1
|
Campos-Sánchez JC, Carrillo NG, Guardiola FA, Francisco DC, Esteban MÁ. Ultrasonography and X-ray micro-computed tomography characterization of the effects caused by carrageenin in the muscle of gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2022; 123:431-441. [PMID: 35337979 DOI: 10.1016/j.fsi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The current work aimed to carry out an in vivo study of the λ-carrageenin-induced inflammation in the skin of gilthead seabream (Sparus aurata). The fish were injected intramuscularly with phosphate-buffered saline (PBS, as control) or λ-carrageenin (1% in PBS), and the injection zone was evaluated by real-time ultrasonography (Vevo Lab, VisualSonics) at 1.5, 3, 6, 12, and 24 h post-injection (p.i.). Results demonstrated that the skin thickness was increased in fish injected with λ-carrageenin and sampled at 1.5, 3, and 6 h p.i. However, the skin thickness of the injected area decreased to the normal values in those fish sampled at 12 and 24 h p.i. In addition, fish injected with λ-carrageenin and analysed at 1.5, 3, and 6 h p.i. showed, in the underlying muscle at the injection place, several hyperechoic small foci surrounded by an anechoic area which were not observed in control fish. Furthermore, the fish were analysed by X-ray micro-computed tomography (micro-CT). The analysis of the micro-CT acquisitions revealed also a dark area in the place of the injection with λ-carrageenin at 1.5, 3, and 6 h. These areas were smaller in fish analysed at longer times (12 h p.i.) and were almost disappeared in fish sampled at 24 h p.i. These areas had an average density of -850 to -115 HU, which did not correspond with any tissue density of the rest of the body. Furthermore, similar dark areas at the injection zones were never observed in control fish. Present results support the use of both non-invasive techniques to study the inflammatory process in fish of commercial interest such as gilthead seabream.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Nuria García Carrillo
- Integrated Center for Biomedical Research (CEIB), Health Sciences Campus, University of Murcia, 30120, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Diana Ceballos Francisco
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Imaging of innate immunity activation in vivo with a redox-tuned PET reporter. Nat Biotechnol 2022; 40:965-973. [DOI: 10.1038/s41587-021-01169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
|
3
|
Aarntzen EHJG, Noriega-Álvarez E, Artiko V, Dias AH, Gheysens O, Glaudemans AWJM, Lauri C, Treglia G, van den Wyngaert T, van Leeuwen FWB, Terry SYA. EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases. EJNMMI Res 2021; 11:85. [PMID: 34487263 PMCID: PMC8421483 DOI: 10.1186/s13550-021-00820-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Inflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a complex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a systematic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, with a detailed description of the animal models used. From these reflections, we provide recommendations on what future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the translation to clinical settings.
Collapse
Affiliation(s)
- Erik H J G Aarntzen
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Medical Imaging, Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Edel Noriega-Álvarez
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine, General University Hospital of Ciudad Real, Ciudad Real, Spain
| | - Vera Artiko
- Inflammation and Infection Committee EANM, Vienna, Austria
- Center for Nuclear Medicine Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - André H Dias
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Olivier Gheysens
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andor W J M Glaudemans
- Inflammation and Infection Committee EANM, Vienna, Austria.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen Medical Imaging Center, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Chiara Lauri
- Inflammation and Infection Committee EANM, Vienna, Austria
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Giorgio Treglia
- Inflammation and Infection Committee EANM, Vienna, Austria
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Tim van den Wyngaert
- Bone and Joint Committee EANM, Vienna, Austria
- Antwerp University Hospital Belgium, Edegem, Belgium
- Molecular Imaging Center Antwerp (MICA) - IPPON, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fijs W B van Leeuwen
- Translational Molecular Imaging and Therapy Committee EANM, Vienna, Austria
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Samantha Y A Terry
- Inflammation and Infection Committee EANM, Vienna, Austria.
