1
|
Elijovich F, Kirabo A, Laffer CL. Salt Sensitivity of Blood Pressure in Black People: The Need to Sort Out Ancestry Versus Epigenetic Versus Social Determinants of Its Causation. Hypertension 2024; 81:456-467. [PMID: 37767696 PMCID: PMC10922075 DOI: 10.1161/hypertensionaha.123.17951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Race is a social construct, but self-identified Black people are known to have higher prevalence and worse outcomes of hypertension than White people. This may be partly due to the disproportionate incidence of salt sensitivity of blood pressure in Black people, a cardiovascular risk factor that is independent of blood pressure and has no proven therapy. We review the multiple physiological systems involved in regulation of blood pressure, discuss what, if anything is known about the differences between Black and White people in these systems and how they affect salt sensitivity of blood pressure. The contributions of genetics, epigenetics, environment, and social determinants of health are briefly touched on, with the hope of stimulating further work in the field.
Collapse
Affiliation(s)
- Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
2
|
Dewan SMR, Meem SS, Proma AY, Shahriar M. Dietary Salt Can Be Crucial for Food-Induced Vascular Inflammation. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241228039. [PMID: 38313416 PMCID: PMC10838034 DOI: 10.1177/2632010x241228039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/06/2024]
Abstract
Salt enhances the taste as well as the nutritional value of food. Besides, several reports are available on the incidence and epidemiology of various illnesses in relation to salt intake. Excessive salt consumption has been found to be linked with high blood pressure, renal disease, and other cardiovascular disorders due to the result of vascular inflammation. Nevertheless, studies aimed at elucidating the molecular processes that produce vascular inflammation have yet to reach their conclusions. This article emphasizes the significance of investigating the mechanisms underlying both acute and chronic vascular inflammation induced by salt. It also explores the logical inferences behind cellular oxidative stress and the role of endothelial dysfunction as the potential initiator of the inflammatory segments that remain poorly understood. It is therefore hypothesized that salt is one of the causes of chronic vascular inflammation such as atherosclerosis. The hypothesis's secrets, when revealed, can help assure cardiovascular health by proactive efforts and the development of appropriate preventative measures, in combination with medication, dietary and lifestyle adjustments.
Collapse
Affiliation(s)
| | - Sara Shahid Meem
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| | - Amrin Yeasin Proma
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| | - Mohammad Shahriar
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| |
Collapse
|
3
|
Watso JC, Fancher IS, Gomez DH, Hutchison ZJ, Gutiérrez OM, Robinson AT. The damaging duo: Obesity and excess dietary salt contribute to hypertension and cardiovascular disease. Obes Rev 2023; 24:e13589. [PMID: 37336641 PMCID: PMC10406397 DOI: 10.1111/obr.13589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Hypertension is a primary risk factor for cardiovascular disease. Cardiovascular disease is the leading cause of death among adults worldwide. In this review, we focus on two of the most critical public health challenges that contribute to hypertension-obesity and excess dietary sodium from salt (i.e., sodium chloride). While the independent effects of these factors have been studied extensively, the interplay of obesity and excess salt overconsumption is not well understood. Here, we discuss both the independent and combined effects of excess obesity and dietary salt given their contributions to vascular dysfunction, autonomic cardiovascular dysregulation, kidney dysfunction, and insulin resistance. We discuss the role of ultra-processed foods-accounting for nearly 60% of energy intake in America-as a major contributor to both obesity and salt overconsumption. We highlight the influence of obesity on elevated blood pressure in the presence of a high-salt diet (i.e., salt sensitivity). Throughout the review, we highlight critical gaps in knowledge that should be filled to inform us of the prevention, management, treatment, and mitigation strategies for addressing these public health challenges.
Collapse
Affiliation(s)
- Joseph C. Watso
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Dulce H. Gomez
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Orlando M. Gutiérrez
- Division of Nephrology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
4
|
Brian MS, Blier AR, Alward BM, Waite EE, D'Amelio MP, Shaw MA, O'Neill DF, Chaidarun SS. Excess adiposity contributes to higher ambulatory central blood pressure and arterial stiffness in physically inactive young adults. J Sports Med Phys Fitness 2023; 63:912-920. [PMID: 37158798 PMCID: PMC11382482 DOI: 10.23736/s0022-4707.23.14860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND It remains unknown if physical inactivity and excess adiposity increases 24-h central blood pressure and arterial stiffness in young adults. This study examined 24-h central blood pressure and indirect measures of arterial stiffness (e.g., central pulse pressure) in physically inactive young adults with and without excess adiposity. METHODS Body fat and ambulatory 24-h blood pressure were measured in 31 young adults (men: 22±4 years, N.=15; women: 22±5 years, N=16). Multi-frequency bioelectrical impedance measured body fat. Normal adiposity was defined as <20% body fat in men and <32% body fat in women, whereas excess adiposity was defined as ≥20% and ≥32% in men and women, respectively. Ambulatory 24-h central blood pressure was calculated based on brachial blood pressure and volumetric displacement waveforms. RESULTS By design, the normal adiposity group had a lower body fat percentage (men: 15.5±4.6%; women: 20.8±2.5%) compared to the physically inactive excess adiposity group (men: 29.8±5.4%; women: 34.3±7.5%). Men and women with excess adiposity group had elevated central blood pressure (central systolic, P<0.05 vs. normal adiposity groups). Central pulse pressure was elevated in the excess adiposity group (men: 45±5 mmHg; women: 41±9 mmHg) compared to normal adiposity groups (men: 36±4 mmHg; women: 32±3 mmHg, P<0.05 for both), while other arterial stiffness (augmentation index and ambulatory arterial stiffness index) measures trended toward significance only in men with excess adiposity. CONCLUSIONS Physically inactive men and women with excess adiposity have increased 24h central blood pressure and pulse pressure compared to physically inactive young adults with normal adiposity.
Collapse
Affiliation(s)
- Michael S Brian
- Department Health and Human Performance, Plymouth State University, Plymouth, NH, USA -
- Department of Kinesiology, University of New Hampshire, Durham, NH, USA -
| | - Amanda R Blier
- Department Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Braeden M Alward
- Department Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Emily E Waite
- Department of Kinesiology, University of New Hampshire, Durham, NH, USA
| | - Maison P D'Amelio
- Department of Kinesiology, University of New Hampshire, Durham, NH, USA
| | - Marialena A Shaw
- Department Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | | | - Sushela S Chaidarun
- Endocrine Section, Department of Medicine, Dartmouth Hitchcock Medical Center, Dartmouth, NH, USA
| |
Collapse
|
5
|
Peña-Jorquera H, Cid-Jofré V, Landaeta-Díaz L, Petermann-Rocha F, Martorell M, Zbinden-Foncea H, Ferrari G, Jorquera-Aguilera C, Cristi-Montero C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome-A Comprehensive Review. Nutrients 2023; 15:3244. [PMID: 37513660 PMCID: PMC10386413 DOI: 10.3390/nu15143244] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis, chronic non-communicable diseases, and metabolic syndrome are highly interconnected and collectively contribute to global health concerns that reduce life expectancy and quality of life. These conditions arise from multiple risk factors, including inflammation, insulin resistance, impaired blood lipid profile, endothelial dysfunction, and increased cardiovascular risk. Adopting a plant-based diet has gained popularity as a viable alternative to promote health and mitigate the incidence of, and risk factors associated with, these three health conditions. Understanding the potential benefits of a plant-based diet for human health is crucial, particularly in the face of the rising prevalence of chronic diseases like diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Thus, this review focused on the plausible advantages of consuming a type of food pattern for the prevention and/or treatment of chronic diseases, emphasizing the dietary aspects that contribute to these conditions and the evidence supporting the benefits of a plant-based diet for human health. To facilitate a more in-depth analysis, we present separate evidence for each of these three concepts, acknowledging their intrinsic connection while providing a specific focus on each one. This review underscores the potential of a plant-based diet to target the underlying causes of these chronic diseases and enhance health outcomes for individuals and populations.
Collapse
Affiliation(s)
- Humberto Peña-Jorquera
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Viña del Mar 2530388, Chile
| | - Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9160019, Chile
| | - Leslie Landaeta-Díaz
- Facultad de Salud y Ciencias Sociales, Universidad de las Américas, Santiago 7500975, Chile
- Núcleo en Ciencias Ambientales y Alimentarias, Universidad de las Américas, Santiago 7500975, Chile
| | - Fanny Petermann-Rocha
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago 8370068, Chile
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Hermann Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago 7500000, Chile
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Gerson Ferrari
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia 7500912, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Carlos Jorquera-Aguilera
- Escuela de Nutrición y Dietética, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Carlos Cristi-Montero
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Viña del Mar 2530388, Chile
| |
Collapse
|
6
|
Romberger NT, Stock JM, Patik JC, McMillan RK, Lennon SL, Edwards DG, Farquhar WB. Inverse salt sensitivity in normotensive adults: role of demographic factors. J Hypertens 2023; 41:934-940. [PMID: 36928305 PMCID: PMC10228636 DOI: 10.1097/hjh.0000000000003413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Salt sensitivity and inverse salt sensitivity [ISS; a reduction in blood pressure (BP) on a high sodium diet] are each associated with increased incidence of hypertension. The purpose of this analysis was to determine the prevalence of ISS in normotensive adults and whether ISS is associated with any demographic characteristic(s). METHODS Healthy normotensive, nonobese adults [ n = 84; 43 women; age = 37 ± 13 years; baseline mean arterial pressure (MAP) = 89 ± 8 mmHg] participated in a controlled feeding study, consuming 7-day low-sodium (20 mmol sodium/day) and high-sodium (300 mmol sodium/day) diets. Twenty-four-hour ambulatory BP was assessed on the last day of each diet. ISS was defined as a reduction in 24-h MAP more than 5 mmHg, salt sensitivity as an increase in MAP more than 5 mmHg and salt resistance as a change in MAP between -5 and 5 mmHg from low sodium to high sodium. RESULTS Using this cutoff, 10.7% were ISS, 76.2% salt resistant, and 13.1% salt sensitive. Prevalence of ISS was similar between sexes and age groups ( P > 0.05). However, ISS was more prevalent in those with normal BMI (15.8% ISS) compared with those with overweight BMI (0% ISS; P < 0.01). Interestingly, classification of participants using a salt sensitivity index (ΔMAP/Δ urinary sodium excretion) categorized 21.4% as ISS, 48.8% salt resistant, and 29.8% salt sensitive. CONCLUSION Overall, we found that the prevalence of ISS was 10.7% (5 mmHg cutoff) or 21.4% (salt sensitivity index), and that ISS was associated with lower BMI. These results highlight the importance of future work to understand the mechanisms of ISS and to standardize salt sensitivity assessment.
