1
|
Bourzam A, Hamdi Y, Bahdoudi S, Duraisamy K, El Mehdi M, Basille-Dugay M, Dlimi O, Kharrat M, Vejux A, Lizard G, Ghrairi T, Lefranc B, Vaudry D, Boutin JA, Leprince J, Masmoudi-Kouki O. Octadecaneuropeptide, ODN, Promotes Cell Survival against 6-OHDA-Induced Oxidative Stress and Apoptosis by Modulating the Expression of miR-34b, miR-29a, and miR-21in Cultured Astrocytes. Cells 2024; 13:1188. [PMID: 39056770 PMCID: PMC11487398 DOI: 10.3390/cells13141188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides including octadecaneuropeptide (ODN). We have previously reported that ODN rescues neurons and astrocytes from 6-OHDA-induced oxidative stress and cell death. The purpose of this study was to examine the potential implication of miR-34b, miR-29a, and miR-21 in the protective activity of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Flow cytometry analysis showed that 6-OHDA increased the number of early apoptotic and apoptotic dead cells while treatment with the subnanomolar dose of ODN significantly reduced the number of apoptotic cells induced by 6-OHDA. 6-OHDA-treated astrocytes exhibited the over-expression of miR-21 (+118%) associated with a knockdown of miR-34b (-61%) and miR-29a (-49%). Co-treatment of astrocytes with ODN blocked the 6-OHDA-stimulated production of ROS and NO and stimulation of Bax and caspase-3 gene transcription. Concomitantly, ODN down-regulated the expression of miR-34b and miR-29a and rescued the 6-OHDA-associated reduced expression of miR21, indicating that ODN regulates their expression during cell death. Transfection with miR-21-3p inhibitor prevented the effect of 6-OHDA against cell death. In conclusion, our study indicated that (i) the expression of miRNAs miR-34b, miR-29a, and miR-21 is modified in astrocytes under 6-OHDA injury and (ii) that ODN prevents this deregulation to induce its neuroprotective action. The present study identified miR-21 as an emerging candidate and as a promising pharmacological target that opens new neuroprotective therapeutic strategies in neurodegenerative diseases, especially in Parkinson's disease.
Collapse
Affiliation(s)
- Amine Bourzam
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia; (Y.H.); (S.B.); (T.G.)
| | - Yosra Hamdi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia; (Y.H.); (S.B.); (T.G.)
| | - Seyma Bahdoudi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia; (Y.H.); (S.B.); (T.G.)
| | - Karthi Duraisamy
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
| | - Mouna El Mehdi
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
| | - Magali Basille-Dugay
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
| | - Omayma Dlimi
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
| | - Maher Kharrat
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia;
| | - Anne Vejux
- Centre des Sciences du Goût et de l’Alimentation (CSGA), CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France;
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), Université de Bourgogne, Inserm, 21000 Dijon, France;
| | - Gérard Lizard
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), Université de Bourgogne, Inserm, 21000 Dijon, France;
| | - Taoufik Ghrairi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia; (Y.H.); (S.B.); (T.G.)
| | - Benjamin Lefranc
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
| | - David Vaudry
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
| | - Jean A. Boutin
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
| | - Jérôme Leprince
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; (A.B.); (K.D.); (M.E.M.); (M.B.-D.); (O.D.); (B.L.); (D.V.); (J.A.B.); (J.L.)
| | - Olfa Masmoudi-Kouki
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia; (Y.H.); (S.B.); (T.G.)
| |
Collapse
|
2
|
Guglielmi P, Carradori S, D'Agostino I, Campestre C, Petzer JP. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin Ther Pat 2022; 32:849-883. [PMID: 35638744 DOI: 10.1080/13543776.2022.2083501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism. AREAS COVERED MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Müller T. Perspective: cell death mechanisms and early diagnosis as precondition for disease modification in Parkinson's disease: are we on the right track? Expert Rev Mol Diagn 2022; 22:403-409. [PMID: 35400295 DOI: 10.1080/14737159.2022.2065198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Current research paradigms on biomarkers for chronic neurodegenerative diseases, such as Parkinson's disease, focus on identification of reliable, easy-to-apply tools for diagnostic screening and progression assessment. AREAS COVERED This perspective discusses possible misconceptions of biomarker research in chronic neurodegeneration from a clinician's view based on a not systematic literature search. Multifactorial disease triggers, heterogeneity of symptom and their progression are main reasons for the still missing availability of biomarkers. EXPERT OPINION Onset of chronic neurodegenerative disease entities may probably result from a decompensated endogenous repair machinery in the central nervous system, for example the neogenin receptor associated repulsive guidance molecule pathway. Future clinical research is warranted on these repair structures and aim to identify markers for the imbalance between damage and repair, which hypothetically contributes to generation of disease. An assignment to a specific chronic neurodegenerative disease entity probably appears to be secondary. Decryption of probable molecular signals of an impaired repair potential will enable an earlier diagnosis, better monitoring of disease progress and of treatment response. This concept will hopefully provide better preconditions for prevention, cure or therapeutic beneficial disease modification. These unmet therapeutic needs may be achieved for example via antagonism of repulsive guidance molecule A.
