1
|
Bao J, Gao Z, Hu Y, Ye L, Wang L. Transient receptor potential vanilloid type 1: cardioprotective effects in diabetic models. Channels (Austin) 2023; 17:2281743. [PMID: 37983306 PMCID: PMC10761101 DOI: 10.1080/19336950.2023.2281743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Cardiovascular disease, especially heart failure (HF) is the leading cause of death in patients with diabetes. Individuals with diabetes are prone to a special type of cardiomyopathy called diabetic cardiomyopathy (DCM), which cannot be explained by heart diseases such as hypertension or coronary artery disease, and can contribute to HF. Unfortunately, the current treatment strategy for diabetes-related cardiovascular complications is mainly to control blood glucose levels; nonetheless, the improvement of cardiac structure and function is not ideal. The transient receptor potential cation channel subfamily V member 1 (TRPV1), a nonselective cation channel, has been shown to be universally expressed in the cardiovascular system. Increasing evidence has shown that the activation of TRPV1 channel has a potential protective influence on the cardiovascular system. Numerous studies show that activating TRPV1 channels can improve the occurrence and progression of diabetes-related complications, including cardiomyopathy; however, the specific mechanisms and effects are unclear. In this review, we summarize that TRPV1 channel activation plays a protective role in the heart of diabetic models from oxidation/nitrification stress, mitochondrial function, endothelial function, inflammation, and cardiac energy metabolism to inhibit the occurrence and progression of DCM. Therefore, TRPV1 may become a latent target for the prevention and treatment of diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Puri K, Lal N, Shang R, Ghosh S, Flibotte S, Dyer R, Hussein B, Rodrigues B. Diabetes Mellitus Severity and a Switch From Using Lipoprotein Lipase to Adipose-Derived Fatty Acid Results in a Cardiac Metabolic Signature That Embraces Cell Death. J Am Heart Assoc 2019; 8:e014022. [PMID: 31665961 PMCID: PMC6898854 DOI: 10.1161/jaha.119.014022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Fatty acid (FA) provision to the heart is from cardiomyocyte and adipose depots, plus lipoprotein lipase action. We tested how a graded reduction in insulin impacts the source of FA used by cardiomyocytes and the cardiac adaptations required to process these FA. Methods and Results Rats injected with 55 (D55) or 100 (D100) mg/kg streptozotocin were terminated after 4 days. Although D55 and D100 were equally hyperglycemic, D100 showed markedly lower pancreatic and plasma insulin and loss of lipoprotein lipase, which in D55 hearts had expanded. There was minimal change in plasma FA in D55. However, D100 exhibited a 2‐ to 3‐fold increase in various saturated, monounsaturated, and polyunsaturated FA in the plasma. D100 demonstrated dramatic cardiac transcriptomic changes with 1574 genes differentially expressed compared with only 49 in D55. Augmented mitochondrial and peroxisomal β‐oxidation in D100 was not matched by elevated tricarboxylic acid or oxidative phosphorylation. With increasing FA, although control myocytes responded by augmenting basal respiration, this was minimized in D55 and reversed in D100. Metabolomic profiling identified significant lipid accumulation in D100 hearts, which also exhibited sizeable change in genes related to apoptosis and terminal deoxynucleotidyl transferase dUTP nick‐end labeling–positive cells. Conclusions With increasing severity of diabetes mellitus, when the diabetic heart is unable to control its own FA supply using lipoprotein lipase, it undergoes dramatic reprogramming that is linked to handling of excess FA that arise from adipose tissue. This transition results in a cardiac metabolic signature that embraces mitochondrial FA overload, oxidative stress, triglyceride storage, and cell death.
Collapse
Affiliation(s)
- Karanjit Puri
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| | - Rui Shang
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| | - Sanjoy Ghosh
- Department of Biology IKBSAS University of British Columbia-Okanagan Kelowna Canada
| | - Stephane Flibotte
- Department of Zoology University of British Columbia Vancouver BC Canada
| | - Roger Dyer
- Department of Pediatrics University of British Columbia Vancouver BC Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences University of British Columbia Vancouver BC Canada
| |
Collapse
|
3
|
Huang M, Liu J, Sheng Y, Lv Y, Yu J, Qi H, Di W, Lv S, Zhou S, Ding G. 11β-hydroxysteroid dehydrogenase type 1 inhibitor attenuates high-fat diet induced cardiomyopathy. J Mol Cell Cardiol 2018; 125:106-116. [DOI: 10.1016/j.yjmcc.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 12/29/2022]
|
4
|
Cerf ME. Cardiac Glucolipotoxicity and Cardiovascular Outcomes. ACTA ACUST UNITED AC 2018; 54:medicina54050070. [PMID: 30344301 PMCID: PMC6262512 DOI: 10.3390/medicina54050070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/12/2023]
Abstract
Cardiac insulin signaling can be impaired due to the altered fatty acid metabolism to induce insulin resistance. In diabetes and insulin resistance, the metabolic, structural and ultimately functional alterations in the heart and vasculature culminate in diabetic cardiomyopathy, coronary artery disease, ischemia and eventually heart failure. Glucolipotoxicity describes the combined, often synergistic, adverse effects of elevated glucose and free fatty acid concentrations on heart structure, function, and survival. The quality of fatty acid shapes the cardiac structure and function, often influencing survival. A healthy fatty acid balance is therefore critical for maintaining cardiac integrity and function.