Collapse
Affiliation(s)
- Nathan T Romberger
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Tolj I, Stupin A, Drenjančević I, Šušnjara P, Perić L, Stupin M. The Role of Nitric Oxide in the Micro- and Macrovascular Response to a 7-Day High-Salt Diet in Healthy Individuals. Int J Mol Sci 2023; 24:ijms24087157. [PMID: 37108318 PMCID: PMC10138534 DOI: 10.3390/ijms24087157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the specific role of nitric oxide (NO) in micro- and macrovascular response to a 7-day high-salt (HS) diet, specifically by measuring skin microvascular local thermal hyperemia and the flow-mediated dilation of the brachial artery, as well as serum NO and three NO synthase enzyme (NOS) isoform concentrations in healthy individuals. It also aimed to examine the concept of non-osmotic sodium storage in the skin following the HS diet by measuring body fluid status and systemic hemodynamic responses, as well as serum vascular endothelial growth factor C (VEGF-C) concentration. Forty-six young, healthy individuals completed a 7-day low-salt diet, followed by a 7-day HS diet protocol. The 7-day HS diet resulted in impaired NO-mediated endothelial vasodilation in peripheral microcirculation and conduit arteries, in increased eNOS, decreased nNOS, and unchanged iNOS concentration and NO serum level. The HS diet did not change the volume of interstitial fluid, the systemic vascular resistance or the VEGF-C serum level. These results indicate that the 7-day HS-diet induces systemic impairment of NO-mediated endothelial vasodilation, while dissociation in the eNOS and nNOS response indicates complex adaptation of main NO-generating enzyme isoforms to HS intake in healthy individuals. Our results failed to support the concept of non-osmotic sodium storage.
Collapse
Affiliation(s)
- Ivana Tolj
- Department of Internal Medicine and History of Medicine, Faculty of Medicine Osijek, Josip Juraj University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Leon Perić
- Department of Emergency Medicine of Osijek-Baranja County, J. Huttlera 2, 31000 Osijek, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
8
|
Yang Q, Jiang W, He Y, Yang L, Zhao C, Li L, Yang P, Yin L, Li X, Huang X, Li Y. The association of arterial stiffness with estimated excretion levels of urinary sodium and potassium and their ratio in Chinese adults. J Hum Hypertens 2023; 37:292-299. [PMID: 35338245 DOI: 10.1038/s41371-022-00671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
Arterial stiffness is an independent cardiovascular risk factor. However, the association between sodium/potassium intake and arterial stiffness in the Chinese population is unclear. Therefore, we performed a large, community-based cross-sectional study to reach a more definitive conclusion. The study was conducted at the Third Xiangya Hospital in Changsha between August 2017 and September 2019. Urinary sodium, potassium, and creatinine levels were tested from spot urine samples during physical examinations of each recruited participant. The 24-hour estimated urinary sodium excretion (eUNaE) and estimated urinary potassium excretion (eUKE) levels were calculated using the Kawasaki formula (used as a surrogate for intake). The brachial-ankle pulse wave velocity (baPWV) and ankle brachial index (ABI) were measured using an automatic waveform analyzer. In 22,557 subjects with an average age of 49.3 ± 10.3 years, the relationships of the ABI and baPWV with the levels of eUNaE, eUKE and the ratio of sodium to potassium (Na/K ratio) were analyzed. A significant negative relationship was found between the eUKE and baPWV levels (β = 2.41, p < 0.01), whereas the Na/K ratio was positively associated with baPWV (β = 2.46, p < 0.01), especially in the overweight and hypertensive populations (both pinteraction = 0.04). The association of eUNaE quartiles with baPWV presented a J-shaped curve after adjusting for confounders. In addition, a positive association was observed between the Na/K ratio and the ABI (β = 0.002, p < 0.01). In this study, high potassium and/or low sodium intake was further confirmed to be related to vascular stiffness in Chinese individuals.
Collapse
Affiliation(s)
- Qinyu Yang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongmei He
- Department of Health Management, Aerospace Center Hospital, Beijing, China
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB, Canada
- Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Congke Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Lijun Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Pingting Yang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Yin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, China
| | - Xin Huang
- Department of Epidemiology, Hunan Normal University School of Medicine, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, China.
| |
Collapse
|
9
|
Lobene AJ, Ragland TJ, Lennon SL, Malin SK. Nutrition Interactions With Exercise Training on Endothelial Function. Exerc Sport Sci Rev 2023; 51:57-64. [PMID: 36700665 PMCID: PMC10033354 DOI: 10.1249/jes.0000000000000312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exercise is advised to improve overall cardiovascular health and endothelial function. However, the role of nutrition on this exercise-induced endothelial adaptation is not clear. Here, we hypothesize that nutrients interact with exercise to influence endothelial function and chronic disease risk.
Collapse
Affiliation(s)
- Andrea J. Lobene
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE
| | - Tristan J. Ragland
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ
| | - Shannon L. Lennon
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE
| | - Steven K. Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ
- The New Jersey Institute for Food, Nutrition &Health, Rutgers University, New Brunswick, NJ
- Institute of Translational Medicine & Science, Rutgers University, New Brunswick, NJ
| |
Collapse
|
10
|
Decker KP, Chiu A, Weggen JB, Richardson JW, Hogwood AC, Darling AM, Garten RS. High sodium intake differentially impacts brachial artery dilation when evaluated with reactive versus active hyperemia in salt resistant individuals. J Appl Physiol (1985) 2023; 134:277-287. [PMID: 36548512 DOI: 10.1152/japplphysiol.00461.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study sought to determine if high sodium (HS) intake in salt resistant (SR) individuals attenuates upper limb arterial dilation in response to reactive (occlusion) and active (exercise) hyperemia, two stimuli with varying vasodilatory mechanisms, and the role of oxidative stress in this response. Ten young, SR participants (9 males, 1 female) consumed a 7-day HS (6,900 mg/day) and a 7-day recommended sodium intake (RI: 2,300 mg/day) diet in a randomized order. On the last day of each diet, brachial artery (BA) function was evaluated via reactive (RH-FMD: 5 min of cuff occlusion) and active [handgrip (HG) exercise] hyperemia after consumption of both placebo (PL) and antioxidants (AO). The HS diet significantly elevated sodium excretion (P < 0.05), but mean arterial blood pressure was unchanged. During the PL condition, the HS diet significantly reduced RH-FMD when compared with RI diet (P = 0.01), but this reduction was significantly restored (P = 0.01) when supplemented with AO (HS + PL: 5.9 ± 3.4; HS + AO: 8.2 ± 2.7; RI + PL: 8.9 ± 4.7; RI + AO: 7.0 ± 2.1%). BA shear-to-dilation slopes, evaluated across all HG exercise workloads, were not significantly different across sodium intervention or AO supplementation. In SR individuals, HS intake impaired BA function when assessed via RH-FMD, but was restored with acute AO consumption suggesting oxidative stress as a contributor to this dysfunction. However, exercise-induced BA dilation was unaltered, potentially implicating an inability of HS intake to influence the mechanisms responsible for effectively maintaining skeletal muscle perfusion during exercise.NEW & NOTEWORTHY This study examined if high sodium (HS) intake in salt resistant (SR) individuals attenuates brachial artery (BA) flow-mediated dilation in response to reactive (occlusion) and active (exercise) hyperemia. In SR individuals, HS intake impaired reactive hyperemia-induced BA dilation, but not exercise-induced BA dilation. This finding suggests that although brachial artery nitric oxide bioavailability may be reduced following HS intake, the redundant mechanisms associated with adequate upper limb blood flow regulation during exercise are maintained.