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
4
|
Adhikari A, Singh P, Mahar KS, Adhikari M, Adhikari B, Zhang MR, Tiwari AK. Mapping of Translocator Protein (18 kDa) in Peripheral Sterile Inflammatory Disease and Cancer through PET Imaging. Mol Pharm 2021; 18:1507-1529. [PMID: 33645995 DOI: 10.1021/acs.molpharmaceut.1c00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Positron emission tomography (PET) imaging of the translocator 18 kDa protein (TSPO) with radioligands has become an effective means of research in peripheral inflammatory conditions that occur in many diseases and cancers. The peripheral sterile inflammatory diseases (PSIDs) are associated with a diverse group of disorders that comprises numerous enduring insults including the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system. TSPO has recently been introduced as a potential biomarker for peripheral sterile inflammatory diseases (PSIDs). The major critical issue related to PSIDs is its timely characterization and localization of inflammatory foci for proper therapy of patients. As an alternative to metabolic imaging, protein imaging expressed on immune cells after activation is of great importance. The five transmembrane domain translocator protein-18 kDa (TSPO) is upregulated on the mitochondrial cell surface of macrophages during inflammation, serving as a potential ligand for PET tracers. Additionally, the overexpressed TSPO protein has been positively correlated with various tumor malignancies. In view of the association of escalated TSPO expression in both disease conditions, it is an immensely important biomarker for PET imaging in oncology and PSIDs. In this review, we summarize the most outstanding advances on TSPO-targeted PSIDs and cancer in the development of TSPO ligands as a potential diagnostic tool, specifically discussing the last five years.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, A Central University, Lucknow, Uttar Pradesh 226025, India
| | - Kamalesh S Mahar
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh 226007, India
| | - Manish Adhikari
- The George Washington University, Washington, D.C. 20052, United States
| | - Bhawana Adhikari
- Plasma Bio-science Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow, Uttar Pradesh 226025, India
| |
Collapse
|
5
|
Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol 2019; 16:729-745. [PMID: 31243334 DOI: 10.1038/s41571-019-0238-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Immunotherapy, specifically the introduction of immune checkpoint inhibitors, has transformed the treatment of cancer, enabling long-term tumour control even in individuals with advanced-stage disease. Unfortunately, only a small subset of patients show a response to currently available immunotherapies. Despite a growing consensus that combining immune checkpoint inhibitors with radiotherapy can increase response rates, this approach might be limited by the development of persistent radiation-induced immunosuppression. The ultimate goal of combining immunotherapy with radiotherapy is to induce a shift from an ineffective, pre-existing immune response to a long-lasting, therapy-induced immune response at all sites of disease. To achieve this goal and enable the adaptation and monitoring of individualized treatment approaches, assessment of the dynamic changes in the immune system at the patient level is essential. In this Review, we summarize the available clinical data, including forthcoming methods to assess the immune response to radiotherapy at the patient level, ranging from serum biomarkers to imaging techniques that enable investigation of immune cell dynamics in patients. Furthermore, we discuss modelling approaches that have been developed to predict the interaction of immunotherapy with radiotherapy, and highlight how they could be combined with biomarkers of antitumour immunity to optimize radiotherapy regimens and maximize their synergy with immunotherapy.
Collapse
|
6
|
Lanfranca MP, Lazarus J, Shao X, Nathan H, Di Magliano MP, Zou W, Piert M, Frankel TL. Tracking Macrophage Infiltration in a Mouse Model of Pancreatic Cancer with the Positron Emission Tomography Tracer [11C]PBR28. J Surg Res 2018; 232:570-577. [PMID: 30463776 DOI: 10.1016/j.jss.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) contains abundant immunosuppressive tumor-associated macrophages. High level of infiltration is associated with poor outcome and is thought to represent a major roadblock to lymphocyte-based immunotherapy. Efforts to block macrophage infiltration have been met with some success, but noninvasive means to track tumor-associated macrophagess in PDAC are lacking. Translocator protein (TSPO) is a mitochondrial membrane receptor which is upregulated in activated macrophages. We sought to identify if a radiotracer-labeled cognate ligand could track macrophages in PDAC. MATERIALS AND METHODS A murine PDAC cell line was established from a transgenic mouse with pancreas-specific mutations in KRAS and p53. After confirming lack of endogenous TSPO expression, tumors were established in syngeneic mice. A radiolabeled TSPO-specific ligand ([11C] peripheral benzodiazepine receptor [PBR]28) was delivered intravenously, and tumor uptake was assessed by autoradiography, ex vivo, or micro-positron emission tomography imaging. RESULTS Resected tumors contained abundant macrophages as determined by immunohistochemistry and flow cytometry. Immunoblotting revealed murine macrophages expressed TSPO with increasing concentration on activation and polarization. Autoradiography of resected tumors confirmed [11C]PBR28 uptake, and whole mount sections demonstrated the ability to localize tumors. To confirm the findings were macrophage specific, experiments were repeated in CD11b-deficient mice, and the radiotracer uptake was diminished. Micro-positron emission tomography imaging validated radiotracer uptake and tumor localization in a clinically applicable manner. CONCLUSIONS As new immunotherapeutics reshape the PDAC microenvironment, tools are needed to better measure and track immune cell subsets. We have demonstrated the potential to measure changes in macrophage infiltration in PDAC using [11C]PBR28.