Collapse
Affiliation(s)
- Thomas Müller
- Department of NeurologySt. Joseph Hospital Berlin-Weißensee, Gartenstr.1 Berlin, Germany
| |
Collapse
|
4
|
Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 2021; 35:65-78. [PMID: 34558138 DOI: 10.1002/ca.23792] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of particular populations of neurons. Apoptosis has been implicated in the pathogenesis of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. In this review, we focus on the existing notions relevant to comprehending the apoptotic death process, including the morphological features, mediators and regulators of cellular apoptosis. We also highlight the evidence of neuronal apoptotic death in Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Additionally, we present evidence of potential therapeutic agents that could modify the apoptotic pathway in the aforementioned neurodegenerative diseases and delay disease progression. Finally, we review the clinical trials that were conducted to evaluate the use of anti-apoptotic drugs in the treatment of the aforementioned neurodegenerative diseases, in order to highlight the essential need for early detection and intervention of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
de Beer J, Petzer JP, Lourens ACU, Petzer A. Design, synthesis and evaluation of 3-hydroxypyridin-4-ones as inhibitors of catechol-O-methyltransferase. Mol Divers 2021; 25:753-762. [PMID: 32108308 PMCID: PMC7224104 DOI: 10.1007/s11030-020-10053-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 11/30/2022]
Abstract
The most effective treatment of Parkinson's disease is restoring central dopamine levels with levodopa, the metabolic precursor of dopamine. However, due to extensive peripheral metabolism by aromatic L-amino acid decarboxylase and catechol-O-methyltransferase (COMT), only a fraction of the levodopa dose reaches the brain unchanged. Thus, by preventing levodopa metabolism and increasing the availability of levodopa for uptake into the brain, the inhibition of COMT would be beneficial in Parkinson's disease. Although nitrocatechol COMT inhibitors have been used in the treatment of Parkinson's disease, efforts have been made to discover non-nitrocatechol inhibitors. In the present study, the 3-hydroxypyridin-4-one scaffold was selected for the design and synthesis of non-nitrocatechol COMT inhibitors since the COMT inhibitory potential of this class has been illustrated. Using COMT obtained from porcine liver, it was shown that a synthetic series of ten 3-hydroxypyridin-4-ones are in vitro inhibitors with IC50 values ranging from 4.55 to 19.8 µM. Although these compounds are not highly potent inhibitors, they may act as leads for the development of non-nitrocatechol COMT inhibitors. Such compounds would be appropriate for the treatment of Parkinson's disease. 3-Hydroxypyridin-4-ones have been synthesised and evaluated as non-nitrocatechol COMT inhibitors. In vitro, the IC50 values ranged from 4.55 to 19.8 μM.
Collapse
Affiliation(s)
- Johannie de Beer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anna C U Lourens
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
6
|
Sy MAC, Fernandez HH. Pharmacological Treatment of Early Motor Manifestations of Parkinson Disease (PD). Neurotherapeutics 2020; 17:1331-1338. [PMID: 32935299 PMCID: PMC7851218 DOI: 10.1007/s13311-020-00924-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 01/17/2023] Open
Abstract
Parkinson disease (PD), as a slowly progressive neurodegenerative disorder, undergoes six neuropathological stages. The earliest clinical manifestation presents in the middle stage of the disorder pathologically, when 50% or more of the dopaminergic neurons have degenerated in the substantia nigra. This discrepancy between the early stage clinically and that pathologically has, in part, spurred the debate as to when it is best to initiate symptomatic therapy. The most well-studied monotherapeutic agents for PD in its early course include levodopa (the cornerstone of PD therapy), dopamine agonists, and monoamine oxidase inhibitors (MAOIs). With several options for initiating pharmacologic therapy, along with the heterogenous presentation of the disorder, an individualized approach is warranted. Careful deliberation must be done to optimize risk reduction while providing effective symptom control, taking the chronological age, comorbidities, social and financial disposition, work status, and both immediate- and long-term goals into consideration. Generally, treatment can be delayed in patients with mild symptoms and minimal functional impairment at any age. If treatment must be initiated, dopamine agonists and monoamine oxidase type B inhibitors can be used, especially in younger patients with milder disease. However, for older patients, those with moderate to severe PD symptoms, regardless of age, or for patients with greater comorbidities, levodopa generally remains the better choice. Eventually, regardless of initial therapy, studies have shown that most will eventually require levodopa therapy when symptoms become more disabling.
Collapse
Affiliation(s)
- Michelle Ann C Sy
- Movement Disorders Section, Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Wu L, Zeng S, Cao Y, Huang Z, Liu S, Peng H, Zhi C, Ma S, Hu K, Yuan Z. Inhibition of HDAC4 Attenuated JNK/c-Jun-Dependent Neuronal Apoptosis and Early Brain Injury Following Subarachnoid Hemorrhage by Transcriptionally Suppressing MKK7. Front Cell Neurosci 2019; 13:468. [PMID: 31708743 PMCID: PMC6823346 DOI: 10.3389/fncel.2019.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK)/c-Jun cascade-dependent neuronal apoptosis has been identified as a central element for early brain injury (EBI) following subarachnoid hemorrhage (SAH), but the molecular mechanisms underlying this process are still thoroughly undefined to date. In this study, we found that pan-histone deacetylase (HDAC) inhibition by TSA, SAHA, VPA, and M344 led to a remarkable decrease in the phosphorylation of JNK and c-Jun, concomitant with a significant abrogation of apoptosis caused by potassium deprivation in cultured cerebellar granule neurons (CGNs). Further investigation showed that these effects resulted from HDAC inhibition-induced transcriptional suppression of MKK7, a well-known upstream kinase of JNK. Using small interference RNAs (siRNAs) to silence the respective HDAC members, HDAC4 was screened to be required for MKK7 transcription and JNK/c-Jun activation. LMK235, a specific HDAC4 inhibitor, dose-dependently suppressed MKK7 transcription and JNK/c-Jun activity. Functionally, HDAC4 inhibition via knockdown or LMK235 significantly rescued CGN apoptosis induced by potassium deprivation. Moreover, administration of LMK235 remarkably ameliorated the EBI process in SAH rats, associated with an obvious reduction in MKK7 transcription, JNK/c-Jun activity, and neuronal apoptosis. Collectively, the findings provide new insights into the molecular mechanism of neuronal apoptosis regarding HDAC4 in the selective regulation of MKK7 transcription and JNK/c-Jun activity. HDAC4 inhibition could be a potential alternative to prevent MKK7/JNK/c-Jun axis-mediated nervous disorders, including SAH-caused EBI.