Collapse
Affiliation(s)
- Kevin P Decker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Alex Chiu
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Jacob W Richardson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Ashley M Darling
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
11
|
Gonzalez MR, Zuelch ML, Smiljanec K, Mbakwe AU, Axler MR, Witman MA, Lennon SL. Arterial Stiffness and Endothelial Function are Comparable in Young Healthy Vegetarians and Omnivores. Nutr Res 2022; 105:163-172. [PMID: 36054948 DOI: 10.1016/j.nutres.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022]
Abstract
Vegetarians (VEG) are reported to have lower body weight, blood pressure (BP), and cardiovascular disease (CVD) risk compared with omnivores (OMN), yet the mechanisms remain unclear. A vegetarian diet may protect the vascular endothelium, reducing the risk of atherosclerosis and CVD. This cross-sectional study compared vascular function between OMN and VEG. We hypothesized that VEG would have greater vascular function compared with OMN. Fifty-eight normotensive young healthy adults participated (40 women [W]/18 men [M]; 28 OMN [15W/13M] and 30 VEG [25W/5M]; 26 ± 7 years; BP: 112 ± 11/67 ± 8 mm Hg). Arterial stiffness, assessed by carotid-to-femoral pulse wave velocity (OMN: 5.6 ± 0.8 m/s, VEG: 5.3 ± 0.8 m/s; P = .17) and wave reflection assessed by aortic augmentation index (OMN: 6.9 ± 12.3%, VEG: 8.8 ± 13.5%; P = .57) were not different between groups. However, central pulse pressure (OMN: 32 ± 5; VEG: 29 ± 5 mm Hg; P = .048) and forward wave reflection were greater in omnivores (OMN: 26 ± 3; VEG: 24 ± 3 mm Hg; P = .048). Endothelial-dependent dilation measured by brachial artery flow-mediated dilation was not different between groups (OMN: 6.0 ± 2.9%, VEG: 6.9 ± 3.3%; P = .29). Percent change in femoral blood flow from baseline during passive leg movement, another assessment of nitric oxide-mediated endothelial dilation, was similar between groups (OMN: 203 ± 88 mL/min, VEG: 253 ± 192 mL/min; P = .50). These data suggest that in healthy young adults, normotensive VEG do not have significantly improved vascular function compared with OMN; however, they have a lower central pulse pressure and forward wave amplitude which may lower the risk of future CVD.
Collapse
Affiliation(s)
- Macarena Ramos Gonzalez
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Michelle L Zuelch
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19713, USA
| | - Katarina Smiljanec
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Alexis U Mbakwe
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Michael R Axler
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Melissa A Witman
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA.
| |
Collapse
|
12
|
San SY, Wan JM, Louie JCY. Effect of plant-based functional foods for the protection against salt-induced endothelial dysfunction. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Stock JM, Chelimsky G, Edwards DG, Farquhar WB. Dietary sodium and health: How much is too much for those with orthostatic disorders? Auton Neurosci 2022; 238:102947. [PMID: 35131651 PMCID: PMC9296699 DOI: 10.1016/j.autneu.2022.102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/09/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Gisela Chelimsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
14
|
Olorunnisola OS, Fadahunsi OS, Adegbola PI, Ajilore BS, Ajayi FA, Olaniyan LWB. Phyllanthus amarus attenuated derangement in renal-cardiac function, redox status, lipid profile and reduced TNF-α, interleukins-2, 6 and 8 in high salt diet fed rats. Heliyon 2021; 7:e08106. [PMID: 34660924 PMCID: PMC8502905 DOI: 10.1016/j.heliyon.2021.e08106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023] Open
Abstract
High salt diet (HSD) has been implicated in the etiopathogenesis of immune derangement, cardiovascular disorders and, metabolic syndromes. This study investigated the protective effect of ethanol extract of Phyllanthus amarus (EEPA) against high salt diet (HSD) induced biochemical and metabolic derangement in male Wistar rats. The rats were divided into 5 groups of 6 animals each as follows; control group fed with normal rat chow, negative control group, fed HSD only, animals on HSD treated orally with 75 mg/kg, 100 mg/kg, and, 150 mg/kg EEPA once daily. At the end of 8 weeks treatment, lipid profile (TG, TC, LDL, and VLDL), oxidative stress (catalase, reduced glutathione, and malondialdehyde), inflammatory (TNF-a, interleukins 2, 6, and 8), cardiac (lactate dehydrogenase, creatine kinase) and kidney function markers (urea, uric acid, creatinine) were assessed. Serum TG, TC, LDL, and VLDL content were significantly (p < 0.05) elevated in HSD-only fed rats, while HDL was significantly elevated in a concentration-dependent manner in EEPA treated animals. The extract produced a significant (p < 0.05) and dose-dependent increase in the antioxidant enzymes activities and a significant reduction in the malondialdehyde level. A significant (p < 0.05) dose-dependent reduction in serum TNF-alpha, IL-2, 6, and 8 of EEPA treated rats compared with HSD-fed rats was observed. More so, reduction in serum LDH, creatine kinase, creatinine, urea, and uric acid activity of extract-treated animals were noted. EEPA attenuated high salt diet-induced oxidative stress, inflammation, and dyslipidemia in rats.
Collapse
Affiliation(s)
- Olubukola Sinbad Olorunnisola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olumide Samuel Fadahunsi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Bamidele Stephen Ajilore
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folorunsho Ayodeji Ajayi
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Lamidi Waheed Babatunde Olaniyan
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
15
|
Migdal KU, Robinson AT, Watso JC, Babcock MC, Lennon SL, Martens CR, Serrador JM, Farquhar WB. Ten days of high dietary sodium does not impair cerebral blood flow regulation in healthy adults. Auton Neurosci 2021; 234:102826. [PMID: 34058717 DOI: 10.1016/j.autneu.2021.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
High dietary sodium impairs cerebral blood flow regulation in rodents and is associated with increased stroke risk in humans. However, the effects of multiple days of high dietary sodium on cerebral blood flow regulation in humans is unknown. Therefore, the purpose of this study was to determine whether ten days of high dietary sodium impairs cerebral blood flow regulation. Ten participants (3F/7M; age: 30 ± 10 years; blood pressure (BP): 113 ± 8/62 ± 9 mmHg) participated in this randomized, cross-over design study. Participants were placed on 10-day diets that included either low- (1000 mg/d), medium- (2300 mg/d) or high- (7000 mg/d) sodium separated by ≥four weeks. Urinary sodium excretion, beat-to-beat BP (finger photoplethysmography), middle cerebral artery velocity (transcranial Doppler), and end-tidal carbon dioxide (capnography) was measured. Dynamic cerebral autoregulation during a ten-minute baseline was calculated and cerebrovascular reactivity assessed by determining the percent change in middle cerebral artery blood flow velocity to hypercapnia (8% CO2, 21% oxygen, balance nitrogen) and hypocapnia (via mild hyperventilation). Urinary sodium excretion increased in a stepwise manner (ANOVA P = 0.001) from the low, to medium, to high condition. There were no differences in dynamic cerebral autoregulation between conditions. While there was a trend for a difference during cerebrovascular reactivity to hypercapnia (ANOVA P = 0.06), this trend was abolished when calculating cerebrovascular conductance (ANOVA: P = 0.28). There were no differences in cerebrovascular reactivity (ANOVA P = 0.57) or conductance (ANOVA: P = 0.73) during hypocapnia. These data suggest that ten days of a high sodium diet does not impair cerebral blood flow regulation in healthy adults.
Collapse
Affiliation(s)
- Kamila U Migdal
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Austin T Robinson
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America; School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Joseph C Watso
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Matthew C Babcock
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Shannon L Lennon
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Christopher R Martens
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Jorge M Serrador
- Department of Pharmacology, Physiology & Neuroscience, Rutgers University, Newark, NJ, United States of America
| | - William B Farquhar
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
16
|
Is There Association between Altered Adrenergic System Activity and Microvascular Endothelial Dysfunction Induced by a 7-Day High Salt Intake in Young Healthy Individuals. Nutrients 2021; 13:nu13051731. [PMID: 34065261 PMCID: PMC8161165 DOI: 10.3390/nu13051731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/06/2023] Open
Abstract
This study aimed to test the effect of a 7-day high-salt (HS) diet on autonomic nervous system (ANS) activity in young healthy individuals and modulation of ANS on microvascular endothelial function impairment. 47 young healthy individuals took 7-day low-salt (LS) diet (3.5 g salt/day) followed by 7-day high-salt (HS) diet (~14.7 g salt/day). ANS activity was assessed by 24-h urine catecholamine excretion and 5-min heart rate variability (HRV). Skin post-occlusive reactive hyperemia (PORH) and acetylcholine-induced dilation (AChID) were assessed by laser Doppler flowmetry (LDF). Separately, mental stress test (MST) at LS and HS condition was conducted, followed by immediate measurement of plasma metanephrines’ level, 5-min HRV and LDF microvascular reactivity. Noradrenaline, metanephrine and normetanephrine level, low-frequency (LF) HRV and PORH and AChID significantly decreased following HS compared to LS. MST at HS condition tended to increase HRV LF/HF ratio. Spectral analysis of PORH signal, and AChID measurement showed that MST did not significantly affect impaired endothelium-dependent vasodilation due to HS loading. In this case, 7-day HS diet suppressed sympathetic nervous system (SNS) activity, and attenuated microvascular reactivity in salt-resistant normotensive individuals. Suppression of SNS during HS loading represents a physiological response, rather than direct pathophysiological mechanism by which HS diet affects microvascular endothelial function in young healthy individuals.
Collapse
|
17
|
High-sodium diet does not worsen endothelial function in female patients with postural tachycardia syndrome. Clin Auton Res 2021; 31:563-571. [PMID: 33689063 DOI: 10.1007/s10286-021-00772-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/13/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Postural tachycardia syndrome (POTS), a syndrome characterized by orthostatic symptoms and a heart rate increase of at least 30 beats per minute in the absence of hypotension upon standing, is often accompanied by increased sympathetic activity and low blood volume. A common non-pharmacologic recommendation for patients with POTS is a high-sodium (HS) diet with the goal of bolstering circulating blood volume. The objective of this study is to assess the effects of 6 days of a HS diet on endothelial function in POTS. METHODS A total of 14 patients with POTS and 13 age-matched healthy controls, all females, were studied following 6 days on a low-sodium (LS) diet (10 mEq/day) and 6 days on a HS diet (300 mEq/day) in a crossover design. We measured endothelial function following reactive hyperemia in the brachial artery using flow-mediated dilation (FMD), leg blood flow (LBF) using strain gauge plethysmography in the calf, and reactive hyperemic index (RHI) in the microcirculation of the hand using pulsatile arterial tonometry. RESULTS On the LS diet, FMD% did not differ between patients with POTS and the healthy controls although peak brachial artery diameter was lower for the patient group. RHI was higher for the patient group than for the controls, but there were no differences in post-ischemic LBF increase. On the HS diet, there were no between-group differences in FMD%, LBF increase, or RHI. CONCLUSION In summary, a HS diet for 6 days did not induce endothelial dysfunction. This non-pharmacologic treatment used for patients with POTS does not negatively affect endothelial function when used for a sub-acute duration. TRIAL REGISTRATION ClinicalTrials.gov NCT01550315; March 9, 2012.