Collapse
Affiliation(s)
| | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Morand Piert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
7
|
Jiemy WF, Heeringa P, Kamps JA, van der Laken CJ, Slart RH, Brouwer E. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: Current status and future prospects. Autoimmun Rev 2018; 17:715-726. [DOI: 10.1016/j.autrev.2018.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
|
8
|
Franc BL, Goth S, MacKenzie J, Li X, Blecha J, Lam T, Jivan S, Hawkins RA, VanBrocklin H. In Vivo PET Imaging of the Activated Immune Environment in a Small Animal Model of Inflammatory Arthritis. Mol Imaging 2018. [PMID: 28625080 PMCID: PMC5480631 DOI: 10.1177/1536012117712638] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Evolving immune-mediated therapeutic strategies for rheumatoid arthritis (RA) may benefit from an improved understanding of the complex role that T-cell activation plays in RA. This study assessed the potential of fluorine-18-labeled 9-β-d-arabinofuranosylguanine ([18F]F-AraG) positron emission tomography (PET) imaging to report immune activation in vivo in an adjuvant-induced arthritis (AIA) small animal model. METHODS Using positron emission tomography-computed tomography imaging, uptake of [18F]F-AraG in the paws of mice affected by arthritis at 6 (acute) and 20 (chronic) days following AIA induction in a single paw was assessed and compared to uptake in contralateral control paws. Fractions of T cells and B cells demonstrating markers of activation at the 2 time points were determined by flow cytometry. RESULTS Differential uptake of [18F]F-AraG was demonstrated on imaging of the affected joint when compared to control at both acute and chronic time points with corresponding changes in markers of T-cell activation observed on flow cytometry. CONCLUSION [18F]F-AraG may serve as an imaging biomarker of T-cell activation in inflammatory arthritis. Further development of this technique is warranted and could offer a tool to explore the temporal link between activated T cells and RA as well as to monitor immune-mediated therapies for RA in clinical trials.
Collapse
Affiliation(s)
- Benjamin L Franc
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Sam Goth
- 2 Cellsight Technologies, Inc, San Francisco, CA, USA
| | - John MacKenzie
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Xiaojuan Li
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Joseph Blecha
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Tina Lam
- 2 Cellsight Technologies, Inc, San Francisco, CA, USA
| | - Salma Jivan
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Randall A Hawkins
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Henry VanBrocklin
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Kupa LDVK, Drewes CC, Barioni ED, Neves CL, Sampaio SC, Farsky SHP. Role of Translocator 18 KDa Ligands in the Activation of Leukotriene B4 Activated G-Protein Coupled Receptor and Toll Like Receptor-4 Pathways in Neutrophils. Front Pharmacol 2017; 8:766. [PMID: 29163156 PMCID: PMC5664262 DOI: 10.3389/fphar.2017.00766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Abstract
TSPO (Translocator 18 KDa; tryptophan-rich sensory protein oxygen sensor) is a constitutive outer mitochondrial membrane protein overexpressed in inflammatory cells during local or systemic processes. Despite its expression is characterized, role of TSPO in inflammation remains elusive. For this study, we investigated the role of TSPO ligands on neutrophil functions elicited by two different inflammatory pathways. Peritoneal neutrophils were isolated from male Balb-C mice, treated with TSPO ligand diazepam, Ro5-4864 or PK11195 (1,100 or 1000 nM; 2 h) and further stimulated with lipopolysaccharide from Escherichia coli (LPS), a binding for Toll-Like Receptor-4 (TLR4), or leukotriene B4 (LTB4), a G-protein coupled receptor (GPCR) ligand. LPS treatment did not lead to overexpression of TSPO on neutrophils, and pre-treatment with any TSPO ligand did not alter cytokine expression, adhesion molecule expression, or the production of reactive oxygen and nitrogen species caused by LPS stimulation. Conversely, all TSPO ligands impaired LTB4’s actions, as visualized by reductions in L-selectin shedding, β2 integrin overexpression, neutrophil chemotaxis, and actin filament assembly. TSPO ligands showed distinct intracellular effects on LTB4-induced neutrophil locomotion, with diazepam enhancing cofilin but not modifying Arp2/3 expression, and Ro5-4864 and PK11195 reducing both cofilin and Arp2/3 expression. Taken together, our data exclude a direct role of TSPO ligands in TLR4-elicited pathways, and indicate that TSPO activation inhibits GPCR inflammatory pathways in neutrophils, with a relevant role in neutrophil influx into inflammatory sites.
