1
|
Molecular Imaging of Autoimmune Diseases. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
2
|
Caillé F, Gervais P, Auvity S, Coulon C, Marie S, Tournier N, Kuhnast B. Automated two-step manufacturing of [11C]glyburide radiopharmaceutical for PET imaging in humans. Nucl Med Biol 2020; 84-85:20-27. [DOI: 10.1016/j.nucmedbio.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022]
|
3
|
Kang NY, Soetedjo AAP, Amirruddin NS, Chang YT, Eriksson O, Teo AKK. Tools for Bioimaging Pancreatic β Cells in Diabetes. Trends Mol Med 2019; 25:708-722. [PMID: 31178230 DOI: 10.1016/j.molmed.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
When diabetes is diagnosed, the majority of insulin-secreting pancreatic β cells are already dysfunctional or destroyed. This β cell dysfunction/destruction usually takes place over many years, making timely detection and clinical intervention difficult. For this reason, there is immense interest in developing tools to bioimage β cell mass and/or function noninvasively to facilitate early diagnosis of diabetes as well as to assist the development of novel antidiabetic therapies. Recent years have brought significant progress in β cell imaging that is now inching towards clinical applicability. We explore here the need to bioimage human β cells noninvasively in various types of diabetes, and we discuss current and emerging tools for bioimaging β cells. Further developments in this field are expected to facilitate β cell imaging in diabetes.
Collapse
Affiliation(s)
- Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chembok-ro (1115-1 Dongnae-dong), Dong-gu, Daegu City 41061, Republic of Korea.
| | | | - Nur Shabrina Amirruddin
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science (IBS), 77 Hyogok-dong, Nam-gu, Pohang 37673, Republic of Korea
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-752 36, Sweden
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
4
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev 2019; 139:16-31. [PMID: 31378283 DOI: 10.1016/j.addr.2018.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 06/26/2018] [Indexed: 02/09/2023]
Abstract
Since diabetes is becoming a global epidemic, there is a great need to develop early β-cell specific diagnostic techniques for this disorder. There are two types of diabetes (i.e., type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)). In T1DM, the destruction of pancreatic β-cells leads to reduced insulin production or even absolute insulin deficiency, which consequently results in hyperglycemia. Actually, a central issue in the pathophysiology of all types of diabetes is the relative reduction of β-cell mass (BCM) and/or impairment of the function of individual β-cells. In the past two decades, scientists have been trying to develop imaging techniques for noninvasive measurement of the viability and mass of pancreatic β-cells. Despite intense scientific efforts, only two tracers for positron emission tomography (PET) and one contrast agent for magnetic resonance (MR) imaging are currently under clinical evaluation. β-cell specific imaging probes may also allow us to precisely and specifically visualize transplanted β-cells and to improve transplantation outcomes, as transplantation of pancreatic islets has shown promise in treating T1DM. In addition, some of these probes can be applied to the preoperative detection of hidden insulinomas as well. In the present review, we primarily summarize potential tracers under development for imaging β-cells with a focus on tracers for PET, SPECT, MRI, and optical imaging. We will discuss the advantages and limitations of the various imaging probes and extend an outlook on future developments in the field.
Collapse
|
6
|
Hart NJ, Weber C, Papas KK, Limesand SW, Vagner J, Lynch RM. Multivalent activation of GLP-1 and sulfonylurea receptors modulates β-cell second-messenger signaling and insulin secretion. Am J Physiol Cell Physiol 2018; 316:C48-C56. [PMID: 30404557 DOI: 10.1152/ajpcell.00209.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Linking two pharmacophores that bind different cell surface receptors into a single molecule can enhance cell-targeting specificity to cells that express the complementary receptor pair. In this report, we developed and tested a synthetic multivalent ligand consisting of glucagon-like peptide-1 (GLP-1) linked to glibenclamide (Glb) (GLP-1/Glb) for signaling efficacy in β-cells. Expression of receptors for these ligands, as a combination, is relatively specific to the β-cell in the pancreas. The multivalent GLP-1/Glb increased both intracellular cAMP and Ca2+, although Ca2+ responses were significantly depressed compared with the monomeric Glb. Moreover, GLP-1/Glb increased glucose-stimulated insulin secretion in a dose-dependent manner. However, unlike the combined monomers, GLP-1/Glb did not augment insulin secretion at nonstimulatory glucose concentrations in INS 832/13 β-cells or human islets of Langerhans. These data suggest that linking two binding elements, such as GLP-1 and Glb, into a single bivalent ligand can provide a unique functional agent targeted to β-cells.
Collapse
Affiliation(s)
| | - Craig Weber
- Department of Physiology, University of Arizona , Tucson, Arizona
| | | | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona , Tucson, Arizona.,BIO5 Institute, University of Arizona , Tucson, Arizona
| | - Josef Vagner
- BIO5 Institute, University of Arizona , Tucson, Arizona
| | - Ronald M Lynch
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Pharmacology, University of Arizona , Tucson, Arizona.,BIO5 Institute, University of Arizona , Tucson, Arizona
| |
Collapse
|
7
|
MRI-sensitive contrast agent with anticoagulant activity for surface camouflage of transplanted pancreatic islets. Biomaterials 2017; 138:121-130. [PMID: 28558297 DOI: 10.1016/j.biomaterials.2017.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic islet implantation in the liver is a promising approach for diabetes therapy. However, 70% of the islet mass fails to be engrafted in the liver due to the instant blood-mediated inflammatory reactions (IBMIR) resulting from direct contact between islet cells and the bloodstream. To overcome this issue, direct monitoring is very important for establishing prognosis after islet cell therapy. Here we established a new type of MR contrast agent with anticoagulant activity via heparin-immobilized superparamagnetic iron oxide (HSPIO). The HSPIO was chemically conjugated onto islet surface ex vivo without damage of their viability and functionality. The conjugated HSPIO nanoparticles onto islet surface could attenuate IBMIR in vitro and in vivo. The HSPIO-conjugated islets could cure the blood glucose levels of diabetes animals after implantation. In addition, the HSPIO nanoparticles were well maintained on the transplanted islets for a long time during modulation of inflammation. Also, they allowed for stable visualization of the implanted islet cells for more than 150 days without reduction of the MRI signal. Furthermore, when HSPIO itself was intraportally injected, it was rapidly eliminated without accumulation in the liver, suggesting that HSPIO nanoparticles could only track the immobilized islet. Collectively, this HSPIO nanoparticle having MRI sensitivity and anticoagulant activity could be utilized for successful islet implantation.