Collapse
Affiliation(s)
- Liqiang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Shulian Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Yali Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Ziyan Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Sisi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Huaidong Peng
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhi
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
8
|
Synthesis and evaluation of chromone derivatives as inhibitors of monoamine oxidase. Mol Divers 2019; 23:897-913. [DOI: 10.1007/s11030-019-09917-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022]
|
9
|
Liu X, Quan N. Microglia and CNS Interleukin-1: Beyond Immunological Concepts. Front Neurol 2018; 9:8. [PMID: 29410649 PMCID: PMC5787061 DOI: 10.3389/fneur.2018.00008] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and expression of the inflammatory cytokine interleukin-1 (IL-1) in the CNS have become almost synonymous with neuroinflammation. In numerous studies, increased CNS IL-1 expression and altered microglial morphology have been used as hallmarks of CNS inflammation. A central concept of how CNS IL-1 and microglia influence functions of the nervous system was derived from the notion initially generated in the peripheral immune system: IL-1 stimulates monocyte/macrophage (the peripheral counterparts of microglia) to amplify inflammation. It is increasingly clear, however, CNS IL-1 acts on other targets in the CNS and microglia participates in many neural functions that are not related to immunological activities. Further, CNS exhibits immunological privilege (although not as absolute as previously thought), rendering amplification of inflammation within CNS under stringent control. This review will analyze current literature to evaluate the contribution of immunological and non-immunological aspects of microglia/IL-1 interaction in the CNS to gain insights for how these aspects might affect health and disease in the nervous tissue.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Ning Quan
- College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Gloviczki B, Török DG, Márton G, Gál L, Bodzay T, Pintér S, Nógrádi A. Delayed Spinal Cord–Brachial Plexus Reconnection after C7 Ventral Root Avulsion: The Effect of Reinnervating Motoneurons Rescued by Riluzole Treatment. J Neurotrauma 2017; 34:2364-2374. [DOI: 10.1089/neu.2016.4754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Balázs Gloviczki
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Sándor Péterfy Hospital, Budapest, Hungary
| | - Dénes G. Török
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Gábor Márton
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
| | - László Gál
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tamás Bodzay
- Department of Traumatology, Sándor Péterfy Hospital, Budapest, Hungary
| | - Sándor Pintér
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Antal Nógrádi
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Nel MS, Petzer A, Petzer JP, Legoabe LJ. 2-Benzylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 2016; 26:4599-4605. [DOI: 10.1016/j.bmcl.2016.08.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 01/01/2023]
|
12
|
Reyes RC, Cittolin-Santos GF, Kim JE, Won SJ, Brennan-Minnella AM, Katz M, Glass GA, Swanson RA. Neuronal Glutathione Content and Antioxidant Capacity can be Normalized In Situ by N-acetyl Cysteine Concentrations Attained in Human Cerebrospinal Fluid. Neurotherapeutics 2016; 13:217-25. [PMID: 26572666 PMCID: PMC4720670 DOI: 10.1007/s13311-015-0404-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
N-acetyl cysteine (NAC) supports the synthesis of glutathione (GSH), an essential substrate for fast, enzymatically catalyzed oxidant scavenging and protein repair processes. NAC is entering clinical trials for adrenoleukodystrophy, Parkinson's disease, schizophrenia, and other disorders in which oxidative stress may contribute to disease progression. However, these trials are hampered by uncertainty about the dose of NAC required to achieve biological effects in human brain. Here we describe an approach to this issue in which mice are used to establish the levels of NAC in cerebrospinal fluid (CSF) required to affect brain neurons. NAC dosing in humans can then be calibrated to achieve these NAC levels in human CSF. The mice were treated with NAC over a range of doses, followed by assessments of neuronal GSH levels and neuronal antioxidant capacity in ex vivo brain slices. Neuronal GSH levels and antioxidant capacity were augmented at NAC doses that produced peak CSF NAC concentrations of ≥50 nM. Oral NAC administration to humans produced CSF concentrations of up to 10 μM, thus demonstrating that oral NAC administration can surpass the levels required for biological activity in brain. Variations of this approach may similarly facilitate and rationalize drug dosing for other agents targeting central nervous system disorders.
Collapse
Affiliation(s)
- Reno C Reyes
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Giordano Fabricio Cittolin-Santos
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, Brazil
- Science Without Borders, CNPq, Brasilia, Brazil
| | - Ji-Eun Kim
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Seok Joon Won
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Angela M Brennan-Minnella
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Maya Katz
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Graham A Glass
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Raymond A Swanson
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA.
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA.
| |
Collapse
|
13
|
Petrov D, Pedros I, de Lemos ML, Pallàs M, Canudas AM, Lazarowski A, Beas-Zarate C, Auladell C, Folch J, Camins A. Mavoglurant as a treatment for Parkinson's disease. Expert Opin Investig Drugs 2014; 23:1165-79. [PMID: 24960254 DOI: 10.1517/13543784.2014.931370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION A major unresolved issue in the Parkinson's disease (PD) treatment is the development of l-DOPA-induced dyskinesias (LIDs) as a side effect of chronic L-DOPA administration. Currently, LIDs are managed in part by reducing the L-DOPA dose or by the administration of amantadine. However, this treatment is only partially effective. A potential strategy, currently under investigation, is the coadministration of metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) and L-DOPA; a treatment that results in the improvement of dyskinesia symptoms and that permits reductions in l-DOPA dosage frequency. AREAS COVERED The authors examine the role of mGluR5 in the pathophysiology of PD and the potential use of mGluR5 NAM as an adjuvant therapy together with a primary treatment with L-DOPA. Specifically, the authors look at the mavoglurant therapy and the evidence presented through preclinical and clinical trials. EXPERT OPINION Interaction between mGluR5 NAM and L-DOPA is an area of interest in PD research as concomitant treatment results in the improvement of LID symptoms in humans, thus enhancing the patient's quality of life. However, few months ago, Novartis decided to discontinue clinical trials of mavoglurant for the treatment of LID, due to the lack of efficacy demonstrated in trials NCT01385592 and NCT01491529, although no safety concerns were involved in this decision. Nevertheless, the potential application of mGluR5 antagonists as neuroprotective agents must be considered and further studies are warranted to better investigate their potential.
Collapse
Affiliation(s)
- Dmitry Petrov
- Universitat de Barcelona, Institut de Biomedicina (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Unitat de Farmacologia I Farmacognòsia, Facultat de Farmàcia , Barcelona, Avda/Joan XXIII , Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sommer DB, Stacy MA. What’s in the pipeline for the treatment of Parkinson’s disease? Expert Rev Neurother 2014; 8:1829-39. [DOI: 10.1586/14737175.8.12.1829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Teo KC, Ho SL. Monoamine oxidase-B (MAO-B) inhibitors: implications for disease-modification in Parkinson's disease. Transl Neurodegener 2013; 2:19. [PMID: 24011391 PMCID: PMC3847108 DOI: 10.1186/2047-9158-2-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022] Open
Abstract
There is a substantial amount of evidence from experimental parkinsonian models to show the neuroprotective effects of monoamine oxidase-B (MAOB) inhibitors. They have been studied for their potential disease-modifying effects in Parkinson's disease (PD) for over 20 years in various clinical trials. This review provides a summary of the clinical trials and discusses the implications of their results in the context of disease-modification in PD. Earlier clinical trials on selegiline were confounded by symptomatic effects of this drug. Later clinical trials on rasagiline using delayed-start design provide newer insights in disease-modification in PD but success in achieving the aims of this strategy remain elusive due to obstacles, some of which may be insurmountable.