Collapse
Affiliation(s)
- Léonard de Vinci Kanda Kupa
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carine C Drewes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eric D Barioni
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila L Neves
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, Brazil
| | | | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Sridharan S, Lepelletier FX, Trigg W, Banister S, Reekie T, Kassiou M, Gerhard A, Hinz R, Boutin H. Comparative Evaluation of Three TSPO PET Radiotracers in a LPS-Induced Model of Mild Neuroinflammation in Rats. Mol Imaging Biol 2017; 19:77-89. [PMID: 27481358 PMCID: PMC5209405 DOI: 10.1007/s11307-016-0984-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purpose Over the past 20 years, neuroinflammation (NI) has increasingly been recognised as having an important role in many neurodegenerative diseases, including Alzheimer’s disease. As such, being able to image NI non-invasively in patients is critical to monitor pathological processes and potential therapies targeting neuroinflammation. The translocator protein (TSPO) has proven a reliable NI biomarker for positron emission tomography (PET) imaging. However, if TSPO imaging in acute conditions such as stroke provides strong and reliable signals, TSPO imaging in neurodegenerative diseases has proven more challenging. Here, we report results comparing the recently developed TSPO tracers [18F]GE-180 and [18F]DPA-714 with (R)-[11C]PK11195 in a rodent model of subtle focal inflammation. Procedures Adult male Wistar rats were stereotactically injected with 1 μg lipopolysaccharide in the right striatum. Three days later, animals underwent a 60-min PET scan with (R)-[11C]PK11195 and [18F]GE-180 (n = 6) or [18F]DPA-714 (n = 6). Ten animals were scanned with either [18F]GE-180 (n = 5) or [18F]DPA-714 (n = 5) only. Kinetic analysis of PET data was performed using the simplified reference tissue model (SRTM) with a contralateral reference region or a novel data-driven input to estimate binding potential BPND. Autoradiography and immunohistochemistry were performed to confirm in vivo results. Results At 40–60 min post-injection, [18F]GE-180 dual-scanned animals showed a significantly increased core/contralateral uptake ratio vs. the same animals scanned with (R)-[11C]PK11195 (3.41 ± 1.09 vs. 2.43 ± 0.39, p = 0.03); [18]DPA-714 did not (2.80 ± 0.69 vs. 2.26 ± 0.41). Kinetic modelling with a contralateral reference region identified significantly higher binding potential (BPND) in the core of the LPS injection site with [18F]GE-180 but not with [18F]DPA-714 vs. (R)-[11C]PK11195. A cerebellar reference region and novel data-driven input to the SRTM were unable to distinguish differences in tracer BPND. Conclusions Second-generation TSPO-PET tracers are able to accurately detect mild-level NI. In this model, [18F]GE-180 shows a higher core/contralateral ratio and BPND when compared to (R)-[11C]PK11195, while [18F]DPA-714 did not. Electronic supplementary material The online version of this article (doi:10.1007/s11307-016-0984-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujata Sridharan
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | | | - William Trigg
- GE Healthcare, The Grove Centre, Amersham, Buckinghamshire, UK
| | - Samuel Banister
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tristan Reekie
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexander Gerhard
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Hervé Boutin
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK.
| |
Collapse
|
11
|
The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory 'M1' human macrophages. PLoS One 2017; 12:e0185767. [PMID: 28968465 PMCID: PMC5624624 DOI: 10.1371/journal.pone.0185767] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or ‘M1’ phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages.