Collapse
|
8
|
Bertrand R, Wolf A, Ivashchenko Y, Löhn M, Schäfer M, Brönstrup M, Gotthardt M, Derdau V, Plettenburg O. Synthesis and Characterization of a Promising Novel FFAR1/GPR40 Targeting Fluorescent Probe for β-Cell Imaging. ACS Chem Biol 2016; 11:1745-54. [PMID: 27115176 DOI: 10.1021/acschembio.5b00791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diabetes affects an increasing number of patients worldwide and is responsible for a significant rise in healthcare expenses. Imaging of β-cells bears the potential to contribute to an improved understanding, diagnosis, and development of new treatment options for diabetes. Here, we describe the first small molecule fluorescent probe targeting the free fatty acid receptor 1 (FFAR1/GPR40). This receptor is highly expressed on β-cells, and was up to now unexplored for imaging purposes. We designed a novel probe by facile modification of the selective and potent FFAR1 agonist TAK-875. Effective and specific binding of the probe was demonstrated using FFAR1 overexpressing cells. We also successfully labeled FFAR1 on MIN6 and INS1E cells, two widely used β-cell models, by applying an effective amplification protocol. Finally, we showed that the probe is capable of inducing insulin secretion in a glucose-dependent manner, thus demonstrating that functional activity of the probe was maintained. These results suggest that our probe represents a first important step to successful β-cell imaging by targeting FFAR1. The developed probe may prove to be particularly useful for in vitro and ex vivo studies of diabetic cellular and animal models to gain new insights into disease pathogenesis.
Collapse
Affiliation(s)
- Romain Bertrand
- Diabetes Division, Research & Translational Medicine, Sanofi GmbH, Frankfurt am Main 65926, Germany
- Department
of Nuclear Medicine, Radboud UMC, Nijmegen 6525, The Netherlands
| | - Andrea Wolf
- Diabetes Division, Research & Translational Medicine, Sanofi GmbH, Frankfurt am Main 65926, Germany
| | - Yuri Ivashchenko
- Diabetes Division, Research & Translational Medicine, Sanofi GmbH, Frankfurt am Main 65926, Germany
| | - Matthias Löhn
- Diabetes Division, Research & Translational Medicine, Sanofi GmbH, Frankfurt am Main 65926, Germany
| | - Matthias Schäfer
- Diabetes Division, Research & Translational Medicine, Sanofi GmbH, Frankfurt am Main 65926, Germany
| | - Mark Brönstrup
- DSAR/Drug
Disposition, Sanofi GmbH, Frankfurt am Main 65926, Germany
- Helmholtz Centre
for Infection Research, Braunschweig 38124, Germany
| | - Martin Gotthardt
- Department
of Nuclear Medicine, Radboud UMC, Nijmegen 6525, The Netherlands
| | - Volker Derdau
- DSAR/Drug
Disposition, Sanofi GmbH, Frankfurt am Main 65926, Germany
| | - Oliver Plettenburg
- Diabetes Division, Research & Translational Medicine, Sanofi GmbH, Frankfurt am Main 65926, Germany
- Institute
of Medicinal Chemistry, Helmholtz Zentrum München, Ingolstaedter
Landstr. 1, Neuherberg 85764, Germany
- Leibniz University
Hannover, Schneiderberg 1 B, Hannover 30167, Germany
| |
Collapse
|
9
|
Babič A, Lamprianou S, Vinet L, Stransky-Heilkron N, Xayaphoummine C, Campo MA, Glombik H, Schulte A, Juretschke HP, Montet X, Meda P, Lange N. Multivalent glibenclamide to generate islet specific imaging probes. Biomaterials 2015; 75:1-12. [PMID: 26474038 DOI: 10.1016/j.biomaterials.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
The monitoring of diabetes mellitus, as it develops and becomes clinically evident, remains a major challenge for diagnostic imaging in clinical practice. Here we present a novel approach to beta-cell imaging by targeting the sulphonylurea receptor subtype 1 (SUR1), using multivalent derivatives of the anti-diabetic drug glibenclamide. Since glibenclamide has a high affinity for SUR1 but does not contain a suitable functional group to be linked to an imaging probe, we have synthesized 11 glibenclamide derivatives and evaluated their affinity to SUR1 in MIN6 cells. The most promising compound has been used to obtain multivalent glibenclamide-polyamidoamine (PAMAM) derivatives, containing up to 15 sulphonylurea moieties per dendrimer. The remaining functional groups on the dendrimers can consecutively be used for labeling with reporter groups for different imaging modalities, thus allowing for multifunctional imaging, and for the modification of pharmacokinetic properties. We synthesized fluorochrome-labeled multivalent probes, that demonstrate in cellular assays affinities to SUR1 in the nanomolar range, superior to native glibenclamide. The probes specifically label MIN6 cells, but not HeLa or PANC-1 cells which do not express SUR1. A very low cytotoxicity of the multivalent probes is demonstrated by the persistent release of insulin from MIN6 cells exposed to high glucose concentrations. Furthermore, the probes display positive labeling of beta-cells of primary mouse and human islet-cells ex vivo and of islets of Langerhans in vivo. The data document that multivalent probes based on glibenclamide derivatives provide a suitable platform for further developments of cell-specific probes, and can be adapted for multiple imaging modalities, including those that are now used in the clinics.