Collapse
Affiliation(s)
- Kay Cheong Teo
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Design, synthesis, and in vitro hMAO-B inhibitory evaluation of some 1-methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazoles. Bioorg Med Chem Lett 2013; 23:5128-30. [DOI: 10.1016/j.bmcl.2013.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/12/2023]
|
17
|
Deftereos SN, Dodou E, Andronis C, Persidis A. From depression to neurodegeneration and heart failure: re-examining the potential of MAO inhibitors. Expert Rev Clin Pharmacol 2013; 5:413-25. [PMID: 22943121 DOI: 10.1586/ecp.12.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially introduced in the 1950s for treating depression, monoamine oxidase (MAO) inhibitors were gradually abandoned, mainly owing to their potential for drug-drug and drug-food interactions, the most widely known being with tyramine-containing food (the 'cheese' effect). Since then, more selective MAO-A or MAO-B inhibitors have been developed with substantially reduced risks, and have been approved for the treatment of depression and Parkinson's disease, respectively. Recent research suggests that some of these drugs also have neuroprotective properties, while preclinical evidence expands the spectrum of potential indications to heart failure, renal diseases and multiple sclerosis. In this article, the authors review the relevance of MAO isoforms to disease, and they also outline current research and development efforts in this class of drugs, including newer multipotent compounds.
Collapse
|
18
|
Selected C7-substituted chromone derivatives as monoamine oxidase inhibitors. Bioorg Chem 2012; 45:1-11. [DOI: 10.1016/j.bioorg.2012.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/07/2012] [Accepted: 08/16/2012] [Indexed: 12/30/2022]
|
19
|
Fernández M, Barcia E, Fernández-Carballido A, Garcia L, Slowing K, Negro S. Controlled release of rasagiline mesylate promotes neuroprotection in a rotenone-induced advanced model of Parkinson's disease. Int J Pharm 2012; 438:266-78. [PMID: 22985602 DOI: 10.1016/j.ijpharm.2012.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/04/2012] [Accepted: 09/08/2012] [Indexed: 12/21/2022]
Abstract
Microencapsulation of rasagiline mesylate (RM) into PLGA microspheres was performed by method A (O/W emulsion) and method B (W/O/W double emulsion). The best formulation regarding process yield, encapsulation efficiency and in vitro drug release was that prepared with method A, which exhibited constant drug release for two weeks (K(0)=62.3 μg/day/20mg microspheres). Exposure of SKN-AS cells to peroxide-induced oxidative stress (1 mM) resulted in cell apoptosis which was significantly reduced by RM (40.7-102.5 μM) as determined by cell viability, ROS production and DNA fragmentation. Daily doses of rotenone (2 mg/kg) given i.p. to rats for 45 days induced neuronal and behavioral changes similar to those occurring in PD. Once an advanced stage of PD was achieved, animals received RM in saline (1 mg/kg/day) or encapsulated within PLGA microspheres (amount of microspheres equivalent to 15 mg/kg RM given on days 15 and 30). After 45 days RM showed a robust effect on all analytical outcomes evaluated with non-statistically significant differences found between its administration in solution or within microparticles however; with this controlled release system administration of RM could be performed every two weeks thereby making this new therapeutic system an interesting approach for the treatment of PD.
Collapse
Affiliation(s)
- M Fernández
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Janda E, Isidoro C, Carresi C, Mollace V. Defective autophagy in Parkinson's disease: role of oxidative stress. Mol Neurobiol 2012; 46:639-61. [PMID: 22899187 DOI: 10.1007/s12035-012-8318-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a paradigmatic example of neurodegenerative disorder with a critical role of oxidative stress in its etiopathogenesis. Genetic susceptibility factors of PD, such as mutations in Parkin, PTEN-induced kinase 1, and DJ-1 as well as the exposure to pesticides and heavy metals, both contribute to altered redox balance and degeneration of dopaminergic neurons in the substantia nigra. Dysregulation of autophagy, a lysosomal-driven process of self degradation of cellular organelles and protein aggregates, is also implicated in PD and PD-related mutations, and environmental toxins deregulate autophagy. However, experimental evidence suggests a complex and ambiguous role of autophagy in PD since either impaired or abnormally upregulated autophagic flux has been shown to cause neuronal loss. Finally, it is generally believed that oxidative stress is a strong proautophagic stimulus. However, some evidence coming from neurobiology as well as from other fields indicate an inhibitory role of reactive oxygen species and reactive nitrogen species on the autophagic machinery. This review examines the scientific evidence supporting different concepts on how autophagy is dysregulated in PD and attempts to reconcile apparently contradictory views on the role of oxidative stress in autophagy regulation. The complex relationship between autophagy and oxidative stress is also considered in the context of the ongoing search for a novel PD therapy.
Collapse
Affiliation(s)
- Elzbieta Janda
- Department of Health Sciences, University Magna Graecia, Edificio Bioscienze, viale Europa, Campus Salvatore Venuta, Germaneto, 88100 Catanzaro, Italy.
| | | | | | | |
Collapse
|
21
|
Quik M, Perez XA, Bordia T. Nicotine as a potential neuroprotective agent for Parkinson's disease. Mov Disord 2012. [PMID: 22693036 DOI: 10.1002/mds.v27.810.1002/mds.25028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Converging research efforts suggest that nicotine and other drugs that act at nicotinic acetylcholine receptors (nAChRs) may be beneficial in the management of Parkinson's disease. This idea initially stemmed from the results of epidemiological studies that demonstrated that smoking is associated with a decreased incidence of Parkinson's disease. The subsequent finding that nicotine administration protected against nigrostriatal damage in parkinsonian animal models led to the idea that nicotine in tobacco products may contribute to this apparent protective action. Nicotine most likely exerts its effects by interacting at nAChRs. Accumulating research indicates that multiple subtypes containing nAChRs, including α4β2, α6β2, and/or α7, may be involved. Stimulation of nAChRs initially activates various intracellular transduction pathways primarily via alterations in calcium signaling. Consequent adaptations in immune responsiveness and trophic factors may ultimately mediate nicotine's ability to reduce/halt the neuronal damage that arises in Parkinson's disease. In addition to a potential neuroprotective action, nicotine also has antidepressant properties and improves attention/cognition. Altogether, these findings suggest that nicotine and nAChR drugs represent promising therapeutic agents for the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, California, USA.