Collapse
|
18
|
Mechanisms of Dietary Sodium-Induced Impairments in Endothelial Function and Potential Countermeasures. Nutrients 2021; 13:nu13010270. [PMID: 33477837 PMCID: PMC7832854 DOI: 10.3390/nu13010270] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 01/11/2023] Open
Abstract
Despite decades of efforts to reduce sodium intake, excess dietary sodium remains commonplace, and contributes to increased cardiovascular morbidity and mortality independent of its effects on blood pressure. An increasing amount of research suggests that high-sodium diets lead to reduced nitric oxide-mediated endothelial function, even in the absence of a change in blood pressure. As endothelial dysfunction is an early step in the progression of cardiovascular diseases, the endothelium presents a target for interventions aimed at reducing the impact of excess dietary sodium. In this review, we briefly define endothelial function and present the literature demonstrating that excess dietary sodium results in impaired endothelial function. We then discuss the mechanisms through which sodium impairs the endothelium, including increased reactive oxygen species, decreased intrinsic antioxidant defenses, endothelial cell stiffening, and damage to the endothelial glycocalyx. Finally, we present selected research findings suggesting that aerobic exercise or increased intake of dietary potassium may counteract the deleterious vascular effects of a high-sodium diet.
Collapse
|
19
|
Smiljanec K, Mbakwe AU, Ramos-Gonzalez M, Pohlig RT, Lennon SL. Antioxidant cocktail following a high-sodium meal does not affect vascular function in young, healthy adult humans: a randomized controlled crossover trial. Nutr Res 2020; 79:13-22. [PMID: 32610254 DOI: 10.1016/j.nutres.2020.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Chronic high sodium intake is a risk factor for cardiovascular disease as it impairs vascular function through an increase in oxidative stress. The objective of this study was to investigate the acute effects of a high-sodium meal (HSM) and antioxidant (AO) cocktail on vascular function. We hypothesized that a HSM would impair endothelial function, and increase arterial stiffness and wave reflection, while ingestion of the AO cocktail would mitigate this response. Healthy adults ingested either an AO cocktail (vitamin C, E, alpha-lipoic acid) or placebo (PLA) followed by a HSM (1500 mg) in a randomized crossover blinded design. Blood pressure (BP), endothelial function (flow-mediated dilation; FMD) and measures of arterial stiffness (pulse wave velocity; PWV) and wave reflection (augmentation index; AIx) were made at baseline and 30, 60, 90, and 120 min after meal consumption. Forty-one participants (20M/21W; 24 ± 1 years; BMI 23.4 ± 0.4 kg/m2) completed the study. Mean BP increased at 120 min relative to 60 min (60 min: 79 ± 1; 120 min: 81 ± 1 mmHg; time effect P = .01) but was not different between treatments (treatment × time interaction P = .32). AIx decreased from baseline (time effect P < .001) but was not different between treatments (treatment × time interaction P = .31). PWV (treatment × time interaction, P = .91) and FMD (treatment × time interaction P = .65) were also not different between treatments. In conclusion, a HSM does not acutely impair vascular function suggesting young healthy adults can withstand the acute impact of sodium on the vasculature and therefore, the AO cocktail is not necessary to mitigate the response.
Collapse
Affiliation(s)
- Katarina Smiljanec
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE.
| | - Alexis U Mbakwe
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE.
| | | | - Ryan T Pohlig
- Biostatistics Core Facility, University of Delaware, STAR, Newark, DE.
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE.
| |
Collapse
|
20
|
Babcock MC, Robinson AT, Migdal KU, Watso JC, Martens CR, Edwards DG, Pescatello LS, Farquhar WB. High Salt Intake Augments Blood Pressure Responses During Submaximal Aerobic Exercise. J Am Heart Assoc 2020; 9:e015633. [PMID: 32406312 PMCID: PMC7660875 DOI: 10.1161/jaha.120.015633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Background High sodium (Na+) intake is a widespread cardiovascular disease risk factor. High Na+ intake impairs endothelial function and exaggerates sympathetic reflexes, which may augment exercising blood pressure (BP) responses. Therefore, this study examined the influence of high dietary Na+ on BP responses during submaximal aerobic exercise. Methods and Results Twenty adults (8F/12M, age=24±4 years; body mass index 23.0±0.6 kg·m-2; VO2peak=39.7±9.8 mL·min-1·kg-1; systolic BP=111±10 mm Hg; diastolic BP=64±8 mm Hg) participated in this randomized, double-blind, placebo-controlled crossover study. Total Na+ intake was manipulated via ingestion of capsules containing either a placebo (dextrose) or table salt (3900 mg Na+/day) for 10 days each, separated by ≥2 weeks. On day 10 of each intervention, endothelial function was assessed via flow-mediated dilation followed by BP measurement at rest and during 50 minutes of cycling at 60% VO2peak. Throughout exercise, BP was assessed continuously via finger photoplethysmography and every 5 minutes via auscultation. Venous blood samples were collected at rest and during the final 10 minutes of exercise for assessment of norepinephrine. High Na+ intake increased urinary Na+ excretion (placebo=140±68 versus Na+=282±70 mmol·24H-1; P<0.001) and reduced flow-mediated dilation (placebo=7.2±2.4 versus Na+=4.2±1.7%; P<0.001). Average exercising systolic BP was augmented following high Na+ (placebo=Δ30.0±16.3 versus Na+=Δ38.3±16.2 mm Hg; P=0.03) and correlated to the reduction in flow-mediated dilation (R=-0.71, P=0.002). Resting norepinephrine concentration was not different between conditions (P=0.82). Norepinephrine increased during exercise (P=0.002), but there was no Na+ effect (P=0.26). Conclusions High dietary Na+ augments BP responses during submaximal aerobic exercise, which may be mediated, in part, by impaired endothelial function.
Collapse
Affiliation(s)
- Matthew C. Babcock
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDE
| | - Austin T. Robinson
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDE
- School of KinesiologyAuburn UniversityAuburnAL
| | - Kamila U. Migdal
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDE
| | - Joseph C. Watso
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDE
| | | | - David G. Edwards
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDE
| | | | - William B. Farquhar
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDE
| |
Collapse
|
21
|
Migdal KU, Babcock MC, Robinson AT, Watso JC, Wenner MM, Stocker SD, Farquhar WB. The Impact of High Dietary Sodium Consumption on Blood Pressure Variability in Healthy, Young Adults. Am J Hypertens 2020; 33:422-429. [PMID: 32006422 DOI: 10.1093/ajh/hpaa014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND High sodium (Na+) intake augments blood pressure variability (BPV) in normotensive rodents, without changes in resting blood pressure (BP). Augmented BPV is associated with end-organ damage and cardiovascular morbidity. It is unknown if changes in dietary Na+ influence BPV in humans. We tested the hypothesis that high Na+ feeding would augment BPV in healthy adults. METHODS Twenty-one participants (10 F/11 M; 26 ± 5 years; BP: 113 ± 11/62 ± 7 mm Hg) underwent a randomized, controlled feeding study that consisted of 10 days of low (2.6 g/day), medium (6.0 g/day), and high (18.0 g/day) salt diets. On the ninth day of each diet, 24-h urine samples were collected and BPV was calculated from 24-h ambulatory BP monitoring. On the tenth day, in-laboratory beat-to-beat BPV was calculated during 10 min of rest. Serum electrolytes were assessed. We calculated average real variability (ARV) and standard deviation (SD) as metrics of BPV. As a secondary analysis, we calculated central BPV from the 24-h ambulatory BP monitoring. RESULTS 24-h urinary Na+ excretion (low = 41 ± 24, medium = 97 ± 43, high = 265 ± 92 mmol/24 h, P < 0.01) and serum Na+ (low = 140.0 ± 2.1, medium = 140.7 ± 2.7, high = 141.7 ± 2.5 mmol/l, P = 0.009) increased with greater salt intake. 24-h ambulatory ARV (systolic BP ARV: low = 9.5 ± 1.7, medium = 9.5 ± 1.2, high = 10.0 ± 1.9 mm Hg, P = 0.37) and beat-to-beat ARV (systolic BP ARV: low = 2.1 ± 0.6, medium = 2.0 ± 0.4, high = 2.2 ± 0.8 mm Hg, P = 0.46) were not different. 24-h ambulatory SD (systolic BP: P = 0.29) and beat-to-beat SD (systolic BP: P = 0.47) were not different. There was a trend for a main effect of the diet (P = 0.08) for 24-h ambulatory central systolic BPV. CONCLUSIONS Ten days of high sodium feeding does not augment peripheral BPV in healthy, adults. CLINICAL TRIALS REGISTRATION NCT02881515.