Collapse
Affiliation(s)
- Andrej Babič
- School of Pharmaceutical Sciences Geneva-Lausanne, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Smaragda Lamprianou
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Geneva, Switzerland
| | - Laurent Vinet
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - Nathalie Stransky-Heilkron
- School of Pharmaceutical Sciences Geneva-Lausanne, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Celine Xayaphoummine
- School of Pharmaceutical Sciences Geneva-Lausanne, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Marino A Campo
- School of Pharmaceutical Sciences Geneva-Lausanne, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Heiner Glombik
- Sanofi Germany, Industriepark Höchst, Frankfurt, Germany
| | - Anke Schulte
- Sanofi Germany, Industriepark Höchst, Frankfurt, Germany
| | | | - Xavier Montet
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Geneva, Switzerland
| | - Norbert Lange
- School of Pharmaceutical Sciences Geneva-Lausanne, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
10
|
Kniess T, Laube M, Brust P, Steinbach J. 2-[18F]Fluoroethyl tosylate – a versatile tool for building18F-based radiotracers for positron emission tomography. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00303b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review highlights the role of 2-[18F]fluoroethyltosylate ([18F]FETs) in PET radiotracer design since it is a preferred labeling reagent according to its high reactivity to phenolic, amine, thiophenolic and carboxylic functions.
Collapse
Affiliation(s)
- Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- Dresden
- Germany
| |
Collapse
|
11
|
Synthesis and evaluation of 18F-labeled mitiglinide derivatives as positron emission tomography tracers for β-cell imaging. Bioorg Med Chem 2014; 22:3270-8. [DOI: 10.1016/j.bmc.2014.04.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022]
|
12
|
Tiedge M. Inside the pancreas: progress and challenges of human beta cell mass quantification. Diabetologia 2014; 57:856-9. [PMID: 24599112 DOI: 10.1007/s00125-014-3206-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/17/2014] [Indexed: 12/17/2022]
Abstract
The accurate quantification of beta cell mass in humans is one of the key challenges in understanding the role of beta cell loss and dysfunction in the pathogenesis of diabetes mellitus. Autopsy studies indicate that beta cell loss is not only a hallmark of autoimmune diabetes but also plays a pivotal role in type 2 diabetes, owing to the toxic effects of lipids, glucose and cytokines. Thus, there is an urgent need for non-invasive clinical techniques for beta cell mass quantification, which should be optimally integrated into standard diagnostic equipment in hospitals. In this issue of Diabetologia (Brom et al DOI 10.1007/s00125-014-3166-3) it is reported that single photon emission computed tomography (SPECT) data with (111)indium-labelled glucagon-like peptide-1 (GLP-1) receptor agonist exendin-3 correlate with the morphometric analysis of beta cell mass in a rat model of alloxan-induced diabetes. With this validation, the authors were able to demonstrate a significant loss of beta cell mass in C-peptide-negative type 1 diabetic patients. Thus, (111)indium-labelled exendin-3 could serve as a model tracer for future studies of larger cohorts of diabetic patients to monitor the dynamics of beta cell loss and regeneration. Despite the recent progress from SPECT imaging data there remain open questions that await clarification in the near future such as variations in GLP-1 receptor density and physiological variation of beta cell mass in relation to beta cell function. The use of GLP-1-based tracer analysis may open new clinical avenues for non-invasive quantification of beta cell mass in patients with newly diagnosed type 1 diabetes and prediabetic individuals with high titres of autoantibodies.
Collapse
Affiliation(s)
- Markus Tiedge
- Institute of Medical Biochemistry and Molecular Biology, Rostock University Medical Center, University of Rostock, Schillingallee 70, D-18057, Rostock, Germany,
| |
Collapse
|
13
|
Blomberg BA, Codreanu I, Cheng G, Werner TJ, Alavi A. Beta-cell imaging: call for evidence-based and scientific approach. Mol Imaging Biol 2013; 15:123-30. [PMID: 23413090 DOI: 10.1007/s11307-013-0620-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Advances in positron emission tomography (PET) imaging have provided opportunities to develop radiotracers specific for imaging insulin-producing pancreatic β-cells. However, a host of lingering questions should be addressed before these radiotracers are advocated for noninvasive quantification of β-cell mass (BCM) in vivo in the native pancreas. METHOD We provide an overview of tetrabenazine-based PET tracers developed to image and quantify BCM and discuss several theoretical, technical, and biological limitations of applying these tracers in clinical practice. DISCUSSION VMAT2, a transporter protein expressed on pancreatic β-cells, has been advocated as a promising target for PET imaging tracers, such as dihydrotetrabenazine. However, the lack of radiotracer specificity for these proteins hampers their clinical application. Another important argument against their use is a striking discrepancy between radiotracer uptake and BCM in subjects with type I diabetes mellitus and healthy controls. Additionally, technical issues, such as the finite spatial resolution of PET, partial volume effects, and movement of the pancreas during respiration, impede PET imaging as a viable option for BCM quantification in the foreseeable future. CONCLUSION The assertion that BCM can be accurately quantified by tetrabenazine derived β-cell-specific radiotracers as density per unit volume of pancreatic tissue is not justifiable at this time. The fallacy of these claims can be explained by technical as well as biological facts that have been disregarded and ignored in the literature.
