1
|
Vinci M, Vitello GA, Greco D, Treccarichi S, Ragalmuto A, Musumeci A, Fallea A, Federico C, Calì F, Saccone S, Elia M. Next Generation Sequencing and Electromyography Reveal the Involvement of the P2RX6 Gene in Myopathy. Curr Issues Mol Biol 2024; 46:1150-1163. [PMID: 38392191 PMCID: PMC10887510 DOI: 10.3390/cimb46020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Ion channelopathies result from impaired ion channel protein function, due to mutations affecting ion transport across cell membranes. Over 40 diseases, including neuropathy, pain, migraine, epilepsy, and ataxia, are associated with ion channelopathies, impacting electrically excitable tissues and significantly affecting skeletal muscle. Gene mutations affecting transmembrane ionic flow are strongly linked to skeletal muscle disorders, particularly myopathies, disrupting muscle excitability and contraction. Electromyography (EMG) analysis performed on a patient who complained of weakness and fatigue revealed the presence of primary muscular damage, suggesting an early-stage myopathy. Whole exome sequencing (WES) did not detect potentially causative variants in known myopathy-associated genes but revealed a novel homozygous deletion of the P2RX6 gene likely disrupting protein function. The P2RX6 gene, predominantly expressed in skeletal muscle, is an ATP-gated ion channel receptor belonging to the purinergic receptors (P2RX) family. In addition, STRING pathways suggested a correlation with more proteins having a plausible role in myopathy. No previous studies have reported the implication of this gene in myopathy. Further studies are needed on patients with a defective ion channel pathway, and the use of in vitro functional assays in suppressing P2RX6 gene expression will be required to validate its functional role.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | |
Collapse
|
2
|
Melancon K, Pliushcheuskaya P, Meiler J, Künze G. Targeting ion channels with ultra-large library screening for hit discovery. Front Mol Neurosci 2024; 16:1336004. [PMID: 38249296 PMCID: PMC10796734 DOI: 10.3389/fnmol.2023.1336004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Ion channels play a crucial role in a variety of physiological and pathological processes, making them attractive targets for drug development in diseases such as diabetes, epilepsy, hypertension, cancer, and chronic pain. Despite the importance of ion channels in drug discovery, the vastness of chemical space and the complexity of ion channels pose significant challenges for identifying drug candidates. The use of in silico methods in drug discovery has dramatically reduced the time and cost of drug development and has the potential to revolutionize the field of medicine. Recent advances in computer hardware and software have enabled the screening of ultra-large compound libraries. Integration of different methods at various scales and dimensions is becoming an inevitable trend in drug development. In this review, we provide an overview of current state-of-the-art computational chemistry methodologies for ultra-large compound library screening and their application to ion channel drug discovery research. We discuss the advantages and limitations of various in silico techniques, including virtual screening, molecular mechanics/dynamics simulations, and machine learning-based approaches. We also highlight several successful applications of computational chemistry methodologies in ion channel drug discovery and provide insights into future directions and challenges in this field.
Collapse
Affiliation(s)
- Kortney Melancon
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Georg Künze
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Mínguez-Viñas T, Prakash V, Wang K, Lindström SH, Pozzi S, Scott SA, Spiteri E, Stevenson DA, Ashley EA, Gunnarsson C, Pantazis A. Two epilepsy-associated variants in KCNA2 (K V 1.2) at position H310 oppositely affect channel functional expression. J Physiol 2023; 601:5367-5389. [PMID: 37883018 DOI: 10.1113/jp285052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV β1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV β1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.
Collapse
Affiliation(s)
- Teresa Mínguez-Viñas
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Varsha Prakash
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kaiqian Wang
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sarah H Lindström
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Serena Pozzi
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stuart A Scott
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth Spiteri
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - David A Stevenson
- Division of Medical Genetics, Stanford University, Palo Alto, California, USA
| | - Euan A Ashley
- Division of Medical Genetics, Stanford University, Palo Alto, California, USA
| | - Cecilia Gunnarsson
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Genetics, Linköping University, Linköping, Sweden
- Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | - Antonios Pantazis
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Tsortouktzidis D, Tröscher AR, Schulz H, Opitz T, Schoch S, Becker AJ, van Loo KMJ. A Versatile Clustered Regularly Interspaced Palindromic Repeats Toolbox to Study Neurological CaV3.2 Channelopathies by Promoter-Mediated Transcription Control. Front Mol Neurosci 2022; 14:667143. [PMID: 35069110 PMCID: PMC8770422 DOI: 10.3389/fnmol.2021.667143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Precise genome editing in combination with viral delivery systems provides a valuable tool for neuroscience research. Traditionally, the role of genes in neuronal circuits has been addressed by overexpression or knock-out/knock-down systems. However, those techniques do not manipulate the endogenous loci and therefore have limitations. Those constraints include that many genes exhibit extensive alternative splicing, which can be regulated by neuronal activity. This complexity cannot be easily reproduced by overexpression of one protein variant. The CRISPR activation and interference/inhibition systems (CRISPRa/i) directed to promoter sequences can modulate the expression of selected target genes in a highly specific manner. This strategy could be particularly useful for the overexpression of large proteins and for alternatively spliced genes, e.g., for studying large ion channels known to be affected in ion channelopathies in a variety of neurological diseases. Here, we demonstrate the feasibility of a newly developed CRISPRa/i toolbox to manipulate the promoter activity of the Cacna1h gene. Impaired, function of the low-voltage-activated T-Type calcium channel CaV3.2 is involved in genetic/mutational as well as acquired/transcriptional channelopathies that emerge with epileptic seizures. We show CRISPR-induced activation and inhibition of the Cacna1h locus in NS20Y cells and primary cortical neurons, as well as activation in mouse organotypic slice cultures. In future applications, the system offers the intriguing perspective to study functional effects of gain-of-function or loss-of-function variations in the Cacna1h gene in more detail. A better understanding of CaV3.2 channelopathies might result in a major advancement in the pharmacotherapy of CaV3.2 channelopathy diseases.