Collapse
Affiliation(s)
- Kamila U Migdal
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Matthew C Babcock
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, Delaware, USA
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin T Robinson
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, Delaware, USA
- School of Kinesiology, Neurovascular Physiology Laboratory, Auburn University, Auburn, Alabama, USA
| | - Joseph C Watso
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, Delaware, USA
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Megan M Wenner
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Sean D Stocker
- Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William B Farquhar
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
22
|
Smiljanec K, Mbakwe A, Ramos Gonzalez M, Farquhar WB, Lennon SL. Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults. Nutrients 2020; 12:nu12051206. [PMID: 32344796 PMCID: PMC7281996 DOI: 10.3390/nu12051206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
The influence of dietary sodium and potassium on blood pressure (BP) has been extensively studied, however their impact on endothelial function, particularly any interactive effects, has received less attention. The purpose of this study was to determine if dietary potassium can offset the deleterious effect of high dietary sodium on endothelial function independent of BP. Thirty-three adults with salt-resistant BP (16 M and 17 F; 27 ± 1 year) completed seven days each of the following diets in a random order: a moderate potassium/low sodium diet (65 mmol potassium/50 mmol sodium; MK/LS), a moderate potassium/high sodium diet (65mmol potassium/300 mmol sodium; MK/HS) and a high potassium/high sodium (120 mmol potassium/300 mmol sodium; HK/HS). On day seven of each diet, 24-h ambulatory BP and a urine collection were performed. Brachial artery flow-mediated dilation (FMD) was measured in response to reactive hyperemia. Between diets, 24-h BP was unchanged confirming salt resistance (p > 0.05). Sodium excretion increased on both HS diets compared to MK/LS (p < 0.05) and potassium excretion was increased on the HK diet compared to MK/LS and MK/HS (p < 0.05) confirming diet compliance. FMD was lower in MK/HS (5.4 ± 0.5%) compared to MK/LS (6.7 ± 0.5%; p < 0.05) and HK/HS (6.4 ± 0.5%), while there was no difference between the MK/LS and HK/HS diets (p > 0.05). These data suggest that dietary potassium provides vascular protection against the deleterious effects of high dietary sodium by restoring conduit artery function.
Collapse
|
23
|
Shenouda N, Ramick MG, Lennon SL, Farquhar WB, Edwards DG. High dietary sodium augments vascular tone and attenuates low-flow mediated constriction in salt-resistant adults. Eur J Appl Physiol 2020; 120:1383-1389. [PMID: 32306153 DOI: 10.1007/s00421-020-04370-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Low-flow mediated constriction (L-FMC) has emerged as a valuable and complementary measure of flow-mediated dilation (FMD) for assessing endothelial function non-invasively. High dietary sodium has been shown to impair FMD independent of changes in blood pressure (BP), but its effects on L-FMC are unknown. PURPOSE To test the hypothesis that high dietary sodium would attenuate brachial artery L-FMC in salt-resistant adults. METHODS Fifteen healthy, normotensive adults (29 ± 6 years) participated in a controlled feeding study. Following a run-in diet, participants completed a 7-day low sodium (LS; 20 mmol sodium/day) and 7-day high sodium (HS; 300 mmol sodium/day) diet in randomized order. On the last day of each diet, 24 h urine was collected and assessments of 24 h ambulatory BP and L-FMC were performed. Salt-resistance was defined as a change in 24 h ambulatory mean arterial pressure (MAP) between the LS and HS diets of ≤ 5 mmHg. Resting vascular tone and L-FMC were calculated from ultrasound-derived arterial diameters. RESULTS High dietary sodium increased serum sodium and urinary sodium excretion (p < 0.001 for both), but 24 h MAP was unchanged (p = 0.16) by design. High dietary sodium augmented vascular tone (LS: 91 ± 23%, HS: 125 ± 56%, p = 0.01) and attenuated L-FMC (LS: - 0.58 ± 0.99%, HS: 0.17 ± 1.23%, p = 0.008). CONCLUSION These findings in salt-resistant adults provide additional evidence that dietary sodium has adverse vascular effects independent of changes in BP.
Collapse
Affiliation(s)
- Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Meghan G Ramick
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.,Department of Kinesiology, West Chester University, West Chester, PA, USA
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
24
|
Barić L, Drenjančević I, Mihalj M, Matić A, Stupin M, Kolar L, Mihaljević Z, Mrakovčić-Šutić I, Šerić V, Stupin A. Enhanced Antioxidative Defense by Vitamins C and E Consumption Prevents 7-Day High-Salt Diet-Induced Microvascular Endothelial Function Impairment in Young Healthy Individuals. J Clin Med 2020; 9:jcm9030843. [PMID: 32244956 PMCID: PMC7141509 DOI: 10.3390/jcm9030843] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 01/07/2023] Open
Abstract
This study aimed to examine whether the oral supplementation of vitamins C and E during a seven-day high salt diet (HS; ~14 g salt/day) prevents microvascular endothelial function impairment and changes oxidative status caused by HS diet in 51 (26 women and 25 men) young healthy individuals. Laser Doppler flowmetry measurements demonstrated that skin post-occlusive reactive hyperemia (PORH), and acetylcholine-induced dilation (AChID) were significantly impaired in the HS group, but not in HS+C+E group, while sodium nitroprusside-induced dilation remained unaffected by treatments. Serum oxidative stress markers: Thiobarbituric acid reactive substances (TBARS), 8-iso prostaglandin-F2α, and leukocytes’ intracellular hydrogen peroxide (H2O2) production were significantly increased, while ferric-reducing ability of plasma (FRAP) and catalase concentrations were decreased in the HS group. All these parameters remained unaffected by vitamins supplementation. Matrix metalloproteinase 9, antioxidant enzymes Cu/Zn SOD and glutathione peroxidase 1, and leukocytes’ intracellular superoxide production remained unchanged after the protocols in both HS and HS+C+E groups. Importantly, multiple regression analysis revealed that FRAP was the most powerful predictor of AChID, while PORH was strongly predicted by both FRAP and renin-angiotensin system activity. Hereby, we demonstrated that oxidative dis-balance has the pivotal role in HS diet-induced impairment of endothelial and microvascular function in healthy individuals which could be prevented by antioxidative vitamins consumption.
Collapse
Affiliation(s)
- Lidija Barić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
- Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Luka Kolar
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
| | - Ines Mrakovčić-Šutić
- Department of Physiology and Immunology, Medical Faculty University of Rijeka, Ul. Braće Branchetta 20/1, HR-51000 Rijeka, Croatia;
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-31-512-800
| |
Collapse
|
25
|
Guers JJ, Farquhar WB, Edwards DG, Lennon SL. Voluntary Wheel Running Attenuates Salt-Induced Vascular Stiffness Independent of Blood Pressure. Am J Hypertens 2019; 32:1162-1169. [PMID: 31401651 DOI: 10.1093/ajh/hpz128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/17/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Excess dietary salt can lead to the development of arterial stiffness and high blood pressure (BP). Regular physical activity can protect against arterial stiffening and lower BP. Less is known regarding the role of exercise on the vasculature independent of BP under high salt (HS) conditions. The aim of the study was to determine whether wheel running protects against the development of dietary salt-induced arterial stiffness independent of BP. METHODS Rats were maintained on either normal salt (NS; 0.49% NaCl) or HS (4.0% NaCl) diet for 6 weeks and further divided into a voluntary wheel running (NS-VWR, HS-VWR) or cage control group (NS, HS). Carotid-femoral pulse wave velocity (PWV) was measured using applanation tonometry at baseline (BSL) and 6 weeks. RESULTS BP was measured weekly and remained unchanged among groups throughout the 6 weeks (P > 0.05). PWV was elevated at 6 weeks in HS compared to baseline (HS-BSL, 3.27 ± 0.17 vs. HS-6 week, 4.13 ± 0.26 m/s; P < 0.05) and was lower at 6 weeks in both VWR groups (NS-VWR, 2.98 ± 0.29, HS-VWR, 3.11 ± 0.23 m/s) when compared to HS at 6 weeks (P < 0.05). This was supported by a significant increase in aortic collagen I in the HS group alone and transforming growth factor beta (TGF-β) was greater in the HS group compared to both NS groups (P < 0.05). Wheel running resulted in a greater aortic phosphorylated eNOS and SOD-2 in HS-WVR (P < 0.05) compared to HS. CONCLUSIONS These data suggest that VWR may protect against collagen accumulation through a TGF-β-mediated pathway by improving nitric oxide bioavailability and redox balance in rats.