Collapse
Affiliation(s)
- Marlon E Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa.
| |
Collapse
|
5
|
Rasool S, Geetha T, Broderick TL, Babu JR. High Fat With High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Front Physiol 2018; 9:1054. [PMID: 30258366 PMCID: PMC6143817 DOI: 10.3389/fphys.2018.01054] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle utilizes both free fatty acids (FFAs) and glucose that circulate in the blood stream. When blood glucose levels acutely increase, insulin stimulates muscle glucose uptake, oxidation, and glycogen synthesis. Under these conditions, skeletal muscle preferentially oxidizes glucose while the oxidation of fatty acids (FAs) oxidation is reciprocally decreased. In metabolic disorders associated with insulin resistance, such as diabetes and obesity, both glucose uptake, and utilization muscle are significantly reduced causing FA oxidation to provide the majority of ATP for metabolic processes and contraction. Although the causes of this metabolic inflexibility or disrupted "glucose-fatty acid cycle" are largely unknown, a diet high in fat and sugar (HFS) may be a contributing factor. This metabolic inflexibility observed in models of obesity or with HFS feeding is detrimental because high rates of FA oxidation in skeletal muscle can lead to the buildup of toxic metabolites of fat metabolism and the accumulation of pro-inflammatory cytokines, which further exacerbate the insulin resistance. Further, HFS leads to skeletal muscle atrophy with a decrease in myofibrillar proteins and phenotypically characterized by loss of muscle mass and strength. Overactivation of ubiquitin proteasome pathway, oxidative stress, myonuclear apoptosis, and mitochondrial dysfunction are some of the mechanisms involved in muscle atrophy induced by obesity or in mice fed with HFS. In this review, we will discuss how HFS diet negatively impacts the various physiological and metabolic mechanisms in skeletal muscle.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, Glendale, AZ, United States
| | - Jeganathan R Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| |
Collapse
|
6
|
Carpentier AC. Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy. Can J Cardiol 2018; 34:605-614. [PMID: 29627307 DOI: 10.1016/j.cjca.2017.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes are at very high risk of hospitalization and death from heart failure. Increased prevalence of coronary heart disease, hypertension, autonomic neuropathy, and kidney failure all play a role in this increased risk. However, cardiac metabolic abnormalities are now recognized to play a role in this increased risk. Increased reliance on fatty acids to produce energy might predispose the diabetic heart to oxidative stress and ischemic damage. Intramyocellular accumulation of toxic lipid metabolites leads to a number of cellular abnormalities that might also contribute to cardiac remodelling and cardiac dysfunction. However, fatty acid availability from circulation and from intracellular lipid droplets to fuel the heart is critical to maintain its function. Fatty acids delivery to the heart is very complex and includes plasma nonesterified fatty acid flux as well as triglyceride-rich lipoprotein-mediated transport. Although many studies have shown a cross-sectional association between enhanced fatty acid delivery to the heart and reduction in left ventricular function in subjects with prediabetes and diabetes, these mechanisms change very rapidly during type 2 diabetes treatment. The present review focuses on the role of fatty acids in cardiac function, with particular emphasis on the possible role of early abnormalities of dietary fatty acid metabolism in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. RECENT FINDINGS We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. SUMMARY In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
8
|
Cury-Boaventura MF, Gorjão R, de Lima TM, Piva TM, Peres CM, Soriano FG, Curi R. Toxicity of a Soybean Oil Emulsion on Human Lymphocytes and Neutrophils. JPEN J Parenter Enteral Nutr 2017; 30:115-23. [PMID: 16517956 DOI: 10.1177/0148607106030002115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. In this study, the toxicity of a lipid emulsion rich (60%) in triacylglycerol of omega-6 polyunsaturated fatty acids on leukocytes from healthy volunteers was investigated. METHODS Eleven volunteers were recruited, and blood samples were collected before infusion of a soybean oil emulsion, immediately afterwards, and 18 hours later. The cells were studied immediately after isolation and again after 24 hours or 48 hours in culture. The following determinations were made: composition and concentration of fatty acids in plasma, lymphocytes and neutrophils, lymphocyte proliferation, levels of cell viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, reactive oxygen species production, and neutral lipid accumulation. RESULTS Soybean oil emulsion decreased lymphocyte proliferation and provoked neutrophil and lymphocyte apoptosis and necrosis. Evidence is presented herein that soybean oil emulsion is less toxic to neutrophils than to lymphocytes. The mechanism of cell death induced by this oil emulsion was characterized by mitochondrial membrane depolarization and neutral lipid accumulation but did not alter reactive oxygen species production. CONCLUSIONS Soybean oil emulsion given as a single dose of 500 mL promotes lymphocyte and neutrophil death that may enhance the susceptibility of the patients to infections.
Collapse
Affiliation(s)
- Maria Fernanda Cury-Boaventura
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, and the Division of Clinical Emergency, Faculty of Medicine, University of São Paulo, Av. Prof. Lineu Prestes 1524, CEP 05508-900 São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
9
|
Trivedi PC, Bartlett JJ, Perez LJ, Brunt KR, Legare JF, Hassan A, Kienesberger PC, Pulinilkunnil T. Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1893-1910. [PMID: 27620487 DOI: 10.1016/j.bbalip.2016.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
Abstract
Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.
Collapse
Affiliation(s)
- Purvi C Trivedi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Jordan J Bartlett
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Lester J Perez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Keith R Brunt
- Deparment of Pharmacology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Jean Francois Legare
- Department of Surgery, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Ansar Hassan
- Department of Surgery, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada.
| |
Collapse
|
10
|
Shirakawa J, Okuyama T, Kyohara M, Yoshida E, Togashi Y, Tajima K, Yamazaki S, Kaji M, Koganei M, Sasaki H, Terauchi Y. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr 2016; 8:16. [PMID: 26937254 PMCID: PMC4774120 DOI: 10.1186/s13098-016-0138-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetes therapy that not only lowers glucose levels but also lengthens life spans is required. We previously demonstrated that DPP-4 inhibition ameliorated β cell apoptosis and adipose tissue inflammation in β cell-specific glucokinase haploinsufficient mice fed a diet containing a combination of sucrose and linoleic acid (SL). METHODS In this study, we investigated the effects of DPP-4 inhibition in obese diabetic db/db mice fed an SL diet or a control diet containing sucrose and oleic acid (SO). We also examined the effects of DPP-4 inhibition in IRS-1-deficient mice fed an SL or SO diet as a model of insulin resistance. RESULTS DPP-4 inhibition efficiently increases the active GLP-1 levels in db/db mice. Unexpectedly, the SL diet, but not the SO diet, markedly increases mortality in the db/db mice. DPP-4 inhibition reduces the early lethality in SL-fed db/db mice. DPP-4 inhibition improves glucose tolerance, β cell function, and adipose tissue inflammation in db/db mice fed either diet. No significant changes in glycemic control or β cell mass were observed in any of the IRS-1-deficient mouse groups. CONCLUSIONS A diet containing a combination of sucrose and linoleic acid causes early lethality in obese diabetic db/db mice, but not in lean and insulin resistant IRS-1 knockout mice. DPP-4 inhibition has protective effects against the diet-induced lethality in db/db mice.
