite sequencing identified 163 CpG sites with significantly different DNA methylation in sperm between groups (P < 2.94 × 10-9). Genes associated with altered CpG sites were enriched with those involved in development, including cardiogenesis and neurodevelopment. Many of the differences in sperm DNA methylation between groups were diminished after cannabis abstinence. These results indicate that sustained cannabis abstinence significantly reduces the number of sperm showing cannabis-associated alterations at genes important for early development.
Collapse
Affiliation(s)
- Rose Schrott
- Duke University Program in Environmental Health, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC, USA
| | - Susan K Murphy
- *Correspondence address. Department of Obstetrics and Gynecology, Division of Reproductive Sciences, The Chesterfield Building, 701 W. Main Street, Suite 510 Durham, NC 27701, USA Tel: +(919) 681-3423; E-mail:
| | - Jennifer L Modliszewski
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, 101 Science Drive, Durham, NC, USA
| | - Dillon E King
- Duke University Program in Environmental Health, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC, USA
| | - Bendu Hill
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Nilda Itchon-Ramos
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Douglas Raburn
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University Medical Center, 5704 Fayetteville Road, Durham, NC, USA
| | - Thomas Price
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University Medical Center, 5704 Fayetteville Road, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, 101 Science Drive, Durham, NC, USA
| | - Scott H Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - John T Mitchell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| |
Collapse
|
31
|
Hempel BJ, Crissman ME, Imanalieva A, Melkumyan M, Winston CA, Riley AL. Cross-generational THC Exposure Weakly Attenuates Cocaine's Rewarding Effects in Adult Male Offspring. Physiol Behav 2020; 227:113164. [PMID: 32891609 DOI: 10.1016/j.physbeh.2020.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Adolescents represent a large demographic of marijuana consumers. Regrettably, use during this developmental period has been associated with above average health risks. A growing body of evidence suggests that adolescent drug use in the lifetime of a parent can modify behavior and neurochemistry in descendants without direct exposure. The current study was designed to evaluate the effects of pre-conception THC during adolescence on vulnerability to cocaine in adult male offspring. Male and female rats were given an intermittent THC (0 or 1.5 mg/kg) exposure regimen during the adolescent window and mated with drug group conspecifics in adulthood. F1-THC and F1-Veh pups were cross fostered to drug naïve control dams. In Experiment 1, adult offspring underwent cocaine (0 or 15 mg/kg) locomotor sensitization procedures and showed no effect of parental THC exposure on locomotor activity. In Experiment 2, intravenous catheters were implanted and subjects were tested under a number of reinforcement schedules with cocaine (FR1, FR5, FR10, PR, dose-response, extinction, cue + stress induced reinstatement). F1-THC subjects exhibited a slight decrease in cocaine responding during acquisition and a more rapid extinction, but they failed to produce significant differences on any other measure. These findings indicate that adolescent cannabis use likely has minimal effects on cocaine abuse liability in the next generation.