Collapse
Affiliation(s)
- Despina Tsortouktzidis
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
| | - Anna R. Tröscher
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
- Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
| | - Albert J. Becker
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
| | - Karen M. J. van Loo
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Karen M. J. van Loo,
| |
Collapse
|
5
|
Hou X, Tang L, Li X, Xiong F, Mo Y, Jiang X, Deng X, Peng M, Wu P, Zhao M, Ouyang J, Shi L, He Y, Yan Q, Zhang S, Gong Z, Li G, Zeng Z, Wang F, Guo C, Xiong W. Potassium Channel Protein KCNK6 Promotes Breast Cancer Cell Proliferation, Invasion, and Migration. Front Cell Dev Biol 2021; 9:616784. [PMID: 34195184 PMCID: PMC8237943 DOI: 10.3389/fcell.2021.616784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer is the most common malignant tumor in women, and its incidence is increasing each year. To effectively treat breast cancer, it is important to identify genes involved in its occurrence and development and to exploit them as potential drug therapy targets. Here, we found that potassium channel subfamily K member 6 (KCNK6) is significantly overexpressed in breast cancer, however, its function in tumors has not been reported. We further verified that KCNK6 expression is upregulated in breast cancer biopsies. Moreover, overexpressed KCNK6 was found to enhance the proliferation, invasion, and migration ability of breast cancer cells. These effects may occur by weakening cell adhesion and reducing cell hardness, thus affecting the malignant phenotype of breast cancer cells. Our study confirmed, for the first time, that increased KCNK6 expression in breast cancer cells may promote their proliferation, invasion, and migration. Moreover, considering that ion channels serve as therapeutic targets for many small molecular drugs in clinical treatment, targeting KCNK6 may represent a novel strategy for breast cancer therapies. Hence, the results of this study provide a theoretical basis for KCNK6 to become a potential molecular target for breast cancer treatment in the future.
Collapse
Affiliation(s)
- Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Le Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xianjie Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiangying Deng
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Miao Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pan Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mengyao Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jiawei Ouyang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Ion channelopathies to bridge molecular lesions, channel function, and clinical therapies. Pflugers Arch 2021; 472:733-738. [PMID: 32607810 DOI: 10.1007/s00424-020-02424-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Rivas S, Hanif K, Chakouri N, Ben-Johny M. Probing ion channel macromolecular interactions using fluorescence resonance energy transfer. Methods Enzymol 2021; 653:319-347. [PMID: 34099178 DOI: 10.1016/bs.mie.2021.01.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ion channels are macromolecular complexes whose functions are exquisitely tuned by interacting proteins. Fluorescence resonance energy transfer (FRET) is a powerful methodology that is adept at quantifying ion channel protein-protein interactions in living cells. For FRET experiments, the interacting partners are tagged with appropriate donor and acceptor fluorescent proteins. If the fluorescently-labeled molecules are in close proximity, then photoexcitation of the donor results in non-radiative energy transfer to the acceptor, and subsequent fluorescence emission of the acceptor. The stoichiometry of ion channel interactions and their relative binding affinities can be deduced by quantifying both the FRET efficiency and the total number of donors and acceptors in a given cell. In this chapter, we discuss general considerations for FRET analysis of biological interactions, various strategies for estimating FRET efficiencies, and detailed protocols for construction of binding curves and determination of stoichiometry. We focus on implementation of FRET assays using a flow cytometer given its amenability for high-throughput data acquisition, enhanced accessibility, and robust analysis. This versatile methodology permits mechanistic dissection of dynamic changes in ion channel interactions.