Collapse
Affiliation(s)
- Jun Shirakawa
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Tomoko Okuyama
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Mayu Kyohara
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Eiko Yoshida
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Yu Togashi
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Kazuki Tajima
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Shunsuke Yamazaki
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Mitsuyo Kaji
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Megumi Koganei
- />Food Science Research Laboratories, R&D Division, Meiji Co., Ltd., Odawara, Japan
| | - Hajime Sasaki
- />Food Science Research Laboratories, R&D Division, Meiji Co., Ltd., Odawara, Japan
- />Department of Nutritional and Life Sciences, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yasuo Terauchi
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| |
Collapse
|
11
|
Noll C, Kunach M, Frisch F, Bouffard L, Dubreuil S, Jean-Denis F, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Seven-Day Caloric and Saturated Fat Restriction Increases Myocardial Dietary Fatty Acid Partitioning in Impaired Glucose-Tolerant Subjects. Diabetes 2015. [PMID: 26224886 DOI: 10.2337/db15-0337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stéphanie Dubreuil
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Farrah Jean-Denis
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| |
Collapse
|
12
|
Kubli DA, Gustafsson ÅB. Unbreak my heart: targeting mitochondrial autophagy in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1527-44. [PMID: 25808102 PMCID: PMC4449713 DOI: 10.1089/ars.2015.6322] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Diabetes is strongly associated with increased incidence of heart disease and mortality due to development of diabetic cardiomyopathy. Even in the absence of cardiovascular disease, cardiomyopathy frequently arises in diabetic patients. Current treatment options for cardiomyopathy in diabetic patients are the same as for nondiabetic patients and do not address the causes underlying the loss of contractility. RECENT ADVANCES Although there are numerous distinctions between Type 1 and Type 2 diabetes, recent evidence suggests that the two disease states converge on mitochondria as an epicenter for cardiomyocyte damage. CRITICAL ISSUES Accumulation of dysfunctional mitochondria contributes to cardiac tissue injury in both acute and chronic conditions. Removal of damaged mitochondria by macroautophagy, termed "mitophagy," is critical for maintaining cardiomyocyte health and contractility both under normal conditions and during stress. However, very little is known about the involvement of mitophagy in the pathogenesis of diabetic cardiomyopathy. A growing interest in this topic has given rise to a wave of publications that aim at deciphering the status of autophagy and mitophagy in Type 1 and Type 2 diabetes. FUTURE DIRECTIONS This review summarizes these recent studies with the goal of drawing conclusions about the activation or suppression of autophagy and mitophagy in the diabetic heart. A better understanding of how autophagy and mitophagy are affected in the diabetic myocardium is still needed, as well as whether they can be targeted therapeutically.
Collapse
Affiliation(s)
- Dieter A Kubli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
13
|
Danilova IG, Sarapultsev PA, Medvedeva SU, Gette IF, Bulavintceva TS, Sarapultsev AP. Morphological restructuring of myocardium during the early phase of experimental diabetes mellitus. Anat Rec (Hoboken) 2014; 298:396-407. [PMID: 25251897 DOI: 10.1002/ar.23052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 08/06/2014] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to determine the specific features of the morphological restructuring of the myocardium in the early stage of experimental diabetes mellitus (DM). Experimental type 1 DM rat model was developed by intraperitoneal injection of alloxan solution at a dose of 30 mg per 100 g body mass. After 1 month, 3 mL of blood was drawn by heart puncture and the plasma separated by centrifugation for biochemical analysis. Plasma glucose, insulin, and glycosylated haemoglobin in whole blood were determined. Light microscopy and morphometric studies were conducted of histological slices of the hearts of experimental animals. The investigation of heart morphology showed a statistically significant alteration in chamber wall thickness in the right auricle in rats with alloxan-induced DM. A change in cardiomyocyte diameter in myocardium slices was observed in all chambers of DM rats except for the left ventricle. Average cardiomyocyte diameter in rats with experimental DM increased by 26.6% and 15.5% in the right auricle and right ventricle, respectively, while average cardiomyocyte diameter in the left auricle decreased by 20.8%. Histological investigation of the heart following alloxan injection demonstrated, under the epicardium, distended vessels of the venous collecting microcirculatory system. Aggregation and agglutination of red blood cells and endothelial cell destruction were found in some vessels. In the early stage of DM development, structural alterations in the microcirculatory channels and myocardiocytes can be observed in the heart. These structural alterations were most evident in the right chambers of the heart.
Collapse
Affiliation(s)
- I G Danilova
- Institute of Immunology and Physiology of the Ural Branch of the RAS, Ekaterinburg, Russian Federation; Federal State Autonomous Educational Institution of Higher Professional Education, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federation
| | | | | | | | | | | |
Collapse
|
14
|
Kim OY, Jung YS, Cho Y, Chung JH, Hwang GS, Shin MJ. Altered heart and kidney phospholipid fatty acid composition are associated with cardiac hypertrophy in hypertensive rats. Clin Biochem 2013; 46:1111-1117. [PMID: 23608354 DOI: 10.1016/j.clinbiochem.2013.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We examined the association of cardiac hypertrophy or fibrosis with the phospholipid fatty acid (FA) composition of heart and kidney in hypertensive rats. DESIGN AND METHODS Eight-week-old spontaneously hypertensive rats (SHRs) (n=8) and Wistar Kyoto rats (WKYs, n=8) as a normotensive control, were fed ad libitum for 6 weeks with regular AIN-76 diet. Phospholipid FA compositions in the left ventricle and kidney were measured and histological analyses were performed. RESULTS Compared with WKYs, SHRs had lower proportions of γ-linolenic acid, α-linolenic acid, eicosadienoic acid, eicosatrienoic acid, dihomo-γ-linoleic acid, docosadienoic acid and nervonic acid in heart, and stearic acid (SA), γ-linolenic acid, and eicosapentaenoic acid (EPA) in kidney. After adjusting for food intake, SHRs still maintained higher proportions of SA, and total saturated FAs in the heart and a lower proportion of eicosapentaenoic acid in the kidney. Additionally, compared with WKYs, SHRs showed larger cardiomyocyte diameters in the left ventricles, indicating cardiac hypertrophy and interstitial fibrosis. Cardiomyocyte diameters also positively correlated with cardiac SA (r=0.550, p<0.05) and negatively with kidney EPA (r=-0.575, p<0.05). CONCLUSION Tissue FA compositions were associated with cardiac hypertrophy in a hypertensive setting, implicating the pathogenic role of tissue FAs in hypertension and related complications.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Republic of Korea
| | - Young-Sang Jung
- Korea Basic Science Institute, Seoul 136-703, Republic of Korea
| | - Yoonsu Cho
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea
| | - Ji Hyung Chung
- Yonsei Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Geum-Sook Hwang
- Korea Basic Science Institute, Seoul 136-703, Republic of Korea.