Collapse
Affiliation(s)
- Björn A Blomberg
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
14
|
Positron emission tomography study on pancreatic somatostatin receptors in normal and diabetic rats with 68Ga-DOTA-octreotide: a potential PET tracer for beta cell mass measurement. Biochem Biophys Res Commun 2013; 442:79-84. [PMID: 24220338 DOI: 10.1016/j.bbrc.2013.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/02/2013] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, and the loss or dysfunction of pancreatic beta cells has been reported before the appearance of clinical symptoms and hyperglycemia. To evaluate beta cell mass (BCM) for improving the detection and treatment of DM at earlier stages, we focused on somatostatin receptors that are highly expressed in the pancreatic beta cells, and developed a positron emission tomography (PET) probe derived from octreotide, a metabolically stable somatostatin analog. Octreotide was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a chelating agent, and labeled with (68)Gallium ((68)Ga). After intravenous injection of (68)Ga-DOTA-octreotide, a 90-min emission scan of the abdomen was performed in normal and DM model rats. The PET studies showed that (68)Ga-DOTA-octreotide radioactivity was highly accumulated in the pancreas of normal rats and that the pancreatic accumulation was significantly reduced in the rats administered with an excess amount of unlabeled octreotide or after treatment with streptozotocin, which was used for the chemical induction of DM in rats. These results were in good agreement with the ex vivo biodistribution data. These results indicated that the pancreatic accumulation of (68)Ga-DOTA-octreotide represented specific binding to the somatostatin receptors and reflected BCM. Therefore, PET imaging with (68)Ga-DOTA-octreotide could be a potential tool for evaluating BCM.
Collapse
|
15
|
|
16
|
Yang L, Ji W, Xue Y, Chen L. Imaging beta-cell mass and function in situ and in vivo. J Mol Med (Berl) 2013; 91:929-38. [PMID: 23700217 DOI: 10.1007/s00109-013-1056-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 01/16/2023]
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells is critical to the maintenance of blood glucose homeostasis in animals. Both decrease in pancreatic beta-cell mass and defects in beta-cell function contribute to the onset of diabetes, although the underlying mechanisms remain largely unknown. Molecular imaging techniques can help beta-cell study in a number of ways. High-resolution fluorescence imaging techniques provide novel insights into the fundamental mechanisms underlying GSIS in isolated beta-cells or in situ in pancreatic islets, and dynamic changes of beta-cell mass and function can be noninvasively monitored in vivo by imaging techniques such as positron emission tomography and single-photon emission computed tomography. All these techniques will contribute to the better understanding of the progression of diabetes and the search for the optimized therapeutic measures that reverse deficits in beta-cell mass and function.
Collapse
Affiliation(s)
- Lu Yang
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University and National Center for Nanoscience and Technology, Beijing, China.
| | | | | | | |
Collapse
|
17
|
Di Gialleonardo V, de Vries EFJ, Di Girolamo M, Quintero AM, Dierckx RAJO, Signore A. Imaging of β-cell mass and insulitis in insulin-dependent (Type 1) diabetes mellitus. Endocr Rev 2012; 33:892-919. [PMID: 22889646 DOI: 10.1210/er.2011-1041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-dependent (type 1) diabetes mellitus is a metabolic disease with a complex multifactorial etiology and a poorly understood pathogenesis. Genetic and environmental factors cause an autoimmune reaction against pancreatic β-cells, called insulitis, confirmed in pancreatic samples obtained at autopsy. The possibility to noninvasively quantify β-cell mass in vivo would provide important biological insights and facilitate aspects of diagnosis and therapy, including follow-up of islet cell transplantation. Moreover, the availability of a noninvasive tool to quantify the extent and severity of pancreatic insulitis could be useful for understanding the natural history of human insulin-dependent (type 1) diabetes mellitus, to early diagnose children at risk to develop overt diabetes, and to select patients to be treated with immunotherapies aimed at blocking the insulitis and monitoring the efficacy of these therapies. In this review, we outline the imaging techniques currently available for in vivo, noninvasive detection of β-cell mass and insulitis. These imaging techniques include magnetic resonance imaging, ultrasound, computed tomography, bioluminescence and fluorescence imaging, and the nuclear medicine techniques positron emission tomography and single-photon emission computed tomography. Several approaches and radiopharmaceuticals for imaging β-cells and lymphocytic insulitis are reviewed in detail.
Collapse
Affiliation(s)
- Valentina Di Gialleonardo
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 AB, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Normandin MD, Petersen KF, Ding YS, Lin SF, Naik S, Fowles K, Skovronsky DM, Herold KC, McCarthy TJ, Calle RA, Carson RE, Treadway JL, Cline GW. In vivo imaging of endogenous pancreatic β-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 2012; 53:908-16. [PMID: 22573821 DOI: 10.2967/jnumed.111.100545] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The ability to noninvasively measure endogenous pancreatic β-cell mass (BCM) would accelerate research on the pathophysiology of diabetes and revolutionize the preclinical development of new treatments, the clinical assessment of therapeutic efficacy, and the early diagnosis and subsequent monitoring of disease progression. The vesicular monoamine transporter type 2 (VMAT2) is coexpressed with insulin in β-cells and represents a promising target for BCM imaging. METHODS We evaluated the VMAT2 radiotracer (18)F-fluoropropyl-dihydrotetrabenazine ((18)F-FP-(+)-DTBZ, also known as (18)F-AV-133) for quantitative PET of BCM in healthy control subjects and patients with type 1 diabetes mellitus. Standardized uptake value was calculated as the net tracer uptake in the pancreas normalized by injected dose and body weight. Total volume of distribution, the equilibrium ratio of tracer concentration in tissue relative to plasma, was estimated by kinetic modeling with arterial input functions. Binding potential, the steady-state ratio of specific binding to nondisplaceable uptake, was calculated using the renal cortex as a reference tissue devoid of specific VMAT2 binding. RESULTS Mean pancreatic standardized uptake value, total volume of distribution, and binding potential were reduced by 38%, 20%, and 40%, respectively, in type 1 diabetes mellitus. The radiotracer binding parameters correlated with insulin secretion capacity as determined by arginine-stimulus tests. Group differences and correlations with β-cell function were enhanced for total pancreas binding parameters that accounted for tracer binding density and organ volume. CONCLUSION These findings demonstrate that quantitative evaluation of islet β-cell density and aggregate BCM can be performed clinically with (18)F-FP-(+)-DTBZ PET.