Collapse
Affiliation(s)
- Sharen Rivas
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | | | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States.
| |
Collapse
|
8
|
Palmisano VF, Gómez-Rodellar C, Pollak H, Cárdenas G, Corry B, Faraji S, Nogueira JJ. Binding of azobenzene and p-diaminoazobenzene to the human voltage-gated sodium channel Na v1.4. Phys Chem Chem Phys 2021; 23:3552-3564. [PMID: 33514952 DOI: 10.1039/d0cp06140a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activity of voltage-gated ion channels can be controlled by the binding of photoswitches inside their internal cavity and subsequent light irradiation. We investigated the binding of azobenzene and p-diaminoazobenzene to the human Nav1.4 channel in the inactivated state by means of Gaussian accelerated molecular dynamics simulations and free-energy computations. Three stable binding pockets were identified for each of the two photoswitches. In all the cases, the binding is controlled by the balance between the favorable hydrophobic interactions of the ligands with the nonpolar residues of the protein and the unfavorable polar solvation energy. In addition, electrostatic interactions between the ligand and the polar aminoacids are also relevant for p-diaminoazobenzene due to the presence of the amino groups on the benzene moieties. These groups participate in hydrogen bonding in the most favorable binding pocket and in long-range electrostatic interactions in the other pockets. The thermodinamically preferred binding sites found for both photoswitches are close to the selectivity filter of the channel. Therefore, it is very likely that the binding of these ligands will induce alterations in the ion conduction through the channel.
Collapse
Affiliation(s)
- Vito F Palmisano
- Department of Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ávalos Prado P, Häfner S, Comoglio Y, Wdziekonski B, Duranton C, Attali B, Barhanin J, Sandoz G. KCNE1 is an auxiliary subunit of two distinct ion channel superfamilies. Cell 2020; 184:534-544.e11. [PMID: 33373586 DOI: 10.1016/j.cell.2020.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022]
Abstract
Determination of what is the specificity of subunits composing a protein complex is essential when studying gene variants on human pathophysiology. The pore-forming α-subunit KCNQ1, which belongs to the voltage-gated ion channel superfamily, associates to its β-auxiliary subunit KCNE1 to generate the slow cardiac potassium IKs current, whose dysfunction leads to cardiac arrhythmia. Using pharmacology, gene invalidation, and single-molecule fluorescence assays, we found that KCNE1 fulfils all criteria of a bona fide auxiliary subunit of the TMEM16A chloride channel, which belongs to the anoctamin superfamily. Strikingly, assembly with KCNE1 switches TMEM16A from a calcium-dependent to a voltage-dependent ion channel. Importantly, clinically relevant inherited mutations within the TMEM16A-regulating domain of KCNE1 abolish the TMEM16A modulation, suggesting that the TMEM16A-KCNE1 current may contribute to inherited pathologies. Altogether, these findings challenge the dogma of the specificity of auxiliary subunits regarding protein complexes and questions ion channel classification.
Collapse
Affiliation(s)
- Pablo Ávalos Prado
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Stephanie Häfner
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Yannick Comoglio
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Brigitte Wdziekonski
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Christophe Duranton
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France; Université Côte d'Azur, CNRS, LP2M, Medical Faculty, Nice, France
| | - Bernard Attali
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Jacques Barhanin
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France; Université Côte d'Azur, CNRS, LP2M, Medical Faculty, Nice, France
| | - Guillaume Sandoz
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
10
|
Clerx M, Beattie KA, Gavaghan DJ, Mirams GR. Four Ways to Fit an Ion Channel Model. Biophys J 2019; 117:2420-2437. [PMID: 31493859 PMCID: PMC6990153 DOI: 10.1016/j.bpj.2019.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Mathematical models of ionic currents are used to study the electrophysiology of the heart, brain, gut, and several other organs. Increasingly, these models are being used predictively in the clinic, for example, to predict the risks and results of genetic mutations, pharmacological treatments, or surgical procedures. These safety-critical applications depend on accurate characterization of the underlying ionic currents. Four different methods can be found in the literature to fit voltage-sensitive ion channel models to whole-cell current measurements: method 1, fitting model equations directly to time-constant, steady-state, and I-V summary curves; method 2, fitting by comparing simulated versions of these summary curves to their experimental counterparts; method 3, fitting to the current traces themselves from a range of protocols; and method 4, fitting to a single current trace from a short and rapidly fluctuating voltage-clamp protocol. We compare these methods using a set of experiments in which hERG1a current was measured in nine Chinese hamster ovary cells. In each cell, the same sequence of fitting protocols was applied, as well as an independent validation protocol. We show that methods 3 and 4 provide the best predictions on the independent validation set and that short, rapidly fluctuating protocols like that used in method 4 can replace much longer conventional protocols without loss of predictive ability. Although data for method 2 are most readily available from the literature, we find it performs poorly compared to methods 3 and 4 both in accuracy of predictions and computational efficiency. Our results demonstrate how novel experimental and computational approaches can improve the quality of model predictions in safety-critical applications.