Collapse
Affiliation(s)
- Briana J Hempel
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| | - Madeline E Crissman
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Aikerim Imanalieva
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Mariam Melkumyan
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Chloe A Winston
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| |
Collapse
|
32
|
Spence JP, Lai D, Reiter JL, Cao S, Bell RL, Williams KE, Liang T. Epigenetic changes on rat chromosome 4 contribute to disparate alcohol drinking behavior in alcohol-preferring and -nonpreferring rats. Alcohol 2020; 89:103-112. [PMID: 32798691 PMCID: PMC7722131 DOI: 10.1016/j.alcohol.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Paternal alcohol abuse is a well-recognized risk factor for the development of an alcohol use disorder (AUD). In addition to genetic and environmental risk factors, heritable epigenetic factors also have been proposed to play a key role in the development of AUD. However, it is not clear whether epigenetic factors contribute to the genetic inheritance in families affected by AUD. We used reciprocal crosses of the alcohol-preferring (P) and -nonpreferring (NP) rat lines to test whether epigenetic factors also impacted alcohol drinking in up to two generations of offspring. METHODS F1 offspring derived by reciprocal breeding of P and NP rats were tested for differences in alcohol consumption using a free-choice protocol of 10% ethanol, 20% ethanol, and water that were available concurrently. In a separate experiment, an F2 population was tested for alcohol consumption not only due to genetic differences. These rats were generated from inbred P (iP) and iNP rat lines that were reciprocally bred to produce genetically identical F1 offspring that remained alcohol-naïve. Intercrosses of the F1 generation animals produced the F2 generation. Alcohol consumption was then assessed in the F2 generation using a standard two-bottle choice protocol, and was analyzed using genome-wide linkage analysis. Alcohol consumption measures were also analyzed for sex differences. RESULTS Average alcohol consumption was higher in the F1 offspring of P vs. NP sires and in the F2 offspring of F0 iP vs. iNP grandsires. Linkage analyses showed the maximum LOD scores for alcohol consumption in both male and female offspring were on chromosome 4 (Chr 4). The LOD score for both sexes considered together was higher when the grandsire was iP vs. iNP (5.0 vs. 3.35, respectively). Furthermore, the F2 population displayed enhanced alcohol consumption when the P alleles from the F0 sire were present. CONCLUSIONS These results demonstrate that epigenetic and/or non-genetic factors mapping to rat chromosome 4 contribute to a transgenerational paternal effect on alcohol consumption in the P and NP rat model of AUD.
Collapse
Affiliation(s)
- John Paul Spence
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
33
|
Holloway ZR, Hawkey AB, Torres AK, Evans J, Pippen E, White H, Katragadda V, Kenou B, Wells C, Murphy SK, Rezvani AH, Levin ED. Paternal cannabis extract exposure in rats: Preconception timing effects on neurodevelopmental behavior in offspring. Neurotoxicology 2020; 81:180-188. [DOI: 10.1016/j.neuro.2020.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023]
|
34
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
35
|
Schrott R, Rajavel M, Acharya K, Huang Z, Acharya C, Hawkey A, Pippen E, Lyerly HK, Levin ED, Murphy SK. Sperm DNA methylation altered by THC and nicotine: Vulnerability of neurodevelopmental genes with bivalent chromatin. Sci Rep 2020; 10:16022. [PMID: 32994467 PMCID: PMC7525661 DOI: 10.1038/s41598-020-72783-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/03/2020] [Indexed: 01/23/2023] Open
Abstract
Men consume the most nicotine and cannabis products but impacts on sperm epigenetics are poorly characterized. Evidence suggests that preconception exposure to these drugs alters offspring neurodevelopment. Epigenetics may in part facilitate heritability. We therefore compared effects of exposure to tetrahydrocannabinol (THC) and nicotine on DNA methylation in rat sperm at genes involved in neurodevelopment. Reduced representation bisulfite sequencing data from sperm of rats exposed to THC via oral gavage showed that seven neurodevelopmentally active genes were significantly differentially methylated versus controls. Pyrosequencing data revealed majority overlap in differential methylation in sperm from rats exposed to THC via injection as well as those exposed to nicotine. Neurodevelopmental genes including autism candidates are vulnerable to environmental exposures and common features may mediate this vulnerability. We discovered that autism candidate genes are significantly enriched for bivalent chromatin structure, suggesting this configuration may increase vulnerability of genes in sperm to disrupted methylation.