| | - Min-Jeong Shin
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea.
| |
Collapse
|
15
|
Autophagy contributes to retardation of cardiac growth in diabetic rats. Lab Anim Res 2012; 28:99-107. [PMID: 22787483 PMCID: PMC3389845 DOI: 10.5625/lar.2012.28.2.99] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus is a major predictor of heart failure, although the mechanisms by which the disease causes cardiomyopathy are not well understood. The purpose of this study was to determine whether prolonged exposure of cardiomyocytes to high glucose concentrations induces autophagy and contributes to cardiomyopathy. Interestingly, there were no differences in the autophagic activation produced by different glucose concentrations. However, cell viability was decreased by high glucose. In the diabetic rats, we found a higher level of microtubule-associated protein light chain 3 (LC3) expression and a reduction in the size of the left ventricle (LV) (P<0.05) caused by growth retardation, suggesting activated autophagy. Our in vitro findings indicate that hyperglycemic oxidative stress induces autophagy, and our in vivo studies reveal that autophagy is involved in the progression of pathophysiological remodeling of the heart. Taken together, the studies suggest that autophagy may play a role in the pathogenesis of juvenile diabetic cardiomyopathy.
Collapse
|
16
|
Wang HJ, Lee EY, Han SJ, Kim SH, Lee BW, Ahn CW, Cha BS, Lee HC. Dual pathways of p53 mediated glucolipotoxicity-induced apoptosis of rat cardiomyoblast cell: activation of p53 proapoptosis and inhibition of Nrf2-NQO1 antiapoptosis. Metabolism 2012; 61:496-503. [PMID: 22154326 DOI: 10.1016/j.metabol.2011.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 09/06/2011] [Accepted: 09/15/2011] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species (ROS), driven by excessive levels of glucose and free fatty acids, appears to induce cell apoptosis. However, the underlying molecular mechanism of this process remains unclear in cardiac myocytes. We investigated the glucolipotoxicity effects of high glucose and palmitic acid (C16:0) on the rat cardiomyoblast cell line (H9c2) focusing on tumor suppressor p53. Cultured H9c2 rat cardiomyoblasts were exposed to palmitate and /or to an elevated glucose concentration for 18 hours. Only the glucolipotoxic condition of 30 mM glucose in combination with 250 μM palmitate resulted in significant generation of ROS and upregulation of p53 which caused to an increased cleavage of caspase-3. On the other hand, the expression of NF-E2-related factor 2 (Nrf2) showed increased tendency while the expression of NAD(P)H: quinone oxidoreductase-1 (NQO1) was decreased. N-acetyl L cysteins and pifithrin-α, an inhibitor of p53 abrogated glucolipotoxicity-induced ROS generation and p53 expression. Chromatin immunoprecipitation analysis revealed that p53 interacted antioxidant responsive elements (ARE)-containing promoter of NQO1. Upregulated p53 counteracted the Nrf2-induced transcription of ARE-containing promoter of NQO1 gene and leaded to decrease in NQO1 expression. We demonstrated that the elevated p53 mediated glucolipotoxicity-induced apoptosis of rat cardiomyoblast cell through dual pathways: stimulating pro-apoptosis signaling as well as suppressing anti-apoptosis pathway of Nrf2-NQO1 signaling.
Collapse
Affiliation(s)
- Hye Jin Wang
- Brain Korea 21 Project for Medical Science, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Makni M, Fetoui H, Gargouri NK, Garoui EM, Zeghal N. Antidiabetic effect of flax and pumpkin seed mixture powder: effect on hyperlipidemia and antioxidant status in alloxan diabetic rats. J Diabetes Complications 2011; 25:339-45. [PMID: 21106396 DOI: 10.1016/j.jdiacomp.2010.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/14/2010] [Accepted: 09/08/2010] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species play a crucial role in the pathogenesis of diabetes and its complications. This study aims to examine the effects of flax and pumpkin powder seed mixture on alloxan induced diabetes in Wistar rats. Animals were allocated into three groups of six rats each: a control group (CD), diabetic group (DD) and diabetic rats fed with flax and pumpkin seed mixture (DMS) group. The diabetic rats (DD) presented a significant increase in glycemia, plasma and liver lipid parameters such as total lipid, total cholesterol and triglycerides compared to the control group (CD). In addition, plasma and liver malonaldialdehyde levels (MDA, an index of lipid peroxidation) significantly increased compared to (CD). Antioxidant enzymes activities such as catalase, superoxide dismutase, and reduced glutathione (GSH) levels significantly decreased in the plasma and liver of diabetic rats compared to controls. Diet supplemented with flax and pumpkin seed mixture in the DMS group ameliorated antioxidant enzymes activities and level of GSH in diabetic rats and significantly decreased MDA levels. The present study revealed a significant increase in the activities of aspartate aminotransferase and alanine aminotransferase on diabetic status, indicating considerable hepatocellular injury. The administration of flax and pumpkin seed mixture attenuated the increased levels of the plasma enzymes produced by the induction of diabetes and caused a subsequent recovery towards normalization comparable to the control group animals. Our results thus suggest that flax and pumpkin seed mixture supplemented to diet may be helpful in preventing diabetic complications in adult rats.