Collapse
Affiliation(s)
- Michael Clerx
- Computational Biology & Health Informatics, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Kylie A Beattie
- Computational Biology & Health Informatics, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - David J Gavaghan
- Computational Biology & Health Informatics, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
11
|
PhcrTx2, a New Crab-Paralyzing Peptide Toxin from the Sea Anemone Phymanthus crucifer. Toxins (Basel) 2018; 10:toxins10020072. [PMID: 29414882 PMCID: PMC5848173 DOI: 10.3390/toxins10020072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022] Open
Abstract
Sea anemones produce proteinaceous toxins for predation and defense, including peptide toxins that act on a large variety of ion channels of pharmacological and biomedical interest. Phymanthus crucifer is commonly found in the Caribbean Sea; however, the chemical structure and biological activity of its toxins remain unknown, with the exception of PhcrTx1, an acid-sensing ion channel (ASIC) inhibitor. Therefore, in the present work, we focused on the isolation and characterization of new P. crucifer toxins by chromatographic fractionation, followed by a toxicity screening on crabs, an evaluation of ion channels, and sequence analysis. Five groups of toxic chromatographic fractions were found, and a new paralyzing toxin was purified and named PhcrTx2. The toxin inhibited glutamate-gated currents in snail neurons (maximum inhibition of 35%, IC50 4.7 µM), and displayed little or no influence on voltage-sensitive sodium/potassium channels in snail and rat dorsal root ganglion (DRG) neurons, nor on a variety of cloned voltage-gated ion channels. The toxin sequence was fully elucidated by Edman degradation. PhcrTx2 is a new β-defensin-fold peptide that shares a sequence similarity to type 3 potassium channels toxins. However, its low activity on the evaluated ion channels suggests that its molecular target remains unknown. PhcrTx2 is the first known paralyzing toxin in the family Phymanthidae.
Collapse
|
12
|
Abstract
Voltage-gated sodium channels belong to the superfamily of voltage-gated cation channels. Their structure is based on domains comprising a voltage sensor domain (S1-S4 segments) and a pore domain (S5-S6 segments). Mutations in positively charged residues of the S4 segments may allow protons or cations to pass directly through the gating pore constriction of the voltage sensor domain; these anomalous currents are referred to as gating pore or omega (ω) currents. In the skeletal muscle disorder hypokalemic periodic paralysis, and in arrhythmic dilated cardiomyopathy, inherited mutations of S4 arginine residues promote omega currents that have been shown to be a contributing factor in the pathogenesis of these sodium channel disorders. Characterization of gating pore currents in these channelopathies and with artificial mutations has been possible by measuring the voltage-dependence and selectivity of these leak currents. The basis of gating pore currents and the structural basis of S4 movement through the gating pore has also been studied extensively with molecular dynamics. These simulations have provided valuable insight into the nature of S4 translocation and the physical basis for the effects of mutations that promote permeation of protons or cations through the gating pore.
Collapse
Affiliation(s)
- J R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA.
| | - A Moreau
- Institut NeuroMyogene, ENS de Lyon, Site MONOD, Lyon, France
| | - L Delemotte
- Science for Life Laboratory, Department of Physics, KTH Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| |
Collapse
|
13
|
Abstract
The periodic paralyses are a group of skeletal muscle channelopathies characterizeed by intermittent attacks of muscle weakness often associated with altered serum potassium levels. The underlying genetic defects include mutations in genes encoding the skeletal muscle calcium channel Cav1.1, sodium channel Nav1.4, and potassium channels Kir2.1, Kir3.4, and possibly Kir2.6. Our increasing knowledge of how mutant channels affect muscle excitability has resulted in better understanding of many clinical phenomena which have been known for decades and sheds light on some of the factors that trigger attacks. Insights into the pathophysiology are also leading to new therapeutic approaches.
Collapse
Affiliation(s)
- Doreen Fialho
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert C Griggs
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| | - Emma Matthews
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
14
|
Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology 2017; 132:20-30. [PMID: 28669899 DOI: 10.1016/j.neuropharm.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Maria Musgaard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Teresa Paramo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Laura Domicevica
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Ole Juul Andersen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
15
|
Nunes R, Costa PJ. Ion-Pair Halogen Bonds in 2-Halo-Functionalized Imidazolium Chloride Receptors: Substituent and Solvent Effects. Chem Asian J 2017; 12:586-594. [PMID: 28052536 DOI: 10.1002/asia.201601690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/02/2017] [Indexed: 01/14/2023]
Abstract
The interaction of 2-halo-functionalized imidazolium derivatives (n-X+ ; X=Cl, Br, I) with a chloride anion through ion-pair halogen bonds (n-X⋅Cl) was studied by means of DFT and ab initio calculations. A method benchmark was performed on 2-bromo-1H-imidazol-3-ium in association with chloride (1-Br⋅Cl); MP2 yielded the best results when compared with CCSD(T) calculations. The interaction energies (ΔE) in the gas phase are high and, although the electrostatic interaction is strong owing to the ion-pair nature of the system, large X⋅⋅⋅Cl- Wiberg bond orders and contributions from charge transfer (nCl- →σ*C-X) are obtained. These values drop considerably in chloroform and water; this shows that solvent plays a role in modulating the interaction and that gas-phase calculations are particularly unrealistic for experimental applications. The introduction of electron-withdrawing groups in the 4,5-positions of the imidazolium (e.g., -NO2 , -F) increases the halogen-bond strength in both the gas phase and solvent, including water. The effect of the substituents on the 1,3-positions (N-H groups) also depends on the solvent. The variation of ΔE can be predicted through a two-parameter linear regression that optimizes the weights of charge-transfer and electrostatic interactions, which are different in vacuum and in solvent (chloroform and water). These results could be used in the rational design of efficient chloride receptors based on halogen bonds that work in solution, in particular, in an aqueous environment.