Collapse
Affiliation(s)
- Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA.,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Maya Rajavel
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA
| | - Kelly Acharya
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA
| | - Chaitanya Acharya
- Division of Surgical Sciences, Department of Surgery, Center for Applied Therapeutics, Duke University Medical Center, Durham, NC, USA
| | - Andrew Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Erica Pippen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Center for Applied Therapeutics, Duke University Medical Center, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Susan K Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA. .,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
36
|
Smith A, Kaufman F, Sandy MS, Cardenas A. Cannabis Exposure During Critical Windows of Development: Epigenetic and Molecular Pathways Implicated in Neuropsychiatric Disease. Curr Environ Health Rep 2020; 7:325-342. [PMID: 32441004 PMCID: PMC7458902 DOI: 10.1007/s40572-020-00275-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Cannabis exposure during critical windows of development may have intergenerational physiological consequences disrupting epigenetic programming and marks. This review examines the literature relating to pre-gestational and prenatal cannabinoid exposure and its effect on genes and molecular pathways related to the development of psychiatric disease. RECENT FINDINGS Developmental cannabis exposure alters epigenetic processes with functional gene consequences. These include potentially heritable alterations in genes and molecular pathways critical for brain development and associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia, addiction, and other psychiatric diseases. Cannabis consumption and mental health illness in adolescents and young adults are increasing in the United States (U.S.), and recent studies suggest that cannabis consumption during critical periods of brain development could contribute to mental health illness through epigenetic mechanisms. These findings warrant future studies and consideration by regulators and health communicators.
Collapse
Affiliation(s)
- Anna Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Farla Kaufman
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
37
|
Grant KS, Conover E, Chambers CD. Update on the developmental consequences of cannabis use during pregnancy and lactation. Birth Defects Res 2020; 112:1126-1138. [PMID: 32770666 DOI: 10.1002/bdr2.1766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022]
Abstract
There is a strong increase in prevalence trends for cannabis use during pregnancy and lactation as more states legalize use of this drug. Information on the teratogenic risk of cannabis is limited but some important themes can be gleaned. Studies have not found a unique phenotypic signature of prenatal exposure but an increased risk of congenital anomalies, particularly gastroschisis, has been reported. Changes in fetal growth have been described in some epidemiological studies but long-term patterns of physical growth appear unaffected. Prenatal exposure to cannabis is not generally associated with reductions in global IQ but specific cognitive skills, especially attention and memory, can be negatively impacted. Long-term impacts on psychological health include increased rates of depressive symptoms and anxiety as well as delinquency. Relatively little is known about the risk of maternal cannabis use during lactation but data suggest that infant exposure is relatively low compared to maternal exposure. As delta-9-tetrahydrocannabinol (THC) levels increase to meet consumer demand and routes of exposure diversify, there is a strong need for prospective birth-cohort studies that collect biological samples to quantify exposure. Data from such studies will be critical to overcoming the weaknesses of past cannabis research and are essential to establishing reliable information on the risks of maternal use. Until that time, health care providers should be encouraged to talk about the risks and benefits associated with cannabis use during pregnancy and lactation with their patients, emphasizing that fetal and neonatal risks cannot be excluded at this time.
Collapse
Affiliation(s)
- Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA.,Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Elizabeth Conover
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christina D Chambers
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
38
|
Galan C, Krykbaeva M, Rando OJ. Early life lessons: The lasting effects of germline epigenetic information on organismal development. Mol Metab 2020; 38:100924. [PMID: 31974037 PMCID: PMC7300385 DOI: 10.1016/j.molmet.2019.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND An organism's metabolic phenotype is primarily affected by its genotype, its lifestyle, and the nutritional composition of its food supply. In addition, it is now clear from studies in many different species that ancestral environments can also modulate metabolism in at least one to two generations of offspring. SCOPE OF REVIEW We limit ourselves here to paternal effects in mammals, primarily focusing on studies performed in inbred rodent models. Although hundreds of studies link paternal diets and offspring metabolism, the mechanistic basis by which epigenetic information in sperm programs nutrient handling in the next generation remains mysterious. Our goal in this review is to provide a brief overview of paternal effect paradigms and the germline epigenome. We then pivot to exploring one key mystery in this literature: how do epigenetic changes in sperm, most of which are likely to act transiently in the early embryo, ultimately direct a long-lasting physiological response in offspring? MAJOR CONCLUSIONS Several potential mechanisms exist by which transient epigenetic modifications, such as small RNAs or methylation states erased shortly after fertilization, could be transferred to more durable heritable information. A detailed mechanistic understanding of this process will provide deep insights into early development, and could be of great relevance for human health and disease.