| | | | | |
Collapse
|
22
|
Quik M, Perez XA, Bordia T. Nicotine as a potential neuroprotective agent for Parkinson's disease. Mov Disord 2012; 27:947-57. [PMID: 22693036 DOI: 10.1002/mds.25028] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/13/2012] [Accepted: 04/08/2012] [Indexed: 02/06/2023] Open
Abstract
Converging research efforts suggest that nicotine and other drugs that act at nicotinic acetylcholine receptors (nAChRs) may be beneficial in the management of Parkinson's disease. This idea initially stemmed from the results of epidemiological studies that demonstrated that smoking is associated with a decreased incidence of Parkinson's disease. The subsequent finding that nicotine administration protected against nigrostriatal damage in parkinsonian animal models led to the idea that nicotine in tobacco products may contribute to this apparent protective action. Nicotine most likely exerts its effects by interacting at nAChRs. Accumulating research indicates that multiple subtypes containing nAChRs, including α4β2, α6β2, and/or α7, may be involved. Stimulation of nAChRs initially activates various intracellular transduction pathways primarily via alterations in calcium signaling. Consequent adaptations in immune responsiveness and trophic factors may ultimately mediate nicotine's ability to reduce/halt the neuronal damage that arises in Parkinson's disease. In addition to a potential neuroprotective action, nicotine also has antidepressant properties and improves attention/cognition. Altogether, these findings suggest that nicotine and nAChR drugs represent promising therapeutic agents for the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, California, USA.
| | | | | |
Collapse
|
23
|
Manley-King CI, Bergh JJ, Petzer JP. Monoamine oxidase inhibition by C4-substituted phthalonitriles. Bioorg Chem 2012; 40:114-124. [DOI: 10.1016/j.bioorg.2011.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/16/2022]
|
24
|
Verhave PS, Jongsma MJ, Van Den Berg RM, Vanwersch RAP, Smit AB, Philippens IHCHM. Neuroprotective effects of riluzole in early phase Parkinson's disease on clinically relevant parameters in the marmoset MPTP model. Neuropharmacology 2011; 62:1700-7. [PMID: 22178201 DOI: 10.1016/j.neuropharm.2011.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 11/01/2011] [Accepted: 11/23/2011] [Indexed: 01/11/2023]
Abstract
The present study evaluates neuroprotection in a marmoset MPTP (1-methyl-1,2,3,6-tetrahydropyridine) model representing early Parkinson's disease (PD). The anti-glutamatergic compound riluzole is used as a model compound for neuroprotection. The compound is one of the few protective compounds used in the clinic for a neurodegenerative disorder. Marmoset monkeys were randomized into three groups of six: 1) an MPTP group receiving a total MPTP dose of 7 mg/kg (4 injections over two weeks, s.c.) 2) a riluzole group receiving besides MPTP, a twice daily dose of riluzole (10 mg/kg, p.o.), starting one week before MPTP and continuing for one week after the final MPTP injection and 3) a control group receiving saline instead of MPTP and riluzole. The marmosets' Parkinsonian symptoms were scored daily and their activity level, hand-eye coordination, jumping behavior, axial turning and night sleep parameters were tested and recorded weekly. At three weeks following the last MPTP challenge, brains were dissected and dopamine levels in the striatum and the tyrosine hydroxylase (TH) expressing dopamine (DA) neurons in the substantia nigra (SN) were compared. MPTP affected all behavioral parameters and sleep architecture and induced a relatively mild (50%) decline of DA neurons in the substantia nigra (SN). Riluzole relieved the Parkinsonian signs, and improved the hand-eye coordination as well as turning ability. Moreover, riluzole prevented the impact of MPTP on sleep architecture and rapid eye movement behavioral disorder (RBD). Riluzole also increased the number of surviving DA neurons in MPTP-treated marmosets to 75%. However, riluzole did not prevent the MPTP-induced impairments on locomotor activity and jumping activity. In conclusion, reduction of excitotoxicity by riluzole appeared to be effective in reducing progressive neurodegeneration and relieved several clinically relevant PD symptoms in an animal model representing the early phase of PD.
Collapse
Affiliation(s)
- Peternella S Verhave
- BU CBRN Protection, TNO Defence, Security and Safety, Lange Kleiweg 137, PO Box 45, 2280 AA Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Functional reduction of SK3-mediated currents precedes AMPA-receptor-mediated excitotoxicity in dopaminergic neurons. Neuropharmacology 2010; 60:1176-86. [PMID: 21044638 DOI: 10.1016/j.neuropharm.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/28/2010] [Accepted: 10/26/2010] [Indexed: 11/21/2022]
Abstract
In primary cultures of mesencephalon small-conductance calcium-activated potassium channels (SK) are expressed in dopaminergic neurons. We characterized SK-mediated currents (I(SK)) in this system and evaluated their role on homeostasis against excitotoxicity. I(SK) amplitude was reduced by the glutamatergic agonist AMPA through a reduction in SK channel number in the membrane. Blockade of I(SK) for 12 h with apamin or NS8593 reduced the number of dopaminergic neurons in a concentration-dependent manner. The effect of apamin was not additive to AMPA toxicity. On the other hand, two I(SK) agonists, 1-EBIO and CyPPA, caused a significant reduction of spontaneous loss of dopaminergic neurons. 1-EBIO reversed the effects of both AMPA and apamin as well. Thus, I(SK) influences survival and differentiation of dopaminergic neurons in vitro, and is part of protective homeostatic responses, participating in a rapidly acting negative feedback loop coupling calcium levels, neuron excitability and cellular defenses. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
26
|
Azam F, Barodia SK, Anwer T, Alam MM. Neuroprotective effect of naphtha[1,2-d]thiazol-2-amine in an animal model of Parkinson's disease. J Enzyme Inhib Med Chem 2010; 24:808-17. [PMID: 18846462 DOI: 10.1080/14756360802399183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Increased oxidative stress has been implicated in the pathogenesis of dopaminergic neurodegeneration leading to the development of Parkinson's disease. In this study, we investigated whether naphtha[1,2-d]thiazol-2-amine (NTA) may ameliorate haloperidol-induced catalepsy and oxidative damage in mice brain. Haloperidol-induced catalepsy was measured with the standard bar test. The extent of oxidative stress has been evaluated by measuring levels of MDA, GSH and activities of antioxidant enzymes (SOD and GSH-Px) from brain homogenate. Haloperidol treatment significantly induced the catalepsy as observed from increased descent time measured in the bar test. Pretreatment with NTA significantly reduced the catalepsy induced by haloperidol in a dose-dependent manner. The elevated level of MDA in haloperidol-treated mice was significantly decreased by NTA pretreatment. The decreased level of GSH as well as SOD and GSH-Px activities in haloperidol-treated mice were significantly increased by NTA pretreatment. NTA reduces the oxidative stress allowing recovery of detoxifying enzyme activities and controlling free radical production, suggesting a potential role of the drug as an alternative/adjuvant drug in preventing and treating the neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Faizul Azam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Seventh of October University, PO Box 2873Misurata, Libya.