Collapse
Affiliation(s)
- Marc D Normandin
- Department of Diagnostic Radiology, Yale University, School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Andralojc K, Srinivas M, Brom M, Joosten L, de Vries IJM, Eizirik DL, Boerman OC, Meda P, Gotthardt M. Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia 2012; 55:1247-57. [PMID: 22358499 PMCID: PMC3328679 DOI: 10.1007/s00125-012-2491-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/09/2012] [Indexed: 12/25/2022]
Abstract
For more than a decade, researchers have been trying to develop non-invasive imaging techniques for the in vivo measurement of viable pancreatic beta cells. However, in spite of intense research efforts, only one tracer for positron emission tomography (PET) imaging is currently under clinical evaluation. To many diabetologists it may remain unclear why the imaging world struggles to develop an effective method for non-invasive beta cell imaging (BCI), which could be useful for both research and clinical purposes. Here, we provide a concise overview of the obstacles and challenges encountered on the way to such BCI, in both native and transplanted islets. We discuss the major difficulties posed by the anatomical and cell biological features of pancreatic islets, as well as the chemical and physical limits of the main imaging modalities, with special focus on PET, SPECT and MRI. We conclude by indicating new avenues for future research in the field, based on several remarkable recent results.
Collapse
Affiliation(s)
- K. Andralojc
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - M. Srinivas
- Department of Tumour Immunology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - M. Brom
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - L. Joosten
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - I. J. M. de Vries
- Department of Tumour Immunology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - D. L. Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - O. C. Boerman
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - P. Meda
- Deparment of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - M. Gotthardt
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
20
|
Oh CS, Kohanim S, Kong FL, Song HC, Huynh N, Mendez R, Chanda M, Edmund Kim E, Yang DJ. Sulfonylurea receptor as a target for molecular imaging of pancreas beta cells with (99m)Tc-DTPA-glipizide. Ann Nucl Med 2012; 26:253-61. [PMID: 22237676 DOI: 10.1007/s12149-011-0569-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/27/2011] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was aimed to assess pancreas beta cell activity using (99m)Tc-diethyleneaminepentaacetic acid-glipizide (DTPA-GLP), a sulfonylurea receptor agent. The effect of DTPA-GLP on the blood glucose level in rats was also evaluated. METHODS DTPA dianhydride was conjugated with GLP in the presence of sodium amide, yielding 60%. Biodistribution and planar images were obtained at 30-120 min after injection of (99m)Tc-DTPA-GLP (1 mg/rat, 0.74 and 11.1 MBq per rat, respectively) in normal female Fischer 344 rats. The control group was given (99m)Tc-DTPA. To demonstrate pancreas beta cell uptake of (99m)Tc-DTPA-GLP via a receptor-mediated process, a group of rats was pretreated with streptozotocin (a beta cell toxin, 55 mg/kg, i.v.) and the images were acquired at immediately-65 min on day 5 post-treatment. The effect on the glucose levels after a single administration (ip) of DTPA-GLP was compared to glipizide (GLP) for up to 6 h. RESULTS The structure of DTPA-GLP was confirmed by NMR, mass spectrometry and HPLC. Radiochemical purity assessed by ITLC was >96%. (99m)Tc-DTPA-GLP showed increased pancreas-to-muscle ratios, whereas (99m)Tc-DTPA showed decreased ratios at various time points. Pancreas could be visualized with (99m)Tc-DTPA-GLP in normal rat, however, (99m)Tc-DTPA has poor uptake suggesting the specificity of (99m)Tc-DTPA-GLP. Pancreas beta cell uptake could be blocked by pre-treatment with streptozotocin. DTPA-GLP showed an equal or better response in lowering the glucose levels compared to the existing GLP drug. CONCLUSIONS It is feasible to use (99m)Tc-DTPA-GLP to assess pancreas beta cell receptor recognition. (99m)Tc-DTPA-GLP may be helpful in evaluating patients with diabetes, pancreatitis and pancreatic tumors.
Collapse
Affiliation(s)
- Chang-Sok Oh
- Division of Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jung MJ, Lee SS, Hwang YH, Jung HS, Hwang JW, Kim MJ, Yoon S, Lee DY. MRI of transplanted surface-labeled pancreatic islets with heparinized superparamagnetic iron oxide nanoparticles. Biomaterials 2011; 32:9391-400. [DOI: 10.1016/j.biomaterials.2011.08.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
22
|
Molecular imaging: a promising tool to monitor islet transplantation. J Transplant 2011; 2011:202915. [PMID: 22013504 PMCID: PMC3195545 DOI: 10.1155/2011/202915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/29/2011] [Indexed: 12/18/2022] Open
Abstract
Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells.
Collapse
|
23
|
Eriksson O, Alavi A. Imaging the islet graft by positron emission tomography. Eur J Nucl Med Mol Imaging 2011; 39:533-42. [PMID: 21932118 DOI: 10.1007/s00259-011-1928-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
Clinical islet transplantation is being investigated as a permanent cure for type 1 diabetes mellitus (T1DM). Currently, intraportal infusion of islets is the favoured procedure, but several novel implantation sites have been suggested. Noninvasive longitudinal methodologies are an increasingly important tool for assessing the fate of transplanted islets, their mass, function and early signs of rejection. This article reviews the approaches available for islet graft imaging by positron emission tomography and progress in the field, as well as future challenges and opportunities.