Collapse
Affiliation(s)
- Carolina Galan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Marina Krykbaeva
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
39
|
Epigenetic alterations in cytochrome P450 oxidoreductase (Por) in sperm of rats exposed to tetrahydrocannabinol (THC). Sci Rep 2020; 10:12251. [PMID: 32704063 PMCID: PMC7378842 DOI: 10.1038/s41598-020-69204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
As marijuana legalization is increasing, research regarding possible long-term risks for users and their offspring is needed. Little data exists on effects of paternal tetrahydrocannabinol (THC) exposure prior to reproduction. This study determined if chronic THC exposure alters sperm DNA methylation (DNAm) and if such effects are intergenerationally transmitted. Adult male rats underwent oral gavage with THC or vehicle control. Differentially methylated (DM) loci in motile sperm were identified using reduced representation bisulfite sequencing (RRBS). Another cohort was injected with vehicle or THC, and sperm DNAm was analyzed. Finally, THC-exposed and control adult male rats were mated with THC-naïve females. DNAm levels of target genes in brain tissues of the offspring were determined by pyrosequencing. RRBS identified 2,940 DM CpGs mapping to 627 genes. Significant hypermethylation was confirmed (p < 0.05) following oral THC administration for cytochrome P450 oxidoreductase (Por), involved in toxin processing and disorders of sexual development. Por hypermethylation was not observed after THC injection or in the subsequent generation. These results support that THC alters DNAm in sperm and that route of exposure can have differential effects. Although we did not observe evidence of intergenerational transmission of the DNAm change, larger studies are required to definitively exclude this possibility.
Collapse
|
40
|
Murphy PJ, Guo J, Jenkins TG, James ER, Hoidal JR, Huecksteadt T, Broberg DS, Hotaling JM, Alonso DF, Carrell DT, Cairns BR, Aston KI. NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. PLoS Genet 2020; 16:e1008756. [PMID: 32520939 PMCID: PMC7307791 DOI: 10.1371/journal.pgen.1008756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Paternal cigarette smoke (CS) exposure is associated with increased risk of behavioral disorders and cancer in offspring, but the mechanism has not been identified. Here we use mouse models to investigate mechanisms and impacts of paternal CS exposure. We demonstrate that CS exposure induces sperm DNAme changes that are partially corrected within 28 days of removal from CS exposure. Additionally, paternal smoking is associated with changes in prefrontal cortex DNAme and gene expression patterns in offspring. Remarkably, the epigenetic and transcriptional effects of CS exposure that we observed in wild type mice are partially recapitulated in Nrf2-/- mice and their offspring, independent of smoking status. Nrf2 is a central regulator of antioxidant gene transcription, and mice lacking Nrf2 consequently display elevated oxidative stress, suggesting that oxidative stress may underlie CS-induced heritable epigenetic changes. Importantly, paternal sperm DNAme changes do not overlap with DNAme changes measured in offspring prefrontal cortex, indicating that the observed DNAme changes in sperm are not directly inherited. Additionally, the changes in sperm DNAme associated with CS exposure were not observed in sperm of unexposed offspring, suggesting the effects are likely not maintained across multiple generations.