Collapse
|
12
|
TSPO PET Imaging: From Microglial Activation to Peripheral Sterile Inflammatory Diseases? CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6592139. [PMID: 29114179 PMCID: PMC5632884 DOI: 10.1155/2017/6592139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Peripheral sterile inflammatory diseases (PSIDs) are a heterogeneous group of disorders that gathers several chronic insults involving the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system and wherein inflammation is the cornerstone of the pathophysiology. In PSID, timely characterization and localization of inflammatory foci are crucial for an adequate care for patients. In brain diseases, in vivo positron emission tomography (PET) exploration of inflammation has matured over the last 20 years, through the development of radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO) as molecular biomarkers of activated microglia. Recently, TSPO has been introduced as a possible molecular target for PSIDs PET imaging, making this protein a potential biomarker to address disease heterogeneity, to assist in patient stratification, and to contribute to predicting treatment response. In this review, we summarized the major research advances recently made in the field of TSPO PET imaging in PSIDs. Promising preliminary results have been reported in bowel, cardiovascular, and rheumatic inflammatory diseases, consolidated by preclinical studies. Limitations of TSPO PET imaging in PSIDs, regarding both its large expression in healthy peripheral tissues, unlike in central nervous system, and the production of peripheral radiolabeled metabolites, are also discussed, regarding their possible consequences on TSPO PET signal's quantification.
Collapse
|
13
|
Forsberg A, Cervenka S, Jonsson Fagerlund M, Rasmussen LS, Zetterberg H, Erlandsson Harris H, Stridh P, Christensson E, Granström A, Schening A, Dymmel K, Knave N, Terrando N, Maze M, Borg J, Varrone A, Halldin C, Blennow K, Farde L, Eriksson LI. The immune response of the human brain to abdominal surgery. Ann Neurol 2017; 81:572-582. [DOI: 10.1002/ana.24909] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Anton Forsberg
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Malin Jonsson Fagerlund
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Lars S. Rasmussen
- Department of Anesthesia; Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen; Copenhagen Denmark
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital of Gothenburg; Mölndal Sweden
- Department of Molecular Neuroscience; University College London Institute of Neurology; London United Kingdom
| | - Helena Erlandsson Harris
- Center for Molecular Medicine; Department of Medicine, Karolinska Institutet; Stockholm Sweden
- Rheumatology Unit; Karolinska University Hospital; Stockholm Sweden
| | - Pernilla Stridh
- Center for Molecular Medicine; Department of Clinical Neuroscience, Karolinska Institutet; Stockholm Sweden
| | - Eva Christensson
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Anna Granström
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Anna Schening
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Karin Dymmel
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Nina Knave
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Niccolò Terrando
- Department of Anesthesiology; Basic Science Division, Duke University Medical Center; Durham NC
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care and Center for Cerebrovascular Research; University of California; San Francisco, San Francisco CA
| | - Jacqueline Borg
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital of Gothenburg; Mölndal Sweden
| | - Lars Farde
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
- Personalized Healthcare and Biomarkers; AstraZeneca, PET Science Center, Karolinska Institutet, Karolinska University Hospital; Stockholm Sweden
| | - Lars I. Eriksson
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
14
|
Narayan N, Owen DR, Taylor PC. Advances in positron emission tomography for the imaging of rheumatoid arthritis. Rheumatology (Oxford) 2017; 56:1837-1846. [DOI: 10.1093/rheumatology/kew484] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/27/2022] Open
|
15
|
Foss CA, Bedja D, Mease RC, Wang H, Kass DA, Chatterjee S, Pomper MG. Molecular imaging of inflammation in the ApoE -/- mouse model of atherosclerosis with IodoDPA. Biochem Biophys Res Commun 2015; 461:70-5. [PMID: 25858322 DOI: 10.1016/j.bbrc.2015.03.171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/29/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Atherosclerosis is a common and serious vascular disease predisposing individuals to myocardial infarction and stroke. Intravascular plaques, the pathologic lesions of atherosclerosis, are largely composed of cholesterol-laden luminal macrophage-rich infiltrates within a fibrous cap. The ability to detect those macrophages non-invasively within the aorta, carotid artery and other vessels would allow physicians to determine plaque burden, aiding management of patients with atherosclerosis. METHODS AND RESULTS We previously developed a low-molecular-weight imaging agent, [(125)I]iodo-DPA-713 (iodoDPA), which selectively targets macrophages. Here we use it to detect both intravascular macrophages and macrophage infiltrates within the myocardium in the ApoE -/- mouse model of atherosclerosis using single photon emission computed tomography (SPECT). SPECT data were confirmed by echocardiography, near-infrared fluorescence imaging and histology. SPECT images showed focal uptake of radiotracer at the aortic root in all ApoE -/- mice, while the age-matched controls were nearly devoid of radiotracer uptake. Focal radiotracer uptake along the descending aorta and within the myocardium was also observed in affected animals. CONCLUSIONS IodoDPA is a promising new imaging agent for atherosclerosis, with specificity for the macrophage component of the lesions involved.