Collapse
Affiliation(s)
- Mohamed Makni
- Animal Physiology Laboratory, Faculty of Sciences, BP 1171, 3000 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
18
|
Jeckel KM, Miller KE, Chicco AJ, Chapman PL, Mulligan CM, Falcone PH, Miller ML, Pagliassotti MJ, Frye MA. The role of dietary fatty acids in predicting myocardial structure in fat-fed rats. Lipids Health Dis 2011; 10:92. [PMID: 21649916 PMCID: PMC3127789 DOI: 10.1186/1476-511x-10-92] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/07/2011] [Indexed: 12/27/2022] Open
Abstract
Background Obesity increases the risk for development of cardiomyopathy in the absence of hypertension, diabetes or myocardial ischemia. Not all obese individuals, however, progress to heart failure. Indeed, obesity may provide protection from cardiovascular mortality in some populations. The fatty acid milieu, modulated by diet, may modify obesity-induced myocardial structure and function, lending partial explanation for the array of cardiomyopathic phenotypy in obese individuals. Methods Adult male Sprague-Dawley rats were fed 1 of the following 4 diets for 32 weeks: control (CON); 50% saturated fat (SAT); 40% saturated fat + 10% linoleic acid (SAT+LA); 40% saturated fat + 10% α-linolenic acid (SAT+ALA). Serum leptin, insulin, glucose, free fatty acids and triglycerides were quantitated. In vivo cardiovascular outcomes included blood pressure, heart rate and echocardiographic measurements of structure and function. The rats were sacrificed and myocardium was processed for fatty acid analysis (TLC-GC), and evaluation of potential modifiers of myocardial structure including collagen (Masson's trichrome, hydroxyproline quantitation), lipid (Oil Red O, triglyceride quantitation) and myocyte cross sectional area. Results Rats fed SAT+LA and SAT+ALA diets had greater cranial LV wall thickness compared to rats fed CON and SAT diets, in the absence of hypertension or apparent insulin resistance. Treatment was not associated with changes in myocardial function. Myocardial collagen and triglycerides were similar among treatment groups; however, rats fed the high-fat diets, regardless of composition, demonstrated increased myocyte cross sectional area. Conclusions Under conditions of high-fat feeding, replacement of 10% saturated fat with either LA or ALA is associated with thickening of the cranial LV wall, but without concomitant functional changes. Increased myocyte size appears to be a more likely contributor to early LV thickening in response to high-fat feeding. These findings suggest that myocyte hypertrophy may be an early change leading to gross LV hypertrophy in the hearts of "healthy" obese rats, in the absence of hypertension, diabetes and myocardial ischemia.
Collapse
Affiliation(s)
- Kimberly M Jeckel
- Department of Biomedical Sciences, Campus delivery #1680, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Anderson EJ, Rodriguez E, Anderson CA, Thayne K, Chitwood WR, Kypson AP. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol 2010; 300:H118-24. [PMID: 21076025 DOI: 10.1152/ajpheart.00932.2010] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Progressive energy deficiency and loss of cardiomyocyte numbers are two prominent factors that lead to heart failure in experimental models. Signals that mediate cardiomyocyte cell death have been suggested to come from both extrinsic (e.g., cytokines) and intrinsic (e.g., mitochondria) sources, but the evidence supporting these mechanisms remains unclear, and virtually nonexistent in humans. In this study, we investigated the sensitivity of the mitochondrial permeability transition pore (mPTP) to calcium (Ca(2+)) using permeabilized myofibers of right atrium obtained from diabetic (n = 9) and nondiabetic (n = 12) patients with coronary artery disease undergoing nonemergent coronary revascularization surgery. Under conditions that mimic the energetic state of the heart in vivo (pyruvate, glutamate, malate, and 100 μM ADP), cardiac mitochondria from diabetic patients show an increased sensitivity to Ca(2+)-induced mPTP opening compared with nondiabetic patients. This increased mPTP Ca(2+) sensitivity in diabetic heart mitochondria is accompanied by a substantially greater rate of mitochondrial H(2)O(2) emission under identical conditions, despite no differences in respiratory capacity under these conditions or mitochondrial enzyme content. Activity of the intrinsic apoptosis pathway mediator caspase-9 was greater in diabetic atrial tissue, whereas activity of the extrinsic pathway mediator caspase-8 was unchanged between groups. Furthermore, caspase-3 activity was not significantly increased in diabetic atrial tissue. These data collectively suggest that the myocardium in diabetic patients has a greater overall propensity for mitochondrial-dependent cell death, possibly as a result of metabolic stress-imposed changes that have occurred within the mitochondria, rendering them more susceptible to insults such as Ca(2+) overload. In addition, they lend further support to the notion that mitochondria represent a viable target for future therapies directed at ameliorating heart failure and other comorbidities that come with diabetes.
Collapse
Affiliation(s)
- Ethan J Anderson
- Dept. of Pharmacology & Toxicology, Brody School of Medicine, East Carolina Univ., Greenville, NC 27834, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Ebrahimi F, Shafaroodi H, Asadi S, Nezami BG, Ghasemi M, Rahimpour S, Hashemi M, Doostar Y, Dehpour AR. Sildenafil decreased cardiac cell apoptosis in diabetic mice: reduction of oxidative stress as a possible mechanism. Can J Physiol Pharmacol 2010; 87:556-64. [PMID: 19767879 DOI: 10.1139/y09-036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress plays a dominant role in the pathogenesis of cardiac cell apoptosis in diabetic patients. Sildenafil has been demonstrated to have antioxidant effects. In this study, the effects of sildenafil on diabetes-induced cardiac cell apoptosis and the antioxidant status of diabetic mouse hearts were investigated. Diabetic mice showed lower body weight gains and heart weights compared with control mice, and sildenafil treatment did not increase these parameters in diabetic mice. Although apoptotic rates, caspase-3 enzyme activity, and malondialdehyde levels were significantly higher in diabetic mouse hearts than in controls, they were reduced in diabetic mice after sildenafil treatment. At the end of the first week, we observed no significant differences in antioxidant enzyme activities (CAT, GSH-Px, and SOD) in diabetic and control groups, whereas at the end of the second week of sildenafil treatment, antioxidant enzyme activities were higher in the diabetic group. In conclusion, our study indicated that sildenafil was beneficial to hearts of diabetic mice by reducing cardiac cell apoptosis, partially because of its antioxidant effects in the heart.