Collapse
Affiliation(s)
- Rafael Nunes
- Centro de Química e Bioquímica, DQB, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Paulo J Costa
- Centro de Química e Bioquímica, DQB, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
16
|
High Proteolytic Resistance of Spider-Derived Inhibitor Cystine Knots. INTERNATIONAL JOURNAL OF PEPTIDES 2015; 2015:537508. [PMID: 26843868 PMCID: PMC4710912 DOI: 10.1155/2015/537508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Proteolytic stability in gastrointestinal tract and blood plasma is the major obstacle for oral peptide drug development. Inhibitor cystine knots (ICKs) are linear cystine knot peptides which have multifunctional properties and could become promising drug scaffolds. ProTx-I, ProTx-II, GTx1-15, and GsMTx-4 were spider-derived ICKs and incubated with pepsin, trypsin, chymotrypsin, and elastase in physiological conditions to find that all tested peptides were resistant to pepsin, and ProTx-II, GsMTx-4, and GTx1-15 showed resistance to all tested proteases. Also, no ProTx-II degradation was observed in rat blood plasma for 24 hours in vitro and ProTx-II concentration in circulation decreased to half in 40 min, indicating absolute stability in plasma and fast clearance from the system. So far, linear peptides are generally thought to be unsuitable in vivo, but all tested ICKs were not degraded by pepsin and stomach could be selected for the alternative site of drug absorption for fast onset of the drug action. Since spider ICKs are selective inhibitors of various ion channels which are related to the pathology of many diseases, engineered ICKs will make a novel class of peptide medicines which can treat variety of bothering symptoms.
Collapse
|
17
|
Kikuchi K, Sugiura M, Nishizawa-Harada C, Kimura T. The application of the Escherichia coli giant spheroplast for drug screening with automated planar patch clamp system. ACTA ACUST UNITED AC 2015. [PMID: 28626710 PMCID: PMC5466043 DOI: 10.1016/j.btre.2015.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human Kv2.1 was expressed in the inner membrane of E. coli using prokaryotic codon. Bacterial spheroplasts large enough for the automated patch clamp were prepared by microfluidic chips. Kv2.1 current was recorded from the giant spheroplast by the automated patch clamp. E. coli spheroplasts were used for dose–response assay of potassium channel inhibitors. Our system will become the simple and sensitive drug assay method anyone can use.
Kv2.1, the voltage-gated ion channel, is ubiquitously expressed in variety of tissues and dysfunction of this ion channel is responsible for multiple diseases. Electrophysiological properties of ion channels are so far characterized with eukaryotic cells using the manual patch clamp which requires skilful operators and expensive equipments. In this research, we created a simple and sensitive drug screen method using bacterial giant spheroplasts and the automated patch clamp which does not require special skills. We expressed a eukaryotic voltage-gated ion channel Kv2.1 in Escherichia coli using prokaryotic codon, and prepared giant spheroplasts large enough for the patch clamp. Human Kv2.1 currents were successfully recorded from giant spheroplasts with the automated system, and Kv2.1-expressed E. coli spheroplasts could steadily reacted to the dose–response assay with TEA and 4-AP. Collectively, our results indicate for the first time that the bacterial giant spheroplast can be applied for practical pharmaceutical assay using the automated patch clamp.