Collapse
Affiliation(s)
- Olof Eriksson
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
24
|
Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol 2010; 13:973-84. [PMID: 20824509 DOI: 10.1007/s11307-010-0406-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/06/2010] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim of this study is to compare the utility of two positron emission tomography (PET) imaging ligands ((+)-[(11)C]dihydrotetrabenazine ([(11)C]DTBZ) and the fluoropropyl analog ([(18)F]FP-(+)-DTBZ)) that target islet β-cell vesicular monoamine transporter type II to measure pancreatic β-cell mass (BCM). PROCEDURES [(11)C]DTBZ or [(18)F]FP-(+)-DTBZ was injected, and serial PET images were acquired in rat models of diabetes (streptozotocin-treated and Zucker diabetic fatty) and β-cell compensation (Zucker fatty). Radiotracer standardized uptake values (SUV) were correlated to pancreas insulin content measured biochemically and histomorphometrically. RESULTS On a group level, a positive correlation of [(11)C]DTBZ pancreatic SUV with pancreas insulin content and BCM was observed. In the STZ diabetic model, both [(18)F]FP-(+)-DTBZ and [(11)C]DTBZ correlated positively with BCM, although only ∼25% of uptake could be attributed to β-cell uptake. [(18)F]FP-(+)-DTBZ displacement studies indicate that there is a substantial fraction of specific binding that is not to pancreatic islet β cells. CONCLUSIONS PET imaging with [(18)F]FP-(+)-DTBZ provides a noninvasive means to quantify insulin-positive BCM and may prove valuable as a diagnostic tool in assessing treatments to maintain or restore BCM.
Collapse
|
25
|
Wu Z, Kandeel F. Radionuclide probes for molecular imaging of pancreatic beta-cells. Adv Drug Deliv Rev 2010; 62:1125-38. [PMID: 20854861 DOI: 10.1016/j.addr.2010.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022]
Abstract
Islet transplantation is a promising treatment option for patients with type 1 diabetes (T1D); however, the fate of the graft over time remains difficult to follow, due to the lack of available tools capable of monitoring graft rejection and inflammation prior to islet graft loss. Due to the challenges imposed by the location of the pancreas and the sparsely dispersed beta-cell population within the pancreas, currently, the clinical verification of beta-cell abnormalities can only be obtained indirectly via metabolic studies, which typically is not possible until after a significant deterioration in islet function has already occurred. The development of non-invasive imaging methods for the assessment of the pancreatic beta-cells, however, offers the potential for the early detection of beta-cell dysfunction prior to the clinical onset of T1D and type 2 diabetes (T2D). Ideal islet imaging agents would have an acceptable residence time in the human body, be capable of providing high-resolution images with minimal uptake in surrounding tissues (e.g., the liver), would not be toxic to islets, and would not require pre-treatment of islets prior to transplantation. A variety of currently available imaging techniques, including magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging have been tested for the study of beta-cell diseases. In this article, we summarize the recent advances made in nuclear imaging techniques for non-invasive imaging of pancreatic beta-cells. The use of radioactive probes for islet imaging is also discussed.
Collapse
|
26
|
Abstract
The early detection and monitoring of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, dementia with Lewy bodies and other dementias, and movement disorders, represent a significant unmet medical need. Tools for accurate and early differential diagnosis are necessary to determine the appropriate treatment for patients and to minimize inappropriate use of potentially harmful treatments. Such diagnostic imaging tools are expected to permit monitoring of disease progression and will thus accelerate testing and development of disease-modifying drugs. The new imaging tests may be useful as prognostic tools by identifying humans with neurodegenerative diseases before the clinical manifestations become evident.
Collapse
|
27
|
Ahlgren U, Gotthardt M. Approaches for imaging islets: recent advances and future prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:39-57. [PMID: 20217493 DOI: 10.1007/978-90-481-3271-3_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment of improved technologies for imaging of the pancreas is a key element in addressing several aspects of diabetes pathogenesis. In this respect, the development of a protocol that allows for non-invasive scoring of human islets, or islet beta-cells, is of particular importance. The development of such a technology would have profound impact on both clinical and experimental medicine, ranging from early diagnosis of diabetes to the evaluation of therapeutic regimes. Another important task is the development of modalities for high-resolution imaging of experimental animal models for diabetes. Rodent models for diabetes research have for decades been instrumental to the diabetes research community. The ability to image, and to accurately quantify, key players of diabetogenic processes with molecular specificity will be of great importance for elucidating mechanistic aspects of the disease. This chapter aims to overview current progress within these research areas.
Collapse
Affiliation(s)
- Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|
28
|
Abstract
Diabetes mellitus results in impaired insulin production by pancreatic beta-cells due to their death and/or dysfunction. There is a growing unmet need among diabetes researches and clinicians to assess the level of surviving beta-cells non-invasively. This review will focus on employment of state-of-the-art in vivo imaging methods to estimate and evaluate beta-cell mass in animal models of diabetes.
Collapse
Affiliation(s)
- Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
29
|
Kung MP, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E, Skovronsky D, Kilbourn MR, Kung HF. In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 2008; 49:1171-6. [PMID: 18552132 DOI: 10.2967/jnumed.108.051680] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Recent studies on gene expression of beta-cell mass (BCM) in the pancreas showed that vesicular monoamine transporter 2 (VMAT2) is highly expressed in the BCM (mainly in the islets of Langerhans). Imaging pancreatic BCM may provide an important tool for understanding the relationship between loss of insulin-secreting beta-cells and onset of diabetes mellitus. In this article, 9-fluoropropyl-(+)-dihydrotetrabenazine (FP-(+)-DTBZ), which is a VMAT2 imaging agent, was evaluated as a PET agent for estimating BCM in vivo. METHODS Organ biodistribution after an intravenous injection of (18)F-FP-(+)-DTBZ (active isomer) and (18)F-FP-(-)-DTBZ (inactive isomer) was evaluated in normal rats. The specificity of uptake of (18)F-FP-(+)-DTBZ was assessed by a pretreatment (3.8 mg of (+)-DTBZ per kilogram and 3.5 mg of FP-(+)-DTBZ per kilogram, intravenously, 5 min prior) or coadministration (2 mg of (+)-DTBZ per kilogram). PET studies were performed in normal rats. RESULTS The in vivo biodistribution of (18)F-FP-(+)-DTBZ in rats showed the highest uptake in the pancreas (5% dose/g at 30 min after injection), whereas (18)F-FP-(-)-DTBZ showed a very low pancreas uptake. Rats pretreated with FP-(+)-DTBZ displayed a 78% blockade of pancreas uptake. PET studies in normal rats demonstrated an avid pancreas uptake of (18)F-FP-(+)-DTBZ. CONCLUSION The preliminary data obtained with (18)F-FP-(+)-DTBZ suggest that this fluorinated derivative of DTBZ shows good pancreas specificity and has the potential to be useful for quantitative measurement of VMAT2 binding sites reflecting BCM in the pancreas.