Collapse
Affiliation(s)
- Patrick J. Murphy
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Timothy G. Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Emma R. James
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John R. Hoidal
- Department of Internal Medicine, University of Utah School of Medicine and Salt Lake VA Medical Center, Salt Lake City, Utah, United States of America
| | - Thomas Huecksteadt
- Department of Internal Medicine, University of Utah School of Medicine and Salt Lake VA Medical Center, Salt Lake City, Utah, United States of America
| | - Dallin S. Broberg
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - James M. Hotaling
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - David F. Alonso
- Department of Psychology, University of Utah, Salt Lake City, Utah, United States of America
| | - Douglas T. Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Bradley R. Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kenneth I. Aston
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
41
|
Verstegen RHJ, Wang G, Langenberg-Ververgaert KPS, Ren LY, Nulman I. Paternal exposure to recreational drugs before conception and its effect on live-born offspring: A scoping review. Birth Defects Res 2020; 112:970-988. [PMID: 32431075 DOI: 10.1002/bdr2.1702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Men of reproductive age increasingly use recreational drugs. While many of these substances may reduce the quantity and quality of sperm, less is known about the effects of these exposures on their offspring. We performed a scoping review to summarize the available literature and identify areas for future research on the outcome of live-born offspring of fathers who were exposed to recreational drugs before conception. METHODS A systematic search was conducted of the Medline, EMBASE, and Web of Science databases, which included keywords for the following substances: cannabis-related products, cocaine, heroin, hallucinogens, ecstasy and amphetamines. In total, 2,983 records were screened, and 129 publications were selected for full-text assessment. Publications were included if (a) the timing of exposure included the preconceptional period, and (b) if outcomes in live-born offspring were compared with an unexposed group. RESULTS We included 30 publications, of which 15 animal studies and 15 human studies. Animal studies showed neurocognitive abnormalities, in particular in male offspring. Interestingly, these outcomes depend significantly on the method of exposure (i.e., fixed-dose administration vs. variable self-administration, which mimics addiction). Human studies were limited to specific congenital malformations and childhood cancers, which showed small increased odds ratios. CONCLUSIONS While animal studies describe impaired neurocognitive outcomes following paternal exposure to recreational drugs, data in humans is currently lacking. Human studies require sound methodology in order to confirm findings on congenital malformations and childhood cancers. In addition, future neurocognitive studies require parental neurocognitive assessments to correct for confounding effects (i.e., role of genetics).
Collapse
Affiliation(s)
- Ruud H J Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Guo Wang
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Lily Yuxi Ren
- Hospital Library, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Irena Nulman
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Delta-9 THC can be detected and quantified in the semen of men who are chronic users of inhaled cannabis. J Assist Reprod Genet 2020; 37:1497-1504. [PMID: 32356125 PMCID: PMC7311607 DOI: 10.1007/s10815-020-01762-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The purpose of this proof-of-concept study was to determine whether delta-9-tetrahydrocannabinol (THC) and THC metabolites (11-OH THC and THC-COOH) can be detected in semen. METHODS Twelve healthy men aged 18-45 years who identified as chronic and heavy users of inhaled cannabis were recruited. THC and THC metabolite levels were measured in serum, urine, and semen of the participants. Semen analyses were performed. Serum reproductive hormones were measured. RESULTS The median age and BMI of participants were 27.0 years and 24.7 kg/m2, respectively. Over half the participants were daily users of cannabis for over 5 years. Serum reproductive hormones were generally within normal ranges, except prolactin, which was elevated in 6 of 12 participants (mean 13.9 ng/mL). The median sperm concentration, motility, and morphology were 75.5 million/mL, 69.5%, and 5.5%, respectively. Urinary THC-COOH was detected in all 12 participants, and at least one serum THC metabolite was present in 10 of 12 participants. Two semen samples had insufficient volume to be analyzed. THC was above the reporting level of 0.50 ng/mL in the semen of two of the remaining participants. Seminal THC was moderately correlated with serum levels of THC (r = 0.66), serum 11-OH THC (r = 0.57), and serum THC-COOH (r = 0.67). Seminal delta-9 THC was not correlated with urinary cannabinoid levels or semen analysis parameters. CONCLUSION This is the first study to identify and quantify THC in human semen, demonstrating that THC can cross the blood-testis barrier in certain individuals. Seminal THC was found to be moderately correlated with serum THC and THC metabolites.