Collapse
Affiliation(s)
- Kyoko Kikuchi
- Laboratory for Drug Discovery and Glycoscience and Glycotechnology Research Group, Biotechnology Research institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Mika Sugiura
- Laboratory for Drug Discovery and Glycoscience and Glycotechnology Research Group, Biotechnology Research institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Chizuko Nishizawa-Harada
- Laboratory for Drug Discovery and Glycoscience and Glycotechnology Research Group, Biotechnology Research institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Tadashi Kimura
- Laboratory for Drug Discovery and Glycoscience and Glycotechnology Research Group, Biotechnology Research institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
- Corresponding author at: AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan. Tel.: +81 29 861 6667; fax: +81 29 861 3252
| |
Collapse
|
18
|
Deng LQ, Li Z, Lu YM, Chen JX, Zhou CQ, Wang B, Chen WH. Synthesis and transmembrane anion/cation symport activity of a rigid bis(choloyl) conjugate functionalized with guanidino groups. Bioorg Med Chem Lett 2015; 25:745-8. [DOI: 10.1016/j.bmcl.2015.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
|
19
|
Marques I, Colaço AR, Costa PJ, Busschaert N, Gale PA, Félix V. Tris-thiourea tripodal-based molecules as chloride transmembrane transporters: insights from molecular dynamics simulations. SOFT MATTER 2014; 10:3608-3621. [PMID: 24663079 DOI: 10.1039/c3sm52140k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The interaction of six tripodal synthetic chloride transmembrane transporters with a POPC bilayer was investigated by means of molecular dynamics simulations using the general Amber force field (GAFF) for the transporters and the LIPID11 force field for phospholipids. These transporters are structurally simple molecules, based on the tris(2-aminoethyl)amine scaffold, containing three thiourea binding units coupled with three n-butyl (1), phenyl (2), fluorophenyl (3), pentafluorophenyl (4), trifluoromethylphenyl (5), or bis(trifluoromethyl)phenyl (6) substituents. The passive diffusion of 1-6⊃ Cl(-) was evaluated with the complexes initially positioned either in the water phase or inside the bilayer. In the first scenario the chloride is released in the water solution before the synthetic molecules achieve the water-lipid interface and permeate the membrane. In the latter one, only when the chloride complex reaches the interface is the anion released to the water phase, with the transporter losing the initial ggg tripodal shape. Independently of the transporter used in the membrane system, the bilayer structure is preserved and the synthetic molecules interact with the POPC molecules at the phosphate headgroup level, via N-H···O hydrogen bonds. Overall, the molecular dynamics simulations' results indicate that the small tripodal molecules in this series have a low impact on the bilayer and are able to diffuse with chloride inside the lipid environment. Indeed, these are essential conditions for these molecules to promote the transmembrane transport as anion carriers, in agreement with experimental efflux data.
Collapse
Affiliation(s)
- Igor Marques
- Departamento de Química, CICECO and Secção Autónoma de Ciências da Saúde, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
20
|
Sehgal SA, Hassan M, Rashid S. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:571-81. [PMID: 24899801 PMCID: PMC4038526 DOI: 10.2147/dddt.s63096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Migraine, a complex debilitating neurological disorder is strongly associated with potassium channel subfamily K member 18 (KCNK18). Research has emphasized that high levels of KCNK18 may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like migraine. In the present study, a hybrid approach of molecular docking and virtual screening were followed by pharmacophore identification and structure modeling. Screening was performed using a two-dimensional similarity search against recommended migraine drugs, keeping in view the physicochemical properties of drugs. LigandScout tool was used for exploring pharmacophore properties and designing novel molecules. Here, we report the screening of four novel compounds that have showed maximum binding affinity against KCNK18, obtained through the ZINC database, and Drug and Drug-Like libraries. Docking studies revealed that Asp-46, Ile-324, Ile-44, Gly-118, Leu-338, Val-113, and Phe-41 are critical residues for receptor–ligand interaction. A virtual screening approach coupled with docking energies and druglikeness rules illustrated that ergotamine and PB-414901692 are potential inhibitor compounds for targeting KCNK18. We propose that selected compounds may be more potent than the previously listed drug analogs based on the binding energy values. Further analysis of these inhibitors through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful for designing novel therapeutic targets to cure migraine.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mubashir Hassan
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
21
|
Chen J, Tomich JM. Free energy analysis of conductivity and charge selectivity of M2GlyR-derived synthetic channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2319-25. [PMID: 24582709 DOI: 10.1016/j.bbamem.2014.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/21/2014] [Indexed: 12/16/2022]
Abstract
Significant progresses have been made in the design, synthesis, modeling and in vitro testing of channel-forming peptides derived from the second transmembrane domain of the α-subunit of the glycine receptor (GlyR). The latest designs, including p22 (KKKKP ARVGL GITTV LTMTT QS), are highly soluble in water with minimal aggregation propensity and insert efficiently into cell membranes to form highly conductive ion channels. The last obstacle to a potential lead sequence for channel replacement treatment of CF patients is achieving adequate chloride selectivity. We have performed free energy simulation to analyze the conductance and charge selectivity of M2GlyR-derived synthetic channels. The results reveal that the pentameric p22 pore is non-selective. Moderate barriers for permeation of both K(+) and Cl(-) are dominated by the desolvation cost. Despite previous evidence suggesting a potential role of threonine side chains in anion selectivity, the hydroxyl group is not a good surrogate of water for coordinating these ions. We have also tested initial ideas of introducing additional rings of positive changes to various positions along the pore to increase anion selectivity. The results support the feasibility of achieving anion selectivity by modifying the electrostatic properties of the pore, but at the same time suggest that the peptide assembly and pore topology may also be dramatically modified, which could abolish the effects of modified electrostatics on anion selectivity. This was confirmed by subsequent two-electrode voltage clamp measurements showing that none of the tested mono-, di- and tri-Dap substituted sequences was selective. The current study thus highlights the importance of controlling channel topology besides modifying pore electrostatics for achieving anion selectivity. Several strategies are now being explored in our continued efforts to design an anion selective peptide channel with suitable biophysical, physiological and pharmacological properties as a potential treatment modality for channel replacement therapy. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Jianhan Chen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
22
|
Abriel H, de Lange E, Kucera JP, Loussouarn G, Tarek M. Computational tools to investigate genetic cardiac channelopathies. Front Physiol 2013; 4:390. [PMID: 24421770 PMCID: PMC3872783 DOI: 10.3389/fphys.2013.00390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022] Open
Abstract
The aim of this perspective article is to share with the community of ion channel scientists our thoughts and expectations regarding the increasing role that computational tools will play in the future of our field. The opinions and comments detailed here are the result of a 3-day long international exploratory workshop that took place in October 2013 and that was supported by the Swiss National Science Foundation.