Collapse
Affiliation(s)
- Farzad Ebrahimi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:311-9. [PMID: 19818871 DOI: 10.1016/j.bbalip.2009.09.023] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 02/07/2023]
Abstract
Obesity and insulin resistance are associated with ectopic lipid deposition in multiple tissues, including the heart. Excess lipid may be stored as triglycerides, but are also shunted into non-oxidative pathways that disrupt normal cellular signaling leading to organ dysfunction and in some cases apoptosis, a process termed lipotoxicity. Various pathophysiological mechanisms have been proposed to lead to lipotoxic tissue injury, which might vary by cell type. Specific mechanisms by which lipotoxicity alter cardiac structure and function are incompletely understood, but are beginning to be elucidated. This review will focus on mechanisms that have been proposed to lead to lipotoxic injury in the heart and will review the state of knowledge regarding potential causes and correlates of increased myocardial lipid content in animal models and humans. We will seek to highlight those areas where additional research is warranted.
Collapse
Affiliation(s)
- Adam R Wende
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
22
|
Shirpoor A, Salami S, Khadem-Ansari MH, Ilkhanizadeh B, Pakdel FG, Khademvatani K. Cardioprotective effect of vitamin E: rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. J Diabetes Complications 2009; 23:310-6. [PMID: 18394933 DOI: 10.1016/j.jdiacomp.2008.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/26/2008] [Accepted: 02/14/2008] [Indexed: 11/21/2022]
Abstract
AIM This study was designed to assess the effect of vitamin E on cardiac autonomic neuropathy, cardiomyocyte apoptosis, and the status of oxidative stress in the heart under hyperglycemic conditions, in vivo. METHODS Wistar male rats (n=16) were made hyperglycemic by streptozotocin at 6 months of age. Normal Wistar rats (n=8) of the same age were used as the control group. Diabetic rats were divided into two groups, nontreated and those treated with vitamin E (300 mg/day). Stable hyperglycemic status was proved by levels of blood sugar and HbA(1c). Lipid peroxidation, protein oxidation, and cellular antioxidant defense were measured by 8-isoprotane, protein carbonyl content, and superoxide dismutase (SOD) activity, respectively. RESULTS Cardiac complications such as autonomic neuropathy as prolonged QT interval along with significant increases in level of 8-isoprotane, protein carbonyl content, and SOD activity were observed after 6 weeks. Structural abnormality was also observed as severe induction of apoptosis in cardiomyocytes. CONCLUSION Significant decline in apoptosis, lipid peroxidation, protein oxidation, and QT interval resulted from vitamin E administration, which strongly implies that this radical scavenger may promote a convalescing effect on diabetic cardiomyopathy through the attenuation of oxidative stress and abrogation of apoptotic signals, which was verified by restoring normal QT interval.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | | | | | | | | | | |
Collapse
|
23
|
Sebbagh N, Cruciani-Guglielmacci C, Ouali F, Berthault MF, Rouch C, Sari DC, Magnan C. Comparative effects of Citrullus colocynthis, sunflower and olive oil-enriched diet in streptozotocin-induced diabetes in rats. DIABETES & METABOLISM 2009; 35:178-84. [DOI: 10.1016/j.diabet.2008.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
|
24
|
Turpin SM, Ryall JG, Southgate R, Darby I, Hevener AL, Febbraio MA, Kemp BE, Lynch GS, Watt MJ. Examination of 'lipotoxicity' in skeletal muscle of high-fat fed and ob/ob mice. J Physiol 2009; 587:1593-605. [PMID: 19204053 DOI: 10.1113/jphysiol.2008.166033] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Excess lipid accumulation resulting from an elevated supply of plasma fatty acids is linked to the pathogenesis of the metabolic syndrome and heart disease. The term 'lipotoxicity' was coined to describe how lipid accumulation leads to cellular dysfunction and death in non-adipose tissues including the heart, pancreas and liver. While lipotoxicity has been shown in cultured skeletal muscle cells, the degree of lipotoxicity in vivo and the functional consequences are unresolved. We studied three models of fatty acid overload in male mice: 5 h Intralipid((R)) and heparin infusion, prolonged high fat feeding (HFF) and genetic obesity induced by leptin deficiency (ob/ob mice). Markers of apoptosis, proteolysis and autophagy were assessed as readouts of lipotoxicity. The Intralipid((R)) infusion increased caspase 3 activity in skeletal muscle, demonstrating that enhancing fatty acid flux activates pro-apoptotic pathways. HFF and genetic obesity increased tissue lipid content but did not influence apoptosis. Gene array analysis revealed that HFF reduced the expression of 31 pro-apoptotic genes. Markers of autophagy (LC3beta and beclin-1 expression) were unaffected by HFF and were associated with enhanced Bcl(2) protein expression. Proteolytic activity was similarly unaffected by HFF or in ob/ob mice. Thus, contrary to our previous findings in muscle culture in vitro and in other non-adipose tissues in vivo, lipid overload did not induce apoptosis, autophagy or proteolysis in skeletal muscle. A broad transcriptional suppression of pro-apoptotic proteins may explain this resistance to lipid-induced cell death in skeletal muscle.
Collapse
Affiliation(s)
- S M Turpin
- St Vincent's Institute of Medical Research and the Department of Medicine, University of Melbourne, Fitzroy, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Niu YG, Evans RD. Metabolism of very-low-density lipoprotein and chylomicrons by streptozotocin-induced diabetic rat heart: effects of diabetes and lipoprotein preference. Am J Physiol Endocrinol Metab 2008; 295:E1106-16. [PMID: 18780778 DOI: 10.1152/ajpendo.90260.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Very-low-density lipoprotein (VLDL) and chylomicrons (CM) are major sources of fatty acid supply to the heart, but little is known about their metabolism in diabetic myocardium. To investigate this, working hearts isolated from control rats and diabetic rats 2 wk following streptozotocin (STZ) injection were perfused with control and diabetic lipoproteins. Analysis of the diabetic lipoproteins showed that both VLDL and CM were altered compared with control lipoproteins; both were smaller and had different apolipoprotein composition. Heparin-releasable lipoprotein lipase (HR-LPL) activity was increased in STZ-induced diabetic hearts, but tissue residual LPL activity was decreased; moreover, diabetic lipoproteins stimulated HR-LPL activity in both diabetic and control hearts. Diabetic hearts oxidized lipoprotein-triacylglycerol (TAG) to a significantly greater extent than controls (>80% compared with deposition as tissue lipid), and the oxidation rate of exogenous lipoprotein-TAG was increased significantly in diabetic hearts regardless of TAG source. Significantly increased intracardiomyocyte TAG accumulation was found in diabetic hearts, although cardiac mechanical function was not inhibited, suggesting that lipotoxicity precedes impaired cardiac performance. Glucose oxidation was significantly decreased in diabetic hearts; additionally, however, diabetic lipoproteins decreased glucose oxidation in diabetic and control hearts. These results demonstrate increased TAG-rich lipoprotein metabolism concomitant with decreased glucose oxidation in type 1 diabetic hearts, and the alterations in cardiac lipoprotein metabolism may be due to the properties of diabetic TAG-rich lipoproteins as well as the diabetic state of the myocardium. These changes were not related to cardiomyopathy at this early stage of diabetes.