Collapse
|
43
|
Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and Diet in the Prevention of Chronic Diseases in Future Generations. Int J Mol Sci 2020; 21:ijms21072633. [PMID: 32290086 PMCID: PMC7178197 DOI: 10.3390/ijms21072633] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Nutrition is a modifiable key factor that is able to interact with both the genome and epigenome to influence human health and fertility. In particular, specific genetic variants can influence the response to dietary components and nutrient requirements, and conversely, the diet itself is able to modulate gene expression. In this context and the era of precision medicine, nutrigenetic and nutrigenomic studies offer significant opportunities to improve the prevention of metabolic disturbances, such as Type 2 diabetes, gestational diabetes, hypertension, and cardiovascular diseases, even with transgenerational effects. The present review takes into account the interactions between diet, genes and human health, and provides an overview of the role of nutrigenetics, nutrigenomics and epigenetics in the prevention of non-communicable diseases. Moreover, we focus our attention on the mechanism of intergenerational or transgenerational transmission of the susceptibility to metabolic disturbances, and underline that the reversibility of epigenetic modifications through dietary intervention could counteract perturbations induced by lifestyle and environmental factors.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
44
|
Holloway ZR, Hawkey AB, Pippin E, White H, Wells C, Kenou B, Rezvani AH, Murphy SK, Levin ED. Paternal factors in neurodevelopmental toxicology: THC exposure of male rats causes long-lasting neurobehavioral effects in their offspring. Neurotoxicology 2020; 78:57-63. [PMID: 32045580 DOI: 10.1016/j.neuro.2020.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/03/2023]
Abstract
The potential health risks of cannabis are of growing concern, including effects on reproduction and development. Extensive research has investigated risks associated with maternal exposure to THC during gestation and its impacts on the development of offspring, but little research has been done regarding paternal THC exposure effects prior to conception. We have previously found that paternal THC exposure in rats causes changes in sperm methylation. In an initial study we also showed that a 12-day paternal THC exposure prior to conception alters locomotor activity and impairs cognitive function of their offspring. This study investigated the cross-generational effects of chronic paternal THC exposure in rats (0, 2, or 4 mg/kg/day SC for 28 days) prior to mating with drug naïve females. The offspring of THC-exposed male rats had significant alterations in locomotor activity and cognitive function. Specifically, during adolescence there was significant locomotor hyperactivity in the offspring of males exposed to 2 mg/kg/day of THC. During the novel object recognition task, the controls maintained their relative preference for the novel object across the duration of the ten-min session while the rats whose fathers received THC (2 mg/kg/day) showed a significantly greater drop-off in interest in the novel object during the second half of the session. Learning in the radial-arm maze was significantly delayed in the offspring of males exposed to 4 mg/kg/day of THC. This study shows that premating chronic paternal THC exposure at multiple dose regimens can cause long-lasting detrimental behavioral effects in their offspring, including abnormal locomotor activity and impaired cognitive function. Future studies should investigate the underlying mechanisms driving these aberrant developmental outcomes and seek to identify possible treatments of alleviation in the presence of paternal THC exposure.
Collapse
Affiliation(s)
- Zade R Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Erica Pippin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Hannah White
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Corinne Wells
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Bruny Kenou
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
45
|
The Epigenetics of the Endocannabinoid System. Int J Mol Sci 2020; 21:ijms21031113. [PMID: 32046164 PMCID: PMC7037698 DOI: 10.3390/ijms21031113] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ES) is a cell-signalling system widely distributed in biological tissues that includes endogenous ligands, receptors, and biosynthetic and hydrolysing machineries. The impairment of the ES has been associated to several pathological conditions like behavioural, neurological, or metabolic disorders and infertility, suggesting that the modulation of this system may be critical for the maintenance of health status and disease treatment. Lifestyle and environmental factors can exert long-term effects on gene expression without any change in the nucleotide sequence of DNA, affecting health maintenance and influencing both disease load and resistance. This potentially reversible "epigenetic" modulation of gene expression occurs through the chemical modification of DNA and histone protein tails or the specific production of regulatory non-coding RNA (ncRNA). Recent findings demonstrate the epigenetic modulation of the ES in biological tissues; in the same way, endocannabinoids, phytocannabinoids, and cannabinoid receptor agonists and antagonists induce widespread or gene-specific epigenetic changes with the possibility of trans-generational epigenetic inheritance in the offspring explained by the transmission of deregulated epigenetic marks in the gametes. Therefore, this review provides an update on the epigenetics of the ES, with particular attention on the emerging role in reproduction and fertility.