Collapse
Affiliation(s)
- Hugues Abriel
- Department of Clinical Research, University of Bern Bern, Switzerland
| | - Enno de Lange
- Department of Knowledge Engineering, Maastricht University Maastricht, Netherlands
| | - Jan P Kucera
- Department of Physiology, University of Bern Bern, Switzerland
| | - Gildas Loussouarn
- INSERM, UMR 1087, l'Institut du thorax Nantes, France ; Centre National de la Recherche Scientifique, L'Institut du Thorax, UMR 6921 Nantes, France ; L'Institut du Thorax, UMR 6921, Université de Nantes Nantes, France
| | - Mounir Tarek
- Theory, Modeling and Simulations, UMR 7565, Université de Lorraine Vandoeuvre-lés-Nancy, France ; Theory, Modeling and Simulations, UMR 7565, Centre National de la Recherche Scientifique Vandoeuvre-lés-Nancy, France
| |
Collapse
|
23
|
Abstract
Pore-forming subunits of ion channels show channel activity in heterologous cells. However, recombinant and native channels often differ in their channel properties. These discrepancies are resolved by the identification of channel auxiliary subunits. In this review article, an auxiliary subunit of ligand-gated ion channels is defined using four criteria: (1) as a Non-pore-forming subunit, (2) direct and stable interaction with a pore-forming subunit, (3) modulation of channel properties and/or trafficking in heterologous cells, (4) necessity in vivo. We focus particularly on three classes of ionotropic glutamate receptors and their transmembrane interactors. Precise identification of auxiliary subunits and reconstruction of native glutamate receptors will open new directions to understanding the brain and its functions.
Collapse
Affiliation(s)
- Dan Yan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
24
|
Bidaud I, Lory P. Hallmarks of the channelopathies associated with L-type calcium channels: a focus on the Timothy mutations in Ca(v)1.2 channels. Biochimie 2011; 93:2080-6. [PMID: 21664226 DOI: 10.1016/j.biochi.2011.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/19/2011] [Indexed: 11/29/2022]
Abstract
Within the voltage-gated calcium channels (Cav channels) family, there are four genes coding for the L-type Cav channels (Cav1). The Cav1 channels underly many important physiological functions like excitation-contraction coupling, hormone secretion, neuronal excitability and gene transcription. Mutations found in the genes encoding the Cav channels define a wide variety of diseases called calcium channelopathies and all four genes coding the Cav1 channels are carrying such mutations. L-type calcium channelopathies include muscular, neurological, cardiac and vision syndromes. Among them, the Timothy syndrome (TS) is linked to missense mutations in CACNA1C, the gene that encodes the Ca(v)1.2 subunit. Here we review the important features of the Cav1 channelopathies. We also report on the specific properties of TS-Ca(v)1.2 channels, which display non-inactivating calcium current as well as higher plasma membrane expression. Overall, we conclude that both electrophysiological and surface expression properties must be investigated to better account for the functional consequences of mutations linked to calcium channelopathies.
Collapse
Affiliation(s)
- Isabelle Bidaud
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | | |
Collapse
|
25
|
Herrera AI, Al-Rawi A, Cook GA, Gao J, Iwamoto T, Prakash O, Tomich JM, Chen J. Structural characterization of two pore-forming peptides: consequences of introducing a C-terminal tryptophan. Proteins 2010; 78:2238-50. [PMID: 20544961 PMCID: PMC2909830 DOI: 10.1002/prot.22736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic channel-forming peptides that can restore chloride conductance across epithelial membranes could provide a novel treatment of channelopathies such as cystic fibrosis. Among a series of 22-residue peptides derived from the second transmembrane segment of the glycine receptor alpha(1)-subunit (M2GlyR), p22-S22W (KKKKP ARVGL GITTV LTMTT QW) is particularly promising with robust membrane insertion and assembly. The concentration to reach one-half maximal short circuit current is reduced to 45 +/- 6 microM from that of 210 +/- 70 microM of peptide p22 (KKKKP ARVGL GITTV LTMTT QS). However, this is accompanied with nearly 50% reduction in conductance. Toward obtaining a molecular level understanding of the channel activities, we combine information from solution NMR, existing biophysical data, and molecular modeling to construct atomistic models of the putative pentameric channels of p22 and p22-S22W. Simulations in membrane bilayers demonstrate that these structural models, even though highly flexible, are stable and remain adequately open for ion conductance. The membrane-anchoring tryptophan residues not only rigidify the whole channel, suggesting increased stability, but also lead to global changes in the pore profile. Specifically, the p22-S22W pore has a smaller opening on average, consistent with lower measured conductance. Direct observation of several incidences of chloride transport suggests several qualitative features of how these channels might selectively conduct anions. The current study thus helps to rationalize the functional consequences of introducing a single C-terminal tryptophan. Availability of these structural models also paves the way for future work to rationally modify and improve M2GlyR-derived peptides toward potential peptide-based channel replacement therapy.