Collapse
Affiliation(s)
- Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Djahida Bedja
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Haofan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David A Kass
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Subroto Chatterjee
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
16
|
Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, Hill E, Hsu S, Izquierdo-Garcia D, Ji RR, Riley M, Wasan AD, Zürcher NR, Albrecht DS, Vangel MG, Rosen BR, Napadow V, Hooker JM. Evidence for brain glial activation in chronic pain patients. ACTA ACUST UNITED AC 2015; 138:604-15. [PMID: 25582579 DOI: 10.1093/brain/awu377] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.
Collapse
Affiliation(s)
- Marco L Loggia
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA
| | - Daniel B Chonde
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Oluwaseun Akeju
- 3 Department of Anesthesia, Critical Care and Pain Medicine, MGH/HMS, Boston, MA 02114, USA
| | - Grae Arabasz
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ciprian Catana
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert R Edwards
- 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA 4 Department of Psychiatry, Brigham and Women's Hospital, HMS, Boston, MA 02155, USA
| | - Elena Hill
- 5 Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shirley Hsu
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - David Izquierdo-Garcia
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ru-Rong Ji
- 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA 6 Departments of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Misha Riley
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ajay D Wasan
- 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA 4 Department of Psychiatry, Brigham and Women's Hospital, HMS, Boston, MA 02155, USA 7 Departments of Anesthesiology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - Nicole R Zürcher
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniel S Albrecht
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark G Vangel
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce R Rosen
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA 8 Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vitaly Napadow
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA 2 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA 9 Department of Biomedical Engineering, Kyung Hee University, Seoul 130-872, Republic of Korea
| | - Jacob M Hooker
- 1 MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects. Carbohydr Polym 2014; 121:27-36. [PMID: 25659668 DOI: 10.1016/j.carbpol.2014.11.063] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/23/2014] [Accepted: 11/24/2014] [Indexed: 11/21/2022]
Abstract
Carrageenan (CRG) is a family of natural polysaccharides derived from seaweeds and has widely been used as food additives. In the past decade, owing to its attractive physicochemical properties, CRG has been developed into versatile biomaterials vehicles for drug delivery. Nevertheless, studies also emerged to reveal its adverse effects on the biological system. In this review, we critically appraise the latest literature (two thirds since 2008) on the development of CRG-based pharmaceutical vehicles and the perspective of using CRG for broader biomedical applications. We focus on how current strategies exploit the unique gelling mechanisms, strong water absorption and abundant functional groups of the three major CRG varieties. Notably, CRG-based matrices are demonstrated to increase drug loading and drug solubility, enabling release of orally administrated drugs in zero-order or in a significantly prolonged period. Other amazing features, such as pH-sensitivity and adhesive property, of CRG-based formulations are also introduced. Finally, we discuss the adverse influence of CRG on the human body and then suggest some future directions for the development of CRG-based biomaterials for broader applications in biomedicine.