Collapse
Affiliation(s)
- John J Guers
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
26
|
Caldwell JT, Sutterfield SL, Post HK, Lovoy GM, Banister HR, Turpin VRG, Colburn TD, Hammond SS, Copp SW, Ade CJ. Impact of high sodium intake on blood pressure and functional sympatholysis during rhythmic handgrip exercise. Appl Physiol Nutr Metab 2019; 45:613-620. [PMID: 31725319 DOI: 10.1139/apnm-2019-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High dietary sodium intake is a risk factor for arterial hypertension; given that the ability to overcome sympathetically mediated vasoconstriction (functional sympatholysis) is attenuated in individuals with hypertension, we investigated the cardiovascular responses to high salt (HS) intake in healthy humans. We hypothesized that a HS intake of 15 g/day for 7 days would attenuate functional sympatholysis and augment the blood pressure response to handgrip exercise (HGE). Thirteen participants (6 males, 7 females) underwent 2 individual days of testing. Beat-by-beat blood pressure and heart rate were recorded throughout the trial on the non-exercising limb. Forearm blood flow was derived from ultrasonography on the brachial artery of the exercising limb. Participants then underwent a flow-mediated dilation (FMD) test. Next, a submaximal HGE was performed for 7 min with lower body negative pressure initiated during minutes 5-7. A single spot urine sample revealed a significant increase in sodium excretion during the HS conditions (p < 0.01). FMD was reduced during the HS condition. Mean arterial pressure was significantly higher during HS intake. No alteration to functional sympatholysis was found between conditions (p > 0.05). In summary, HS intake increases blood pressure without impacting functional sympatholysis or blood pressure responsiveness during HGE. These findings indicate that brachial artery dysfunction precedes an inefficient functional sympatholysis. Novelty Functional sympatholysis was not impacted by 1 week of high sodium intake. High sodium intake augmented the rate pressure product during handgrip exercise in healthy humans.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Shelbi L Sutterfield
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Hunter K Post
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Garrett M Lovoy
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Heather R Banister
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Vanessa-Rose G Turpin
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Stephen S Hammond
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
27
|
Alba BK, Stanhewicz AE, Dey P, Bruno RS, Kenney WL, Alexander LM. Controlled Feeding of an 8-d, High-Dairy Cheese Diet Prevents Sodium-Induced Endothelial Dysfunction in the Cutaneous Microcirculation of Healthy, Older Adults through Reductions in Superoxide. J Nutr 2019; 150:55-63. [PMID: 31504721 PMCID: PMC8659358 DOI: 10.1093/jn/nxz205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 07/26/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND While excess dietary sodium impairs vascular function by increasing oxidative stress, the dietary incorporation of dairy foods improves vascular health. We demonstrated that single-meal cheese consumption ameliorates acute, sodium-induced endothelial dysfunction. However, controlled feeding studies examining the inclusion of cheese, a dairy product that contains both bioactive constituents and sodium, are lacking. OBJECTIVES We tested the hypothesis that microcirculatory endothelium-dependent dilation (EDD) would be impaired by a high-sodium diet, but a sodium-matched diet high in dairy cheese would preserve EDD through oxidant stress mechanisms. METHODS We gave 11 adults without salt-sensitive blood pressure (<10 mmHg Δ mean arterial pressure; 64 ± 2 y) 4 separate 8-d controlled dietary interventions in a randomized, crossover design: a low-sodium, no-dairy intervention (LNa; 1500 mg/d sodium); a low-sodium, high-cheese intervention (LNaC; 1500 mg/d sodium, 170 g/d cheese); a high-sodium, no-dairy intervention (HNa; 5500 mg/d sodium); and a high-sodium, high-cheese intervention (HNaC; 5500 mg/d sodium, 170 g/d cheese). On Day 8 of each diet, EDD was assessed through a localized infusion (intradermal microdialysis) of acetylcholine (ACh), both alone and during coinfusion of NG-nitro-L-arginine methyl ester (NO synthase inhibitor), L-ascorbate (nonspecific antioxidant), apocynin [NAD(P)H oxidase inhibitor], or tempol (superoxide scavenger). RESULTS Compared with LNa, microvascular responsiveness to ACh was attenuated during HNa (LNa: -4.82 ± 0.20 versus HNa: -3.21 ± 0.55 M logEC50; P = 0.03) but not LNaC (-5.44 ± 0.20 M logEC50) or HNaC (-4.46 ± 0.50 M logEC50). Further, ascorbate, apocynin, and tempol administration each increased ACh-induced vasodilation during HNa only (Ringer's: 38.9 ± 2.4; ascorbate: 48.0 ± 2.5; tempol: 45.3 ± 2.7; apocynin: 48.5 ± 2.6% maximum cutaneous vascular conductance; all P values < 0.01). CONCLUSIONS These results demonstrate that incorporating dairy cheese into a high-sodium diet preserves EDD by decreasing the concentration of superoxide radicals. Consuming sodium in cheese, rather than in nondairy sources of sodium, may be an effective strategy to reduce cardiovascular disease risk in salt-insensitive, older adults. This trial was registered at clinicaltrials.gov as NCT03376555.
Collapse
Affiliation(s)
- Billie K Alba
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA,Address correspondence to BKA (E-mail: )
| | - Anna E Stanhewicz
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Barić L, Drenjančević I, Matić A, Stupin M, Kolar L, Mihaljević Z, Lenasi H, Šerić V, Stupin A. Seven-Day Salt Loading Impairs Microvascular Endothelium-Dependent Vasodilation without Changes in Blood Pressure, Body Composition and Fluid Status in Healthy Young Humans. Kidney Blood Press Res 2019; 44:835-847. [PMID: 31430746 DOI: 10.1159/000501747] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We aimed to assess whether a 7-day high-salt (HS) diet affects endothelium-dependent and/or endothelium-independent microvascular function in the absence of changes in arterial blood pressure (BP), and to determine whether such microvascular changes are associated with changes in body composition and fluid status in healthy young humans. MATERIALS AND METHODS Fifty-three young healthy individuals (28 women and 25 men) were assigned to a 7-day low-salt diet (<3.5 g salt/day) followed by a 7-day HS diet (∼14 g salt/day). Skin microvascular blood flow in response to iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) was assessed by laser Doppler flowmetry, and BP, heart rate (HR), plasma renin activity (PRA), serum aldosterone, serum and 24 h-urine sodium, potassium, urea and creatinine levels, together with body composition and fluid status measurement with a 4-terminal portable impedance analyzer were measured before and after diet protocols. RESULTS BP, HR, body composition and fluid status were unchanged, and PRA and serum aldosterone level were significantly suppressed after HS diet. ACh-induced dilation (AChID) was significantly impaired, while SNP-induced dilation was not affected by HS diet. Impaired AChID and increased salt intake, as well as impaired AChID and suppressed renin-angiotensin system were significantly positively correlated. Changes in body composition and fluid status parameters were not associated with impaired AChID. CONCLUSION 7-day HS diet impairs microvascular reactivity by affecting its endothelium-dependent vasodilation in young healthy individuals. Changes are independent of BP, body composition changes or fluid retention, but are the consequences of the unique effect of HS on endothelial function.
Collapse
Affiliation(s)
- Lidija Barić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, Osijek, Croatia
| | - Luka Kolar
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia, .,Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia,
| |
Collapse
|
29
|
Migdal KU, Robinson AT, Watso JC, Babcock MC, Serrador JM, Farquhar WB. A high-salt meal does not augment blood pressure responses during maximal exercise. Appl Physiol Nutr Metab 2019; 45:123-128. [PMID: 31238011 DOI: 10.1139/apnm-2019-0217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Augmented blood pressure (BP) responses during exercise are predictive of future cardiovascular disease. High dietary sodium (Na+) increases BP responses during static exercise. It remains unclear if high dietary Na+ augments BP responses during dynamic exercise. The purpose of this study was to test the hypothesis that an acute high-Na+ meal would augment BP responses during dynamic exercise. Twenty adults (10 male/10 female; age, 26 ± 5 years; BP, 105 ± 10/57 ± 6 mm Hg) were given a high-Na+ meal (HSM; 1495 mg Na+) and a low-Na+ meal (LSM; 138 mg Na+) separated by at least 1 week, in random order. Serum Na+ and plasma osmolality were measured. Eighty minutes following the meal, participants completed a graded-maximal exercise protocol on a cycle ergometer. Heart rate, beat-by-beat BP, cardiac output, total peripheral resistance, and manual BP were measured at rest and during exercise. Both serum Na+ (HSM: Δ1.6 ± 2.0 vs LSM: Δ1.1 ± 1.8 mmol/L, P = 0.0002) and plasma osmolality (HSM: Δ3.0 ± 4.5 vs LSM: Δ2.0 ± 4.2 mOsm/(kg·H2O), P = 0.01) were higher following the HSM. However, the HSM did not augment BP during peak exercise (systolic BP: HSM: 170 ± 23 vs LSM: 171 ± 21 mm Hg, P = 0.81). These findings suggest that an acute high-salt meal does not augment BP responses during dynamic exercise in adults. Novelty The high-salt meal increased serum sodium and plasma osmolality compared with the low-salt meal. The high-salt meal did not augment blood pressure responses during maximal dynamic exercise. This is important as augmented blood pressure responses during exercise put individuals at greater risk for development of cardiovascular disease.
Collapse
Affiliation(s)
- Kamila U Migdal
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Austin T Robinson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Jorge M Serrador
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ 07103, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Excess sodium from dietary salt (NaCl) is linked to elevations in blood pressure (BP). However, salt sensitivity of BP varies widely between individuals and there are data suggesting that salt adversely affects target organs, irrespective of BP. RECENT FINDINGS High dietary salt has been shown to adversely affect the vasculature, heart, kidneys, skin, brain, and bone. Common mediators of the target organ dysfunction include heightened inflammation and oxidative stress. These physiological alterations may contribute to disease development over time. Despite the adverse effects of salt on BP and several organ systems, there is controversy surrounding lower salt intakes and cardiovascular outcomes. Our goal here is to review the physiology contributing to BP-independent effects of salt and address the controversy around lower salt intakes and cardiovascular outcomes. We will also address the importance of background diet in modulating the effects of dietary salt.