| | | | | | | |
Collapse
|
27
|
Millan MJ. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease. Pharmacol Ther 2010; 128:229-73. [PMID: 20600305 DOI: 10.1016/j.pharmthera.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
Though L-3,4-dihydroxyphenylalanine (L-DOPA) is universally employed for alleviation of motor dysfunction in Parkinson's disease (PD), it is poorly-effective against co-morbid symptoms like cognitive impairment and depression. Further, it elicits dyskinesia, its pharmacokinetics are highly variable, and efficacy wanes upon long-term administration. Accordingly, "dopaminergic agonists" are increasingly employed both as adjuncts to L-DOPA and as monotherapy. While all recognize dopamine D(2) receptors, they display contrasting patterns of interaction with other classes of monoaminergic receptor. For example, pramipexole and ropinirole are high efficacy agonists at D(2) and D(3) receptors, while pergolide recognizes D(1), D(2) and D(3) receptors and a broad suite of serotonergic receptors. Interestingly, several antiparkinson drugs display modest efficacy at D(2) receptors. Of these, piribedil displays the unique cellular signature of: 1), signal-specific partial agonist actions at dopamine D(2)and D(3) receptors; 2), antagonist properties at α(2)-adrenoceptors and 3), minimal interaction with serotonergic receptors. Dopamine-deprived striatal D(2) receptors are supersensitive in PD, so partial agonism is sufficient for relief of motor dysfunction while limiting undesirable effects due to "over-dosage" of "normosensitive" D(2) receptors elsewhere. Further, α(2)-adrenoceptor antagonism reinforces adrenergic, dopaminergic and cholinergic transmission to favourably influence motor function, cognition, mood and the integrity of dopaminergic neurones. In reviewing the above issues, the present paper focuses on the distinctive cellular, preclinical and therapeutic profile of piribedil, comparisons to pramipexole, ropinirole and pergolide, and the core triad of symptoms that characterises PD-motor dysfunction, depressed mood and cognitive impairment. The article concludes by highlighting perspectives for clarifying the mechanisms of action of piribedil and other antiparkinson agents, and for optimizing their clinical exploitation.
Collapse
Affiliation(s)
- Mark J Millan
- Dept of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine (Paris), France.
| |
Collapse
|
28
|
Abstract
Parkinson's disease is a neurodegenerative process characterized by numerous motor and nonmotor clinical manifestations for which effective, mechanism-based treatments remain elusive. Here we discuss a series of critical issues that we think researchers need to address to stand a better chance of solving the different challenges posed by this pathology.
Collapse
|
29
|
Fernandez N, Garcia JJ, Diez MJ, Sahagun AM, Díez R, Sierra M. Effects of dietary factors on levodopa pharmacokinetics. Expert Opin Drug Metab Toxicol 2010; 6:633-42. [DOI: 10.1517/17425251003674364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Abstract
Parkinson's disease is the second most common age-related neurodegenerative disorder, typified by the progressive loss of substantia nigra pars compacta dopamine neurons and the consequent decrease in the neurotransmitter dopamine. Patients exhibit a range of clinical symptoms, with the most common affecting motor function and including resting tremor, rigidity, akinesia, bradykinesia and postural instability. Current pharmacological interventions are palliative and largely aimed at increasing dopamine levels through increased production and/or inhibition of metabolism of this key neurotransmitter. The gold standard for treatment of both familial and sporadic Parkinson's disease is the peripheral administration of the dopamine precursor, levodopa. However, many patients gradually develop levodopa-induced dyskinesias and motor fluctuations. In addition, dopamine enhancement therapies are most useful when a portion of the nigrostriatal pathway is intact. Consequently, as the number of substantia nigra dopamine neurons and striatal projections decrease, these treatments become less efficacious. Current translational research is focused on the development of novel disease-modifying therapies, including those utilizing gene therapeutic approaches. Herein we present an overview of current gene therapy clinical trials for Parkinson's disease. Employing either recombinant adeno-associated virus type 2 (rAAV2) or lentivirus vectors, these clinical trials are focused on three overarching approaches: augmentation of dopamine levels via increased neurotransmitter production; modulation of the neuronal phenotype; and neuroprotection. The first two therapies discussed in this article focus on increasing dopamine production via direct delivery of genes involved in neurotransmitter synthesis (amino acid decarboxylase, tyrosine hydroxylase and GTP [guanosine triphosphate] cyclohydrolase 1). In an attempt to bypass the degenerating nigrostriatal pathway, a third clinical trial utilizes rAAV2 to deliver glutamic acid decarboxylase to the subthalamic nucleus, converting a subset of excitatory neurons to GABA-producing cells. In contrast, the final clinical trial is aimed at protecting the degenerating nigrostriatum by striatal delivery of rAAV2 harbouring the neuroprotective gene, neurturin. Based on preclinical studies, this gene therapeutic approach is posited to slow disease progression by enhancing neuronal survival. In addition, we discuss the outcome of each clinical trial and discuss the potential rationale for the marginal yet incremental clinical advancements that have thus far been realized for Parkinson's disease gene therapy.