Collapse
Affiliation(s)
- You-Guo Niu
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | | |
Collapse
|
26
|
Leroy C, Tricot S, Lacour B, Grynberg A. Protective effect of eicosapentaenoic acid on palmitate-induced apoptosis in neonatal cardiomyocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:685-93. [DOI: 10.1016/j.bbalip.2008.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/07/2008] [Accepted: 07/23/2008] [Indexed: 11/29/2022]
|
27
|
Ghosh S, Novak EM, Innis SM. Cardiac proinflammatory pathways are altered with different dietary n-6 linoleic to n-3 alpha-linolenic acid ratios in normal, fat-fed pigs. Am J Physiol Heart Circ Physiol 2007; 293:H2919-27. [PMID: 17720770 DOI: 10.1152/ajpheart.00324.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although dietary fat has been associated with inflammation and cardiovascular diseases (CVD), most studies have focused on individuals with preexisting diseases. However, the role of dietary fatty acids on inflammatory pathways before the onset of any abnormality may be more relevant for identifying initiating factors and interventions for CVD prevention. We fed young male pigs one of three diets differing in n-6 and n-3 polyunsaturated fatty acids (PUFA) linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (ALA, 18:3n-3) for 30 days. Cardiac membrane phospholipid fatty acids, phospholipase A(2) (PLA(2)) isoform activities, and cyclooxygenase (COX)-1 and -2 and 5-lipoxygenase (5-LO) expression were measured. The low PUFA diet (% energy, 1.2% LA+0.06% ALA) increased arachidonic acid (AA) and decreased eicosapentaenoic acid (EPA) in heart membranes and increased Ca(2+)-independent iPLA(2) activity, COX-2 expression, and activation of 5-LO. Increasing dietary ALA while keeping LA constant (1.4% LA+1.2% ALA) decreased the heart membrane AA, increased EPA, and prevented proinflammatory enzyme activation. However, regardless of high ALA, high dietary LA (11.6% LA and 1.2% ALA) decreased EPA and led to a high heart membrane AA, and Ca(2+)-dependent cPLA(2) with a marked increase in nitrosative stress. Our results suggest that the potential cardiovascular benefit of ALA is achieved only when dietary LA is reduced concomitantly rather than fed with high LA diet. The increased nitrosative stress in the unstressed heart with high dietary LA suggests that biomarkers of nitrosative stress may offer a useful early marker of the effects of dietary fat on oxidative tissue stress.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Nutrition Research Program, Child and Family Research Institute, Department of Pedicatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
28
|
Ghosh S, Rodrigues B, Ren J. Rat Models of Cardiac Insulin Resistance. METHODS IN MOLECULAR MEDICINE™ 2007; 139:113-43. [DOI: 10.1007/978-1-59745-571-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Ghosh S, Kewalramani G, Yuen G, Pulinilkunnil T, An D, Innis SM, Allard MF, Wambolt RB, Qi D, Abrahani A, Rodrigues B. Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary omega-6 polyunsaturated fatty acids. Free Radic Biol Med 2006; 41:1413-24. [PMID: 17023268 DOI: 10.1016/j.freeradbiomed.2006.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/25/2006] [Accepted: 07/29/2006] [Indexed: 11/30/2022]
Abstract
Increased awareness of obesity has led to a dietary shift toward "heart-friendly" vegetable oils containing omega-6 polyunsaturated fatty acid (omega-6 PUFA). In addition to its beneficial effects, omega-6 PUFA also exhibits proinflammatory and prooxidative properties. We hypothesized that chronic dietary omega-6 PUFA can induce free radical generation, predisposing the cardiac mitochondria to oxidative damage. Male Wistar rats were fed a diet supplemented with 20% w/w sunflower oil, rich in omega-6 PUFA (HP) or normal laboratory chow (LP) for 4 weeks. HP feeding augmented phospholipase A(2) activity and breakdown of cardiolipin, a mitochondrial phospholipid. HP hearts also demonstrated elevated inducible nitric oxide synthase expression, loss of Mn superoxide dismutase, and increased mitochondrial nitrotyrosine levels. In these hearts, oxidative damage to mitochondrial DNA (mDNA) was demonstrated by 8-hydroxyguanosine immunopositivity, overexpression of DNA repair enzymes, and a decrease in the mRNA expression of specific respiratory subunits encoded by the mDNA. Functionally, at higher workloads, HP hearts also demonstrated a greater decline in cardiac work than LP, suggesting a compromised mitochondrial reserve. Our study, for the first time, demonstrates that consumption of a high fat diet rich in omega-6 PUFA for only 4 weeks instigates mitochondrial nitrosative damage and causes cardiac dysfunction at high afterloads.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2006; 291:H1489-506. [PMID: 16751293 DOI: 10.1152/ajpheart.00278.2006] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In patients with diabetes, an increased risk of symptomatic heart failure usually develops in the presence of hypertension or ischemic heart disease. However, a predisposition to heart failure might also reflect the effects of underlying abnormalities in diastolic function that can occur in asymptomatic patients with diabetes alone (termed diabetic cardiomyopathy). Evidence of cardiomyopathy has also been demonstrated in animal models of both Type 1 (streptozotocin-induced diabetes) and Type 2 diabetes (Zucker diabetic fatty rats and ob/ob or db/db mice). During insulin resistance or diabetes, the heart rapidly modifies its energy metabolism, resulting in augmented fatty acid and decreased glucose consumption. Accumulating evidence suggests that this alteration of cardiac metabolism plays an important role in the development of cardiomyopathy. Hence, a better understanding of this dysregulation in cardiac substrate utilization during insulin resistance and diabetes could provide information as to potential targets for the treatment of cardiomyopathy. This review is focused on evaluating the acute and chronic regulation and dysregulation of cardiac metabolism in normal and insulin-resistant/diabetic hearts and how these changes could contribute toward the development of cardiomyopathy.