Collapse
|
46
|
Schrott R, Murphy SK. Cannabis use and the sperm epigenome: a budding concern? ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa002. [PMID: 32211199 PMCID: PMC7081939 DOI: 10.1093/eep/dvaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 05/13/2023]
Abstract
The United States is swiftly moving toward increased legalization of medical and recreational cannabis. Currently considered the most commonly used illicit psychoactive drug, recreational cannabis is legal in 11 states and Washington, DC, and male use is an important and understudied concern. Questions remain, however, about the potential long-term consequences of this exposure and how cannabis might impact the epigenetic integrity of sperm in such a way that could influence the health and development of offspring. This review summarizes cannabis use and potency in the USA, provides a brief overview of DNA methylation as an epigenetic mechanism that is vulnerable in sperm to environmental exposures including cannabis, and summarizes studies that have examined the effects of parental exposure to cannabis or delta-9 tetrahydrocannabinol (THC, the main psychoactive component of cannabis) on the epigenetic profile of the gametes and behavior of offspring. These studies have demonstrated significant changes to the sperm DNA methylome following cannabis use in humans, and THC exposure in rats. Furthermore, the use of rodent models has shown methylation and behavioral changes in rats born to fathers exposed to THC or synthetic cannabinoids, or to parents who were both exposed to THC. These data substantiate an urgent need for additional studies assessing the effects of cannabis exposure on childhood health and development. This is especially true given the current growing state of cannabis use in the USA.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701 USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Circuit Dr, Durham, NC 27710 USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701 USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Circuit Dr, Durham, NC 27710 USA
- Correspondence address: Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701, USA. Tel: 919-681-3423; Fax: 919-385-9358; E-mail:
| |
Collapse
|
47
|
Nashed MG, Hardy DB, Laviolette SR. Prenatal Cannabinoid Exposure: Emerging Evidence of Physiological and Neuropsychiatric Abnormalities. Front Psychiatry 2020; 11:624275. [PMID: 33519564 PMCID: PMC7841012 DOI: 10.3389/fpsyt.2020.624275] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Clinical reports of cannabis use prevalence during pregnancy vary widely from 3% to upwards of 35% in North America; this disparity likely owing to underestimates from self-reporting in many cases. The rise in cannabis use is mirrored by increasing global legalization and the overall perceptions of safety, even during pregnancy. These trends are further compounded by a lack of evidence-based policy and guidelines for prenatal cannabis use, which has led to inconsistent messaging by healthcare providers and medically licensed cannabis dispensaries regarding prenatal cannabis use for treatment of symptoms, such as nausea. Additionally, the use of cannabis to self-medicate depression and anxiety during pregnancy is a growing medical concern. This review aims to summarize recent findings of clinical and preclinical data on neonatal outcomes, as well as long-term physiological and neurodevelopmental outcomes of prenatal cannabis exposure. Although many of the outcomes under investigation have produced mixed results, we consider these data in light of the unique challenges facing cannabis research. In particular, the limited longitudinal clinical studies available have not previously accounted for the exponential increase in (-)-Δ9- tetrahydrocannabinol (Δ9-THC; the psychoactive compound in cannabis) concentrations found in cannabis over the past two decades. Polydrug use and the long-term effects of individual cannabis constituents [Δ9-THC vs. cannabidiol (CBD)] are also understudied, along with sex-dependent outcomes. Despite these limitations, prenatal cannabis exposure has been linked to low birth weight, and emerging evidence suggests that prenatal exposure to Δ9-THC, which crosses the placenta and impacts placental development, may have wide-ranging physiological and neurodevelopmental consequences. The long-term effects of these changes require more rigorous investigation, though early reports suggest Δ9-THC increases the risk of cognitive impairment and neuropsychiatric disease, including psychosis, depression, anxiety, and sleep disorders. In light of the current trends in the perception and use of cannabis during pregnancy, we emphasize the social and medical imperative for more rigorous investigation of the long-term effects of prenatal cannabis exposure.