Collapse
Affiliation(s)
- Austin T Robinson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 South College Avenue, 201M, Newark, DE, 19713, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 South College Avenue, 201M, Newark, DE, 19713, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 South College Avenue, 201M, Newark, DE, 19713, USA.
| |
Collapse
|
31
|
Babcock MC, Robinson AT, Migdal KU, Watso JC, Wenner MM, Stocker SD, Farquhar WB. Reducing Dietary Sodium to 1000 mg per Day Reduces Neurovascular Transduction Without Stimulating Sympathetic Outflow. Hypertension 2019; 73:587-593. [PMID: 30661474 PMCID: PMC6374182 DOI: 10.1161/hypertensionaha.118.12074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The American Heart Association recommends no more than 1500 mg of sodium/day as ideal. Some cohort studies suggest low-sodium intake is associated with increased cardiovascular mortality. Extremely low-sodium diets (≤500 mg/d) elicit activation of the renin-angiotensin-aldosterone system and stimulate sympathetic outflow. The effects of an American Heart Association-recommended diet on sympathetic regulation of the vasculature are unclear. Therefore, we assessed whether a 1000 mg/d diet alters sympathetic outflow and sympathetic vascular transduction compared with the more commonly recommended 2300 mg/d. We hypothesized that sodium reduction from 2300 to 1000 mg/d would not affect resting sympathetic outflow but would reduce sympathetic transduction in healthy young adults. Seventeen participants (age: 26±2 years, 9F/8M) completed 10-day 2300 and 1000 mg/d sodium diets in this randomized controlled feeding study (crossover). We measured resting renin activity, angiotensin II, aldosterone, blood pressure, muscle sympathetic nerve activity, and norepinephrine. We quantified beat-by-beat changes in mean arterial pressure and leg vascular conductance (femoral artery ultrasound) following spontaneous sympathetic bursts to assess sympathetic vascular transduction. Reducing sodium to 1000 mg/d increased renin activity, angiotensin II, and aldosterone ( P<0.01 for all) but did not alter mean arterial pressure (78±2 versus 77±2 mm Hg, P=0.56), muscle sympathetic nerve activity (13.9±1.3 versus 13.9±0.8 bursts/min, P=0.98), or plasma/urine norepinephrine. Sympathetic vascular transduction decreased ( P<0.01). These data suggest that reducing sodium from 2300 to 1000 mg/d stimulates the renin-angiotensin-aldosterone system, does not increase resting basal sympathetic outflow, and reduces sympathetic vascular transduction in normotensive adults.
Collapse
Affiliation(s)
- Matthew C. Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713
| | - Austin T. Robinson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713
| | - Kamila U. Migdal
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713
| | - Joseph C. Watso
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713
| | - Megan M. Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713
| | - Sean D. Stocker
- Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh, Pittsburgh, PA 15261
| | - William B. Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713
| |
Collapse
|
32
|
Guers JJ, Kasecky-Lardner L, Farquhar WB, Edwards DG, Lennon SL. Voluntary wheel running prevents salt-induced endothelial dysfunction: role of oxidative stress. J Appl Physiol (1985) 2018; 126:502-510. [PMID: 30571282 DOI: 10.1152/japplphysiol.00421.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diets high in salt can lead to endothelial dysfunction, a nontraditional risk factor for cardiovascular disease (CVD). Exercise is known to reduce CVD risk; however, it remains unknown whether chronic physical activity can attenuate salt-induced endothelial dysfunction independent of blood pressure (BP) and whether these changes are due to an upregulation in endogenous antioxidants. Eight-week-old Sprague-Dawley rats were fed either a normal (NS; 0.49%)- or a high (HS; 4.0%)-salt diet and further divided into voluntary wheel running (NS-VWR, HS-VWR) and sedentary (NS, HS) groups for 6 wk. BP was measured weekly and remained unchanged within groups ( P = 0.373). Endothelium-dependent relaxation (EDR) was impaired in the femoral artery of HS compared with NS (38.6 ± 4.0% vs. 65.0 ± 3.6%; P = 0.013) animals, whereas it was not different between NS and HS-VWR (73.4 ± 6.4%; P = 0.273) animals. Incubation with the antioxidants TEMPOL ( P = 0.024) and apocynin ( P = 0.013) improved EDR in HS animals, indicating a role for reactive oxygen species (ROS). Wheel running upregulated the antioxidant superoxide dismutase-2 (SOD-2) ( P = 0.011) under HS conditions and lowered NOX4 and Gp91-phox, two subunits of NADPH oxidase. Wheel running elevated phosphorylated endothelial nitric oxide synthase (eNOS) ( P = 0.014) in HS-fed rats, demonstrating a role for physical activity and eNOS activity under HS conditions. Finally, there was a reduction in EDR ( P = 0.038) when femoral arteries from NS-VWR animals were incubated with TEMPOL or apocynin, suggesting there may be a critical level of ROS needed to maintain endothelial function. In summary, physical activity protected HS-fed rats from reductions in endothelial function, likely through increased SOD-2 levels and reduced oxidative stress. NEW & NOTEWORTHY Our data suggest that voluntary wheel running can prevent impairments in endothelium-dependent relaxation in the femoral artery of rats fed a high-salt diet. This appears to be independent of blood pressure and mediated through a decrease in expression of NADPH oxidases as a result of physical activity. These data suggest that increased chronic physical activity can protect the vasculature from a diet high in salt, likely through a reduction in oxidative stress.
Collapse
Affiliation(s)
- John J Guers
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Department of Biological Sciences, University of Delaware , Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Department of Biological Sciences, University of Delaware , Newark, Delaware
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
33
|
Wenner MM, Paul EP, Robinson AT, Rose WC, Farquhar WB. Acute NaCl Loading Reveals a Higher Blood Pressure for a Given Serum Sodium Level in African American Compared to Caucasian Adults. Front Physiol 2018; 9:1354. [PMID: 30327611 PMCID: PMC6174209 DOI: 10.3389/fphys.2018.01354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
Purpose: African American individuals are more prone to salt-sensitive hypertension than Caucasian individuals. Small changes in serum sodium (Na+) result in increased blood pressure (BP). However, it remains unclear if there are racial differences in BP responsiveness to increases in serum Na+. Therefore, the purpose of this investigation was to determine if African American adults have altered BP responsiveness to acute changes in serum Na+ compared to Caucasian adults. Methods: We measured beat-by-beat BP, serum Na+, plasma renin activity (PRA), angiotensin II (Ang II), and aldosterone (Aldo) during a 60-min 3% NaCl infusion (hypertonic saline infusion, HSI) in 39 participants (19 African Americans, age: 23 ± 1, 20 Caucasians, age: 25 ± 1). Data reported as African American vs. Caucasian cohort, mean ± SEM. Results: Baseline BP and serum Na+ were similar between groups and increased during HSI in both African American and Caucasian participants (p < 0.01). However, the peak change in serum Na+ was greater in African American participants (Δ5.8 ± 0.34 vs. Δ4.85 ± 0.38 mmol/L, p = 0.03). There was a significant group effect (p = 0.02) and an interaction between race and serum Na+ on systolic BP (p = 0.02). Larger categorical changes in serum Na+ corresponded to changes in systolic BP (p < 0.01) and African American participants demonstrated greater systolic BP responses for a given categorical serum Na+ increase (p < 0.01). Baseline Aldo was lower in African American adults (7.2 ± 0.6 vs. 12.0 ± 1.9 ng/dL, p = 0.03), there was a trend for lower baseline PRA (0.59 ± 0.9 vs. 1.28 ± 0.34 ng/mL/h, p = 0.07), and baseline Ang II was not different (14.2 ± 1.8 vs. 18.5 ± 1.4 pg/mL, p = 0.17). PRA and Aldo decreased during the HSI (p ≤ 0.01), with a greater decline in PRA (Δ–0.31 ± 0.07 vs. Δ–0.85 ± 0.25 ng/mL/h, p < 0.01) and Aldo (Δ–2.5 ± 0.5 vs. Δ–5.0 ± 1.1 ng/dL, p < 0.01) in Caucasian participants. However, the racial difference in PRA (p = 0.57) and Aldo (p = 0.59) reduction were no longer significant following baseline covariate analysis. Conclusion: African American individuals demonstrate augmented serum Na+ to an acute hypertonic saline load and greater systolic BP responsiveness to a given serum Na+. The altered BP response may be attributable to lower basal PRA and Aldo and a subsequently blunted RAAS response during the HSI.
Collapse
Affiliation(s)
- Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Erin P Paul
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Austin T Robinson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - William C Rose
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
34
|
Abstract
Abstract
Background
Sodium-induced microcirculatory changes, endothelial surface layer alterations in particular, may play an important role in sodium-mediated blood pressure elevation. However, effects of acute and chronic sodium loading on the endothelial surface layer and microcirculation in humans have not been established. The objective of this study was to assess sodium-induced changes in blood pressure and body weight as primary outcomes and also in microvascular permeability, sublingual microcirculatory dimensions, and urinary glycosaminoglycan excretion in healthy subjects.
Methods
Twelve normotensive males followed both a low-sodium diet (less than 50 mmol/day) and a high-sodium diet (more than 200 mmol/day) for eight days in randomized order, separated by a crossover period. After the low-sodium diet, hypertonic saline (5 mmol sodium/liter body water) was administered intravenously in 30 min.
Results
Both sodium interventions did not change blood pressure. Body weight increased with 2.5 (95% CI, 1.7 to 3.2) kg (P < 0.001) after dietary sodium loading. Acute intravenous sodium loading resulted in increased transcapillary escape rate of 125I-labeled albumin (2.7 [0.1 to 5.3] % cpm · g−1 · h–1; P = 0.04), whereas chronic dietary sodium loading did not affect transcapillary escape rate of 125I-labeled albumin (−0.03 [−3.3 to 3.2] % cpm · g−1 · h–1; P = 1.00), despite similar increases of plasma sodium and osmolality. Acute intravenous sodium loading coincided with significantly increased plasma volume, as assessed by the distribution volume of albumin, and significantly decreased urinary excretion of heparan sulfate and chondroitin sulfate. These changes were not observed after dietary sodium loading.
Conclusions
Our results suggest that intravenous sodium loading has direct adverse effects on the endothelial surface layer, independent of blood pressure.