Collapse
Affiliation(s)
| | | | | | - Jian Gao
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| | - Takeo Iwamoto
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| | - Om Prakash
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| | - John M. Tomich
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| | - Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| |
Collapse
|
26
|
Parness J, Bandschapp O, Girard T. The Myotonias and Susceptibility to Malignant Hyperthermia. Anesth Analg 2009; 109:1054-64. [DOI: 10.1213/ane.0b013e3181a7c8e5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Abstract
Familial hemiplegic migraine (FHM) is a rare and genetically heterogeneous autosomal dominant subtype of migraine with aura. Mutations in the genes CACNA1A and SCNA1A, encoding the pore-forming alpha(1) subunits of the neuronal voltage-gated Ca2+ channels Ca(V)2.1 and Na+ channels Na(V)1.1, are responsible for FHM1 and FHM3, respectively, whereas mutations in ATP1A2, encoding the alpha2 subunit of the Na+, K+ adenosinetriphosphatase (ATPase), are responsible for FHM2. This review discusses the functional studies of two FHM1 knockin mice and of several FHM mutants in heterologous expression systems (12 FHM1, 8 FHM2, and 1 FHM3). These studies show the following: (1) FHM1 mutations produce gain-of-function of the Ca(V)2.1 channel and, as a consequence, increased Ca(V)2.1-dependent neurotransmitter release from cortical neurons and facilitation of in vivo induction and propagation of cortical spreading depression (CSD: the phenomenon underlying migraine aura); (2) FHM2 mutations produce loss-of-function of the alpha2 Na+,K+-ATPase; and (3) the FHM3 mutation accelerates recovery from fast inactivation of Na(V)1.5 (and presumably Na(V)1.1) channels. These findings are consistent with the hypothesis that FHM mutations share the ability of rendering the brain more susceptible to CSD by causing either excessive synaptic glutamate release (FHM1) or decreased removal of K+ and glutamate from the synaptic cleft (FHM2) or excessive extracellular K+ (FHM3). The FHM data support a key role of CSD in migraine pathogenesis and point to cortical hyperexcitability as the basis for vulnerability to CSD and to migraine attacks. Hence, they support novel therapeutic strategies that consider CSD and cortical hyperexcitability as key targets for preventive migraine treatment.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
| |
Collapse
|
28
|
Venance SL, Herr BE, Griggs RC. Challenges in the design and conduct of therapeutic trials in channel disorders. Neurotherapeutics 2007; 4:199-204. [PMID: 17395129 DOI: 10.1016/j.nurt.2007.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neurologic channelopathies are rare, inherited paroxysmal disorders of muscle (e.g., the periodic paralyses and nondystrophic myotonias) and brain (e.g., episodic ataxias, idiopathic epilepsies, and familial hemiplegic migraine). Mutation is necessary but not sufficient for phenotypic expression and there are no simple phenotype-genotype relationships. Attacks may be spontaneous or triggered, with affected individuals often asymptomatic and neurologically normal between attacks. Performance of daily activities may be affected by the unpredictable nature; often late-onset degenerative changes cause permanent disability; for example, muscle atrophy and fixed weakness in periodic paralysis and cerebellar atrophy and progressive ataxia in the episodic ataxias. Currently, the natural history of these disorders is being defined. Clearly, the established methodologies for randomized controlled clinical trials are not feasible for rare diseases and innovative trial design is essential. There is a requirement for clinically relevant outcome measures for episodic disorders. Increasing our knowledge of the pathophysiology will help in targeting and designing rational therapeutic approaches. We will use the current understanding of the neurological channelopathies to illustrate some of the opportunities, challenges, and strategies in bringing safe and effective treatments to patients. There are reasons for optimism that new partnerships between clinical investigators, government, patient advocacy groups, and industry will prevent symptoms and progression of the neurological channelopathies.
Collapse
|
29
|
Tawil R, Cannon SC. Neurologic channelopathies: Evolving concepts and therapeutic challenges. Neurotherapeutics 2007. [DOI: 10.1016/j.nurt.2007.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|