Collapse
|
31
|
von Bernhardi R, Tichauer JE, Eugenín J. Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 2009; 112:1099-114. [PMID: 20002526 DOI: 10.1111/j.1471-4159.2009.06537.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among multiple structural and functional brain changes, aging is accompanied by an increase of inflammatory signaling in the nervous system as well as a dysfunction of the immune system elsewhere. Although the long-held view that aging involves neurocognitive impairment is now dismissed, aging is a major risk factor for neurodegenerative diseases such as Alzheimer;s disease, Parkinson;s disease and Huntington's disease, among others. There are many age-related changes affecting the brain, contributing both to certain declining in function and increased frailty, which could singly and collectively affect neuronal viability and vulnerability. Among those changes, both inflammatory responses in aged brains and the altered regulation of toll like receptors, which appears to be relevant for understanding susceptibility to neurodegenerative processes, are linked to pathogenic mechanisms of several diseases. Here, we review how aging and pro-inflammatory environment could modulate microglial phenotype and its reactivity and contribute to the genesis of neurodegenerative processes. Data support our idea that age-related microglial cell changes, by inducing cytotoxicity in contrast to neuroprotection, could contribute to the onset of neurodegenerative changes. This view can have important implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta, Santiago, Chile.
| | | | | |
Collapse
|
32
|
Kinetics of microglial activation and degeneration of dopamine-containing neurons in a rat model of Parkinson disease induced by 6-hydroxydopamine. J Neuropathol Exp Neurol 2009; 68:1092-102. [PMID: 19918121 DOI: 10.1097/nen.0b013e3181b767b4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In both Parkinson disease and in animal models of Parkinson disease, there is a microglial reaction in addition to the loss of dopaminergic neurons in the ventral midbrain. To determine the pathological role of this microglial reaction, we analyzed the kinetics of microglial activation and dopaminergic cell death induced in rats with the neurotoxin 6-hydroxydopamine. As early as Day 1 after the injection, there was a decline in the motor performance of the 6-hydroxydopamine-lesioned rats that correlated with a reduction of dopaminergic innervation of the contralateral striatum. Loss of dopaminergic neurons in the ventral midbrain developed a few days later and seemed to follow a specific temporospatial pattern. Degenerating neurons and activated microglia were seen only in areas in which dopaminergic cells were no longer observed, suggesting that the loss of the dopaminergic phenotype preceded the degenerative process. In sham-lesioned rats, there was a transient activation of microglia in the vicinity of the needle tract without any cell degeneration. This chronology of events supports the hypothesis that microglial activation is a secondary rather than primary phenomenon in dopaminergic cell degeneration induced by 6-hydroxydopamine.
Collapse
|
33
|
Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009; 15:391-404. [PMID: 19726230 DOI: 10.1016/j.molmed.2009.06.007] [Citation(s) in RCA: 566] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/24/2022]
Abstract
Protein S-nitrosylation constitutes a large part of the ubiquitous influence of nitric oxide on cellular signal transduction and accumulating evidence indicates important roles for S-nitrosylation both in normal physiology and in a broad spectrum of human diseases. Here we review recent findings that implicate S-nitrosylation in cardiovascular, pulmonary, musculoskeletal and neurological (dys)function, as well as in cancer. The emerging picture shows that, in many cases, pathophysiology correlates with hypo- or hyper-S-nitrosylation of specific protein targets rather than a general cellular insult due to loss of or enhanced nitric oxide synthase activity. In addition, it is increasingly evident that dysregulated S-nitrosylation can not only result from alterations in the expression, compartmentalization and/or activity of nitric oxide synthases, but can also reflect a contribution from denitrosylases, including prominently the S-nitrosoglutathione (GSNO)-metabolizing enzyme GSNO reductase. Finally, because exogenous mediators of protein S-nitrosylation or denitrosylation can substantially affect the development or progression of disease, potential therapeutic agents that modulate S-nitrosylation could well have broad clinical utility.
Collapse
Affiliation(s)
- Matthew W Foster
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
34
|
Development and validation of a reverse phase liquid chromatography method for the quantification of rasagiline mesylate in biodegradable PLGA microspheres. J Pharm Biomed Anal 2009; 49:1185-91. [DOI: 10.1016/j.jpba.2009.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/26/2009] [Accepted: 02/26/2009] [Indexed: 12/20/2022]
|
35
|
Wu J, Hecker JG, Chiamvimonvat N. Antioxidant enzyme gene transfer for ischemic diseases. Adv Drug Deliv Rev 2009; 61:351-63. [PMID: 19233238 DOI: 10.1016/j.addr.2009.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 01/28/2009] [Indexed: 02/07/2023]
Abstract
The balance of redox is pivotal for normal function and integrity of tissues. Ischemic insults occur as results of a variety of conditions, leading to an accumulation of reactive oxygen species (ROS) and an imbalanced redox status in the tissues. The oxidant stress may activate signaling mechanisms provoking more toxic events, and eventually cause tissue damage. Therefore, treatments with antioxidants, free radical scavengers and their mimetics, as well as gene transfer approaches to overexpress antioxidant genes represent potential therapeutic options to correct the redox imbalance. Among them, antioxidant gene transfer may enhance the production of antioxidant scavengers, and has been employed to experimentally prevent or treat ischemic injury in cardiovascular, pulmonary, hepatic, intestinal, central nervous or other systems in animal models. With improvements in vector systems and delivery approaches, innovative antioxidant gene therapy has conferred better outcomes for myocardial infarction, reduced restenosis after coronary angioplasty, improved the quality and function of liver grafts, as well as outcome of intestinal and cerebral ischemic attacks. However, it is crucial to be mindful that like other therapeutic armentarium, the efficacy of antioxidant gene transfer requires extensive preclinical investigation before it can be used in patients, and that it may have unanticipated short- or long-term adverse effects. Thus, it is critical to balance between the therapeutic benefits and potential risks, to develop disease-specific antioxidant gene transfer strategies, to deliver the therapy with an optimal time window and in a safe manner. This review attempts to provide the rationale, the most effective approaches and the potential hurdles of available antioxidant gene transfer approaches for ischemic injury in various organs, as well as the possible directions of future preclinical and clinical investigations of this highly promising therapeutic modality.