Collapse
Affiliation(s)
- Mei-Ping Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Radioiodinated naphthylalanine derivatives targeting pancreatic beta cells in normal and nonobese diabetic mice. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:371716. [PMID: 18483609 PMCID: PMC2375978 DOI: 10.1155/2008/371716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 03/23/2008] [Indexed: 01/09/2023]
Abstract
An imaging method capable of using a signal from pancreatic beta cells to determine their mass would be of immense value in monitoring the progression of diabetes as well as response to treatment. Somatostatin receptors (SSTRs) are expressed on beta cells and are a potential target for imaging. The main objective of this study was to investigate whether pancreatic beta cells are a target for radiolabeled naphthylalanine derivatives. The molecules were subjected to in vitro and ex vivo evaluations. Pancreatic uptake of radioactivity was lower in nonobese diabetic (NOD) mice than normal mice at all time points investigated (P < .05) and correlated with the number of islets in tissue sections of both control and NOD mice. Immunohistochemical and confocal fluorescent microscopic studies showed colocalization of insulin and the conjugate radioligand in the pancreas. The results demonstrated that pancreatic uptake is receptor-mediated, and that beta cells are the primary target.
Collapse
|
31
|
Lin M, Lubag A, McGuire MJ, Seliounine SY, Tsyganov EN, Antich PP, Sherry AD, Brown KC, Sun X. Advances in molecular imaging of pancreatic beta cells. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:4558-75. [PMID: 18508529 PMCID: PMC2790725 DOI: 10.2741/3023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of non-invasive imaging methods for early diagnosis of beta cell associated metabolic diseases, including type 1 and type 2 diabetes (T1D and T2D), has recently drawn interest from the molecular imaging community and clinical investigators. Due to the challenges imposed by the location of the pancreas, the sparsely dispersed beta cell population within the pancreas, and the poor understanding of the pathogenesis of the diseases, clinical diagnosis of beta cell abnormalities is still limited. Current diagnostic methods are invasive, often inaccurate, and usually performed post-onset of the disease. Advances in imaging techniques for probing beta cell mass and function are needed to address this critical health care problem. A variety of imaging techniques have been tested for the assessment of pancreatic beta cell islets. Here we discuss current advances in magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging for the study of beta cell diseases. Spurred by early successes in nuclear imaging techniques for beta cells, especially positron emission tomography (PET), the need for beta cell specific ligands has expanded. Progress for obtaining such ligands is presented. We report our preliminary efforts of developing such a peptidic ligand for PET imaging of pancreatic beta cells.
Collapse
Affiliation(s)
- Mai Lin
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Amartey JK, Esguerra C, Al-Jammaz I, Parhar RS, Al-Otaibi B. Synthesis and evaluation of radioiodinated substituted -naphthylalanine as a potential probe for pancreatic -cells imaging. Appl Radiat Isot 2006; 64:769-77. [PMID: 16713896 DOI: 10.1016/j.apradiso.2006.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 01/21/2006] [Accepted: 01/27/2006] [Indexed: 10/24/2022]
Abstract
A non-invasive imaging technique capable of relating a signal from the beta-cells to their mass will be of immense value in understanding the progression of diabetes. Several molecular markers have indeed been identified and investigations are ongoing aimed at accomplishing the said goal. These include pancreatic islet antigen (IC-2), somatostatin receptors (SSTRs), and sulfonylurea receptors (SURs) on the pancreatic beta-cells. Therefore investigations exploiting the potential application of the radiolabeled ligands for these receptors for beta-cell imaging are receiving intensive research attention. Radioiodinated peptidomimetic based on beta-naphthylalanine and n-hexanediamine has been synthesized. The molecule was subjected to in vitro and in vivo evaluation. Radioligand binding studies on CHO cell line expressing the SSTR2 showed very low affinity. Nonetheless, biodistribution in normal mice showed significant uptake in the pancreas. There was partial blockage of the pancreatic uptake when excess of the peptidomimetic was coinjected. The result implies that the pancreatic uptake was receptor mediated but may not involve the SSTR2 and therefore warrants further investigation.
Collapse
Affiliation(s)
- J K Amartey
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
33
|
Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A. In vivo imaging of islet transplantation. Nat Med 2005; 12:144-8. [PMID: 16380717 DOI: 10.1038/nm1316] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 07/20/2005] [Indexed: 11/09/2022]
Abstract
Type 1 diabetes mellitus is characterized by the selective destruction of insulin-producing beta cells, which leads to a deficiency in insulin secretion and, as a result, to hyperglycemia. At present, transplantation of pancreatic islets is an emerging and promising clinical modality, which can render individuals with type 1 diabetes insulin independent without increasing the incidence of hypoglycemic events. To monitor transplantation efficiency and graft survival, reliable noninvasive imaging methods are needed. If such methods were introduced into the clinic, essential information could be obtained repeatedly and noninvasively. Here we report on the in vivo detection of transplanted human pancreatic islets using magnetic resonance imaging (MRI) that allowed noninvasive monitoring of islet grafts in diabetic mice in real time. We anticipate that the information obtained in this study would ultimately result in the ability to detect and monitor islet engraftment in humans, which would greatly aid the clinical management of this disease.