Collapse
|
35
|
Muth BJ, Brian MS, Chirinos JA, Lennon SL, Farquhar WB, Edwards DG. Central systolic blood pressure and aortic stiffness response to dietary sodium in young and middle-aged adults. ACTA ACUST UNITED AC 2017; 11:627-634. [PMID: 28830669 DOI: 10.1016/j.jash.2017.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023]
Abstract
High dietary sodium intake can lead to hypertension and increased incidence of cardiovascular disease. We sought to determine the effect of short-term dietary sodium loading on central blood pressure and arterial stiffness in young (YG; 22-40 years) and middle-aged (MA; 41-60 years) normotensive adults. YG (n = 49; age: 27 ± 1 years) and MA (n = 36; age: 52 ± 1 years) subjects were randomized, in a cross-over design, to 7 days of low-sodium (LS; 20 mmol/d) or high-sodium (HS; 300 mmol/d) diet. On the last day of each diet, central pressures, forward and reflected wave amplitudes (via radial artery applanation tonometry), and carotid-femoral pulse wave velocity were assessed. Central systolic blood pressure (cSBP) was greater after HS in both YG (LS: 96 ± 1 vs. HS: 99 ± 1 mm Hg; P = .012) and MA (LS: 106 ± 2 vs. HS: 115 ± 3 mm Hg; P < .001). However, the increase in cSBP was greater in MA (YG: 4 ± 1 vs. MA: 9 ± 2; P = .02). In MA subjects, HS elicited greater forward (LS: 25 ± 1 vs. HS: 29 ± 1 mm Hg; P < .001) and reflected (LS: 19 ± 1 vs. HS: 23 ± 1 mm Hg; P < .001) wave amplitudes. Carotid-femoral pulse wave velocity was also greater in MA on HS but after adjustment for mean arterial pressure, the difference was no longer significant. Our data indicate that HS intake leads to a greater increase in cSBP in MA adults, which may be the result of increased forward and reflected wave amplitudes.
Collapse
Affiliation(s)
- Bryce J Muth
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Julio A Chirinos
- University of Pennsylvania School of Medicine and Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
36
|
Center of Biomedical Research Excellence in Cardiovascular Health. Dela J Public Health 2017; 3:4-10. [PMID: 34466904 PMCID: PMC8352516 DOI: 10.32481/djph.2017.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure. J Hypertens 2016; 34:676-84. [PMID: 26848993 DOI: 10.1097/hjh.0000000000000852] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The aims of this study were to test the hypothesis that short-term high salt intake reduces macrovascular and microvascular endothelial function in the absence of changes in blood pressure and to determine whether acute exercise restores endothelial function after high salt in women. MATERIALS AND METHODS Twelve women were administered high salt (11 g of sodium chloride for 7 days) and then underwent a weightlifting session. Brachial artery flow-mediated dilation and nitroglycerin dilation were measured with ultrasound at baseline, after high salt, and after weightlifting. Subcutaneous fat tissue biopsies were obtained at baseline, after high salt, and after weightlifting. Resistance arteries from biopsies were cannulated for vascular reactivity measurements in response to flow [flow-induced dilation (FID)] and acetylcholine. RESULTS Blood pressure was similar before and after high salt diet. Brachial flow-mediated dilation was reduced after high salt diet but was not affected by acute weightlifting. Brachial nitroglycerin dilations were similar before and after high salt. FID and acetylcholine-induced dilation of resistance arteries were similar to that of before and after high salt diet. FID and acetylcholine-induced dilation was not altered by weightlifting after high salt diet. However, N-nitro-L-arginine methyl ester significantly reduced FID at baseline and after exercise but had no effect dilator reactivity after high salt diet alone. CONCLUSION These data suggest that high salt intake reduces brachial artery endothelial function and switches the mediator of vasodilation in the microcirculation to a non-nitric oxide-dependent mechanism in healthy adults and acute exercise may switch the dilator mechanism back to nitric oxide during high salt diet.
Collapse
|
38
|
Abstract
In 2010, the American College of Cardiology Foundation and American Heart Association could not recommend brachial artery percentage flow-mediated dilation (FMD%) for risk assessment of coronary artery disease (CAD) in asymptomatic adults. We aimed to scrutinise past and recently published findings regarding FMD% in this same context of clinical utility and conclude that (1) the question of whether brachial FMD% is a suitable substitute for coronary vasodilation is addressed by method agreement statistics rather than the correlation coefficients that have been reported in past studies. Also, the much-repeated view that brachial FMD% and coronary vasodilation are "closely related" is not entirely justified, even before the influence of baseline lumen diameters on this relationship is accounted for; (2) along with the specialist training and the considerable time (≥1 h) that is required for the FMD% protocol, the error in individual measurements and population reference ranges is too large for clinical decisions to be robust on individual patients; (3) many interventions that are proposed to change FMD% also change baseline artery diameter, which can bias estimates of any intervention effects on the flow-mediated response per se, and (4) the FMD% index generates spurious correlations between shear rate, artery diameter and endothelial function, which may help to explain the apparent paradoxes of FMD% being higher in obese people and lower in athletes. In conclusion, the clinical relevance of brachial artery flow-mediated dilation is unclear at present. The dependence of the chosen index, FMD%, on initial artery size has contributed to this lack of clarity.
Collapse
Affiliation(s)
- Greg Atkinson
- Health and Social Care Institute, School of Health and Social Care, Teesside University, Parkside West, Middlesbrough, Tees Valley, TS1 3BA, UK,
| | | |
Collapse
|
39
|
Boegehold MA, Drenjancevic I, Lombard JH. Salt, Angiotensin II, Superoxide, and Endothelial Function. Compr Physiol 2015; 6:215-54. [PMID: 26756632 DOI: 10.1002/cphy.c150008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper function of the vascular endothelium is essential for cardiovascular health, in large part due to its antiproliferative, antihypertrophic, and anti-inflammatory properties. Crucial to the protective role of the endothelium is the production and liberation of nitric oxide (NO), which not only acts as a potent vasodilator, but also reduces levels of reactive oxygen species, including superoxide anion (O2•-). Superoxide anion is highly injurious to the vasculature because it not only scavenges NO molecules, but has other damaging effects, including direct oxidative disruption of normal signaling mechanisms in the endothelium and vascular smooth muscle cells. The renin-angiotensin system plays a crucial role in the maintenance of normal blood pressure. This function is mediated via the peptide hormone angiotensin II (ANG II), which maintains normal blood volume by regulating Na+ excretion. However, elevation of ANG II above normal levels increases O2•- production, promotes oxidative stress and endothelial dysfunction, and plays a major role in multiple disease conditions. Elevated dietary salt intake also leads to oxidant stress and endothelial dysfunction, but these occur in the face of salt-induced ANG II suppression and reduced levels of circulating ANG II. While the effects of abnormally high levels of ANG II have been extensively studied, far less is known regarding the mechanisms of oxidant stress and endothelial dysfunction occurring in response to chronic exposure to abnormally low levels of ANG II. The current article focuses on the mechanisms and consequences of this less well understood relationship among salt, superoxide, and endothelial function.
Collapse
Affiliation(s)
| | - Ines Drenjancevic
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW High dietary salt intake is detrimental in hypertensive and salt-sensitive individuals; however, there are a large number of normotensive salt-resistant individuals for whom dietary salt may also be harmful as a result of the blood pressure-independent effects of salt. This review will focus on the growing evidence that salt has adverse effects on the vasculature, independent of blood pressure. RECENT FINDINGS Data from both animal and human studies provide evidence that salt impairs endothelial function and increases arterial stiffness, independent of blood pressure. High dietary salt results in oxidative stress and increased endothelial cell stiffness, which impair endothelial function, whereas transforming growth factor beta promotes increased arterial stiffness in the presence of endothelial dysfunction. SUMMARY Health policies and most clinical research are focused on the adverse effects of dietary salt on blood pressure; however, there is an increasing body of evidence to support a deleterious effect of dietary salt on endothelial function and arterial stiffness independent of blood pressure. Endothelial dysfunction and increased arterial stiffness are predictors of cardiovascular disease; therefore, reducing excess dietary salt should be considered important for overall vascular health in addition to blood pressure.
Collapse
|
41
|
Matthews EL, Brian MS, Ramick MG, Lennon-Edwards S, Edwards DG, Farquhar WB. High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure. J Appl Physiol (1985) 2015; 118:1510-5. [PMID: 26078434 DOI: 10.1152/japplphysiol.00023.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
Recent studies demonstrate that high dietary sodium (HS) impairs endothelial function in those with salt-resistant (SR) blood pressure (BP). The effect of HS on endothelial function in those with salt-sensitive (SS) BP is not currently known. We hypothesized that HS would impair brachial artery flow-mediated dilation (FMD) to a greater extent in SS compared with SR adults. Ten SR (age 42 ± 5 yr, 5 men, 5 women) and 10 SS (age 39 ± 5 yr, 5 men, 5 women) healthy, normotensive participants were enrolled in a controlled feeding study consisting of a run-in diet followed by a 7-day low dietary sodium (LS) (20 mmol/day) and a 7-day HS (300 mmol/day) diet in random order. Brachial artery FMD and 24-h BP were assessed on the last day of each diet. SS BP was individually assessed and defined as a change in 24-h mean arterial pressure (MAP) of >5 mmHg between the LS and HS diets (ΔMAP: SR -0.6 ± 1.2, SS 7.7 ± 0.4 mmHg). Brachial artery FMD was lower in both SS and SR individuals during the HS diet (P < 0.001), and did not differ between groups (P > 0.05) (FMD: SR LS 10.6 ± 1.3%, SR HS 7.2 ± 1.5%, SS LS 12.5 ± 1.7%, SS HS 7.8 ± 1.4%). These data indicate that an HS diet impairs brachial artery FMD to a similar extent in adults with SS BP and SR BP.
Collapse
Affiliation(s)
- Evan L Matthews
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Meghan G Ramick
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Shannon Lennon-Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| |
Collapse
|