Collapse
|
36
|
Boger HA, Middaugh LD, Granholm AC, McGinty JF. Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiol Dis 2008; 33:459-66. [PMID: 19110059 DOI: 10.1016/j.nbd.2008.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/12/2008] [Accepted: 11/27/2008] [Indexed: 12/13/2022] Open
Abstract
Inflammation, phospho-p38 MAPK activation, and a reduction in glial cell line-derived neurotrophic factor (GDNF) occur in Parkinson's disease. Microglial activation in the substantia nigra and a tyrosine hydroxylase deficit in the striatum of 3-month-old GDNF heterozygous (GDNF(+/-)) mice were previously reported and both were exacerbated by a toxic methamphetamine binge. The current study assessed the effects of minocycline on these methamphetamine-induced effects. Minocycline (45 mg/kg, i.p.x 14 days post-methamphetamine or saline injections) reduced microglial activation and phospho-p38 MAPK in the substantia nigra of saline-treated GDNF(+/-) mice and in methamphetamine-treated wildtype and GDNF(+/-) mice. Although minocycline increased tyrosine hydroxylase-immunoreactivity in GDNF(+/-) mice, it did not attenuate the methamphetamine-induced reduction of tyrosine hydroxylase. The results suggest that neuroinflammation is deleterious to the dopamine system of GDNF(+/-) mice but is not the primary cause of methamphetamine-induced damage to the dopamine system in either GDNF(+/-) or wildtype mice.
Collapse
Affiliation(s)
- Heather A Boger
- Department of Neurosciences and Center on Aging, Medical University of South Carolina 173 Ashley Avenue BSB 403, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Peter A Lewitt
- Department of Neurology, Henry Ford Hospital, and the Department of Neurology, Wayne State University School of Medicine, Detroit, USA.
| |
Collapse
|
38
|
Mena MA, García de Yébenes J. Glial Cells as Players in Parkinsonism: The “Good,” the “Bad,” and the “Mysterious” Glia. Neuroscientist 2008; 14:544-60. [DOI: 10.1177/1073858408322839] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of glia in Parkinson's disease (PD) is very interesting because it may open new therapeutic strategies in this disease. Traditionally it has been considered that astrocytes and microglia play different roles in PD: Astroglia are considered the “good” glia and have traditionally been supposed to be neuroprotective due to their capacity to quench free radicals and secrete neurotrophic factors, whereas microglia, considered the “bad” glia, are thought to play a critical role in neuroinflammation. The proportion of astrocytes surrounding dopamine (DA) neurons in the substantia nigra, the target nucleus for neurodegeneration in PD, is the lowest for any brain area, suggesting that DA neurons are more vulnerable in terms of glial support than any neuron in other brain areas. Astrocytes are critical in the modulation of the neurotoxic effects of many toxins that induce experimental parkinsonism and they produce substances in vitro that could modify the effects of L-DOPA from neurotoxic to neurotrophic. There is a great interest in the role of inflammation in PD, and in the brains of these patients there is evidence for microglial production of cytokines and other substances that could be harmful to neurons, suggesting that microglia of the substantia nigra could be actively involved, primarily or secondarily, in the neurodegeneration process. There is, however, evidence in favor of the role of neurotoxic diffusible signals from microglia to DA neurons. More recently a third glial player, oligodendroglia, has been implicated in the pathogenesis of PD. Oligodendroglia play a key role in myelination of the nervous system. Recent neuropathological studies suggested that the nigrostriatal dopamine neurons, which were considered classically as the primary target for neurodegeneration in PD, degenerate at later stages than other neurons with poor myelination. Therefore, the role of oligodendroglia, which also secrete neurotrophic factors, has entered the center of interest of neuroscientists.
Collapse
Affiliation(s)
- Maria A. Mena
- Department of Neurobiology, Cajal University Hospital,
Madrid, Spain, , CIBERNED
| | | |
Collapse
|
39
|
Maguire-Zeiss KA. alpha-Synuclein: a therapeutic target for Parkinson's disease? Pharmacol Res 2008; 58:271-80. [PMID: 18840530 PMCID: PMC2630208 DOI: 10.1016/j.phrs.2008.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a progressive age-related neurodegenerative disease with invariant loss of substantia nigra dopamine neurons and striatal projections. This disorder is well known for the associated motoric symptoms including resting tremor and the inability to initiate movement. However, it is now apparent that Parkinson's disease is a multisystem disorder with patients exhibiting symptoms derived from peripheral nervous system and extra-nigral dysfunctions in addition to the prototypical nigrostriatal damage. Although the etiology for sporadic Parkinson's disease is unknown, information gleaned from both familial forms of the disease and animal models places misfolded alpha-synuclein at the forefront. The disease is currently without a cure and most therapies target the motoric symptoms relying on increasing dopamine tone. In this review, the role of alpha-synuclein in disease pathogenesis and as a potential therapeutic target focusing on toxic conformers of this protein is considered. The addition of protofibrillar/oligomer-directed neurotherapeutics to the existing armamentarium may extend the symptom-free stage of Parkinson's disease as well as alleviate pathogenesis.
Collapse
Affiliation(s)
- Kathleen A Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, Washington, DC 20057, United States.
| |
Collapse
|
40
|
Abstract
Dystonia is a neurological syndrome characterized by excessive involuntary muscle contractions leading to twisting movements and unnatural postures. It has many different clinical manifestations, and many different causes. More than 3 million people worldwide suffer from dystonia, yet there are few broadly effective treatments. In the past decade, progress in research has advanced our understanding of the pathogenesis of dystonia to a point where drug discovery efforts are now feasible. Several strategies can be used to develop novel therapeutics for dystonia. Existing therapies have only modest efficacy, but may be refined and improved to increase benefits while reducing side effects. Identifying rational targets for drug intervention based on the pathogenesis of dystonia is another strategy. The surge in both basic and clinical research discoveries has provided insights at all levels, including etiological, physiological and nosological, to enable such a targeted approach. The empirical approach to drug discovery, whereby compounds are identified using a nonmechanistic strategy, is complementary to the rational approach. With the recent development of multiple animal models of dystonia, it is now possible to develop assays and perform drug screens on vast numbers of compounds. This multifaceted approach to drug discovery in dystonia will likely provide lead compounds that can then be translated for clinical use.
Collapse
Affiliation(s)
- H. A. Jinnah
- grid.21107.350000000121719311Department of Neurology, Meyer Room 6-181, Johns Hopkins University, 600 N. Wolfe Street, 21287 Baltimore, MD
| | - Ellen J. Hess
- grid.21107.350000000121719311Department of Neurology, Meyer Room 6-181, Johns Hopkins University, 600 N. Wolfe Street, 21287 Baltimore, MD
- grid.21107.350000000121719311Department of Neuroscience, Johns Hopkins University School of Medicine, 21287 Baltimore, Maryland
| |
Collapse
|