Collapse
Affiliation(s)
- Natalia V Evgenov
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, 13th Street, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
34
|
Kang HC, Kim S, Lee M, Bae YH. Polymeric gene carrier for insulin secreting cells: poly(L-lysine)-g-sulfonylurea for receptor mediated transfection. J Control Release 2005; 105:164-76. [PMID: 15885844 DOI: 10.1016/j.jconrel.2005.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/21/2005] [Accepted: 03/28/2005] [Indexed: 01/20/2023]
Abstract
Ex vivo transfer of therapeutic genes to cells is one of the potential strategies to prolong the life span of cell transplants. However, relatively safe non-viral carriers have not been extensively investigated due to their lower transfection efficiency. In this study, poly(L-lysine)-g-sulfonylurea varying SU content (PLL-SU) was synthesized to promote gene delivery efficacy to an insulin secreting cell line, RINm5F, which is known to express sulfonylurea receptor (SUR). The polymer formed complexes with a model reporter gene of pCMV-Luc (DNA) and the size of resulting particles was around 100 nm. The transfection efficiency of a polymer synthesized with 5 mol% of SU in the reaction feed (PLL-SU5%) to RINm5F cell was at least 5 times higher than that of PLL. The cytotoxicity of PLL-SU5%/DNA complex was equivalent to that of PLL/DNA complex. PLL-SU5% showed less transfection efficiency than PLL to NIH3T3 and HepG2 cells which are SUR negative. In RINm5F cells, the addition of free SU decreased the transfection efficiency of PLL-SU5%/DNA complex, suggesting that the complex shares the same receptors for SU. The PLL-SU5%/DNA complex seems to be internalized via SUR-mediated endocytosis pathway as suggested by vacuolar ATPases inhibition by Bafilomycin A1. It is noted that RINm5F cells treated with PLL-SU5%/DNA complex secreted more insulin than control, untreated cells, suggesting the insulinotropic effect of SU in PLL-SU5%. In conclusion, PLL-SU may be useful for transfer of therapeutic genes into insulin secreting cells.
Collapse
Affiliation(s)
- Han Chang Kang
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 421 Wakara way, Suite 318, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
35
|
Wängler B, Beck C, Shiue CY, Schneider S, Schwanstecher C, Schwanstecher M, Feilen PJ, Alavi A, Rösch F, Schirrmacher R. Synthesis and in vitro evaluation of (S)-2-([11C]methoxy)-4-[3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic acid ([11C]methoxy-repaglinide): a potential beta-cell imaging agent. Bioorg Med Chem Lett 2005; 14:5205-9. [PMID: 15380228 DOI: 10.1016/j.bmcl.2004.07.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/01/2004] [Accepted: 07/22/2004] [Indexed: 11/28/2022]
Abstract
The 11C-labeled sulfonylurea receptor 1 (SUR1) ligand (S)-2-([11C]methoxy)-4-[3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic acid ([11C]methoxy-repaglinide) was synthesized in an overall radiochemical yield of 35% after 55 min with a radiochemical purity higher than 99%. This compound is considered for the noninvasive investigation of the SUR1 receptor status of pancreatic beta-cells by positron emission tomography (PET) in the context of type 1 and type 2 diabetes. The specific activity was 40-70 GBq/micromol. In vitro testing of the nonradioactive methoxy-repaglinide was performed to characterize the affinity for binding to the human SUR1 isoform. Methoxy-repaglinide induced a complete monophasic inhibition curve with a Hill coefficient close to 1 (1.03) yielding a dissociation constant (KD) of 83 nM and an IC50 of 163 nM. Insulin secretion experiments on isolated rat islets were performed to prove biological activity, which was determined to be in the same range as that of original repaglinide.
Collapse
Affiliation(s)
- Björn Wängler
- Institute of Nuclear Chemistry, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Wängler B, Schneider S, Thews O, Schirrmacher E, Comagic S, Feilen P, Schwanstecher C, Schwanstecher M, Shiue CY, Alavi A, Höhnemann S, Piel M, Rösch F, Schirrmacher R. Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3-methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbamoyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic beta-cell mass with positron emission tomography (PET). Nucl Med Biol 2004; 31:639-47. [PMID: 15219283 DOI: 10.1016/j.nucmedbio.2004.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 01/25/2004] [Accepted: 01/25/2004] [Indexed: 11/20/2022]
Abstract
18F-labeled non-sulfonylurea hypoglycemic agent (S)-2-(2-[(18)F]fluoroethoxy)-4-((3-methyl-1-(2-piperidin-1-yl-phenyl)-butylcarbamoyl)-methyl)-benzoic acid ([(18)F]repaglinide), a derivative of the sulfonylurea-receptor (SUR) ligand repaglinide, was synthesized as a potential tracer for the non-invasive investigation of the sulfonylurea 1 receptor status of pancreatic beta-cells by positron emission tomography (PET) in the context of type 1 and type 2 diabetes. [(18)F]Repaglinide could be obtained in an overall radiochemical yield (RCY) of 20% after 135 min with a radiochemical purity higher than 98% applying the secondary labeling precursor 2-[(18)F]fluoroethyltosylate. Specific activity was in the range of 50-60 GBq/micromol. Labeling was conducted by exchanging the ethoxy-moiety into a 2-[(18)F]fluoroethoxy group. To characterize the properties of fluorinated repaglinide, the affinity of the analogous non-radioactive (19)F-compound for binding to the human SUR1 isoform was assessed. [(19)F]Repaglinide induced a complete monophasic inhibition curve with a Hill coefficient close to 1 (1.03) yielding a dissociation constant (K(D)) of 134 nM. Biological activity was proven via insulin secretion experiments on isolated rat islets and was comparable to that of repaglinide. Finally, biodistribution of [(18)F]repaglinide was investigated in rats by measuring the concentration of the compound in different organs after i.v. injection. Pancreatic tissue displayed a stable accumulation of approximately 0.12% of the injected dose from 10 min to 30 min p.i. 50% of the radioactive tracer could be displaced by additional injection of unlabeled repaglinide, indicating that [(18)F]repaglinide might be suitable for in vivo investigation with PET.
Collapse
Affiliation(s)
- B Wängler
- Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, Fritz Strassmann-Weg 2, D-55128 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|