Collapse
MESH Headings
- Animals
- Cardiomyopathies/etiology
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Energy Metabolism/physiology
- Fatty Acids/metabolism
- Glucose/metabolism
- Humans
- Insulin Resistance/physiology
- Mice
- Mice, Obese
- Myocardium/metabolism
- Myocardium/pathology
- Rats
- Rats, Zucker
Collapse
Affiliation(s)
- Ding An
- Div. of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada
| | | |
Collapse
|
31
|
Ghosh S. Discourse on diabetes, diet, and cell death: steps toward a purpose. Nutrition 2005; 21:1176-8. [PMID: 16308148 DOI: 10.1016/j.nut.2005.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Affiliation(s)
- Sanjoy Ghosh
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
32
|
Cury-Boaventura MF, Gorjão R, de Lima TM, Newsholme P, Curi R. Comparative toxicity of oleic and linoleic acid on human lymphocytes. Life Sci 2005; 78:1448-56. [PMID: 16236329 DOI: 10.1016/j.lfs.2005.07.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/12/2005] [Indexed: 01/22/2023]
Abstract
Commercially available lipid emulsions for parenteral nutrition are mainly composed by long chain triacylglycerol containing a high proportion of linoleic acid (LA) or oleic acid (OA). The immunological impact of such therapy is particularly important because parenteral diets are often administered to critically ill patients as a mechanism to supply adequate nutrition during catabolic stress conditions. The comparative toxicity of OA and LA on human lymphocytes and the type of cell death induced by these fatty acids were determined in vitro. Parameters of cell death were investigated by flow cytometry-cell viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, neutral lipid accumulation and production of reactive oxygen species-and by fluorescence microscopy-chromatin condensation. Additionally a spectrofluorometric assay was employed to determine the activities of caspase--3, 6 and 8. Evidence is presented herein that OA is less toxic to human lymphocytes than LA. However, both fatty acids promoted apoptosis and necrosis of these cells. The mechanism of cell death induced by OA involved activation of caspase 3 while the mechanism of death induced by LA involved mitochondrial depolarization and ROS production. Importantly, neutral lipid accumulation may be a mechanism to protect lymphocytes against the toxicity induced by OA. OA may offer an immunological less problematic alternative to LA with respect to fatty acid composition of parenteral nutritional emulsions.
Collapse
Affiliation(s)
- Maria F Cury-Boaventura
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1524, CEP 05508-900, University of São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Ghosh S, Pulinilkunnil T, Yuen G, Kewalramani G, An D, Qi D, Abrahani A, Rodrigues B. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol 2005; 289:H768-76. [PMID: 15805231 DOI: 10.1152/ajpheart.00038.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress due to excessive reactive oxygen species (ROS) and depleted antioxidants such as glutathione (GSH) can give rise to apoptotic cell death in acutely diabetic hearts and lead to heart disease. At present, the source of these cardiac ROS or the subcellular site of cardiac GSH loss [i.e., cytosolic (cGSH) or mitochondrial (mGSH) GSH] has not been completely elucidated. With the use of rotenone (an inhibitor of the electron transport chain) to decrease the excessive ROS in acute streptozotocin (STZ)-induced diabetic rat heart, the mitochondrial origin of ROS was established. Furthermore, mitochondrial damage, as evidenced by loss of membrane potential, increases in oxidative stress, and reduction in mGSH was associated with increased apoptosis via increases in caspase-9 and -3 activities in acutely diabetic hearts. To validate the role of mGSH in regulating cardiac apoptosis, l-buthionine-sulfoximine (BSO; 10 mmol/kg ip), which blocks GSH synthesis, or diethyl maleate (DEM; 4 mmol/kg ip), which inactivates preformed GSH, was administered in diabetic rats for 4 days after STZ administration. Although both BSO and DEM lowered cGSH, they were ineffective in reducing mGSH or augmenting cardiomyocyte apoptosis. To circumvent the lack of mGSH depletion, BSO and DEM were coadministered in diabetic rats. In this setting, mGSH was undetectable and cardiac apoptosis was further aggravated compared with the untreated diabetic group. In a separate group, GSH supplementation induced a robust amplification of mGSH in diabetic rat hearts and prevented apoptosis. Our data suggest for the first time that mGSH is crucial for modulating the cell suicide program in short-term diabetic rat hearts.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ghosh S, Ting S, Lau H, Pulinilkunnil T, An D, Qi D, Abrahani MA, Rodrigues B. Increased efflux of glutathione conjugate in acutely diabetic cardiomyocytes. Can J Physiol Pharmacol 2004; 82:879-87. [PMID: 15573148 DOI: 10.1139/y04-060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In diabetes, cell death and resultant cardiomyopathy have been linked to oxidative stress and depletion of antioxidants like glutathione (GSH). Although the de novo synthesis and recycling of GSH have been extensively studied in the chronically diabetic heart, their contribution in modulating cardiac oxidative stress in acute diabetes has been largely ignored. Additionally, the possible contribution of cellular efflux in regulating GSH levels during diabetes is unknown. We used streptozotocin to make Wistar rats acutely diabetic and after 4 days examined the different processes that regulate cardiac GSH. Reduction in myocyte GSH in diabetic rats was accompanied by increased oxidative stress, excessive reactive oxygen species, and an elevated apoptotic cell death. The effect on GSH was not associated with any change in either synthesis or recycling, as both γ-glutamylcysteine synthetase gene expression (responsible for bio syn thesis) and glutathione reductase activity (involved with GSH recycling) remained unchanged. However, gene expression of multidrug resistance protein 1, a transporter implicated in effluxing GSH during oxidative stress, was elevated. GSH conjugate efflux mediated by multidrug resistance protein 1 also increased in diabetic cardiomyocytes, an effect that was blocked using MK-571, a specific inhibitor of this transporter. As MK-571 also decreased oxidative stress in diabetic cardiomyocytes, an important role can be proposed for this transporter in GSH and reactive oxygen species homeostasis in the acutely diabetic heart. Key words: cardiomyocytes, apoptosis, multidrug resistance protein, reactive oxygen species.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of Bristish Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|