Collapse
|
18
|
English SJ, Diaz JA, Shao X, Gordon D, Bevard M, Su G, Henke PK, Rogers VE, Upchurch GR, Piert M. Utility of (18) F-FDG and (11)C-PBR28 microPET for the assessment of rat aortic aneurysm inflammation. EJNMMI Res 2014; 4:20. [PMID: 26055934 PMCID: PMC4593011 DOI: 10.1186/s13550-014-0020-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 03/21/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The utility of (18) F-FDG and (11)C-PBR28 to identify aortic wall inflammation associated with abdominal aortic aneurysm (AAA) development was assessed. METHODS Utilizing the porcine pancreatic elastase (PPE) perfusion model, abdominal aortas of male Sprague-Dawley rats were infused with active PPE (APPE, AAA; N = 24) or heat-inactivated PPE (IPPE, controls; N = 16). Aortic diameter increases were monitored by ultrasound (US). Three, 7, and 14 days after induction, APPE and IPPE rats were imaged using (18) F-FDG microPET (approximately 37 MBq IV) and compared with (18) F-FDG autoradiography (approximately 185 MBq IV) performed at day 14. A subset of APPE (N = 5) and IPPE (N = 6) animals were imaged with both (11)C-PBR28 (approximately 19 MBq IV) and subsequent (18) F-FDG (approximately 37 MBq IV) microPET on the same day 14 days post PPE exposure. In addition, autoradiography of the retroperitoneal torso was performed after (11)C-PBR28 (approximately 1,480 MBq IV) or (18) F-FDG (approximately 185 MBq IV) administration at 14 days post PPE exposure. Aortic wall-to-muscle ratios (AMRs) were determined for microPET and autoradiography. CD68 and translocator protein (TSPO) immunohistochemistry (IHC), as well as TSPO gene expression assays, were performed for validation. RESULTS Mean 3 (p = 0.009), 7 (p < 0.0001) and 14 (p < 0.0001) days aortic diameter increases were significantly greater for APPE AAAs compared to IPPE controls. No significant differences in (18) F-FDG AMR were determined at days 3 and 7 post PPE exposure; however, at day 14, the mean (18) F-FDG AMR was significantly elevated in APPE AAAs compared to IPPE controls on both microPET (p = 0.0002) and autoradiography (p = 0.02). Similarly, mean (11)C-PBR28 AMR was significantly increased at day 14 in APPE AAAs compared to IPPE controls on both microPET (p = 0.04) and autoradiography (p = 0.02). For APPE AAAs, inhomogeneously increased (18) F-FDG and (11)C-PBR28 uptake was noted preferentially at the anterolateral aspect of the AAA. Compared to controls, APPE AAAs demonstrated significantly increased macrophage cell counts by CD68 IHC (p = 0.001) as well as increased TSPO staining (p = 0.004). Mean TSPO gene expression for APPE AAAs was also significantly elevated compared to IPPE controls (p = 0.0002). CONCLUSION Rat AAA wall inflammation can be visualized using (18) F-FDG and (11)C-PBR28 microPET revealing regional differences of radiotracer uptake on microPET and autoradiography. These results support further investigation of (18) F-FDG and (11)C-PBR28 in the noninvasive assessment of human AAA development.
Collapse
Affiliation(s)
- Sean J English
- />Conrad Jobst Vascular Research Laboratories, University of Michigan Health System, Ann Arbor, MI 48109 USA
| | - Jose A Diaz
- />Conrad Jobst Vascular Research Laboratories, University of Michigan Health System, Ann Arbor, MI 48109 USA
| | - Xia Shao
- />Division of Nuclear Medicine, Department of Radiology, University of Michigan Health System, Ann Arbor, MI 48109 USA
| | - David Gordon
- />Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109 USA
| | - Melissa Bevard
- />Division of Vascular and Endovascular Surgery, University of Virginia Health System, Charlottesville, VA 22903 USA
| | - Gang Su
- />Division of Vascular and Endovascular Surgery, University of Virginia Health System, Charlottesville, VA 22903 USA
| | - Peter K Henke
- />Conrad Jobst Vascular Research Laboratories, University of Michigan Health System, Ann Arbor, MI 48109 USA
| | - Virginia E Rogers
- />Division of Nuclear Medicine, Department of Radiology, University of Michigan Health System, Ann Arbor, MI 48109 USA
| | - Gilbert R Upchurch
- />Division of Vascular and Endovascular Surgery, University of Virginia Health System, Charlottesville, VA 22903 USA
| | - Morand Piert
- />Division of Nuclear Medicine, Department of Radiology, University of Michigan Health System, Ann Arbor, MI 48109 USA
| |
Collapse
|