Collapse
Affiliation(s)
- Mina G Nashed
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Daniel B Hardy
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Department of Obstetrics & Gynecology, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
48
|
Barchi M, Innocenzi E, Giannattasio T, Dolci S, Rossi P, Grimaldi P. Cannabinoid Receptors Signaling in the Development, Epigenetics, and Tumours of Male Germ Cells. Int J Mol Sci 2019; 21:ijms21010025. [PMID: 31861494 PMCID: PMC6981618 DOI: 10.3390/ijms21010025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two main cannabinoid receptors type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes form the “endocannabinoid system” (ECS). In the last years, the relevance of endocannabinoids (eCBs) as critical modulators in various aspects of male reproduction has been pointed out. Mammalian male germ cells, from mitotic to haploid stage, have a complete ECS which is modulated during spermatogenesis. Compelling evidence indicate that in the testis an appropriate “eCBs tone”, associated to a balanced CB receptors signaling, is critical for spermatogenesis and for the formation of mature and fertilizing spermatozoa. Any alteration of this system negatively affects male reproduction, from germ cell differentiation to sperm functions, and might have also an impact on testicular tumours. Indeed, most of testicular tumours develop during early germ-cell development in which a maturation arrest is thought to be the first key event leading to malignant transformation. Considering the ever-growing number and complexity of the data on ECS, this review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in male germ cells development from gonocyte up to mature spermatozoa and in the induction of epigenetic alterations in these cells which might be transmitted to the progeny. Furthermore, we present new evidence on their relevance in testicular cancer.
Collapse
|
49
|
Nieto SJ, Kosten TA. Who's your daddy? Behavioral and epigenetic consequences of paternal drug exposure. Int J Dev Neurosci 2019; 78:109-121. [PMID: 31301337 DOI: 10.1016/j.ijdevneu.2019.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Substance use disorders (SUDs) reflect genetic and environmental factors. While identifying reliable genetic variants that predispose individuals to developing SUDs has been challenging, epigenetic factors may also contribute to the heritability of SUDs. Familial drug use associates with a wide range of problems in children, including an increased risk for developing a SUD. The implications of maternal drug use on offspring development are a well-studied area; however, paternal drug use prior to conception has received relatively little attention. Paternal exposure to several environmental stimuli (i.e. stress or diet manipulations) results in behavioral and epigenetic changes in offspring. The purpose of this review is to determine the state of the preclinical literature on the behavioral and epigenetic consequences of paternal drug exposure. Drug-sired offspring show several developmental and physiological abnormalities. These offspring also show deficits in cognitive and emotional domains. Examining sensitivity to drugs in offspring is a growing area of research. Drug-sired offspring are resistant to the rewarding and reinforcing properties of drugs. However, greater paternal motivation for the drug, combined with high drug intake, can result in addiction-like behaviors in offspring. Drug-sired offspring also show altered histone modifications and DNA methylation levels of imprinted genes and microRNAs; epigenetic-mediated changes were also noted in genes related to glutamatergic and neurotrophic factor signaling. In some instances, drug use resulted in aberrant epigenetic modifications in sire sperm, and these changes were maintained in the brains of offspring. Thus, paternal drug exposure has long-lasting consequences that include altered drug sensitivity in subsequent generations. We discuss factors (i.e. maternal behaviors) that may moderate these paternal drug-induced effects as well as ideas for future directions.
Collapse
Affiliation(s)
- Steven J Nieto
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX, 77204-6022, United States
| | - Therese A Kosten
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX, 77204-6022, United States
| |
Collapse
|